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Abstract
We introduce a new class of probabilistic latent vari-

able model called the Implicit Mixture of Conditional Re-
stricted Boltzmann Machines (imCRBM) for use in human
pose tracking. Key properties of the imCRBM are as fol-
lows: (1) learning is linear in the number of training exem-
plars so it can be learned from large datasets; (2) it learns
coherent models of multiple activities; (3) it automatically
discovers atomic “movemes”; and (4) it can infer transi-
tions between activities, even when such transitions are not
present in the training set. We describe the model and how
it is learned and we demonstrate its use in the context of
Bayesian filtering for multi-view and monocular pose track-
ing. The model handles difficult scenarios including multi-
ple activities and transitions among activities. We report
state-of-the-art results on the HumanEva dataset.

1. Introduction
Prior models of human pose and motion play a key role

in state-of-the-art techniques for monocular pose tracking.
Prior models constrain what is otherwise a difficult estima-
tion problem because of its high dimensionality, intrinsic
ambiguities, and noisy or missing measurements. Most suc-
cessful prior models are activity specific and hence implic-
itly rely on activity detection before allowing pose tracking.
Indeed, models that deal with multiple motions and transi-
tions between them are scarce, in part because of the com-
putational complexity that limits the size of training cor-
pora, the lack of training data labeled with transitions, and
the lack of a clear definition of atomic motion primitives.

This paper advocates the use of the Conditional Re-
stricted Boltzmann Machine (CRBM) as a latent variable
model for human pose tracking, and introduces a new class
of models called the Implicit Mixture of Conditional Re-
stricted Boltzmann Machines (imCRBM) for handling mul-
tiple activities. Inference and learning with the imCRBM
are efficient. Learning is linear in the number of training
exemplars, so one can use large training corpora, and it can
handle multiple activities. We demonstrate that it can also
infer transitions between activities even when such transi-

Figure 1. Bayesian filtering with the imCRBM. Each pose maps
to a distribution over a discrete K-state vector and many binary
latent features. The discrete component modulates the interaction
weights among observed variables and latent features.

tions do not occur in the training data. Finally, training can
either be supervised (when labels are available) or unsuper-
vised. Unsupervised, the learning algorithm automatically
segments motions into statistically salient atomic parts.

In this paper the CRBM and imCRBM models are used
to learn human motion models for human pose tracking. We
demonstrate learning and inference for single activities and
for multiple activities (with transitions). These models are
applied to both multi-view and monocular tracking.

2. Related Work
The literature on human pose estimation and tracking is

vast, so a complete overview is beyond the scope of this pa-
per. We refer the reader to [5] for a more complete overview.
Below we focus on the most relevant body of work, that is,
generative models of human pose and motion.

Early dynamical models were formulated as smooth, lin-
ear Markov models [2, 3, 18], but such models do not cap-
ture nonlinear properties of human motion and were found
insufficient for monocular 3D pose tracking. Switching lin-
ear dynamical systems (SLDS) are more expressive, but
they have not been used extensively (e.g. [17]). Learning
with SLDS requires large training datasets given the high
state dimensionality, and with SLDS it is difficult to ensure
consistency in the latent variables when switching from one
LDS to another. Modeling multiple activities with a dis-
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tributed representation that uses many latent features, like
the CRBM and imCRBM, rather than an explicit mixture,
provides a more natural model of transitions.

One obvious way to manage the high dimensionality of
human pose data is to use dimensionality reduction, or a
latent variable model, with the dynamical model formu-
lated on the latent variables. The earliest such models em-
ployed nonlinear dimensionality reduction, followed by a
combination of density estimation and regression to learn
generative mappings [11, 15, 20]. One problem with low-
dimensional representations is that real data occasionally
departs radically from the manifold. A regular walk may be
low-dimensional, but if the walker occasionally scratches
his nose or kicks a pebble, an explicit low-dimensional
representation might be inadequate. To cope with such
variability one can use implicit dimensionality reduction,
as in the CRBM; i.e., the latent representation remains
high-dimensional, but the model learns to construct energy
ravines in the latent space. In doing so, one is biased to-
ward motions in the training set, but large deviations from
the training set, while implausible, are not impossible.

Perhaps the most prominent current latent variable mod-
els are derived from the Gaussian Process Latent Variable
Model [8, 23] and the Gaussian Process Dynamical Model
[24]. Such models can serve as effective priors for track-
ing [23, 24] and can be learned with small training cor-
pora [23]. However, larger corpora are problematic since
learning and inference are O(N3) and O(N2), where N is
the number of training exemplars. While sparse approxima-
tions to GPs exist [10], sparsification is not always straight-
forward and effective. Recent additions to the GP family
include the topologically-constrained GPLVM [25], Multi-
factor GPLVM [26], and Hierarchical GPLVM [9]. Such
models permit stylistic diversity and multiple motions (un-
like the GPLVM and GPDM), but to date these models have
not been used for tracking, and complexity remains an issue.

Most generative priors do not address the issue of ex-
plicit inference over activity labels. While latent variable
models can be constructed from data that contains multi-
ple activities [20], knowledge about the activities and tran-
sitions between them is typically only implicit in training
data. As a result, training prior models to capture transi-
tions, especially when they do not occur in training data, is
challenging and often requires that one constrain the model
explicitly (e.g. [25]). In [12] a coordinated mixture of fac-
tor analyzers was used to facilitate model selection, but to
our knowledge, this model has not been used for tracking
multiple activities and transitions. Another way to handle
transitions is to to build a discriminative classifier for activ-
ities, and then use corresponding activity-specific priors to
bootstrap the pose inference [1]. The proposed imCRBM
model bridges the gap between pose and activity inference
within a single coherent and efficient generative framework.

3. Conditional Restricted Boltzmann Machines
A Restricted Boltzmann Machine (RBM) [21] is a bipar-

tite Markov Random Field consisting of a layer of stochastic
“visible” variables connected to a layer of stochastic latent
variables. The lack of direct connections among the latent
variables, z, ensures that they are conditionally independent
given a setting of the visible variables, x, which simplifies
inference and learning. RBMs typically use binary visible
and latent variables, but for real-valued data (e.g. pose) we
can use a modified RBM with Gaussian, real-valued vari-
ables and binary latent variables [27].

The RBM can be extended to capture temporal depen-
dencies by making its latent and visible variables receive
additional input from previous states of the visible variables
(Fig. 2, left). This model is called a Conditional RBM
(CRBM) [22]. Conditioning on past data does not change
the model’s most important computational properties: sim-
ple, exact inference and efficient approximate learning.
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Figure 2. Models. Left: first-order CRBM. We typically use
first-order models but also experiment with higher-order models.
Right: the imCRBM. The discrete component variable q sets the
“effective” CRBM. Bias parameters (C,D) are not shown.

The CRBM defines a joint probability distribution over a
real-valued representation of current pose, xt, and a collec-
tion of binary latent variables, zt, z ∈ {0, 1}:

p(xt, zt|xht
) = exp (−E(xt, zt|xht

)) /Z(xht
). (1)

The distribution is conditional on the history of past N
poses, xht

, where ht ≡ t−N :t−1, and normalized by con-
stant Z which is intractable to compute exactly1. The joint
distribution is characterized by an “energy function”:

E =
∑
i

1

2
(xit − ĉit)2 −

∑
j

zjtd̂jt −
∑
ij

Wijxitzjt (2)

which captures the pairwise interactions between variables,
assigning high scores to improbable configurations and low
scores to probable configurations. Each visible variable
contributes a quadratic offset to E (first term) that dom-
inates Eq. 2 when it deviates too far from a “dynami-
cal mean” that is a linear function of the previous poses:
ĉit = ci +

∑
lAilxlht

. The dynamical mean is much like
a prediction from an autoregressive model of order N with

1To compute Z exactly we would need to integrate over the joint space
of all possible poses and all settings of the binary latent variables.



constant offsets ci. Each latent variable contributes a linear
offset toE (second term) which is also a function of the past
pose: d̂jt = dj +

∑
lBjlxlht

. The third term of E is a bi-
linear constraint on the interaction between (current) visible
and latent variables, characterized by weights W . A large
value of Wij means that xi and zj are strongly correlated.

3.1. Learning and prediction
Ideally we would like to maximize the marginal con-

ditional likelihood, p(xt|xht
), over parameters θ =

{W,A,B, c,d} but this is difficult for all but the smallest
models due to the intractability of computing Z. Learn-
ing, however, still works well if we approximately follow
the gradient of another function called the contrastive diver-
gence (CD) [6]. This learning method is simply called CD.

For sake of brevity, we refer the reader to [22] for
details of learning a CRBM by CD. In short, learning
relies on two main operations: 1) sampling the la-
tent variables, given a window of training data, {xt,xht

}:

p(zjt = 1|xt,xht
)=

(
1 + exp(−

∑
i

Wijxit − d̂jt)

)−1

, (3)

and 2) reconstructing2 the data, given the latent variables:

xit ∼ N

xit;∑
j

Wijzjt + ĉit, 1

 . (4)

Both Eq. 3 and 4 follow from Eq. 1. Note that we always
condition on the past, xht , it is never updated. Typically
this process is repeated M times, giving rise to the term
CD-M learning. Details of the weight updates are given in
the supplementary material.

Given a trained CRBM and aN -step history of poses, we
can obtain a joint sample from p(xt, zt|xht) by alternating
Gibbs sampling. This means starting at some reasonable
initialization of xt (we use xt−1) then alternating between
Eq. 3 and 4 for some fixed number of steps (we use 100).

4. Implicit Mixtures of CRBMs
The capacity of the CRBM can always be increased by

increasing the number of latent variables. Nonetheless,
for data that contains several distinct modes (e.g. walking
and running) it may be more desirable to use a mixture of
CRBMs, where each component specializes to an activity.
Compared to the density models employed by standard mix-
tures (e.g. Gaussians) it is intractable to exactly compute
the normalized density under a CRBM and therefore it ap-
pears that learning a mixture of CRBMs is also intractable.
Nair and Hinton [16] showed that a type of mixture model
where each component was an RBM could be learned effi-
ciently using contrastive divergence as long as the number

2In practice, we sample the hidden state but set the updated visible state
to the mean. This suppresses noise and learns slightly faster.

of components was reasonably small (say, less than 100).
The key was to parameterize the model as a type of third-
order Boltzmann machine where the energy function cap-
tures three-way interactions between visible variables, bi-
nary latent variables and discrete “component” variables.
However, this model treats each observation as i.i.d. and
thus would ignore the temporal structure in time series data.

This paper proposes a new type of dynamical mixture
model using three-way interactions (Fig. 2, right). We ex-
tend the CRBM by introducing a discrete variable, q, with
K possible states. For convenience, we define q to be a K-
element vector, constrained such that only one element can
be active. Our new model is defined by a joint distribution:

p(xt, zt,qt|xht
)=exp (−E(xt, zt,qt|xht

)) /Z(xht
) (5)

where the energy function, E(xt, zt,qt|xht), is given by:

E(xt, zt,qt|xht
) =

1

2

∑
i

(xit − ĉit)2 −
∑
j

zjtd̂jt

−
∑
k

qkt
∑
ij

Wijkxitzjt (6)

and the dynamical terms, ĉit, d̂jt, are given by:

ĉit =
∑
k

qkt

(
Cik +

∑
l

Ailkxlht

)
, (7)

d̂jt =
∑
k

qkt

(
Djk +

∑
l

Bilkxlht

)
. (8)

What were previously weight matrices, {W,A,B}, now
become weight tensors, where each slice along the q di-
mension corresponds to the parameters of theK component
CRBMs. Similarly, the static biases, {c,d} become matri-
ces {C,D}. Since at each time step t only one element of
qt is active, we can see from Equations 6-8 that q has the
effect of “activating” a particular CRBM.

We can write the model in a traditional “mix-
ture” form by marginalizing over the latent variables:

p(xt|xht
) =

∑
zt,qt

p(xt, zt,qt|xht
)

=

K∑
k=1

p(qkt = 1)
∑
zt

p(xt, zt|qkt = 1,xht). (9)

Compared to other mixture models, however, our model
is unusual in that the mixing proportion is not a model
parameter but implicitly defined by the energy function in
Eq. 6. Thus we refer to it as an implicit mixture of CRBMs.

4.1. Learning and prediction
Like the CRBM, our mixture model can by trained

by contrastive divergence. This, however, relies on sam-
pling the conditional distributions p(zt,qt|xt,xht

) and



p(xt|zt,qt,xht) which are not as straightforward as the
case of the standard CRBM (Eq. 3 and 4). Details of sam-
pling from these distributions are provided in the Appendix.

Given a trained imCRBM and a N -step history of poses,
we can obtain a joint sample from p(xt, zt|xht

) by alter-
nating Gibbs sampling in a way almost identical to that of a
standard CRBM. The only difference is we first compute the
posterior distribution over components p(qt|xt,xht

) and
then pick a component, k, before sampling the latent vari-
ables under the kth CRBM using pk(zt|xt,xht

) and updat-
ing the visible variables using pk(xt|zt,xht

).

5. Bayesian Filtering with CRBM-type models
In tracking one is generally interested in approximating

the filtering distribution, p(xt|y1:t), the distribution over
the pose of the body at time t, xt, conditioned on past image
observations y1:t = [y1,y2, ...,yt]. Assuming conditional
independence of observations (given the state) the posterior
above can be written as

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1), (10)

where p(yt|xt) is the likelihood, which measures consis-
tency of the state with image observations, and p(xt|y1:t−1)
is the predictive distribution, which predicts the state at
time t given image observations up to but not including
time t. Making a 1st order Markov assumption on the
state evolution, the predictive distribution can be written as

p(xt|y1:t−1)=

∫
xt−1

p(xt|xt−1)p(xt−1|y1:t−1) dxt−1, (11)

where p(xt|xt−1) is the transition density and
p(xt−1|y1:t−1) is the posterior at time t− 1.

If the temporal prior is an implicit mixture of first-order
CRBMs, we introduce latent variables, zt and qt:

p(xt|y1:t−1) =

∫
xt−1

∫
zt,qt

p(xt, zt,qt|xt−1)p(xt−1|y1:t−1)

dztdqtdxt−1, (12)

that need to be integrated out either implicitly using sam-
pling or in closed form.

The first integral in Eq. 12 is often estimated using
Monte Carlo methods [4] that approximate the posterior by
a set of P weighted samples, {x(p)

t , π
(p)
t }Pp=1. The simplest

among such approaches is Sequential Importance Resam-
pling (SIR). At every time instant SIR samples from the pre-
dictive distribution3 and then assigns them weights based on
the likelihood:

x
(p)
t ∼ p(xt|y1:t−1)

π
(p)
t ∝ p(yt|x(p)

t ). (13)
3In practice we add small amount of Gaussian noise to the predictive

distribution to allow for a diffusion of samples that can account for noise
in the inference or un-modeled correlations.

Higher-order CRBM models, that incorporate history
over the past N frames, impose a N -th order Markov de-
pendency among the states. This, however, can easily be
addressed within the context of a particle filter, by defining
an augmented state [7] x̂t = xt−N :t, and a transition den-
sity that (1) temporally shifts the elements of augmented
state by one (dropping the oldest state in the sequence) and
(2) predicts the most recent state according to the N -th or-
der CRBM conditioned on the past augmented state.

We utilize the freely available SIR implementation of
[2], but augment it to maintain a sample-based representa-
tion of the history over the past N frames, {x(p)

ht
, π

(p)
t }Pp=1.

5.1. Modeling the body
As is common in the literature, we model the body as

a 3D kinematic chain with limbs represented by truncated
elliptical cross-section cones. Our body model consists of
15 segments: 2 torso segments (pelvic region and torso),
lower and upper arms and legs, feet, hands, and a head. The
lengths, widths and cross-sectional scaling for all segments
is assumed fixed and known. Inference consists of finding
the pose of the body over time, xt ∈ R40. The pose consists
of global position and orientation of the body in the world (6
DoF), orientation of the hips, shoulders, head and abdomen
joints (3 DoF each), the clavicle, elbow, and knee joints (2
DoF) and wrist and ankle joints (assumed to be 1 DoF).

To achieve invariance, instead of modeling the absolute
position in the ground plane, we model velocity along the
anterioposterior and lateral axes. We also model the veloc-
ity of rotation about the vertical instead of absolute orienta-
tion. Velocities are expressed as the difference between the
current and previous frame. For learning, each dimension
is also scaled to have zero mean and unit variance. During
tracking, predictions are made in the normalized, invariant
space and then converted back to the global representation.

5.2. Likelihood
In general, for tracking, one prefers rich likelihoods

that are robust to lighting variations, occlusions and im-
age noise. For simplicity, and to fairly evaluate our ap-
proach with respect to prior art, we utilize relatively weak
and generic likelihoods based on silhouette4 and edge in-
formation (for details, see [3]), but admit that better results
can be obtained using richer likelihood models (e.g. optical
flow or adaptive appearance regions [23, 24]).

6. Experiments
We conducted a series of experiments to measure the

effectiveness of our prior models in real multi-view and
monocular 3D settings on a variety of sequences from the
HumanEva dataset [19]. Since the imCRBM is a general-
ization of the CRBM, we begin by illustrating the efficacy

4For some of the experiments we utilize a more robust silhouette-based
likelihood described in [19].



of both models for tracking of atomic motions. Then we
demonstrate how the imCRBM can further improve perfor-
mance through better modeling of transitions.

Datasets. HumanEva consists of a set of multi-view se-
quences with synchronized motion capture data to allow
quantitative evaluation of performance. The HumanEva
dataset consists of six different motions, performed by four
different subjects (S1-S4); we utilize sequences of walking,
jogging, boxing and combo (walk transitioning to a jog) for
our experiments. We also utilize the earlier synchronized
walking sequence from a different subject [2], denoted S5.

Evaluation. To quantitatively evaluate the performance we
adopt the measure proposed in [19], which computes an av-
erage Euclidean distance between 15 virtual markers on the
body (corresponding to joints and end points of segments).
The use of the dataset and this measure allows us to easily
compare our performance with prior methods.

Baseline. As a baseline we compare performance against
the standard particle filter with smooth zero-order dynamics
(i.e. xt+1 = xt up to additive noise). For fairness, we al-
ways utilize the same number of samples and the same like-
lihoods between the Baseline and the proposed approach.

Learning. Except where noted, all CRBM models were
trained as follows: Each training case was a window of
N+1 consecutive frames and the order of the training cases
was randomly permuted. The training cases were presented
to the model as “mini-batches” of size 100 and the weights
were updated after each mini-batch. Typically we use mod-
els with 100 latent variables (chosen based on the relatively
small amount of available training data) and we make no at-
tempt to optimize this number. Models were trained using
CD-10 (see Sec. 3.1) for 5000 complete passes through the
data. All parameters used a learning rate of λ = 10−3, ex-
cept for the autoregressive weights which used λA = 10−5.
A momentum term was also used: 0.9 of the previous accu-
mulated gradient was added to the current gradient.

Initialization. To initialize the tracker we use the first two
frames from the provided motion capture data (converted
into our representation). The use of two frames, as opposed
to one is required to calculate the velocities described in
Sec. 5.1). Where higher order models are used, we first
grow the trajectory using a lower order CRBM.

6.1. Multi-view tracking
Generalization across subjects. We repeat the experi-
ments proposed in [28] to demonstrate the insensitivity of
the CRBM prior to the identity of the test subject. To
compare with previously published results, we maintain
the same experimental setup as in [28] but in place of the
motion correlation (MoCorr) model, we use a first-order
CRBM prior. In all cases, we track subject S5 (first 150
frames of the validation sequence), but train with three dif-

ferent datasets: (1) S5 walking, (2) S1 walking, and (3)
the combined walking motions of subjects S1, S2 and S3.
We use 4 camera views and 1000 particles for all three
sequences. To the best of our knowledge, we utilize the
same edge and silhouette-based likelihood, the same basic
inference architecture, the same number of samples, and the
same test and training sets as [28]. Results (averaged over
10 runs) are shown in Table 1 (the plot of performance over
time is provided in the supplementary material).

Train on Baseline MoCorr [28] CRBM
S5

91.37±6.29
48.98 41.97±3.57

S1 51.66 38.45±0.80
S1+S2+S3 55.30 48.03±0.29

Table 1. Generalization across subjects. Tracking of subject S5
using a 1st order CRBM prior model learned from S5, S1, and
S1+S2+S3 training data. ± indicates standard deviation over runs.

In each case, our method outperforms standard particle
filtering and particle filtering using the MoCorr model. Sur-
prisingly, we perform slightly better on subject S5 using a
prior model trained on subject S1. This may be due to the
much smaller S5 training dataset (921 frames compared to
2232 for S1).

HumanEva-I walking. Next, we apply both a CRBM and
10-component imCRBM to the walking sequences in the
HumanEva-I dataset. As in [28], we track each of subjects
S1, S2 and S3 (walking validation) using a first-order dy-
namical model trained on the combined walking data of all
three subjects. We repeat the experiment using a subject-
specific prior, to compare to Li et al. [13].

Li et al. [12] proposed a nonlinear dynamical model, the
Coordinated Mixture of Factor Analyzers (CMFA), later ex-
tended to include variational inference in [13] (CMFA-VB).
They integrated the CMFA prior into a tracking architecture
(significantly different from particle filtering) and achieved
favorable performance compared to a particle filter with a
Gaussian Process Latent Variable Model (GPLVM) prior.
We compare to the performance of both methods reported
in [13] (see Table 2).

For this experiment we utilize 3 color views to be consis-
tent with [28] and [13]. In all cases the performance of our
method is considerably better than other methods, with sig-
nificantly lower variance as compared to the GPLVM and
CMFA [13]. The imCRBM outperforms the CRBM in the
case of the (S1+S2+S3) training set, but overfits relative to
the CRBM on the smaller, subject-specific training set.

HumanEva-I boxing. To illustrate that the CRBM prior
model is not specific to cyclic motions, and at the same time
explore the effect of history on performance we illustrate
first, third and sixth-order CRBM priors on the validation
boxing sequence of S1. For this experiment we only use
200 particles. The choice of the sequence and setup is moti-



Training Test Baseline MoCorr [28] GPLVM [13] CMFA-VB [13] CRBM imCRBM-10
S1+S2+S3 S1

129.18±19.47
140.35 - - 55.43±0.79 54.27±0.49

S1 S1 - - - 48.75±3.72 58.62±3.87
S1+S2+S3 S2

162.75±15.36
149.37 - - 99.13±22.98 69.28±3.30

S2 S2 - 88.35±25.66 68.67±24.66 47.43±2.86 67.02±0.70
S1+S2+S3 S3

180.11±24.02
156.30 - - 70.89±2.10 43.40±4.12

S3 S3 - 87.39±21.69 69.59±22.22 49.81±2.19 51.43±0.92

Table 2. HumanEva-I walking performance. Tracking of subjects S1, S2, S3 using various prior models. For the implementation of the
GPLVM in [13] an annealed particle filter with 5 layers of annealing and 500 particles per layer was used.

vated by comparison to the original results reported in [12].
Since in [12] Li et al. also compare to the performance
of a Switching Linear Dynamical System (SLDS) and the
Dynamic Global Coordination Model (DGCM) of [14], we
include those results for completeness. The tracking per-
formance is summarized in Table 3; we report the average
over 10 runs using each order of CRBM. Again our method
shows significant improvement over the other approaches
considered. While the order of the CRBM model does not
seem to improve performance in the multi-view scenario, it
does reduce the variance.

Model Order 1 Order 3 Order 6
SLDS [12] 569.90±209.18 - -
DGCM [12] 380.02±74.97 - -
CMFA [12] 187.50±39.73 - -
Baseline 116.95±5.54 - -
CRBM 75.35±9.71 82.40±8.26 82.91±5.15

Table 3. HumanEva-I boxing performance. Subject S1.

6.2. Tracking over transitions
Tracking over transitions presents a considerable chal-

lenge even when using a dynamical prior. Here we illus-
trate the benefits of using the imCRBM to capture the dis-
crete nature of “walking” and “jogging” motions and in-
clude transitions. In these experiments we track the first
700 frames of the S3 “combo” sequence which consists of
walking transitioning to jogging. Each dynamical model is
trained on all walking and jogging training sequences asso-
ciated with S3. These contain no transitions. We train the
imCRBM under two settings. In the first, imCRBM-2L, we
use the labeled training data to fix the components of a two-
component imCRBM during the positive phase of learning
(the components are inferred during the negative phase of
learning and at test time). The second setting, imCRBM-
10U, is completely unsupervised, where we have trained a
10-component mixture on the same mocap data but without
labels. We also compare to the performance of the baseline
and standard CRBM. All dynamical models are first-order.
Results are shown in Figure 3 and summarized in Table 4.

With the imCRBM we can compute an approximate pos-
terior distribution over component labels by counting and
normalizing the assignment of particles at each time step.
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Figure 3. Transitions between activities. a) Mean prediction er-
ror on the S3 “combo” test sequence using various prior models.
Shading indicates ±1 std. dev. b) Approximate posterior distri-
bution over activities using the imCRBM-2L (top) and imCRBM-
10U (bottom). For all plots, the horizontal axis is frame number.

Model Walking Jogging All
Baseline 132.06±48.49 205.64±11.39 164.24±25.03
CRBM 48.09±0.55 125.36±28.62 81.88±12.41
imCRBM-2L 48.12±0.80 75.67±2.18 60.17±1.24
imCRBM-2L* 61.84±1.51 93.05±4.72 75.48±1.77
imCRBM-10U 67.48±2.63 86.44±2.00 75.77±1.74
imCRBM-10U* 80.72±1.78 89.90±1.16 84.74±1.13

Table 4. Mean predictive error over walking frames (1-400),
jogging frames (401-700), and mean over frames 1-700 of S3
“combo” sequence. Note that the boundary is approximate. * We
also repeated the imCRBM runs with a non-subject-specific prior
(trained on S1,S2,S3 data) to demonstrate generalization ability.

When the imCRBM is trained supervised, these compo-
nents correspond to activity labels (Figure 3b, top). In the
unsupervised case, they correspond to movemes, or atomic
segments automatically discovered by the model (Figure
3b, bottom). Here, the components still seem to be action-
specific and correspond to parts of the gait cycle. Note that
the posterior for frames near the transition – dashed line in
Fig. 3b, marked roughly around frame 400 – is much softer.
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Figure 4. Monocular tracking quantitative performance. Left:
Monocular tracking of subject S1, all cameras. Right: Using a
sixth order model improved the results for cameras 1 and 2 (cam-
era 1 shown). Results are averaged over 5 runs per camera (per-
frame standard deviation is shaded).

6.3. Monocular tracking
Tracking with a single camera presents a significant chal-

lenge to current methods. Balan et al. [2] report that monoc-
ular tracking using an Annealed Particle Filter (5 layers, 200
particles per layer) with edge and silhouette-based likeli-
hoods fails, on average, after 40 frames of tracking the S5
validation sequence. They report an error of 263±60mm
tracking the first 150 frames of the sequence. Because we
track a single activity, we applied standard particle filtering
with a CRBM motion prior trained on S5 training data to the
same validation sequence. We used an identical likelihood,
and used the same total number of particles (1000). Aver-
aging errors over all 4 cameras, and 5 runs per camera, us-
ing a first-order CRBM gives a result of 133.93±55.62mm.
If we apply a sixth-order CRBM, our results improve to
112.25±79.52mm. For each camera, at least one run suc-
cessfully tracks the entire sequence. All camera 1 runs are
successfully tracked for the entire sequence.

We also applied the tracker to S1. Using a first order
CRBM, and a bi-directional silhouette likelihood term, we
obtain an error of 90.98±32.70 averaged over 5 runs per
camera (Figure 4). When tracking is reasonably successful,
using a higher-order model helps considerably. For exam-
ple, using camera 1 gives an error of 47.29±4.95mm using
a sixth-order model (compared to 70.50±24.19 for the first-
order model).

Monocular tracking with transitions. We applied the im-
CRBM trained with activity labels (imCRBM-2L) to track
the S3 “combo” sequence. This is a difficult task at which
both the baseline and standard CRBM fail. With the new
model we are able to successfully track the entire sequence,
including the transitions. A single run is shown in Figure 5.
See the supplementary material for more details.

7. Discussion
We have demonstrated that binary latent variable models

work effectively as a prior in Bayesian filtering, allowing
3D tracking of people from multi-view and monocular ob-
servations. Our models use a high-dimensional, non-linear

representation which captures low-dimensional structure by
learning energy ravines. This allows one to learn models
from many different types of motion and subjects using the
same set of latent variables. We have also introduced a new
type of dynamical prior that can capture both discrete and
continuous dynamics. The imCRBM should be useful for
time series analysis beyond the tracking domain.
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Appendix: imCRBM inference and learning
Note: this Appendix assumes familiarity with learning a

CRBM using contrastive divergence (CD). For a review, see [22].
Learning an imCRBM with CD requires us to sample from two
conditional distributions: p(zt,qt|xt,xht) and p(xt|zt,qt,xht).
Recall that q is 1-of-K encoded, and so p(zt,qt|xt,xht) ≡
p(zt, qkt = 1|xt,xht). Sampling from the second distribu-
tion is straightforward: given qtk = 1, we simply sample from
pk(xt|zt,xht) defined by the kth component CRBM. Sampling
from p(zt,qt|xt,xht) is performed in two steps. We first sample
qt using p(qkt = 1|xt,xht) and then sample from pk(zt|xt,xht)
defined by the kth component CRBM corresponding to our draw.

Computing p(qt|xt,xht) relies on the fact that

p(qkt = 1|xt,xht) ∝ exp (−F (xt, qkt = 1|xht)) , (14)

where the free energy, F , is given by

F (xt, qkt = 1|xht) =
1

2

∑
i

(xit − ĉit)2

−
∑
j

log

(
1 + exp(

∑
i

Wijkxit + d̂jt)

)
. (15)

F is the negative log probability of an observation plus
logZ. As long as K is reasonably small, we can eval-
uate Eq. 15 for each setting of k, and renormalize such that

p(qkt = 1|xt,xht)=
exp (−F (xt, qkt = 1|xht)/τ)∑
l exp (−F (xt, qlt = 1|xht)/τ)

, (16)

where τ is a temperature parameter which ensures that random
scale differences in initialization and learning do not cause the
model to collapse to a single component. We used fixed τ = 100.

Now that we have a well-defined sampling procedure for the
conditional distributions p(zt,qt|xt,xht) and p(xt|zt,qt,xht)
we can train the model with contrastive divergence. The algorithm
for one iteration of learning is:

1. Given a history of observations, xht , and a training vector,
x+
t , compute p(qkt = 1|x+

t ,xht) ∀k ∈ K. Pick a com-
ponent by sampling. Let k+ be the index of the selected
component.

2. Sample z+t ∼ pk+(zt|xt,xht).
3. Compute the positive phase statistics (see the supplementary

material): {W+
k , A

+
k , B

+
k , c

+
k ,d

+
k } using the k+th CRBM.

4. Sample x−
t ∼ pk−(xt|z+t ,xht).

5. Compute p(qkt = 1|x−
t ,xht) ∀k ∈ K. Pick a component

by sampling. Let k− be the index of the selected component.
6. Sample z−t ∼ pk−(zt|xt,xht).
7. Repeat steps 4-6 above M − 1 times for CD-(M > 1), sub-

stituting z−t for z+t in step 4.
8. Compute the negative phase statistics:
{W−

k , A
−
k , B

−
k , c

−
k ,d

−
k } using the k−th CRBM.

9. Update weights {Wk, Ak, Bk, ck,dk}, ∀k ∈ {k+, k−}.
In practice, parameter updates are performed after each presen-

tation of a mini-batch consisting of several {xht ,x
+
t } pairs. The

update to each parameter of a component CRBM is proportional
to the difference of summed positive phase statistics and summed
negative phase statistics assigned to that component (for details,
see the supplementary material).

Furthermore, if we have labeled training data, we can fix the
component in the positive phase to match the label (step 1), but
still sample the component in the negative phase (step 5). We can
then perform inference over the component given unlabeled data.


