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Abstract
Particle filters are used for hidden state estimation with

nonlinear dynamical systems. The inference of 3-d human
motion is a natural application, given the nonlinear dynam-
ics of the body and the nonlinear relation between states and
image observations. However, the application of particle
filters has been limited to cases where the number of state
variables is relatively small, because the number of samples
needed with high dimensional problems can be prohibitive.
We describe a filter that uses hybrid Monte Carlo (HMC) to
obtain samples in high dimensional spaces. It uses multi-
ple Markov chains that use posterior gradients to rapidly ex-
plore the state space, yielding fair samples from the poste-
rior. We find that the HMC filter is several thousand times
faster than a conventional particle filter on a 28D people
tracking problem.

1 Introduction
Particle filters [8, 11, 13, 17] have become a popular way

to infer time-varying properties of a scene from images. Ap-
plications include tracking rigid and articulated objects [13,
14, 18], gesture recognition [1], robot localization [10], and
estimating occlusion boundaries [2]. Particle filters com-
pute a sampled representation of the posterior probability
distribution over scene properties of interest, conditioned on
image observations. The interpretation of 3-d human mo-
tion from video is one particularly compelling application
owing to the ease with which particle filters cope with non-
linear dynamics and nonlinear observation equations, and
the ease with which they maintain uncertainty with multi-
modal distributions [23].

Nevertheless, the successful application of particle filters
has been limited to situations where the number of state vari-
ables is relatively small. For high dimensional state spaces
the algorithm can become computationally inefficient and
thus ineffective. This paper describes a modified particle fil-
ter that uses a Markov chain Monte Carlo (MCMC) tech-
nique called hybrid Monte Carlo (HMC) [9, 19, 21] to fil-
ter more efficiently in high dimensional state spaces. Like
the particle filter, it uses a number of particles. But rather
than weighting each particle by its likelihood, each particle
produces a Markov chain that can follow the gradient of the

posterior over large distances. This allows it to rapidly ex-
plore the state space, while producing fair samples from the
desired posterior distribution. We apply the HMC filter to
the problem of estimating the time-varying, 3D shape of a
moving person from a sequence of projected marker posi-
tions in a 2D image. On this 28D problem, we find that the
HMC filter is several thousand times faster than a conven-
tional particle filter.

2 Background and Previous Work
The goal of Bayesian filtering is to compute the pos-

terior probability distribution p(st j z1:t) over an unknown
state st at time t, conditioned on image observations, z1:t�
(z1; :::; zt), up to time t. Particle filters work by approxi-
mating the posterior distribution using a discrete set of sam-
ples (i.e., states), where each sample corresponds to some
hypothesized set of model parameters. Each sample state is
typically weighted by its likelihood, p(zt j st), the probabil-
ity that the current observations were generated by the hy-
pothesized state. With high dimensional state spaces, a ma-
jor concern is the number of samples, and hence the number
of likelihood computations that are required to adequately
approximate the posterior.

One way to minimize the required computational effort
is to reduce the effective size of the state space that must be
searched. One can do this by exploiting problem-dependent
constraints, such as conditional independence among the
state variables. MacCormick and Isard [18] partition the
state space and sample the partitioned variables in sequence,
using importance reweighting.

One can also reduce the number of particles by choos-
ing a better proposal distribution, for example by improv-
ing the dynamical model of the system or by finding a
low-dimensional subspace in which the tracking can be
performed [15, 23]. This is appropriate when such low-
dimensional representations are available. Other ways to
obtain better proposals involve importance sampling or
sampling from low-level detectors in order to rapidly inject
good hypotheses into the sample set [2, 14].

Deutscher et al. [7] and Cham and Rehg [4] tackle the
problem of tracking people in high dimensional spaces by
following gradients to good hypotheses. Although such
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methods produce maximal-likelihood parameter estimates,
they do not produce an approximation to the desired poste-
rior. Even with multiple hypotheses [4], the samples are not
likely to be properly weighted samples from the posterior.

The hybrid Monte Carlo filter proposed here can be seen
as a way of following gradients of the posterior distribu-
tion to good hypotheses, but it is designed to generate sam-
ples that are correctly distributed according to the posterior.
When properly tuned, it allows for long trajectories through
state space so that the posterior can be sampled rapidly.

3 Basic Particle Filter
The particle filter is described elsewhere [11, 13, 17], but

we include it here for completeness. If we model the time-
varying, d-dimensional state st as a first-order Markov pro-
cess, and assume that observations zt are independent given
st, then we can factor the posterior p(stjz1:t) to obtain

p(stjz1:t) = � p(ztjst)
Z
p(stjst�1) p(st�1jz1:t�1)dst�1 ; (1)

where � is a constant that is independent of st, p(ztjst) is
the likelihood function, and the integral is often referred to
as the temporal prior over st given past observations.

The particle filter uses the temporal prior to bound the
search for high likelihood states by drawing proposal states
directly from it. Importance weights are then used to prop-
erly weight these states so they represent the posterior rather
than the prior from which they were drawn. This yields a
weighted set of samples, St = fsit; w

i
tg
N
i=1, which is said to

be properly weighted when summation over the particles ap-
proximates expectation under the posterior P t [17]; i.e.,

E
St
[f(st)] �

NX
i=1

w
i
tf(s

i
t)

N!1
�! E

Pt
[f(st)] ; (2)

for sufficiently smooth functions f .
Beginning with a sample set fsit�1; w

i
t�1g

N
i=1 that ap-

proximates p(st�1jz1:t�1), the computation at time t is:
1. Treating the weights as probabilities, draw N particles

with replacement from fsit�1g
N
i=1 to obtain a uniformly

weighted sample set fuit�1g
N
i=1.

2. For each particle uit�1 draw a sample from transition
density (the model dynamics) p(st j st�1 = uit�1),
yielding a proposal set fsitg

N
i=1.

3. Compute the importance weights w i
t from the normal-

ized likelihoods, i.e., wi
t = c p(zt j st = sit) where

c
�1 =

P
j p(zt j st=sjt ) is the normalization constant.

The success of a particle filter depends on its ability to
maintain an good approximation to the posterior. Following
(2), one natural way to assess the quality of the filter is to
examine the variability of sample expectations, E

St
[f(st)],

as compared to expectations under Pt, that is:

Var [E
St
[f(st)]] � E

h
(E
St
[f(st)]�E

Pt
[f(st)])

2
i
; (3)

where expectation is taken over different runs of the particle
filter. Not surprisingly, small variances are preferred.

The variance in (3) depends on the sample set. If one
hadN independent samples, fvitg

N
i=1, from the posteriorPt,

then the sample mean and its variance are

E
Vt
[f(st)] =

1

N

NX
i=1

f(vit) (4)

Var[E
Vt
[f(st)]] =

1

N
Var

Pt
[f(st)] : (5)

The variance in (3) will generally be larger than that in (5).
It is sometimes approximated by

Var [E
St
[f(st)]] �

� NX
i=1

(wi
t)
2

�
Var

Pt
[f(st)] ; (6)

where 1=
P

(wi
t)
2 is called the effective number of samples

[3, 16, 18].
In practice, random variability can be problematic for

particle filters. Some regions of state space may receive
fewer than the expected number of samples, while sam-
ples in other regions may occur closer together than nec-
essary given the smoothness of the posterior. One can get
a rough estimate of the minimum number of particles re-
quired by comparing the effective volumes (variances) of
the search space (the temporal prior density) and the target
(the posterior). For example, if the prior and posterior be
constant in d-dimensional hyperellipses with radii f�jg

d
j=1

and f�jgdj=1, and zero elsewhere, then a simple calculation
shows that

Var[E
St
[f(st)]] �

(�=�)d

N
Var

Pt
[f(st)] ; (7)

where � =
Q

�
1=d

j and � =
Q
�
1=d

j . This implies that the
minimum number of particles, approximately N(�=�)d, is
exponential in the state dimension. Random variability will
lead to poor tracking when d is high, or when �� �.

To cope with sampling inefficiency in high dimensional
spaces, we propose the use of a MCMC method called hy-
brid Monte Carlo (HMC) for filtering [9, 21]. After review-
ing the relevant aspects of MCMC methods, we discuss the
HMC filter below.

4 Markov Chain Monte Carlo
Central to MCMC methods is the Markov chain (MC),

a sequence of random variables X0, X1, ..., that satisfy
p(XijXi�1; Xi�2; :::; X0) = p(XijXi�1). For filtering, the
utility of Markov chains lies in the fact that, by choosing a
suitable transition distribution p(XijXi�1), a Markov chain
can be made to converge to the posterior, P . That is, re-
gardless of starting state, as the number of samples in the
MC grows sufficiently large, they become fair samples from
P . For this to happen, the transition p(XijXi�1) must leave
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P invariant; i.e., if Xi�1 is a fair sample from P , then Xi

drawn from p(XijXi�1) must also be a fair sample fromP .
MCMC methods often use Metropolis tests to achieve in-
variance through detailed balance [21]. The transition must
also be irreducible and aperiodic in order to ensure conver-
gence [22].

In this paper, we use an MCMC technique to obtain sam-
plesMt = fsitg

N
i=1 from the posterior Pt = p(stjz1:t). Ex-

pectations of functions f(st) under Pt are then computed
by averaging as in (4). However, because samples from a
Markov chain are not independent in general, the variances
of such statistics converge more slowly than 1=N :

Var[E
Mt

[f(st)]] =
�

N
Var

Pt
[f(st)] ; (8)

Here, the inefficiency factor, � , depends on the autocorrela-
tion of the MC samples. Comparing (8) to (7), we see that
the particle filter, in effect, has an inefficiency factor that
rises exponentially with dimensionality.

5 Hybrid Monte Carlo (HMC) Filter
The particle filter outlined in Sec. 3 produces weighted

samples. In contrast, the algorithm we propose uses
M Markov chains, each with R + 1 samples; let
(si;0t ; si;1t ; :::; si;Rt ) denote the samples from the ith Markov
chain. The HMC filter is like a particle filter as it begins
each time step with M particles. But each particle then
spawns a MC that converges to the posterior. Although a
single MC will eventually explore the entire state space,
it often requires many samples to move between different
modes of the posterior. We use multiple, independent
chains to explore multiple modes more efficiently.

The algorithm begins with a temporal prior. Like the par-
ticle filter, we take this to be a linear mixture of transition
densities, conditioned on samples from the posterior at the
previous time. Here we use only the final sample from each
MC, fsi;Rt�1g

M
i=1, from which we obtain

p(st j z1:t�1) =
1

M

MX
i=1

p(st j st�1=si;Rt�1) : (9)

Combining this with the likelihood function yields the pos-
terior at time t:

p(stjz1:t) = � p(ztjst) p(st j z1:t�1) : (10)

The HMC filter then proceeds as follows:

1. For each particle in fsi;Rt�1g
M
i=1, draw proposal states

uit � p(st j st�1 = si;Rt�1) , and evaluate the weights
w
i
t = c p(zt j st=uit), where c

�1 =
P

i p(ztjst=uit).

2. Treating the weights as probabilities, drawM particles
with replacement from the proposal set fuitg

M
i=1 to ob-

tain fsi;0t g
M
i=1, the initial Markov chain states.

3. Set the unnormalized target posterior as Pt =
p(ztjst) p(st j z1:t�1) . (The normalization constant is
not significant for the hybrid Monte Carlo updates.)

4. For each particle, use HMC updates to compute its MC
states si;rt = U(si;r�1t ; Pt) for r = 1; :::; R. The tran-
sition U(si;r�1t ; Pt) is designed to leave Pt invariant.

In practice, MCMC methods require some burn-in time
before the samples reach equilibrium; only those samples
that are drawn after the chain has reached equilibrium are
representative of the posterior. It is therefore common to
discard the early samples of each chain. The initial MC
states computed in step (2) are drawn from a rough approx-
imation to Pt in order to minimize the number of burn-in
samples. However, as there is no universally good way to
determine when one reaches equilibrium [6], we currently
set by hand the number of burn-in samples to be the same
across all chains.

Each particle is updated to keep the target posteriorP t in-
variant. As explained below, the hybrid Monte Carlo algo-
rithm requires that we are able to evaluate both the density
and the gradient of the target distribution. In practice, we
use Gaussian distributions for the transition density, so this
is not a significant restriction on the prior. Many likelihood
functions used in vision are also differentiable, so this is not
a severe restriction either.

6 How Hybrid Monte Carlo Works
To produce samples from the target posterior distribution

P(s), hybrid Monte Carlo performs a physical simulation of
an energy-conserving system with a potential energy bowl
equal to � logP(s) [9, 21]. The intuition is that if you ob-
serve the state of the system at regular intervals, then the col-
lection of observed states forms a Markov chain that comes
from P , provided that you replace the system’s momentum
after every observation by a sample from a unit Gaussian.
These momentum resamplings ensure that the system can
acquire enough energy to visit unlikely states with nonzero
probability.

In the physical simulation, each state variable sj is paired
with a momentum variable pj . On this extended state space,
the Hamiltonian, or total energy, is defined as H(s; p) =
E(s)+K(p), where E(s) = � logP(s) is the potential en-
ergy and K(p) = 1

2
pT p is the kinetic energy for a system

with a unit mass matrix. The new target distribution is

P 0(s; p) = C exp(�H(s; p)) (11)

where C is a normalizing constant. By construction P 0 is
separable, so the marginal distribution of s under P 0 is sim-
ply the desired posterior P . Thus, if we can get a sample
(s; p) from P 0, then s is also a fair sample from P .

Hybrid Monte Carlo produces MC samples with a tran-
sition (sr; pr) ! (sr+1; pr+1) that leaves P 0 invariant. (In
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what follows, we drop the superscript i and the subscript t
with the understanding the discussion applies to chain i at
time t.) The HMC transition is composed of two steps, each
of which leaves P 0 invariant. First, pr is replaced by ~pr,
which is sampled from a unit Gaussian. This leaves P 0 in-
variant as p is independent of s, and we have not changed
p’s distribution.

The second step, (sr; ~pr) ! (sr+1; pr+1), involves
the physical simulation. Starting from (sr; ~pr), the system
evolves according to Hamiltonian dynamics:

dp

dt
= �rE(s) ;

ds
dt

= (p1; p2; :::; pd) : (12)

Because Hamiltonian dynamics conserves H , is reversible,
and preserves the phase space volume, it leaves P 0 invari-
ant [21]. In practice, we use a discretized simulation made
up of L deterministic leapfrog steps, called a leapfrog tra-
jectory. With the initial state (ŝ0; p̂0) � (sr; ~pr), the l

th

leapfrog step, with stepsize �, is specified component-wise
by

p̂
l�1=2

j = p̂
l�1
j �

�

2

@E (̂sl�1)
@sj

(13)

ŝ
l
j = ŝ

l�1
j + � p̂

l�1=2

j (14)

p̂
l
j = p̂

l�1=2

j �
�

2

@E (̂s l)
@sj

(15)

where each line is computed for j = 1:::d before moving on
to the next.

Because the simulation is discrete, it is not guaranteed to
conserveH , nor to leaveP 0 invariant as a consequence. We
therefore perform a Metropolis rejection test [20] at the end
of each leapfrog trajectory. That is, we accept the proposal
(̂sL; p̂L) with probability

minf1; exp[�H (̂sL; p̂L) +H(sr; ~pr)]g : (16)

If the proposal is accepted, we set (sr+1; pr+1) to (ŝL; p̂L).
If rejected, (sr+1; pr+1) is set to (sr; ~pr). High rejection
rates should be avoided as they usually lead to inefficient ex-
ploration of the state space.

The Metropolis rejection test is guaranteed to yield a MC
update that keeps the target distribution invariant if it is used
with deterministic proposals that are self-inverting and have
Jacobian 1 [5]. The leapfrog trajectory has both these prop-
erties. In principle, other types of proposals can be used with
Metropolis tests to obtain samples from P 0. The key attrac-
tion of the leapfrog physical simulation is that, because it is
a simulation of Hamilton’s equations, it leaves H roughly
constant even for long trajectories so long as � is not so large
that the simulation becomes unstable. As can be seen from
(16), keeping H roughly constant keeps rejection rates, and
thus MC autocorrelations, low. Furthermore, long trajecto-
ries avoid random walks, and thereby produce samples from
distributions efficiently.

In (13)-(15), the stepsize � is identical for each state com-
ponent, j = 1:::d. This is fine for isotropic energy bowls.
Otherwise, the stepsize in each direction should ideally scale
with the width of the energy bowl in that direction. Thus,
one might use a separate stepsize �j for each state compo-
nent, j = 1:::d; following [21], we set the stepsizes as fol-
lows:

�j � �

�
@
2
E

@s
2
j

�
�

1

2

(17)

where � is called the stepsize adjustment factor. The sec-
ond derivative of E must be estimated using a heuristic so
that it does not depend on s (with the articulated model be-
low, variables high in the kinematic tree have larger second
derivatives than ones lower in the tree).

In general, leapfrog updates are valid for any nonzero
setting of �j so long as their choice does not depend on s.
The self-inverting property of the mapping would be vio-
lated otherwise. Our formulation here with different step-
sizes for each component is still equivalent to a Hamiltonian
formulation, but with a diagonal mass matrix instead of the
unit mass matrix used above. In particular, the different step
sizes given in (17) would be equivalent to a mass matrix with
diagonal elements given by �2j=�

2.

7 Experiments

To evaluate the hybrid Monte Carlo (HMC) filter, we
used it to infer the 3D motion of people walking and danc-
ing, from 2D moving light displays obtained from a com-
merical motion capture system. Inference of 3D structure
from motion capture data is interesting in its own right, but
we selected this problem rather than inference from video
[23] to simplify the likelihood function, allowing us to focus
our analysis on the filtering algorithm. Below we compare
the HMC filter to the particle filter on problems of different
dimensions, and show that the HMC filter is far superior in
high dimensions.

7.1 Observations Used for Tracking

The observations are labeled 2D positions that corre-
spond to 3D joint locations on a human subject. Figure 1A
shows the 3D marker locations on the body. The obser-
vations are given by the perspective projection of the 3D
points onto the image plane plus additive noise. With the
camera centered at (Xc; Yc; Zc) and its optical axis aligned
with the Y -axis, the 2D location of the l th marker located at
(X l

m; Y
l
m; Z

l
m) is given by

dl =

�
X
l
m �Xc

Y l
m � Yc

;
Z
l
m � Zc

Y l
m � Yc

�
+ n (18)

where n is mean-zero Gaussian noise with variance �2.
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Figure 1. (A) 3D positions of 17 markers on a human sub-
ject. (B) The kinematic tree used in our model.

7.2 Likelihood and Temporal Prior
The person is modeled as a hierarchical articulated

model. The hierarchy forms a kinematic tree rooted in the
spine as shown in Fig. 1B. Each body part has a local ref-
erence frame with its z axis running through what is natu-
rally thought of as the longest axis of that part. The pose of
a body part’s reference frame is specified using 3D rotations
and translations that map its frame to its parent’s. Angles
(�; �; ) denote angles of rotation about the X , Y and Z

axes. These angles, with the translations between part co-
ordinate origins, define the homogeneous transformations,
RX(�), RY (�) and RZ(). Taken in succession, they de-
fine the transformation matrix that maps a point Xc in some
child frame to Xp in its parent’s frame:

Xp = RZ()RY (�)RX (�)Xc (19)

Given a state, s, one can traverse the kinematic tree to
generate the 3D marker locations. These are then projected
into the image to obtain predicted 2D locations. Let d̂l(s) be
the 2D location for the lth marker that is predicted by state
s. With this, we can write the likelihood function for state s
and image observations z = fdl(s)g17l=1 as

p(z j s) =
�

1

2��2

�17

exp

�
�

P17

l=1 jjdl � d̂l(s)jj2

2�2

�
: (20)

The state space is 28-dimensional: There are 6 degrees of
freedom (DOF) for spine position and orientation, 3 DOFs
for the head and for each hip and arm/shoulder joint, 2 DOFs
for the pelvis, and 1 DOF joints for the shoulder/spine, the
elbows and the knees. For a temporal prior over these state

d
# Particle filter # HMC

R � L
samples (1000’s) chains

4
0.32, 0.64, 1.28, 2.56,

4
8, 16, 32, 64,

10.3 2
5.12, 10.24, 20.48 128, 256, 512

10
5.7, 11.4, 22.8, 45.6,

8
8, 16, 32, 64,

4.0 20
91.2, 182.4, 364.8 128, 256, 512

28
27, 54, 108, 216,

10
8, 16, 32, 64,

3.0 40
432, 864, 1,728 128, 256, 512

Table 1. Particle filter and HMC settings for single frame
experiments. Each row gives settings used for dimension d.
Numbers of samples used for the particle filter are in column
2. Remaining columns show HMC settings (onlyRwas var-
ied to equate computation times of the two filters).

variables, we simply assume that states change slowly over
time. As mentioned above, the temporal prior for states s t
given st�1 is a Gaussian centered at st�1 with variances
�
2
d and �2a for translation and angular variables. This prior,

along with (20), defines the unnormalized posterior which is
straightforward to differentiate, as is required for HMC tran-
sitions.

In practice one could exploit the Markov tree model of
the body to sample the structure more efficiently, as in [12,
18]. Here, while we do examine the tracking of the entire
body as well as its parts, our main concern is the relative
performance of HMC filters and particle filters. Also, note
that our human model is weak in that we do not model limits
on how far joints can rotate in reality. It is therefore possi-
ble for the tracker to recover anatomically impossible poses.
Similarly, limb lengths are determined from the dimensions
of the particular human subject before tracking begins, and
are then fixed during tracking. This is a source of error be-
cause real joints are more complicated than our model, caus-
ing some parts such as the shoulder to vary in length over
time.

7.3 Single Frame Experiments
Because filtering is recursive, it is useful to examine per-

formance for a single time step. For both HMC and particle
filters we implemented three trackers: a 4D arm tracker, a
10D lower body tracker and the 28D full body tracker. Each
was applied to three different, wide-spaced frames from se-
quences of people dancing and walking. When tracking a re-
stricted subset of the states, as in the arm and the lower body
trackers, we clamp the untracked state variables to their true
values (obtained from the motion capture system).

In all cases the standard deviation of the observation
noise in (18) was set to � = 0:003 (about 3% the length of
an upright spine projected onto the image). The standard de-
viations used for the Gaussian dynamics in temporal prior
were �d = 15:0mm and �a = 0:15 radians for the trans-
lational and angular state variables. The HMC and particle
filters have the same prior and the same likelihood and hence
they are both aiming to approximate the same posterior.

As suggested in Sec. 3, we assess the two filters on how
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Figure 2. Estimator variances for the mean state for individual state variables in single frame experiments. Error bars show one
standard error. As computation time increases, estimator variances decrease. In each case one can fix the variance, and compare the
compute times required to acheive that variance. In this way, notice that the particle filter about 8 times faster in the 4D case. But in
10D the HMC filter is about 50 times faster than the particle filter. In the 28D case, the same analysis requires that we extrapolate
the data for the particle filter, which we did assuming optimal statistical efficiency of each subsequent sample drawn by the particle
filter. But even with this optimistic extrapolant, the HMC filter remains over 2000 times faster than the particle filter.

well they estimate the posterior mean. The mean estimated
by the particle filter is simply the weighted mean state as
suggested by (2). For the HMC filter, the mean is given by
(4), for which we use all samples from all Markov chains,
except for the first 6 (the burn-in samples) along each chain.
To get the true posterior mean for the arm and lower body
experiments, we ran the particle filter with orders of mag-
nitude more particles than used in the tests below. For the
full body tracker, we approximated the true posterior mean
using an extremely long HMC run to obtain many samples.

From 50 runs of the two filters, with random sampling
and noise on each trial, we computed the estimator variance.
The marginal variances of each state component are given
by (3) with f equal to a projection operator from s to s i. Of
course, these variances are only comparable if the two filters
use the same amount of computation time. Table 1 shows the
parameters used to equate computation time; for the particle
filter the computation time depends on the number of parti-
cles, while for the HMC filter we vary the number of samples
R produced by each Markov chain.

Figure 2 shows marginal variances for single state vari-
ables as a function of computation time. For the 4D arm
tracker the particle filter outperforms. For the 10D lower
body tracker the situation reversed, with the HMC filter out-
performing. For the 28D full-body tracker the HMC filter is
vastly superior; the particle filter shows little variance reduc-
tion as the number of particles increases, and the effective
number of particles stays close to 1. By fixing the estimator
variance, one can also use these plots to compare computa-
tion times. For the arm tracker the particle fitler is approxi-
mately 8 times faster. But for the 10D tracker the HMC filter
is about 50 times faster, and as explained in the figure cap-
tion, for the 28D full body tracker the HMC method is more
than 2000 times faster.

To put this in perspective, as discussed in Sec. 3, one can

use the effective volumes of the prior and the posterior to
estimate a lower bound on number of particles needed for
these problems. Using more than enough particles for the
arm and lower body trackers we measured the covariances
of the prior and the posterior. Following Sec. 3, the geomet-
rical means of the marginal variances measure the volumes
contained within 1-standard deviation hyperellipses, the ra-
tios of which bound the number of particles. For the 4D
tracker we find a lower bound of about 102 particles, while
for the 10D tracker the bound increases to 105 particles. We
are unable to perform this test in 28D due to the large number
of particles required, but an extrapolation from the smaller
cases yields a bound of about 1013 particles.

Finally, to get a feeling for the estimator variances of
other state variables, we show the geometric mean variance,
computed over all variables. Fig. 3 shows the geometric
mean variance as a function of computation time at three
randomly selected frames in a walking sequence. These
mean variances behave like the marginal variances in Fig. 2.

7.4 Multiple Frame Experiments

It is also useful to compare the two filters over multiple
time steps. We applied the 10D lower-body and the 28D
full-body trackers to a 25-frame walking sequence. All pa-
rameters and initialization were identical to the single frame
case. Using Table 1, for the lower body tracker we used
R = 32 for HMC, and N = 23; 000 for the particle filter.
For the full body, we used R = 32 and N = 108; 000.

Tracking was performed 50 times using different obser-
vation noise instantiations each time. We average the log
likelihood of the mean state over the 50 runs, and do the
same for the log prior density of the true state. Both of these
quantities are expected to be larger if the tracker is perform-
ing well. As expected from the single frame experiments,
Fig. 4 and 5 show the superiority of the HMC filter.
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Figure 3. Geometric mean variances over all state variable, for the HMC filter and the particle filter on 3 tracking experiments.
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Figure 4. The log likelihood of the mean state over 25
frames. Error bars are 1 standard error.

Finally, Fig. 6 shows six poses recovered by each method
at frame 10, compared to the true pose. HMC estimates are
closer to the true pose and produce consistently higher likeli-
hoods. Because we only have monocular observations, and
our human model is weak, there are insufficient constraints
to recover the exact pose at each frame. For instance, the
mean arms found by the HMC filter appear consistent with
the observations, but are clearly variable in 3D.

7.5 Tuning Hybrid Monte Carlo
We tuned the parameters for our runs carefully but not ob-

sessively. The HMC filter has 5 tuning parameters, namely,
the number of chains M , the stepsize adjustment �, the
leapfrog trajectory length L, the number of HMC updates
R, and the number of burn-in samples b. Here, M should
be chosen to be the number of independent samples from
which one hopes to form the temporal prior. The stepsize
adjustment � is best set to give roughly 15% rejection rate.
For tracking over multiple frames, good �’s will differ from
frame to frame, so it may be desirable to adapt � for each
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Figure 5. The log prior of the true state over 25 frames. Error
bars are 1 standard error.

frame; in this paper, � was fixed.
The number of leapfrog steps L governs how rapidly you

sample from the posterior. Chains with small L may reach
equilibrium faster, but often lead to inefficient random walks
if too small. For multiple frame tracking, we fixed L by ex-
amining the behaviour of a few MCs for the first frame only;
i.e., we looked for a value of L that yields low MC autocor-
relations, with rejection rates close to 15%.

Finally, b should be chosen so that each chain has reached
equilibrium after b updates. There is no guarantee that equi-
librium will be reached, but available diagnostics [6] can
help to adaptively determine b for each chain.

8 Discussion and Future Work
In summary, we have seen how the hybrid Monte Carlo

filter samples high dimensional distributions more effi-
ciently than the particle filter. Unlike the particle filter,
for which the number of particles grows exponentially with
state space dimensionality, the HMC filter scales so much
better that it offers speedups of several orders of magnitude
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Figure 6. Posterior mean poses recovered by each method at
frame 10, from 6 random trials of the 28D tracker. The true
3D data (top) and the 2D observations (bottom) are shown
with thick black lines. The estimates from the two filters are
drawn with thin red lines. 108,000 particles were used for
the particle filter, and equivalent computation time was used
by the HMC filter.

in our 10D and 28D people tracking experiments. We be-
lieve that the hybrid Monte Carlo filter represents a promis-
ing new class of MCMC-based filters.

For future work, more sophisticated versions of the
HMC filter are possible. HMC particles can have a hard
time moving between modes, which is why we use multi-
ple chains; for strongly multimodal distributions, multiple
Markov chains should be started in different parts of state
space to capture all the modes. One can also use more than
just the final state of the Markov chains to form the tempo-
ral prior in the next frame; states from earlier in each chain
can be used as well. Methods for diagnosing equilibrium
would also be helpful. As mentioned however, there is no
foolproof way of diagnosing equilibrium, and this is true for
any MCMC-based technique. But it does not matter if we
use chains that have not fully reached equilibrium; so long
as a method provides a better approximation to the desired
posterior in a given amount of time, it is preferable.
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