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Abstract—A novel model-based approach to 3D hand tracking from
monocular video is presented. The 3D hand pose, the hand texture
and the illuminant are dynamically estimated through minimization of
an objective function. Derived from an inverse problem formulation, the
objective function enables explicit use of temporal texture continuity
and shading information, while handling important self-occlusions and
time-varying illumination. The minimization is done efficiently using a
quasi-Newton method, for which we provide a rigorous derivation of
the objective function gradient. Particular attention is given to terms
related to the change of visibility near self-occlusion boundaries that are
neglected in existing formulations. To this end we introduce new occlu-
sion forces and show that using all gradient terms greatly improves the
performance of the method. Qualitative and quantitative experimental
results demonstrate the potential of the approach.

Index Terms—Hand Tracking, Model Based Shape from Shading, Gen-
erative Modeling, Pose Estimation, Variational Formulation, Gradient
Descent

1 INTRODUCTION

Hand gestures provide a rich form of nonverbal human
communication for man-machine interaction. To this
end, hand tracking and gesture recognition are central
enabling technologies. Data gloves are commonly used
as input devices but they are expensive and often inhibit
free movement. As an alternative, vision-based tracking
is an attractive, non-intrusive approach.

Fast, effective, vision-based hand pose tracking is,
however, challenging. The hand has approximately 30
degrees of freedom, so the state space of possible hand
poses is large. Seaching for the pose that is maximally
consistent with an image is computationally demanding.
One way to improve state space search in tracking is to
exploit predictions from recently estimated poses, but
this is often ineffective for hands as they can move
quickly and in complex ways. Thus, predictions have
large variances. The monocular tracking problem is ex-
acerbated by inherent depth uncertainties and reflection
ambiguities that produce multiple local optima.

Another challenge concerns the availability of use-
ful visual cues. Hands are usually skin colored and it
is difficult to discriminate one part of the hand from
another based solely on color. The silhouette of the
hand, if available, provides only weak information about
the relative positions of different fingers. Optical flow
estimates are not reliable as hands have little surface

Fig. 1. Two hand pictures in the first column and their
corresponding edge map and segmented silhouette in
the two other columns. Edge and Silhouette are little
informative to disambiguate the two different index poses.

texture and are often self-occluding. Edge information
is often ambiguous due to clutter. For example, the
first column in Fig. 1 shows images of a hand with
different poses of its index finger. The other columns
show corresponding edge maps and silhouettes, which
remain unchanged as the finger moves; as such, they do
not reliably constrain the hand pose. For objects like the
hand, which are relatively uniform in color, we posit that
shading is a crucial visual cue. Nevertheless, shading has
not been used widely for articulated tracking (but see [1],
[2]). The main reason is that shading constraints require
an accurate model of surface shape. Simple models of
hand geometry where hands are approximated as a small
number of ellipsoidal or cylindrical solids may not be
detailed enough to obtain useful shading constraints.
Surface occlusions also complicate shading cues.

Two complementary approaches have been suggested
for monocular hand tracking. Discriminative methods
aim to recover hand pose from a single frame through
classification or regression techniques (e.g., [3], [4], [5],
[6]). The classifier is learned from training data that is
generated off-line with a synthetic model, or acquired by
a camera from a small set of known poses. Due to the
large number of hand DOFs it is impractical to densely
sample the entire state space. As a consequence, these
methods are perhaps best suited for rough initialization
or recognition of a limited set of predefined poses.

Generative methods use a 3D articulated hand model
whose projection is aligned with the observed image for
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pose recovery (e.g., [7], [8], [9], [10], [11]). The model
projection is synthesized on-line and the registration of
the model to the image can be done using local search,
ideally with continuous optimization. A variety of cues
such as the distance to edges, segmented silhouettes
[12], [13] or optical flow [1] can be used to guide the
registration. The method in [14] combines discriminative
and generative approaches but does not use on-line syn-
thesis. A set of possible poses in generated in advance,
which restrict the set of pose that can be tracked.

Not surprisingly, similar challenges exist for the re-
lated problem of fully-body human pose tracking. For
full-body tracking it is particularly difficult to formulate
good likelihood models due to the significant variability
in shape and appearance (e.g., see [15]). Interestingly,
with the exception of recent work in [16] on human body
shape and pose estimation for unclothed people, shading
has not been used extensively for human pose tracking.

This paper advocates the use of richer generative
models of the hand, both in terms of geometry and
appearance, along with carefully formulated gradient-
based optimization. We introduce a new analysis-by-
synthesis formulation of the hand tracking problem that
incorporates both shading and texture information while
handling self-occlusion. Given a parametric hand model,
and a well-defined image formation process, we seek
the hand pose parameters which produce the synthetic
image that is as similar as possible to the observed
image. Our similarity measure (i.e., our objective function)
simply comprises the sum of residual errors, taken over
the image domain. The use of a triangulated mesh-
based model allows for a good shading model. By also
modeling the texture of the hand, we obtain a method
that naturally captures the key visual cues without the
need to add new ad-hoc terms to the objective function.

During the tracking process we determine, for each
frame, the hand and illumination parameters by mini-
mizing an objective function. The hand texture is then
updated in each frame, and then remains static while
fitting the model pose and illumination in the next
frame. In contrast to the approach described in [1],
which relies on optical flow, our objective function does
not assume small inter-frame displacements in its for-
mulation. It therefore allows large displacements and
discontinuities. The optimal hand pose is determined
through a quasi-Newton descent using the gradient of
the objective function. In particular, we provide a novel,
detailed derivation of the gradient in the vicinity of
depth discontinuities, showing that there are important
terms in the gradient due to occlusions. This analysis of
continuity in the vicinity of occlusion boundaries is also
relevant, but yet unexplored, for the estimation of full-
body human pose in 3D. Finally, we test our method on
challenging sequences involving large self-occlusion and
out-of-plane rotations. We also introduce sequences with
3D ground truth to allow for quantitative performance
analysis.

(a) (b)

Fig. 2. (a) The skeleton (b) The deformed hand triangu-
lated surface

2 GENERATIVE MODEL

2.1 Synthesis

Our analysis-by-synthesis approach requires an image
formation model, given a 3D hand pose, surface texture,
and an illuminant. The model is derived from well-
known computer animation and graphics concepts.

Following [17], we model the hand surface by a 3D,
closed and orientable, triangulated surface. The surface
mesh comprising 1000 facets (Fig. 2b). It is deformed
according to pose changes of an underlying articulated
skeleton using Skeleton Subspace Deformation [18], [19].
The skeleton comprises 18 bones with 22 degrees of
freedom (DOF). Each DOF corresponds to an articulation
angle whose range is bounded to avoid unrealistic poses.
The pose is represented by a vector θ, comprising 22
articulation parameters plus 3 translational parameters
and a quaternion to define the global position and
orientation of the wrist with respect to the camera. To
accommodate different hand shapes and sizes, we also
add 54 scaling parameters (3 per bone), called morpho-
logical parameters. These parameters are estimated during
the calibration process (see Sec. 4.1), subject to linear
constraints that restrict the relative lengths of the parts
within each finger.

Since hands have relatively little texture, shading is
essential to modeling hand appearance. Here adopt the
Gouraud shading model and assume Lambertian re-
flectance. We also include an adaptive albedo function to
model texture and miscellaneous, otherwise unmodeled,
appearance properties. The illuminant model includes
ambient light and a distant point source, and is specified
by a 4D vector denoted by L, comprising three elements
for a directional component, and one for an ambient
component. The irradiance at each vertex of the surface
mesh is obtained by the sum of the ambient coefficient
and the scalar product between the surface normal at
the vertex and the light source direction. The irradiance
across each face is then obtained through bilinear inter-
polation. Multiplying the reflectance and the irradiance



3

yields the appearance for points on the surface.
Texture (albedo variation) can be handled in two ways.

The first associates an RGB triplet with each vertex of the
surface mesh, from which one can linearly interpolate
over mesh facets. This approach is conceptually simple
but computationally inefficient as it requires many small
facets to accurately model smooth surface radiance. The
second approach, widely used in computer graphics,
involves mapping an RGB reflectance (texture) image
onto the surface. This technique preserves detail with
a reasonably small number of faces.

In contrast with previous methods in computer vision
that used textured models (e.g., [20]), our formulation
(Sec. 3) requires that surface reflectance be continuous
over the surface. Using bilinear interpolation of the dis-
cretized texture we ensure continuity of the reflectance
within each face. However, since the hand is a closed
surface it is impossible to define a continuous bijective
mapping between the whole surface and a 2D planar
surface. Hence, there is no simple way to ensure conti-
nuity of the texture over the entire surface of the hand.

Following [21] and [22], we use patch-based texture
mapping. Each facet is associated with a triangular region
in the texture map. The triangles are uniform in size
and have integer vertex coordinates. As depicted in
Fig. 3, each facet with an odd (respectively even) index
is mapped onto a triangle that is the left-upper-half
(respectively right-lower-half) of a square divided along
its diagonal. Because we use bilinear interpolation we
need to reserve some texture pixels (texels) outside the
diagonal edges for points with non-integer coordinates
(see Fig.3). This representation is therefore redundant for
points along edges of the 3D mesh; i.e., 3D edges of the
mesh belong to two adjacent facets and therefore occur
twice in the texture map, while each vertex occurs an
average of 6 times (according to the Eulerian properties
of the mesh). We therefore introduce constraints to en-
sure consistency between RGB values at different points
in the texture map that map to the same edge or vertex
of the 3D mesh. By enforcing consistency we also ensure
the continuity of the texture across edges of the mesh.

With bilinear texture mapping, consistency can be
enforced with two sets of linear constraints on the texture
map. The first set specifies that the intensities of points
on mesh edges with integer-coordinates in the texture
map must be consistent. The second set enforces the
interpolation of the texture to be linear along edges
of the triangular patches in the texture map. As long
as the texture interpolation is linear along each edge,
and the intensities of the texture map are consistent
at points with integer texture coordinates, the mapping
will be consistent for all points along each edge. The
bilinear interpolation is already linear along vertical and
horizontal edges, so we only need to consider the diag-
onal edges while defining the second set of constraints.
Let T denote the discrete texture image. Let (i + 1, j)
and (i, j + 1) denote two successive points with integer
coordinates along a diagonal edge of a triangular patch

3D mesh

Texture T

j first patch

second patch

unused texels

consistency along edges for integer coordinates

linearity of the interpolation along diagonal edge
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T2,0 + T3,1 = T3,0 + T2,1

T1,1 + T2,2 = T2,1 + T1,2

T0,2 + T1,3 = T1,2 + T0,3

T3,0 = T3,3; T2,1 = T3,4;T1,2 = T3,5; T0,3 = T3,6

Fig. 3. Adjacent facets of the triangulated surface mesh
project to two triangles in the 2D texture map T . Since
the shared edge projects to distinct segments in the
texture map, one must specify constraints that the texture
elements along the shared edge be consistent. This is
done here using 7 linear equality constraints.

in the texture map. Using bilinear texture mapping, the
texture intensities of points with non-integer coordinates
(i+ 1− λ, j + λ), λ ∈ (0, 1) along the edge are given by

λ(1− λ)(Ti,j + Ti+1,j+1) + λ2Ti,j+1 + (1− λ)2Ti+1,j . (1)

By twice differentiating this expression with respect to
λ, we find that it is linear with respect to λ if and only
if the following linear constraint is satisfied:

Ti,j + Ti+1,j+1 = Ti+1,j + Ti,j+1 . (2)

The second set of constraints are for those points along
the diagonal edges. Finally, let T denote the linear sub-
space of valid textures, i.e., whose RGB values satisfy the
linear constraints to ensure continuity over the surface.

Given the mesh geometry, the illuminant, and the
texture map, the formation of the model image at each
2D image point x can be determined. First, as in ray-
tracing, we determine the first intersection between the
triangulated surface mesh and the ray starting at the
camera center and passing through x. If no intersection
exists the image at x is determined by the background.
The appearance of each visible intersection point is
computed using the illuminant and information at the
vertices of the visible face. In practice, the image is
computed on a discrete grid and the image synthesis
can be done efficiently using the triangle rasterization
technique in combination with a depth buffer.

When the background is static, we simply assume
that an image of the background is readily available.
Otherwise, we assume a probabilistic model for which
background pixel colors are drawn from a background
density pbg(·) (e.g., it can be learned in the first frame
with some user interaction).

This completes the definition of the generative process
for hand images. Let Isyn(x; θ, L, T ) denote the synthetic
image comprising the hand and background, at the point
x for a given pose θ, texture T and illuminant L.
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Iobs Isyn R

Fig. 4. The observed image Iobs, the synthetic image Isyn
and the residual image R

2.2 Objective Function

Our task is to estimate the pose parameters θ, the texture
T , and the illuminant L that produce the synthesized
image Isyn() that best matches the observed image,
denoted Iobs(). Our objective function is based on a
simple discrepancy measure between these two images.
First, let the residual image R be defined as

R(x; θ, T, L) = ρ
(
Isyn(x; θ, L, T )− Iobs(x)

)
, (3)

where ρ is either the classical squared-error function
or a robust error function such as the Huber function
used in [23]. For our experiments we choose ρ to be the
conventional squared-error function, and therefore the
pixel errors are implicitly assumed to be IID Gaussian.
Contrary to this IID assumption, nearby errors often tend
to be highly correlated in practice. This is mainly due to
simplifications of the model. Nevertheless, as the quality
of the generative model improves, as we aim to do in
this paper, these correlations become less significant.

When the background is defined probabilistically, we
separate the image domain Ω (a continuous subset of R2)
into the region S(θ) covered by hand, given the pose,
and the background Ω\S(θ). Then the residual can be
expressed using the background color density as

R(x; θ, L, T ) =
{
ρ
(
Isyn(x; θ, L, T )− Iobs(x)), ∀x ∈ S(θ)
− log pbg(Iobs(x)) , ∀x ∈ Ω\S(θ)

(4)
Fig. 11 (rows 3 and 6) depicts an example of the residual
function for the likelihood computed in this way.

Our discrepancy measure, E, is defined to be the
integral of the residual error over the image domain Ω:

E(θ, T, L) =
∫

Ω

R(x; θ, L, T ) dx (5)

This simple discrepancy measure is preferable to more
sophisticated measures that combine heterogeneous cues
like optical flow, silhouettes, or chamfer distances be-
tween detected and synthetic edges. First, it avoids the
tuning of weights associated with different cues that is
often problematic; in particular, a simple weighted sum
of errors from different cues implicitly assumes (usually
incorrectly) that errors in different cues are statistically
independent. Second, the measure in (5) avoids early
decisions about the relevance of edges through thresh-
olding, about the area of the silhouette by segmentation,

and about the position of discontinuities in optical flow.
Third, (5) is a continuous function of θ; this is not the
case for measures based on distances between edges like
the symmetric chamfer distance.

By changing the domain of integration, the integral of
the residual within the hand region can be re-expressed
as a continuous integral over the visible part of the
surface. It can then be approximated by a finite weighted
sum over centers of visible faces. Much of the literature
on 3D deformable models adopts this approach, and as-
sumes that the visibility of each face is binary (fully vis-
ible or fully hidden), and can be obtained from a depth
buffer (e.g., see [20]). Unfortunately, such discretizations
produce discontinuities in the approximate functional as
θ varies. When the surface moves or deforms, the visibil-
ity state of a face near an occlusion boundary is likely to
change, causing a discontinuity in the sum of residuals.
This is problematic for gradient-based optimization. To
preserve continuity of the discretized functional with
respect to θ, the visibility state should not be binary.
Rather, it should be a real-valued and smooth as the
surface becomes occluded or unoccluded. In practice,
this is cumbersome to implement and the derivation of
the gradient is complicated. Therefore, in contrast with
much of the literature on 3D deformable models, we
keep the formulation in the continuous image domain
when deriving the expression of functional gradient.

To estimate the pose θ and the lighting parameters L
for each new image frame, or to update the texture T ,
we look for minima of the objective function. During
tracking, the optimization involves two steps. First we
minimize (5) with respect to θ and L, to register the
model with respect to the new image. Then we minimize
the error function with respect to the texture T to find
the optimal texture update.

3 PARAMETER ESTIMATION

The simultaneous estimation of the pose parameters θ
and the illuminant L is a challenging non-linear, non-
convex, high-dimensional optimization problem. Global
optimization is impractical and therefore we resort to an
efficient quasi-Newton, local optimization. This requires
that we are able to efficiently compute the gradient of E
in (5) with respect to θ and L.

The gradient of E with respect to lighting L is straight-
forward to derive. The synthetic image Isyn() and the
residual R() are smooth functions of the lighting param-
eters L. As a consequence, we can commute differentia-
tion and integration to obtain

∂E

∂L
(θ, L, T ) =

∂

∂L

∫
Ω

R(x; θ, L, T ) dx

=
∫

Ω

∂R

∂L
(x; θ, L, T ) dx .

(6)

Computing ∂R
∂L (x; θ, L) is straightforward with applica-

tion of the chain rule to the generative process.



5

occlusions boundary Γθ

segment crossing Γθ at x
occluding side
near occluded side

Γθ

Γθ

(x)n̂Γθ

x

(a) (b)

Fig. 5. (a) Example of a segment crossing the occlusions
boundary Γθ. (b) A curve representing the residual along
this segment

Formulating the gradient of E with respect to pose
θ is not straightforward. This is the case along occlu-
sion boundaries where the residual is a discontinuous
function. As a consequence, for this subset of points,
R(x; θ, L, T ) is not differentiable and therefore we cannot
commute differentiation and integration. Nevertheless,
while the residual is discontinuous, the energy function
remains continuous in θ. The gradient of E with respect
to θ can therefore be specified analytically. Its derivation
is the focus of the next section.

3.1 Gradient With Respect to Pose and Lighting
The generative process above was carefully formulated
so that scene radiance is continuous over the hand. We
further assume that the background and the observed
image are known and continuous. Therefore the residual
error is spatially continuous everywhere except at self-
occlusion and occlusions boundaries denoted by Γθ.

3.1.1 1D Illustration
To sketch the main idea behind the gradient derivation
we first consider a 1D residual function on a line segment
that crosses a self-occlusion boundary, as shown in Fig. 5.
Along this line segment the residual function is contin-
uous everywhere except at the self-occlusion location, β.
Accordingly we express the residual on the line in two
parts, namely, the residual to the left of the boundary r0

and the residual on the right r1:

r(x, θ) =
{
r0(x, θ), x ∈ [0, β(θ)

]
r1(x, θ), x ∈ (β(θ), 1

] . (7)

Accordingly, the energy is then the sum of the integral
of r0 on the left and the integral of r1 on the right:

E =
∫ β(θ)

0

r0(x, θ) dx+
∫ 1

β(θ)

r1(x, θ) dx . (8)

Note that β is a function of the pose parameter θ.
Intuitively, when θ varies the integral E is affected in
two ways. First the residual functions r0 and r1 vary, e.g.
due to shading changes. Second, the boundary location
β also moves.

Mathematically, the total derivative of E with respect
to θ is the sum of two terms,

dE

dθ
=

∂E

∂θ
+
∂E

∂β

∂β

∂θ
. (9)

The first term, the partial derivative of E with respect
to θ, with β fixed, corresponds to the integration of the
residual derivative everywhere except the discontinuity:

∂E

∂θ
=
∫

[0,1]\{β}

∂r

∂θ
(x, θ) dx . (10)

The second term in (9) depends on the partial derivative
of E with respect to the boundary location β. Using the
fundamental theorem of calculus, this term reduces to
the difference between the residuals at both sides of the
occlusion boundary, multiplied by the derivative of the
boundary location β with respect to the pose parameters
θ. From (8) it follows that

∂E

∂β

∂β

∂θ
= [r0(β, θ)− r1(β, θ)]

∂β

∂θ
. (11)

While the residual r(x, θ) is a discontinuous function of
θ at β, the energy E is still a differentiable function of θ.

3.1.2 General 2D Case
The 2D case is a generalization of the 1D example. Like
the 1D case, the residual image is spatially continuous
almost everywhere, except for points at occlusion bound-
aries. At such points the hand occludes the background
or other parts of the hand (see Fig. 5a). Let Γθ be
the set of boundary points, i.e., the support of depth
discontinuities in the image domain. Because we are
working with a triangulated surface mesh, Γθ can be
decomposed into a set line segments. More precisely,
Γθ is the union of the projections of all visible portions
of edges of the triangulated surface that separate front-
facing facets from back-facing facets. For any point x in
Γθ, the corresponding edge projection locally separates
the image domain into two subregions of Ω\Γθ, namely,
the occluding side and the near-occluded side (see Fig. 5).

Along Γθ, the residual image R() is discontinuous with
respect to x and θ. Nevertheless, like in the 1D case, to
derive ∇E, we need to define a new residual R+(θ,x),
which extends R() by continuity onto the occluding
points Γθ. This is done by replicating the content of R()
in Ω\Γθ from the near-occluded side. In forming R+, we
are recovering the residual of occluded faces in the vicinity
of the boundary points. Given a point x on a boundary
segment with outward normal n̂Γθ (x) (i.e., facing the
near-occluded side as in Fig. 5a), we define

R+(θ,x) = lim
k→∞

(
R

(
θ, x+

n̂Γθ (x)
k

))
. (12)

One can interpret R+(θ,x) on Γθ as the residual we
would have obtained if the near-occluded surface had
been visible instead of the occluding surface.

When a pose parameter θj is changed with an in-
finitesimal step dθj , the occluding contour Γθ in the
neighborhood of x moves with an infinitesimal step
vj(x) dθj (see (34) for a definition of the boundary speed
vj). Then the residual in the vicinity of x is discontinu-
ous, jumping between R+(θ,x) and R(θ,x). However, the
surface area where this jump occurs is also infinitesimal
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and proportional to vj(x) n̂Γθ (x) dθj . The jump causes
an infinitesimal change in E after integration over the
image domain Ω.

Like the 1D case, one can express the functional gra-
dient ∇θE ≡ ( ∂E∂θ1 , . . . ,

∂E
∂θn

) using two terms:

∂E

∂θj
=

∫
Ω\Γθ

∂R

∂θi
(x; θ, L, T )dx (13)

−
∫

Γθ

[
R+(x; θ, T, L)−R(x; θ, L, T )

]
n̂Γθ (x)︸ ︷︷ ︸

foc(x)

vi(x) dx

The first term captures the energy variation due to the
smooth variation of the residual in Ω\Γθ. It integrates
the partial derivative of the residual R with respect to
θ everywhere but at the occluding contours Γθ, where it
is not defined. The analytical derivation of ∂R

∂θi
on Ω\Γθ

requires application of the chain rule to the functions
that define the generative process.

The second term in (13) captures the energy variation
due to the movement of occluding contours. It integrates
the difference between the residual on either side of
the occluding contour, multiplied by the normal speed
of the boundary when the pose varies. Here, foc is a
vector field whose directions are normal to the curve
and whose magnitudes are proportional to the difference
of the residuals on either each side of the curve. These
occlusion forces account for the displacement of occlusion
contours as θ varies. They are similar to the forces
obtained with 2D active regions [24], which derives from
the fact that we kept the image domain Ω continuous
while computing the functional gradient. Because the
surface is triangulated, Γθ is a set of image line segments,
and we could rewrite (13) in a form that is similar to the
gradient flow reported in [25] for active polygons. Our
occlusion forces also bear similarity to the gradient flows
of [26], [27] for multi-view reconstruction, where some
terms account for the change of visibility at occlusion
boundaries. In their formulation no shading and texture
are attached to the reconstructed surface, which results
in substantial differences in the derivation.

3.1.3 Computing ∇θE
A natural numerical approximation to E is to first sam-
ple R at discrete pixel locations and then sum, i.e.,

E(θ, T, L) ≈ Ẽ(θ, T, L) ≡
∑

x∈Ω∩N2

R(x; θ, L, T ) . (14)

Similarly, one might discretize the two terms of the
gradient ∇θE in (13). The integral over Ω\Γθ could be
approximated by a finite sum over image pixel in Ω∩N2

while the integral along contours Γθ could be approxi-
mated by sampling a fixed number of points along each
segment. Let ∇̃θE be the numerical approximation to the
gradient obtained in this way.

There are, however, several practical problems with
this approach. First, the approximate gradient is not the
exact gradient of the approximate objective function, i.e.,

∇̃θE 6= ∇θẼ. Most iterative gradient-based optimiza-
tion methods require direct numerical evaluation of the
objective function to ensure that energy decreases at
each iteration. Such methods expect the gradient to be
consistent with the objective function.

Alternatively, one might try to compute the exact
gradient of the approximate objective function, i.e.,
∇Ẽ. Unfortunately, due to the aliasing along occluding
edges (i.e., discretization noise in the sampling in (14)),
Ẽ(θ, T, L) is not a continuous function of θ. Discontinu-
ities occur, for example, when an occlusion boundary
crosses the center of a pixel. As a result of these dis-
continuities, one cannot compute the exact derivative,
and numerical difference approximations are likely to
be erroneous.

3.2 Differentiable Discretization of Energy E

To obtain a numerical approximation to E that can be
differentiated exactly, we consider an approximation to
E with antialiasing. This yields a discretization of the
energy, denoted Ē, that is continuous in θ and can be
differentiated in closed form using the chain rule, to
obtain ∇θĒ. The anti-aliasing technique is inspired by
the discontinuity edge overdraw method [28]. We use it
here to form a new residual function, denoted R̄.

The anti-aliasing technique progressively blends the
residuals on both sides of occlusion boundaries. For a
point x that is close to an occluding edge segment we
compute a blending weight that is proportional to the
signed distance to the segment:

w(x) =
(x− q(x)) · n̂
max(|n̂x|, |n̂y)|) , (15)

where q(x) is a point on the nearby segment, and
n̂ = (n̂x, n̂y) is the unit normal to the segment (pointing
toward the near-occluded side of the boundary). Dividing
the signed distance by max(|n̂x|, |n̂y|) is a minor conve-
nience that allows us to interpret terms of the gradient
∇θĒ in terms of the occlusion forces defined in (13). A
detailed derivation is given in Appendix A.

Let the image segment V̄mV̄n be defined by end points
V̄m and V̄n. For V̄mV̄n we define an anti-aliased region,
denoted A, as a set of points on the occluded side near
the segment (see Fig. 17); i.e., points that that project to
the segment with weights w(x) in [0, 1);

A = {x ∈ R2 |w(x) ∈ [0, 1), q(x) ∈ V̄mV̄n} . (16)

For each point in this region we define the anti-aliased
residual to be a linear combination of the residuals on
the occluded and occluding sides:

R̄(x; θ, L, T ) =w(x)R(x; θ, L, T )
+ (1− w(x))R(q(x); θ, L, T ) .

(17)

The blending is not symmetric with respect to the line
segment, but rather it is shifted toward the occluded
side. This allows use of a Z-buffer to handle occlusions
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(see [28] for details). For all points outside the anti-
aliased regions we let R̄(x; θ, L, T ) = R(x; θ, L, T ).

Using this anti-aliased residual image, R̄, we define a
new approximation to the objective function, denoted Ē:

Ē(θ, T, L) =
∑

x∈Ω∩N2

R̄(x; θ, L, T ) . (18)

This anti-aliasing technique makes R̄ and thus Ē contin-
uous with respect to θ even along occlusion boundaries.

There are other anti-aliasing methods such as over-
sampling [29] or A-buffer [30]. They might reduce the
magnitude of the jump in the residual when an occlusion
boundary crosses the center of a pixel, as θ changes,
perhaps making the jump visually imperceptible, but the
residual remains discontinuous in θ. The edge overdraw
method we use in (17) ensures the continuity of R̄ and
hence Ē with respect to θ.

To derive ∇θĒ we differentiate R̄ using the chain rule.

∇θĒ =
∑

x∈Ω∩N2

∂

∂θ
R̄(x; θ, L, T ) . (19)

Using a backward ordering of derivative multiplications
(called adjoint coding in the algorithm differentiation
literature [31]), we obtain an evaluation of the gradient
with computational cost that is comparable to the eval-
uation of the objective function.

The gradient of Ē with respect to θ, i.e., ∇θĒ, is one
of the possible discretizations of the analytical ∇θE. The
differentiation of the anti-aliasing process with respect
to θ yielded terms that sum along the edges and that
can been interpreted as a possible discretization of the
occlusion forces in (13). This is explained in Appendix A.
The advantage of this approach over that discussed in
section 3.1.3 is that ∇θĒ is the exact gradient of Ē, and
both can be numerically evaluated. This also allows one
to check validity of the gradient ∇θĒ obtained by direct
comparison with divided differences on Ē. Divided dif-
ferences are prone to numerical error and inefficient, but
help to detect errors in the gradient computation.

3.3 Model Registration

3.3.1 Sequential Quadratic Programming
During the tracking process, the model of the hand is
registered to each new frame by minimizing the approx-
imate objective function Ē. Let P = [θ, L]T comprise the
unknown pose and lighting parameters, and assume we
obtain an initial guess by extrapolating estimates from
the previous frames. We then refine the pose and lighting
estimates by minimizing Ē with respect to P , subject to
linear constraints which enforce joint limits.

P̃ = argmin
P

s.t. AP ≤ b

Ē(P ) (20)

Using the object function gradient, we minimize
Ē(P ) using a sequential quadratic programming method

[32] with an adapted Broyden-Fletcher-Goldfarb-Shanno
(BFGS) Hessian approximation. This allows us to com-
bine the well-known BFGS quasi-Newton method with
the linear joint limit constraints. There are 4 main steps:

1) A quadratic program is used to determine a de-
scent direction. This uses the energy gradient and
an approximation to the Hessian, H̃t, based on a
modified BFGS procedure (see Appendix B):

∆P = argmin
∆P

s.t. A(Pt+∆P ) ≤ b

(
dĒ

dP
(Pt)∆P +

1
2

∆t
P H̃t∆P

)
(21)

2) A line search is then performed in that direction:

λ∗ = argmin
λ

Ē(Pt + λ∆P ) s.t. λ ≤ 1 . (22)

The inequality λ ≤ 1 ensures that we stay in the
linearly constrained subspace.

3) The pose and lighting parameters are updated

Pt+1 = Pt + λ∗∆P . (23)

4) The approximate Hessian H̃t+1 is updated using
the adapted BFGS formula.

These steps are iterated until convergence.
To initialize the search with a good initial guess, we

first perform a 1D search along the line that linearly
extrapolates the two previous pose estimates. Each local
minimum obtained during this 1D search is used as a
starting point for our SQP method in the full pose space.
The number of starting points found is usually just one,
but when there are several, the results of the SQP method
are compared and the best solution is chosen. Once the
model is fit to a new frame, we then update the texture,
which is then used during registration in the next frame.

3.4 Texture Update
Various methods for mapping images onto a static 3D
surface exist. Perhaps the simplest method involves, for
each 3D surface point, (1) computing its projected image
coordinates, (2) checking its visibility by comparing its
depth with the depth buffer, and (3) if the point is visible,
interpolating image intensities at the image coordinates
and then recovering the albedo by dividing the interpo-
lated intensity by the model irradiance at that point. This
approach is not suitable for our formulation for several
reasons. First, we want to model texture for hidden areas
of the hand, as they may become visible in the next
frame. Second, our texture update scheme must avoids
progressive contamination by the background color, or
self-contamination between different parts of the hand.

Here, we formulate texture estimation as the mini-
mization of the same basic objective functional as that
used for tracking, in combination with a smoothness
regularization term (independent of pose and lighting).
That is, for texture T we minimize

Etexture(T ) = Ē(θ, L, T ) + βEsm(T ). (24)
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Fig. 6. Observed image and extracted texture mapped
on the hand under the camera viewpoint and two other
viewpoints. The texture is smoothly diffused into regions
that are hidden from the camera viewpoint

For simplicity the smoothness measure is defined to be
the sum of squared differences between adjacent pixels
in the texture (texels). That is,

Esm(T ) =
∑
i

∑
j∈NT (i)

‖Ti − Tj‖2, (25)

where NT (i) represents the neighborhood of the texel i.
While updating the texture, we choose ρ (appearing in
the definition of R and hence R̄ and Ē) to be a trun-
cated quadratic instead of the quadratic used for model
fitting. This helps to avoid the contamination of the
hand texture by background color whenever the hand
model fit is not very accurate. The minimization of the
function Etexture(T ) with T ∈ T can be done efficiently
using iteratively reweighed least-squares. The smooth-
ness term effectively diffuses the colour to texels that
do not directly contribute to the image, either because
they are associated to a occluded part (Fig.6) or because
of texture aliasing artifacts. To improve robustness we
also remove pixels near occlusion boundaries from the
integration domain Ω when computing E(θ, L, T ), and
we bound the difference between the texture in the first
frame and in subsequent texture estimates.

Finally, although cast shadows provide useful cues,
they are not explicitly modeled in our approach. In-
stead, they are modeled as texture. Introducing cast
shadows in our continuous optimization framework is
not straightforward as it would require computation of
related terms in the functional gradient. Nevertheless,
despite the lack of cast shadows in our model, our
experiments demonstrate good tracking results.

4 EXPERIMENTAL RESULTS

We applied our hand pose tracking approach to se-
quences with large amounts of articulation and occlu-
sion, and to two sequences used in [14], for comparison
with a state-of-the-art hand tracker. Finally, we also
report quantitative results on a synthetic sequence as
well as a real sequence for which ground truth data
were obtained. While the computational requirements
depends on image resolution, for 640× 480 images, our
implementation in C++ and Matlab takes approximately
40 seconds per frame on a 2Ghz workstation.

Fig. 7. Estimation of the pose, lighting and morphological
parameters in the frame 1. The first row shows the input
image, the synthetic image given rough manual initial-
ization, and its corresponding residual. The second row
shows the result obtained after convergence

4.1 Initialization

A good initial guess for the pose is required for the
first frame. One could use a discriminative method to
obtain a rough initialization (e.g., [3]). However, as this
is outside the scope of our approach at present, so we
simply assume prior knowledge. In particular, the hand
is assumed to be roughly parallel to the image plane at
initialization (Fig. 7). We further assume that the hand
color (albedo) is initially constant over the hand surface,
so the initial hand appearance is solely a function of pose
and shading. The RGB hand color, along with the hand
pose, the morphological parameters, and the illuminant
are estimated simultaneously using the quasi-Newton
method (see row 2 of Fig. 7 (see the video 1). The
background image or its histogram are also provided
by the user. Once the morphological parameters are
estimated in frame 1, they remain fixed for the rest of
the sequence.

4.2 Finger Bending and Occlusion Forces

In the first sequence (Fig. 8 and video 2) each finger
bends in sequential order, eventually occluding other
fingers and the palm. The background image is static,
and was obtained from a frame where the hand was not
visible. Each frame has 640 × 480 pixels. Note that the
edges of the synthetic hand image match the edges in
the input image, despite the fact that we did not use
any explicit edge-related term in the objective function.
Misalignment of the edges in the synthetic and observed
images creates a large residual in the area between
these edges and produces occlusion forces on the hand
pointing in the direction that reduces the misalignment.

To illustrate the improvements provided by occlusion
forces, we simply remove the occlusion-forces when
computing the energy gradient. The resulting algorithm
is unable track the hand for any significant period.

It is also interesting to compare the minimization of
the energy in (18) with the approach outlined in Sec.
2.2, which sums errors over the surface of the 3D mesh.
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Fig. 8. Improvement due to self-occlusion forces: Rows 2-
4 are obtained using our method. Rows 5-7 are obtained
by summing the residual on the triangulated surface.
Each row shows, from top to bottom: (1) the observed
image; (2) the final synthetic image; (3) the final residual
image; (4) a synthetic side view at 45◦; (5) the final
synthetic image with residual summed on surface; (6)
the residual for visible points on the surface, and (7) the
synthetic side view.

These 3D points are uniformly distributed on the surface
and their binary visibility is computed at each step of
the quasi-Newton process. To account for the change of
summation domain (from image to surface), the error
associated to each point is weighted by the inverse of the
ratio of surface areas between the 3D triangular face and
its projection. The errors associated with the background
are also taken into account, to remain consistent with the
initial cost function. This also prohibits the hand from
receding from the camera so that its projection shrinks.
We included occlusion forces between the hand and
background to account for variations of the background
visibility while computing the energy gradient. The func-
tional computed in both approaches would ideally be

Fig. 9. Recovery from failure of the sum-on-surface
method (Sec. 4.2) by our method with occlusion forces.

equal; their difference is bounded by the error induced
by the discretization of integrals. For both methods we
used a maximum of 100 iterations, which was usually
sufficient for convergence.

The alternative approach produces reasonable results
(Fig. 8 rows 5-7) but fails to recover the precise location
of the finger extremities when they bend and occlude
the palm. This is evident in column 3 of Fig. 8 where a
large portion of the little finger is missing. Our approach
(rows 2-4) yields accurate pose estimates through the
entire sequence. The alternative approach fails because
the hand/background silhouette is not particularly infor-
mative about the position of fingertips when fingers are
bending. The residual error is localized near the outside
extremity of the synthesized finger. Self-occlusion forces
are necessary to pull the finger toward this region.

We further validate our approach by choosing the
hand pose estimated by the alternative method (Fig. 8,
column 3, rows 5-7) as an initial state for our tracker with
occlusion forces (Fig. 9 and video 3). The initial pose and
the corresponding residual are shown in column 1. The
poses after 25 and 50 iterations are shown in columns 2
and 3, at which point the pose is properly recovered.

4.3 Stenger Sequences [14]

The second and third sequences (Fig. 10, Fig. 11, video
4 and 5) were provided by Stenger for direct compar-
ison with their state-of-the-art hand tracker [14]. Both
sequences are 320 × 240 pixels. In Sequence 2 the hand
opens and closes while rotating. In Sequence 3 the
index finger is pointing while the hand rotates in a
rigid manner. Both sequences exhibit large inter-frame
displacements which makes it difficult to predict good
initial guesses for minimization. The fingers also touch
one another often. This is challenging because our opti-
mization framework does not prohibit the interpenetra-
tion of hand parts. Finally, the background in Sequence
3 is dynamic so the energy function has been expressed
using (4).

For computational reasons, Stenger et al. [14] used
a form of state-space dimension reduction, adapted to
each sequence individually (8D for Sequence 2 - 2 for
articulation and 6 for global motion - and 6D rigid
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Fig. 10. Sequence 2: Each row shows, from top to bot-
tom: (1) the observed image, (2) the final synthetic image
with limited pose space, (3) the final residual image, (4)
the synthetic side view with an angle of 45◦, (5) the final
synthetic image with full pose space, (6) the residual
image and (7) the synthetic side view.

movement for Sequence 3). We tested our algorithm both
with and without pose-space reductions (respectively
rows 2-4 and 5-7). For pose-space reduction, linear in-
equalities were defined between pairs or triplet of joint
angles. This allowed us to limit the pose space while
keeping enough freedom of pose variation to make fine
registration possible. We did not update the texture for
those sequences after the first frame. With pose-space
reduction our pose estimates are qualitatively similar
to Stenger’s, although smoother through time. Without
pose-space reduction, Stenger’s technique becomes com-
putationally impractical while our approach continues
to produce good results. The lack of need for offline
training and sequence-specific pose-space reduction are
major advantages of our approach.

4.4 Occlusion
Sequence 4 (Fig. 12 and video 6) demonstrates the
tracking of two hand, with significant occlusions as the
left hand progressively occludes the right. Texture and
pose parameters from both hands are simultaneously
estimated, and self-occlusions of one hand by another
are modeled just as was done with a single hand. Fig.
12 shows that the synthetic image looks similar to the
observed image, due to the shading and texture models.
In row 2, the ring finger and the little finger of the right
hand are still properly registered despite the large occlu-
sion. Despite the translational movement of the hands,

Fig. 11. Sequence 3: Each row shows, from top to bot-
tom: (1) the observed image; (2) the final synthetic image
with limited pose space; (3) the final residual image; (4)
the synthetic side view with an angle of 45◦; (5) the final
synthetic image with full pose space; and (6) the residual
image, the synthetic side view.

Fig. 12. Sequence 4: Two hands. The rows depicts
4 frames of the sequence, corresponding to (top) the
observed images, (middle) images synthesized using the
estimated parameters, and (bottom) the residual images.

we kept all 28 DOFs on each hand while performing
pose estimation.

4.5 Quantitative Performance on Natural Images

While existing papers on hand pose tracking have relied
mainly on qualitative demonstrations for evaluation,
here we introduce quantitative measures on a binocular
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Fig. 13. Distance between reconstructed and ground
truth 3D locations: (left) The distances for each of the
finger tips; (right) The distances for each of the metacar-
pophalangeal point and the palm basis.

sequence (see video 7) from which we can estimate 3D
ground truth at a number of fiducial points.

The hand was captured with two synchronized, cali-
brated cameras (see rows 1 and 4 in Fig. 14). To obtain
ground truth 3D measurements on the hand, we manu-
ally identified at each frame, the locations of 11 fiducial
points on the hand, i.e., each finger tip, each metacar-
pophalangeal (MP)joint, and the base of the palm. These
locations are shown in the top-left image of Fig. 14. From
these 2D locations in two views we obtain 3D ground
truth by triangulation [33].

The hand was tracked using just the right image
sequence. For each of the 11 fiducial points we then
computed the distance between the 3D ground truth
and the estimated position on the reconstructed hand
surface. Because the global size of our model does not
necessarily match the true size of the hand, in each frame
we allow a simple scaling transform of the estimated
hand to minimize the sum of squared distances between
the 3D ground truth points and the recovered locations.
The residual Euclidean errors for each point, after this
scaling, are shown in Fig. 13.

Errors for the thumb tip are large for frames 340-360,
and errors for the middle finger are large for frames 240-
350. During those periods the optimization lost track of
the positions of the middle finger (see Fig.14 column
3) and the thumb (see Fig.14 column 4). Thumb errors
are also large between frames 50 and 150, despite the
fact that estimated pose appears consistent with the
right view used for tracking (see residuals in Fig.14 row
3, columns 1-3). This reflects the intrinsic problem of
monocularly estimating depth. The last row in Fig.14
shows the hand model synthesized from the left camera
viewpoint, for which the depth errors are evident.

4.6 Quantitative Performance on Synthetic Images
We measured quantitative performance using synthetic
images. The image sequence was created with the
Poser c© software (see video 8). The hand model used in
Poser differs somewhat from our model both in the the
triangulated surface and the joint parameterization. To
obtain realistic sequences we enable ambient occlusion

Fig. 14. Binocular Video: The columns show frames 2,
220, 254 and 350. Each row, from top to bottom, depicts:
(1) the image from the right camera; (2) the corresponding
synthetic image; (3) the residual for the right view; (4) the
observed left image (not used for tracking); and (5) the
synthetic image seen from the left camera.

and cast shadows in the rendering process, neither of
which are explicitly modeled in our tracker. Row 1 of
Fig.15 shows several frames from the sequence.

A quantitative evaluation of estimated pose is obtain
by measuring, for each frame, a distance between the re-
constructed 3D surface and the ground truth 3D surface.
For visualization of depth errors over the visible portion
of the hand surface, we define a distance image Ds:

Ds(p) = inf
q∈Sg

(
Π−1
Ss

(p), q
)

if p ∈ Ωs, ∞ otherwise (26)

where Sg is the ground truth hand surface, Ss is the
reconstructed hand surface, and Ωs is the silhouette of
the surfaces Ss in the image plane. In addition, Π−1

Ss
is

the back projection function onto the surface Ss; i.e., the
function that maps each point p in Ωs to the correspond-
ing point on the 3D surface Ss. To cope with scaling
uncertainty, as discussed above, we apply a scaling
transform on the reconstructed surface whose fixed point
is the optical center of the camera, such that mean depth
of the visible points in Ss is equal to the mean depth of
points in Sg ; i.e.,∫

p∈Ωs
Π−1
Ss

(p) · ẑdp∫
p∈Ωs

1 dp
=

∫
p∈Ωs

Π−1
Sg

(p) · ẑdp∫
p∈Ωg

1 dp
(27)
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0 mm 10 mm 20 mm 30 mm 40 mm ≥ 50 mm.

Fig. 15. Synthetic sequence: The first row depicts indi-
vidual frames. Rows 2-5 depict tracking results: i.e., (2)
estimated pose; (3) residual image; (4) side view super-
imposing ground truth and the estimated surfaces; and
(5) distance image Ds. Rows 6-9 depict results obtained
with the method in [10]: i.e., (6) generative image of [10] at
convergence; (7) log-likelihood per pixel according to [10];
(8) a side view superimposing ground truth and estimated
surfaces; and (9) distance image Ds.

where ẑ is aligned with the optical axis, Ωg is the
silhouette in the ground truth image, and Π−1

Sg
is the back

projection function onto the surface Sg .
Figure 15 depicts the performance of our tracker and

the hand tracker described in [10]. The current method
is shown to be significantly more accurate. Despite the
fact that the model silhouette matches the ground truth
in the row 3 of Fig. 15, the errors over the hand surface
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Fig. 16. Comparison, trough all frames of the video, of
the median of the distances Ds(p) over the point in Ωs
with our method and the one in [10].

are significant; e.g., see the middle and ring fingers. The
method in [10] relies on a matching cost that is solely a
function of the hand silhouette, and is therefore subject
to ambiguities. Many of these ambiguities are resolved
with the use of shading and texture. Finally, Fig. 16 plots
the median distance Ds(p) over points in Ωs is shown
as a function of time for both methods. Again, note that
our method outperforms that in [10] for most frames.

5 DISCUSSION

We describe a novel approach to the recovery of 3D hand
pose from monocular images. In particular we build a
detailed generative model that incorporates a polygonal
mesh to accurately model shape, and a shading model
to incorporate important appearance properties. We esti-
mate the model parameters (i.e., shape, pose, texture and
lighting) are determined through a variational formula-
tion. A rigorous mathematical formulation of the objec-
tive function is provided in order to properly deal with
occlusions. Estimation with a quasi-Newton technique is
demonstrated with various image sequences, some with
ground truth, for a hand model with 28 joint degrees of
freedom.

The model provides state-of-the-art pose estimates,
but future work remains in order to extend this work to
an entirely automatic technique that can be applied to
long image sequences. In particular there remain several
situations in which the technique described here is prone
to converge to a poor local minima and therefore lose
track of the hand pose: 1) There are occasional reflection
ambiguities which are not easily resolved by the image
information at a single time instant; 2) Fast motion of
the fingers sometimes reduces the effectiveness of our
initial guesses based on a simple form of extrapolation
from previous frames; 3) Entire fingers are sometimes
occluded. In this case there will be no image support
for a pose estimate of that region of the hand; 4) Cast
shadows are only modeled as texture, so dynamic cast
shadows can be difficult for the shading model to handle
well (as can be seen in some of the experiments above).
Modeling cast shadows is tempting, but it would mean
a discontinuous residual function of θ along synthetic
shadow borders, which are likely very complicated to
handle analytically; and 5) Collisions or interpenetration
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of the model fingers creates aliasing along the inter-
section boundaries in the discretized synthetic image.
The change of visibility along self-collisions could be
treated using forces along these boundaries, but this is
not currently done and therefore the optimization may
not converge in these cases. A solution might be to add
non linear non-convex constraints that would prevent
collisions.

When our optimization loses track of the hand pose,
we have no mechanism to re-initialize the pose, or ex-
plore multiple pose hypotheses, e.g., with discriminative
methods. Dynamical models of typical hand motions,
and/or latent models of typical hand poses, may also
help resolve some of these problems due to ambigui-
ties and local minima. Last, but not least, the use of
discrete optimization methods involving higher order
interactions between hand-parts [34] with explicit mod-
eling of visibilities [35] may be a promising approach
for improving computational efficiency and for finding
better energy minima.

APPENDIX A
IDENTIFYING OCCLUSION FORCES
As depicted in Fig. 17, we consider the residual along
a segment V̄mV̄n joining two adjacent vertices along the
occlusion boundary, V̄m ≡ (xm, ym) and V̄n ≡ (xn, yn),
with normal n̂ ≡ (n̂x, n̂y). Without loss of generality, we
assume that n̂y > 0, and n̂y > |n̂x|; i.e., the edge is within
45◦ of the horizontal image axis, and the occluding side
lies below the boundary segment. Accordingly, the anti-
aliasing weights in (15) become

w(x) =
(x− q(x)) · n̂

n̂y
. (28)

To compute ∇θĒ we need the partial derivatives of R̄
with respect to θ (17). Some terms are due to changes in
R while others are due to the weights w. (For notational
brevity we omit the parameters θ, L and T when writing
the residual function R). Our goal here is to associate
the terms of the derivative due to the weights with the
second line in (13). Denote this term C:

C =
∑

x∈A∩N2

∂w(x)
∂θj

[R(x)−R(q(x))] . (29)

Let qy(x) be the vertical projection of the point x onto
the line that contains the segment V̄mV̄n. Also let (~x, ~y)
denote the coordinate axes of the image plane. For any
point x in A one can show that

w(x) = (x− qy(x)) · ~y . (30)

Differentiating w with respect to θi gives

∂w(x)
∂θj

= −∂qy(x)
∂θj

· ~y . (31)

The vertically projected point qy(x) lies in the segment
V̄mV̄n, and therefore there exists t ∈ [0, 1] such that

qy(x) = (1− t)V̄m + tV̄n . (32)

A

antialiased region Anear occluded region occluding region

|∆y|
|∆x| = 1

√
1 + ∆2

y

x
n̂

1

w=0

w=0.5

w=1

~x

~y

V̄m

V̄n

1/|n̂x|

qy(x)
q(x)

Fig. 17. Antialiasing weights for points in the vicinity of
the segment.

We can then differentiate qy(x) with respect to θj , i.e.,

∂qy(x)
∂θj

=
∂t

∂θj
(V̄n − V̄m) + (1− t)∂V̄m

∂θj
+ t

∂V̄n
∂θj

. (33)

Now, let vj denote the curve speed at x when θj varies.
It is the partial derivative of the curve Γθ with respect
to a given pose parameter θj in θ, i.e.,

vj(x) = (1− tx)
∂V̄mx

∂θj
+ tx

∂V̄nx

∂θj
. (34)

Because (V̄n − V̄m) · n̂ = 0, with the curve speed vj
above, we obtain the following from (33)

n̂ · ∂qy(x)
∂θj

= n̂ · vj(qy(x)) . (35)

Because ~x · ∂qy(x)
∂θj

= 0 we obtain

n̂· ∂qy(x)
∂θj

= (n̂x~x+n̂y~y)· ∂qy(x)
∂θj

= n̂y(
∂qy(x)
∂θj

·~y) . (36)

Therefore
∂w(x)
∂θj

= −∂qy(x)
∂θj

· ~y = − n̂

n̂y
· ∂qy(x)
∂θj

= − n̂ · vj(qy(x))
n̂y

(37)
We can rewrite C as follow:

C =
1
n̂y

∑
x∈A∩N2

−[R(x)−R(p(x))] n̂ · vj(qy(x)) . (38)

We now show that with some approximations we can
associate this term with the second term in (13). We
assume R and R+ to be smooth. Therefore

R(q(x)) ≈ R(qy(x)) (39)
R(x) ≈ R+(qy(x)) . (40)

Therefore, given the definition of the occlusion forces (13),
C can be approximated by C̃ defined as:

C̃ =
1
n̂y

∑
x∈A∩N2

−foc(qy(x)).vj(qy(x)) . (41)

The division by max(|n̂x|, |n̂y|) in our definition of the
weight (15) ensures that within each vertical line there is
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a single point x with integer coordinates and its weight
in [0, 1). This appears more clearly in (30).

Given a vertical line with constant x, this point has
the coordinates x = (x, dȳ(x)e) where

ȳ(x) = ym + (x− xm)∆y , (42)

with

∆y = (yn − ym)/(xn − xm) (43)

being the slope of the segment. From (16) we obtain

A∩N2 = {(x, dȳ(x)e)|x ∈ N, p((x, dȳ(x)e) ∈ V̄mV̄n} . (44)

We assume now that the condition that the point
x should orthogonally project into the segment (i.e.,
q((x, dȳ(x)e) ∈ V̄mV̄n) can be approximated by the condi-
tion x ∈ [xn, xm] as the line is within 45◦ of vertical. The
resulting approximate anti-aliased region is no longer
rectangular but a parallelogram with two vertical sides.
After discretization on the grid this might result, in some
cases, of a point being neglecting near the extremities of
the segment.

A ∩ N2 ≈ {(x, dȳ(x)e)|x ∈ {dxne, . . . , bxmc}} . (45)

This approximation of the anti-aliased region and the
fact that qy(x, dȳ(x)e) = (x, ȳ(x)) allows us to approxi-
mate C̃ by C̃2 as follow:

C̃2 =
1
n̂y

bxmc∑
x=dxne

−foc
(
(x, ȳ(x))

) · vj((x, ȳ(x))
)
. (46)

Now let ∆V = (1,∆y) denote the 2D displacement
along the segment V̄mV̄n when x is incremented by one.
Then

|∆V | =
√

1 + ∆2
y =

1
n̂y

. (47)

We also introduce t = x − dxne, N = bxmc − dxne and
ε = dxne − xn. We obtain, after some derivation,

C̃2 = |∆V |
N−1∑
t=0

−foc(V̄n+(t+ ε)∆V ) ·vj(V̄n+(t+ ε)∆V ) .

(48)
This last approximation of C can be identified as a

discrete approximation of the integral, along V̄mV̄n, of

f(x) = −foc(x) · vj(x) . (49)

This term corresponds to the contribution of the segment
in the second term of (13). We demonstrated that the
implementation based on a discrete image domain with
anti-aliasing yields, after differentiation, terms that are
consistent (up to an approximation) with the occlusion
forces that were obtained by differentiating the objective
function defined on the continuous image domain.
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Fig. 18. Sparsity structure: (a) θ ∈ R28 (b) θ ∈ R126

(c) approximated structure. The bottom plot (d) shows
the decrease in the energy functional with respect to
number of functional evaluations. (blue:adapted BFGS;
green:conventional BFGS)

APPENDIX B
BLOCKWISE BFGS UPDATES

Quasi-Newton methods rely on a good approximation to
the Hessian of the objective function. Better approxima-
tions often lead to faster convergence. Here we approx-
imate the objective function Hessian using a variant of
the BFGS update method. It was adapted to exploit the
partial independence of separated fingers. The resulting
sparseness of the Hessian leads to the definition of a
Blockwise BFGS update. This blockwise update increased
the convergence rate by a factor ranging from of 3 to 6.

To obtain a good convergence rate even during the
first iterations, it is important to initialize the approxi-
mate Hessian well. Rather than using the identity matrix,
as is often done, we used a scaled version of the matrix
J V̄θ

t
J V̄θ where J V̄θ is the Jacobian of projected vertices

with respect to θ. This favors the displacements in the
depth direction for which the gradient is small due to
weak support from the image data.

Because the contributions to the overall cost of two
well-separated fingers are independent, the true Hessian
will not be fully populated but will exhibit blocks of
zeros (Fig. 18.a). This sparsity is accentuated if, instead
of using joints angles, we individually parameterize the
pose of each bone using a 7D vector, comprising a
quaternion and a translation vector such that θ ∈ R126

(The bones of the wrist and the arm are rigidly fixed
and therefore we need not represent one of the two).
As shown in Fig. 18b), non-zero entries of the 126× 126
Hessian appear on 7× 7 blocks. Each off-diagonal block
corresponds to a pair of hand parts that either occlude
one another or share some facets in their influence area
for the pose space deformation.

To exploit the Hessian sparsity, with quaternions used
to parameterize bones, without the need for further non-
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linear constraints, we first decompose the function E(θ)
into E(θ) = Eq(Q(θ)), where Q maps the joint-angle
representation to quaternions. The Hessian ∂2Eq

∂2θ is then
approximated by (∂Q∂θ )tHq(∂Q∂θ ) where Hq = (∂

2Eq
∂2Q ).

At each step, we refine the Hessian approximation
Hq with an adapted BFGS update. We approximate the
structure of Hq by assuming complete independence
between parts of the hand. This produces block-diagonal
structure (see Fig. 18.c) where non-zero entries occur
in 7 × 7 blocks along the diagonal. The standard BFGS
update does not exploit this structure, and would other-
wise populate the entire matrix. Using the BFGS formula,
rather than update Hq , we only update the non-zero 7×7
blocks on the diagonal independently. About 7 gradient
evaluations are then necessary to obtain a reasonable
local approximation of the Hessian, while the standard
BFGS method would require about 28 evaluations. This
has a direct impact on the convergence rate of the
optimization. The method induces more zeros than in the
true Hessian but still leads to significant improvement
over the standard BFGS update. As we keep performing
increments on θ during the optimization, we do not
need to add nonlinear constraints that enforce validity
of relative poses of connected bones that would be
necessary if the increments were done in the quaternion
representation space. The improvement in the minimiza-
tion process, in terms of the number of objective function
evaluations, is shown in Fig. 18, where we estimated the
pose for a single frame.
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