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Abstract

We present a method for the modeling and tracking
of human motion using a sequence of 2D video im-
ages. Our analysis is divided in two parts: statistical
learning and Bayesian tracking. First, we estimate a
statistical model of typical activities from a large set
of 3D human motion data. For this purpose, the hu-
man body is represented as a set of articulated cylin-
ders and the evolution of a particular joint angle is
described by a time-series. Specifically, we consider
periodic motion such as “walking” in this work, and
we develop a new set of tools that allows for the au-
tomatic segmentation of the training data into a se-
quence of identical “motion cycles”. Then we com-
pute the mean and the principal components of these
cycles using a new algorithm to account for missing
information and to enforce smooth transitions between
different cycles. The learned temporal model provides
a prior probability distribution over human motions
which is used for tracking. We adopt a Bayesian per-
spective and approximate the posterior distribution of
the body parameters using a particle filter. The re-
sulting algorithm is able to track human subjects in
monocular video sequences and to recover their 3D
motion in complex unknown environments.

1 Introduction
The modeling and tracking of human motion in video is im-
portant for problems as varied as animation, video database
search, sports medicine, and human-computer interaction.
Technically, the human body can be approximated by a col-
lection of articulated limbs (Figure 1) and its motion can be
thought of as a collection of time-series describing the joint
angles as they evolve over time. A key difficulty for the
modeling of these body angles is that each time-series has
to be decomposed into suitable temporal primitives prior

to statistical analysis. For example, in the case of repeti-
tive human motion such as walking, motion sequences de-
compose naturally into a sequence of identical “motion cy-
cles”. Of course, the exact nature of this decomposition is
unknown to the modeler and needs to be estimated from the
motion data. In this work, we present a new set of tools that
carry out this identification automatically. In detail, we sug-
gest an iterative procedure that generates the best segmen-
tation with respect to the signal-to-noise ratio of the data in
an aligned reference domain. This procedure allows us to
use the mean and the principal components of the individual
cycles in the reference domain as a statistical model. Tech-
nical difficulties include missing information in the motion
time-series and the necessity of enforcing smooth transi-
tions between different cycles. To deal with these problems,
we develop a new iterative method for functional Princi-
pal Component Analysis (PCA) that is based on a truncated
Fourier transform.

The learned temporal model provides a prior probabil-
ity distribution over human motions which can be used in
a Bayesian framework for tracking. For this purpose, we
specify a generative model of image appearance and the
likelihood of observing image data given the model. The
non-linearity of this generative model results in a poste-
rior distribution that cannot be represented in closed form.
Hence, the posterior is represented using a discrete set of
samples and is propagated over time using particle filter-
ing. Here the prior distribution based on the PCA serves to
improve the efficiency of the particle filter by constraining
the samples to the most likely regions of a low-dimensional
subspace of the parameter space. The resulting algorithm is
able to track human subjects in monocular video sequences
and to recover their 3D motion under changes in their pose
and against complex unknown backgrounds.

The Bayesian tracking is described in detail in [18] and
is summarized here. Unlike that previous work which used
hand-segmented and aligned training data, this paper de-
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Figure 1: Human body model, consisting of a set of artic-
ulated cylinders with 25 degrees of freedom (DOF). Each
limb, , has a local coordinate system with the axis di-
rected along the limb. Joints have up to 3 angular DOF, ex-
pressed as relative rotations between body
parts and .

tails an automated method for learning temporal models of
cyclic data which form a limited but important class of hu-
man motions. The learning methods developed here may be
extensible from cyclic to more general human motions.

2 Related Work
The modeling of human motion has attracted a great deal
of attention in both the computer graphics and computer
vision communities. Much of the work in the computer
vision community has focused on recognition of activities
and models of human motion appropriate to this task. For
example, Hidden MarkovModels (HMM’s) have been used
extensively for recognition of human action (e.g. [3, 4, 20]).
HMM’s typically provide a coarse approximation to motion
data and hence are not as good for synthesis as for recogni-
tion (though Brand’s recent work [3] suggests that may not
be a fundamental limitation).
The weakness of HMM’s for modeling is that they do

not well capture some of the intrinsic properties of biolog-
ical motion such as smoothness. The same can be said for
linear dynamical models [13]. Instead, human motions are
often represented by explicit temporal curves that describe
the change over time of 3D joint angles [5, 6, 12, 14, 15].
Here we focus on the modeling of 3D joint angles for

tracking of human motion. The simplest models place con-
straints on the smooth change in joint angles [10, 19]. More
detailed models represent explicit curves corresponding to
the variation in joint angles over time. These models are
derived from biometric studies of human motion [5, 15] or
learned from 3D motion-capture data [6, 12, 18].
Statistical representations of time-series data using func-

tional analysis are described in detail in [14]. A common
approach to model 3D motion curves is to hand-segment
and align the data corresponding to particular activities.
The variation across subjects is modeled by principal com-
ponent analysis (PCA) of the curve data. Here the first few
principal components capture most of the variation in the

training set. This approach has been used for representing
2D image changes [2], optical flow [21], and 3D joint an-
gles [18]. A related approach uses vector quantization [12]
rather than PCA.
The primary use of such detailed models is in tracking us-

ing 3D articulated models of people. Given the high dimen-
sionality of the human body, the temporal curves are used to
constrain the possible motions to lie on a far lower dimen-
sional manifold. Recently, Bayesian methods have become
popular for tracking 3D human motion [7, 12, 17, 18]. In
these models, the temporal curves can be thought of as pro-
viding a prior probability distribution over valid human mo-
tions. The PCA representation of temporal curves provides
a statistical model of the variation present in the training set
that can be used to construct such a probabilistic prior.
Most work on modeling 3D human motion curves has

focused on cyclic motions such as walking and running.
While cyclic motions are particularly simple they are also
an important class of human activities and have been exten-
sively studied [1, 16]. Likewise, in the current paper, we
focus on cyclic motion and provide a thorough statistical
treatment.
Our ultimate goal in modeling 3D human motion is to

automatically learn probabilistic models from training data.
To do so involves automatically segmenting the data into
individual activities, aligning activities from different ex-
amples, modeling the statistical variation in the data, and
deriving a probabilistic model. Complicating matters is
the fact that training data tends to be imperfect and, with
commercial motion capture systems, contains missing data
that must be accounted for in modeling. Additionally, with
cyclic motions, the learning method must enforce smooth
transitions between cycles. In previous work, some of these
issues were either ignored or dealt with via manual inter-
vention. Here, in the case of cyclic motions, we provide a
complete treatment that automatically copes with missing
data and enforces smoothness.

3 Learning
In the first part of our analysis, we develop a modeling
procedure for periodic motion sequences. By definition,
periodic motion is composed of repetitive “cycles” which
constitute a natural unit of statistical modeling and which
must be identified in the training data prior to building a
model. Frequently, this segmentation is carried out manu-
ally in an error-prone and burdensome procedure (see, for
example, [14, 21]). In this section, we present alignment
algorithms that segment the data automatically. Based on
the estimated alignment parameters, the cycles of different
motion sequences are then transformed into a common ref-
erence domain, and the mean and the principal components
of the transformed cycle data are computed as a statistical
model. Here the mean cycle can be interpreted as a proto-



type of a specific motion class, e.g. walking, and the princi-
pal components characterize the main sources of deviation
of sequences in the data set from the mean cycle. Below
we use these statistics to construct a prior distribution for
Bayesian tracking.

3.1 The Motion Data
Training data, in the form of 3D joint angles, is provided by
a commercial motion-capture system. For each “motion se-
quence”, there are 19 such angle time-series in our case,
and we use the term “motion class” to indicate the type
of motion rendered by the subject during the observation
(walking, running, etc.). Altogether our data set consists of
eight motion sequences rendered by four individuals. The
length of the motion sequences ranges from about 500 to
5000 frames.
Formally, we let denote the length of the -th motion

sequence and we use as a time index. Sim-
ilarly, is the number of angles in each motion se-
quence and indicates a particular angle. The
-th motion sequence is written formally as

for

There are motion sequences in our training data set
and associated with each sequence we have the indicator
set is not missing . Miss-
ing observations occur frequently in our data set because
some markers may be occluded during parts of a motion.
The capturing system reports an angle of zero for some of
the position coordinates in this case. Typically occlusion
lasts for several frames which prevents the imputation of
interpolated values using neighboring observations. Below
we spend considerable effort to design our algorithms in a
manner insensitive to this artifact.

3.2 Sequence Alignment
First, we describe a procedure to estimate alignment param-
eters that segment motion sequences into cycles. In detail,
for each motion sequence, we estimate its “cycle length”,
, and an “offset parameter”, . Based on these parameters,
the individual motion sequences can be transformed into a
common “reference domain” for further analysis.
To estimate the cycle length, we simply try a large num-

ber of candidate values for and we assess the quality of
the alignment resulting from using a simple score func-
tion. Formally, let the projection index associated with
be defined according to , where denotes
the smallest integer greater or equal . In other words,
“folds” the original sequence into the domain .
Also, let denote the index-set of non-missing val-
ues projected onto . Then the mean of the observations

The data is not to be confused with the reference coordinate for
limb in Figure 1.

mapped onto can be written as

and the magnitudes

measure the signal- and the noise-content of the projected
sequence. Combined into a single value, we can define the
“signal-to-noise ratio”

(1)

Specifically, can be interpreted as the variation in
the data that is not explained by the mean cycle;
measures the signal intensity. Therefore, it is natural to
prefer values of producing a large signal-to-noise ra-
tio. In our algorithm we try candidate values from the set

and choose the maximum with respect to
(1) as our estimate of the cycle-length.
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Figure 2: Signal-to-noise ratio of a representative set
of angles as a function of the candidate period length.
We show left shoulder (lshx,lshy,lshz), elbow (lelb), hip
(lhpx,lhpy,lhpz), and knee angles (lkne). The top series cor-
responds to a white noise signal. The bottom series shows
the accumulated signal-to-noise ratio (1). The minimum
overall variation was obtained for , (

).

Note that both of these magnitudes are normalized so as to produce
unbiased estimates.



In Figure 2 we show the individual signal-to-noise ratios
for a subset of the angles as well as the accumulated signal-
to-noise ratio (1) as functions of . Note the sharp peak of
these values around the optimal cycle length . Note
also that the signal-to-noise ratio of the artificially gener-
ated white noise series in the first row is approximately con-
stant, warranting the unbiasedness of our approach with re-
spect to changing values of .

The described folding procedure computes an estimate of
the optimal cycle length for each sequence and stores
these values in an array of length . In our second step, we
use this array to align multiple sequences in a common do-
main by rescaling. In detail, we construct offset estimates

so that the shifted motion sequences
minimize the deviation from a common prototype model
by analogy to the noise-criterion of the previous paragraph.
An exhaustive search for the optimal offset combination is
clearly infeasible due to its high computational complex-
ity of Instead, we suggest the iterative pro-
cedure illustrated in Figure 3 to compute an approximate
solution: We initialize the offset values to zero in Step 1,

1. Initialize offset values. For , let .

2. From a given function class , choose the minimum
least-squares fit with respect to the aligned data. For

:

3. Update the offset parameters. For :

4. Stop, if the performance improvement is below .
Otherwise, goto Step 2.

Figure 3: Iterative algorithm for the computation of the
optimal offset parameters.

and we define a reference signal in Step 2 so as to min-
imize the deviation with respect to the aligned data. Next,
we choose the offsets of all sequences so that they mini-
mize the prediction error with respect to the reference sig-
nal (Step 3). By contrast to the exhaustive search, this op-
eration requires comparisons only. Because
the solution of the first iteration may well be suboptimal,
we construct an improved reference signal using the cur-
rent offset estimates, and use this signal in turn to improve
the offset estimates. Repeating these steps, we obtain an

iterative optimization algorithm that is terminated if the im-
provement falls below a given threshold (Step 4). Because
Steps 2 and 3 both decrease the prediction error, it is clear
that the algorithm converges.
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Figure 4: Aligned representation of eight walking se-
quences (blue). The red curve denotes repetitions of the pe-
riodic regression spline estimate. (final error: 6.2536e+04,
convergence after five steps).

Figure 4 shows eight sequences of a walking motion,
aligned using this procedure. As a function class for the
reference signal, , we chose periodically constrained re-
gression splines in our implementation; i.e. the zeroth, first,
and second derivatives of the spline are designed so as to
coincide at the boundaries (for details on splines, see [22]).
Otherwise, the concatenated reference signal in Figure 4
would be discontinuous at the transitions between cycles.

3.3 Principal Component Analysis
Next, we break down the aligned data representation of Fig-
ure 4 into individual cycles and we compute the principal
components of the resulting slices. The principal compo-
nents can be interpreted as the major sources of variation
in the data. Below we use them to formulate a probability
model for walking. The algorithm developed for this pur-
pose is illustrated in Figure 5.
Our algorithm addresses several difficulties: First, even

though the individual motion sequences are aligned in Fig-
ure (4), they are still sampled at different frequencies in
the common domain due to the different alignment param-
eters. This problem is accommodated in Step 1c by re-
sampling after computing a functional estimate in contin-
uous time in Step 1b. As function estimates, , we choose
(non-constrained) regression splines in this case. A sec-
ond difficulty consists of missing data in the design matrix
. Therefore, we cannot simply use the Singular Value

Decomposition (SVD) of to obtain the principal com-



1. For and :

(a) Dissect into cycles of length , marking
missing values at both ends. This gives a new set
of time series for where

. Let be the new index set for this
series.

(b) Compete functional estimates in the domain . For
:

(c) Resample the data in a common reference domain, im-
puting missing observations. This gives yet another
time-series

for

2. Stack the “slices” obtained from all sequences row-
wise into a design matrix .

3. Compute the row-mean of , and let .
Here is a vector of ones.

4. Slice by slice, compute the Fourier coefficients of ,
and store them in a new matrix, . Use the first 20
coefficients only.

5. Compute the Singular Value Decomposition of :

6. Reconstruct the design matrix, using the rank approxi-
mation to :

(2)

7. Apply the Inverse Fourier Transform and add to ob-
tain .

8. Impute the missing values in using the corresponding
values in .

9. Evaluate . Stop, if the performance improve-
ment is below . Otherwise, goto Step 3.

Figure 5: Functional PCA algorithm with data imputation.

ponents. An appropriate alternative is to use an iterative
approximation scheme suggested recently by Hastie et al.
in the context of analyzing Gene Expression Arrays [23].
In detail, we alternate between an SVD step (4 through 7)
and a data imputation step (8), where each update is de-

signed so as to decrease the matrix distance between
and its reconstruction, . As an additional complication,
we cannot compute the SVD directly because the principal
components obtained in this manner could be non-periodic
or even discontinuous. This is due to the data imputations
in Steps 1c and 8 which do not explicitly enforce these
constraints. We accommodate this problem by translating
the cycles into a Fourier domain and by truncating high-
frequency coefficients (Step 4). Then we compute the SVD
in the Fourier domain in Step 5, and we reconstruct the de-
sign matrix using a rank- approximation in Steps 6 and
7. In Step 8 we use the reconstructed values as improved
estimates for the missing data in , and then we repeat
Steps 4 through 7 using these improved estimates. This it-
erative process is continued until the performance improve-
ment falls below a given threshold. The convergence of the
algorithm can be proven using an argument similar to the
one in Section 3.2; for brevity, we do not provide details
here.
The above algorithm generates the imputed design ma-

trix, , as well as its singular value decomposition as its
output. These serve as a prior distribution for the tracking
algorithm below. Specifically, we use in our ex-
periments and we assume that all motions are essentially
superpositions of these five components in the next section.

4 Bayesian Tracking
In tracking, our goal is to estimate joint angles of the body
and its 3D pose given a sequence of image measurements,
, up to time . Below, we outline a Bayesian framework in

which we define a generative model of image appearance to
obtain a likelihood term that specifies the probability of ob-
serving an image given the parameters of the body model.
Also, we use the Singular Value Decomposition of
to formulate a Bayesian prior distribution. In this frame-
work, tracking can be reformulated as an inference prob-
lem where we compute a posterior distribution given the
prior and the likelihood. This computation is typically very
difficult given the high dimensionality of the body model.
However, by approximating motion in terms of a few prin-
cipal components, we effectively reduce the dimensionality
and arrive at a computationally feasible algorithm.
Formally, let be a random

vector summarizing the relative joint angles at time ; in
other words, the value of a motion sequence, , at time
is now interpreted as the -th realization of . Under
the modeling assumptions of the SVD in Figure 5, can
be written in the form

(3)

where is the Fourier inverse of the -th column of ,
rearranged as an -matrix; similarly, denotes the



rearranged mean vector . is the -th column of ,
and the are time-varying coefficients.
maps absolute time onto relative cycle positions or phases,
and denotes the speed of the motion such that

mod .
Given this representation (3), body positions are char-

acterized by the low-dimensional state-vector
c , where c is a vector
of the linear coefficients and where and represent
the global 3D translation and rotation of the torso.
The tracking of a person in a monocular video sequence

entails estimating a distribution over at each time . We
adopt a Bayesian perspective in which the posterior proba-
bility over the parameters given all observations, , up
to time can be updated recursively according to:

(4)

Here is the likelihood of observing the image
given the parameters and is the poste-

rior probability from the previous instant. is
a temporal prior probability distribution that encodes how
the parameters change over time. The elements of the
Bayesian approach are summarized below; for details the
reader is referred to [18].

4.1 Generative Image Model
The geometrical optics are modeled as a pinhole camera
and we define a mapping from 3D scene coordinates to a 3D
camera-centered coordinate system. The body is modeled
as a kinematic tree of articulated cylinders with the body as
the root (see [18] for details). The global translation and ro-
tation ( ) map the torso into scene coordinates. Rigid
transformations specify the relative positions and orienta-
tions between connected limbs.
Given specific values for the parameter vector , the

values c and define a set of relative joint angles as spec-
ified by Equation (3). Combining these joint angles with
the global translation and rotation, , , defines the con-
figuration of the body at time . The camera model then
specifies how this 3D model is projected into the image.
We must now specify how this geometric formulation can

be used to predict the image appearance at time . Let
be a function that takes image texture at time

and, given the model parameters, maps it onto the surfaces
of the 3D model. Similarly, let take a 3D model
and project its texture back into the image.
Given these functions, the generative model of images

at time can be viewed as a mapping from the image
at time to the model using the parameters at time and
then the projection of this model into the image using the

parameters at time :

where denotes a zero mean Gaussian distribution
where the standard deviation, depends on the viewing an-
gle of the limb with respect to the camera and increases as
the limb is viewed more obliquely (see [18] for more de-
tails).

4.2 Temporal Prior
The temporal prior, , models how the parame-
ters describing the body configuration are expected to vary
over time. It is expressed formally as a collection of distri-
butions of the individual components of :

(5)
(6)
(7)

(8)

(9)

where , , and are empirically determined stan-
dard deviations while where is a small scalar and

are the singular values in in Equation
(2). is expected to be small since c varies little throughout
the walking cycle for each individual. Finally, is a ho-
mogeneous transformation matrix containing the the global
body parameters, and .
The Gaussian distribution over and c implies a Gaus-

sian distribution over joint angles. Thus, samples from the
distribution correspond to possible body con-
figurations. This provides a lower-dimensional model for
the distribution over the relative joint angles of the body.

4.3 Likelihood Model
Finally, to complete the Bayesian formulation, we define
the likelihood, , of observing image given the
human model has configuration at time . Based on the
generative model we predict the image at time and com-
pare the generated image with the observed image . In
detail, we independently evaluate the generative model for
each limb and compute the likelihood of observing the im-
age as the product of the resulting likelihood terms. For
a given limb , we take pixel locations, x , uniformly
sampled from the projected limb region and compute:

x x

(10)



Then we define the (limb-specific) likelihood of observing
the image as

(11)

where is the angle between the limb principal axis
and the image plane of the camera and is a function
that increases with narrow viewing angles. While this sim-
ple model works well in practice, the formulation of robust
likelihood models remains an area of our current research.
When a limb is completely occluded, is large and

the likelihood will be low. Similarly, as the limb is viewed
at narrow angles (all visible surface normals are roughly
perpendicular to the viewing direction) the true texture pat-
tern may be highly distorted. The limb can be thought of
as occluded and the probability of the viewing it goes to
zero. To model occluded regions we introduce the constant
probability, , that a limb is occluded.
We express the likelihood as a mixture between

and the likelihood of occlusion, , which acts as a
“penalty term.” The visibility , i.e. the influence of the ac-
tual image measurement, decreases with the increase of the
angle between the limb principal axis and the image
plane. The likelihood for the image likelihood of limb is
defined as:

(12)

where if limb is non-occluded, or 0 if
limb is occluded. The likelihood of observing the image
given a particular body pose is given by the product:

(13)

4.4 Stochastic Optimization
The posterior distribution may well be multi-modal due to
the nonlinearity of the likelihood function which results
from self-occlusions, viewpoint singularities, and match-
ing ambiguities. Representation of the posterior is further
complicated by the use of a (moderately) high-dimensional
dynamical model of the state evolution as embodied by the
temporal prior. For these reasons we represent the posterior
as a weighted set of state samples, which are propagated
in time using a particle filtering approach. Here we briefly
describe the method (see [11, 9, 18] for details.).
A state, s , is represented by a vector of parameters as-

signments, s . The posterior at time is represented
by samples ( in our experiments). To compute
the posterior (5) at time we first draw samples from the
posterior at time . Similarly, the shape parameters are
propagated by sampling from . At this point we
have new values of which can be used to compute the

likelihood . The likelihoods are normalized to
sum to one and the resulting set of samples approximates
the posterior distribution at time .

5 Experiments
To illustrate the method we show an example of tracking a
walking person in a cluttered scene. On an Ultra 1 Sparcsta-
tion the C++ implementation ran at a rate of approximately
1 frames/minute. To visualize the posterior distribution we
display the projection of the 3D model corresponding to the
expected value of the model parameters:
where is the likelihood of sample . All parameters
were initialized with a Gaussian prior at time .
Figure 6 shows the tracking results for frames 0 to 50 of

a sequence showing a walking person. Note that the legs
of the model are better aligned with the image data than the
arms. This is probably due to the fact that the arms are more
often occluded by the torso, and thus more prior driven than
the legs. In parts of the cycle where large occlusion occurs
(frame 30) the model has little image information, and starts
to drift off the person. However, it recovers when a larger
part of the body is visible (frame 40).

6 Conclusions
This paper describes a fully automated method for learn-
ing periodic human motions from training data. Statisti-
cal methods are presented for detecting the length of the
periods in the data, segmenting it into cycles, and opti-
mally aligning the cycles. We also presented a novel prin-
cipal component analysis technique for building a statisical
eigenmodel of the motion curves. The method copes with
missing data and enforces smoothness between the begin-
ning and ending of a motion cycle. The learned eigencurves
are used as prior probability distributions in a Bayesian
tracking framework. Tracking in monocular image se-
quences is performed using a particle filtering techinque
and we have demonstrated results for tracking a person in a
cluttered image sequence.
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