
Abstract. Previous research has suggested that the
processing of binocular disparity in complex cells may
be described with an energy formalism. The energy
formalism allows for a representation of disparity by
di�erences in the position or in the phase of monocular
receptive sub®elds of binocular cells, or by combination
of these two types. We studied the coding of disparities
with an approach complementary to previous algorith-
mic investigations. Since realization of these representa-
tions is probably not genetically determined but learned
during ontogeny, we used backpropagation networks to
study which of these three possibilities were realized
within neural nets. Three types of networks were trained
with noise patterns in analogy to the three types of
energy models. The networks learned the task and
generalized to untrained correlated noise pattern input.
Outputs were broadly tuned to spatial frequency and did
not respond to anti-correlated noise patterns. Although
the energy model was not explicitly implemented, we
could analyze the outputs of the networks using predic-
tions of the energy formalism. After learning was
completed, the model neurons preferred position shifts
over phase shifts in representing disparity. We discuss
the general meaning of these ®ndings and the corre-
spondences and deviations between the energy model,
V1 neurons, and our networks.

1 Introduction

Neurons with a speci®c sensitivity to retinal disparities
are thought to play a fundamental role in the perception
of stereoscopic depth. Such neurons have been found in
the primary visual cortex of mammals, especially cats
(Pettigrew et al. 1968; Ohzawa et al. 1997) and monkeys

(Poggio and Fischer 1977; Poggio 1995). They have also
been found in the visual wulst of owls (Pettigrew and
Konishi 1976; Wagner and Frost 1993, 1994).

Several studies have investigated the characteristics of
neurons with excitatory disparity tuning by means of an
algorithmic approach (experimental neurophysiology:
Wagner and Frost 1993, 1994; Ohzawa et al. 1990, 1997;
theory: Qian 1994; Fleet et al. 1996a, b; Zhu and Qian
1996; Qian and Zhu 1997). These studies led to the de-
velopment of a model for disparity-sensitive neurons,
the energy neuron model, which explains most of the
known experimental facts. Yet, some questions con-
cerning the mechanism of disparity selectivity remain
open.

Three types of energy models are known, namely,
phase-shift, position-shift, and hybrid models. In the
phase-type model, disparity selectivity is a result of dif-
ferences in the phases of the monocular receptive sub-
®elds of the binocular neurons. Di�erences in the retinal
positions of monocular sub®elds determine the disparity
selectivity in the position type model. Both phase and
positional di�erences contribute to disparity selectivity
in the hybrid-type model. These three types of energy
models yield clear predictions of the responses of real
disparity-sensitive neurons (Fleet et al. 1996b). Experi-
mental data from the cat suggest that phase-shifts play a
signi®cant role, favoring phase-type or hybrid-type
models (DeAngelis et al. 1991; Anzai et al. 1997, 1999;
Ohzawa et al. 1997), while data for the owl favor the
position-type model (Wagner and Frost 1993, 1994).
However, the data published so far do not rule out any
of the three models.

In this paper, we take a di�erent approach, using a
neural network to learn more about the e�ectiveness of
the di�erent models. We used bandpass monocular ®l-
ters that di�ered in interocular position and interocular
phase to provide input to neural nets that we trained
with a conventional backpropagation algorithm to be
disparity selective. Networks learned to exhibit disparity
selectivity much like that of V1 cells. These arti®cial
neurons are shown to have many properties in common
with those often recorded from V1 cells. Moreover,
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although the networks were not explicitly designed in
accordance with the energy model, we were also able to
analyze the results in terms of predictions of the energy
model.

2 Materials and methods

2.1 The backpropagation model

Three-layered feedforward networks were implemented
(Fig. 1). Temporal characteristics of real cells were not
incorporated into the model. The inputs to units in the
hidden and output layers were weighted sums of the
responses, xi, from units at the previous layer. The total
input to a single unit, y, can be written as:

y � x0 �
X

xixi ;

where xi are the weights. Every hidden unit and the
output unit had an additional constant input equal to 1.
The weights x0 of these supplementary inputs act as
threshold values for each unit and are also learned. The
output function R of the hidden units and the output
unit was a Fermi function of the input:

R�y� � 1=�1� exp�ÿy�� :
The input stereograms consisted of two one-dimensional
half-images IL(x) and IR(x)=IL(x ) d) that were trans-
lated versions of one another. As shown in Fig. 1, the

®rst layer units were divided into two groups, represent-
ing left and right receptive ®elds (RF), and were modeled
as Gabor functions. Inputs to the second layer were the
responses of the Gabor ®lters applied to the monocular
half-images of the stereograms. Filter operations were
performed on a discrete lattice of 1/320 deg unit length;
i.e., receptive ®elds are spaced 1/320 deg apart.

The spatial frequency selectivity of the Gabor RFs
was consistent with psychophysical data (Campbell and
Robson 1968) and neurophysiological recordings
(DeValois et al. 1982). The best frequencies, m, of the
®lters were set to 1, 2, 4 and 8 cyc/deg (Fig. 2). To
provide a constant half-height bandwidth of about 1.1

octaves (1.4 octaves at e)1-height) for all ®lters, the
width of the Gaussian envelope r was chosen as:

r � 0:5=m :

Apart from di�erences in frequency selectivity, the RFs
consisted of Gabor ®lters at ®ve di�erent phases / (/ =
)0.4, )0.2, 0, 0.2, 0.4 periods) and at ®ve di�erent
spatial positions x0 (x0 = )0.4/mi deg

)1; )0.2/mi deg
)1;

0/mi deg
)1; 0.2/mi deg

)1; 0.4/mi deg
)1).

Three di�erent types of RF combinations were used
as input to the three types of networks:

Type 1: hybrid-type model, with ®ve di�erent phases
and ®ve di�erent positions, resulting in 2 (half-
image) ´ 4 (frequency) ´ 5 (phase) ´ 5 (position) = 200
®lters.

Type 2: phase-type model (position constant), with
2 ´ 4 ´ 5 ´ 1=40 ®lters.

Type 3: position-type model (phase constant), with
2 ´ 4 ´ 1 ´ 5=40 ®lters.

The input-layer units distributed the Gabor ®lter
outputs to the hidden layer. The 8 cells of the hidden
layer were binocular and received input from both
subsets of monocular RFs. They were subdivided into
four groups representing di�erent spatial frequency
tunings. All eight hidden units projected onto a single
output unit.

2.2 The training

The weights xi were determined during a training
period using standard backpropagation (Rumelhart

Fig. 1. Topology of the network model. The input layer consisted of
two sets of inputs, representing left and right eye receptive ®eld (RF)
responses. RFs in each set di�ered in best frequency, m, phase, /, and
position, x (x was kept constant in the phase type networks and / was
kept constant in the position type networks). This resulted in a three-
dimensional input space. The hidden units were divided into four
groups of two neurons representing di�erent frequency bands. Every
hidden unit was connected to all input units from both eyes with a
single preferred frequency. The output unit was connected to all
hidden units. (For clarity, only a reduced set of connections is shown)

Fig. 2. Frequency ®lters. Four ®lters covering four octaves and
having a constant ratio of best frequency and tuning width (de®ned in
Sect. 2) were used
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et al. 1986). We determined suitable values for the
learning rate a and the impulse c during preliminary tests
and kept them constant during training for all networks
(a = 0.6, c = 0.05). The starting weights were deter-
mined using a random number generator (uniformly
distributed between )3 and 3).

The input images used for learning were one-dimen-
sional samples of random noise. Pixels were 1/32 deg
wide. The gray values were 0, 1, or 2 (independent and
uniformly distributed). The image width was 6.25 deg.
Thirty-one stereo pairs, each having a di�erent disparity,
were constructed from 100 di�erent random dot pat-
terns, yielding a training set of 3100 stereograms. Dis-
parity values were evenly distributed between
)0.235 deg to +0.235 deg, with a disparity step size of
0.0125 deg. Thus, the largest disparities are approxi-
mately 1/4 of the wavelength to which the low-frequency
®lter is tuned, and more than two wavelengths of the
frequency to which the high frequency ®lter is tuned. In
the iterative training process, one of the 3100 stereo-
grams was selected at random and a learning iteration
was performed. Learning was stopped after 3 ´ 106

iterations. Seventy-®ve independent nets were trained
for each of the three network types (position, phase, and
hybrid).

The teacher was the value of a Gaussian function of
the input's disparity. The Gaussian was centered at the
``desired'' preferred disparity and its peak value was 1.
Preferred disparities for the di�erent nets varied from
)0.1875 deg to 0.1875 deg in steps of 0.0125 deg. The
standard deviation of the Gaussian was 0.063 deg, sim-
ilar to the widths of physiologically measured tuning
curves in monkeys (Poggio 1995).

2.3 Analysis after training

All nets were tested with both the training set and two
other data sets that were not used in the training process.
These additional stereograms were created in the same
way as those used for training. In one of the test sets, the
range of disparities was equal to the range used in
training. In the other test set, it was four times larger
than the training range, i.e., )0.9375 deg to 0.9375 deg.
The responses of the nets were plotted as a function of
disparity (called ``disparity tuning curve'') as are
responses from physiological recordings. We determined
the disparity that produced the largest response, as well
as the width (at half-height) of these response curves. All
hybrid nets were also tested with anti-correlated random
dot stereograms (aRDS) like those used by Cumming
and Parker (1997) to study single cells in V1. In
particular, while aRDSs do not produce a stereo percept
in humans, they do elicit signi®cant responses in primate
V1 cells. We generated aRDS by inverting the contrast
of one of the half-images of a normal stereo pair. We
plotted response curves for both correlated and anti-
correlated noise for each net. Histograms of the response
modulation, i.e., the di�erence between maximum and
minimum responses, in the RDS and the aRDS cases,
were generated.

We also measured the responses of the nets to bin-
ocular sine wave gratings. Sinusoidal gratings are used in
electrophysiology (Yin and Kuwada 1983; Wagner and
Frost 1993) and theory (Fleet et al. 1996a) to charac-
terize neuronal behavior as a function of stimulus fre-
quency. We use the same stimuli to probe our trained
units and to compare their responses to real cells. As is
customary in physiological studies (e.g., Wagner and
Frost 1994), stimuli were drifted through the receptive
®elds (in steps of 1/320 deg), and responses were inte-
grated over one spatial period of the stimulus. We used
gratings of 27 di�erent wavelengths ki between
0.0625 deg and 1.5 deg. Gratings at each frequency were
presented at 41 disparities ranging from )1/2ki to+1/2 ki.
Responses were plotted as disparity tuning curves.

The network responses to sinusoidal inputs were
analyzed in several ways that allowed a comparison to
electrophysiological data and to theoretical consider-
ations. First, we determined the maximum response
to all frequencies. These data allowed us to plot iso-
intensity rate functions, a measure of the frequency
selectivity of the entire network. Then, we calculated
disparity selectivity using the vector strength (VS)
measure at each grating frequency; VS is a common
measure of the strength of modulation of cyclic phe-
nomena (Batschelet 1981). We plotted the VS as a
function of the grating frequency for each network. A
Rayleigh test (P < 0.05, Batschelet 1981) was then used
with the VS data to decide whether the network was
disparity-tuned at a given frequency. For each fre-
quency at which a network exhibited signi®cant dis-
parity tuning, we then calculated the mean binocular
phase, or in short, the mean phase of the disparity
tuning (MP, Batschelet 1981); the MP in circular sta-
tistics is regarded as an equivalent of the familiar
arithmetic mean in non-circular statistics. The MP gives
the preferred interocular phase at each grating fre-
quency, which can be viewed as the analogue to pre-
ferred disparity with noise stimuli.

Plotting the MPs of all tuned disparity-response
curves, as a function of the stimulus frequency, x, yields
phase-frequency plots (Yin and Kuwada 1983; Fleet
et al. 1996a). The energy model predicts di�erent linear-
phase frequency relations for the three types of models.
The slope and y-intercept of the plot determine the
position-shift (i.e., the characteristic disparity, CD) and
phase-shift (i.e. the characteristic phase, CP) of the
monocular receptive sub®elds (Fleet et al. 1996a).

Hybrid-type model: MP = CD� x� CP ; �1�

Phase-type model: MP � CP ; �2�

Position-type model: MP � CD� x : �3�
The phase-frequency plots were tested for linearity using
the mean square error (MSE, Yin and Kuwada 1983)
that measures the distance between each point and the
regression line. The MSE is independent of the slope of
the line, and thus better suited as a test for linearity than
the regression coe�cient. Values of signi®cance for the
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MSE at P < 0.005 were obtained from Yin and
Kuwada (1983).

From those phase-frequency plots that satis®ed the
MSE linearity criterion, we computed the slope of the
regression line, which is equivalent to the CD (Yin and
Kuwada 1983), and the intercept of the line, which
represents CP. The distributions of CD and CP helped
to decide whether phase shifts or position shifts were
responsible for the disparity tuning.

A Runs test (Siegel 1956) applied to the residuals of
the phase-frequency plots suggested the existence of two
subclasses of plots. The ®rst class showed signi®cantly
(P < 0.005) fewer changes in the signs of their residuals
than would be expected from a linear relation with
random scatter; the second class was not signi®cant
according to the Runs test.

In order to study the e�ects of individual frequency
bands, an extra test was applied to the phase-type net-
works. We computed phase-frequency plots, CD and CP
for each frequency band with responses from all other
bands set to zero.

3 Results

The training of all networks was successful in that the
networks did learn disparity selectivity. Moreover, many
of the properties of the arti®cial net were very similar
to those found from electrophysiological studies.
Di�erences were found in responses to aRDS and in
the width of frequency tuning (for details Sect. 4).
Predictions of the energy neuron model were found to be
valid, though some very important deviations could
be observed.

3.1 Responses to noise patterns

After training, to ensure that the output units achieved
the desired disparity tuning, we tested the disparity
selectivity of the units with images from the training set
and with a new set of images. All output neurons had
acquired disparity selectivity much like that of their
respective teachers. Amplitudes at the preferred dispar-
ity were distributed between 0.3 and 0.9, with hybrid-
type (mean amplitude: 0.73) and position-type (mean
amplitude: 0.78) models reaching higher amplitudes
(Fig. 3d,e) than phase-type models (mean amplitude:
0.65, Fig. 3c; P < 0.0001, Mann-Whitney U-test). Dif-
ferences between the hybrid-type and position-type
models were also signi®cant (P < 0.0001). Most nets
also generalized to new test stimuli, exhibiting tuned
responses (Fig. 3a). Several nets, however, did not show
an excitation to test patterns (phase-type: six nets;
position-type: four nets; hybrid-type: seven nets;
Fig. 3c±e). The mean responses under these conditions,
however, dropped to signi®cantly lower values for all
three network types (Fig. 3c±e; P < 0.0001 Mann-
Whitney U-test for all three types). The mean ampli-
tudes reached were 0.60, 0.53, and 0.50 in the position-,
hybrid-, and phase-type networks, respectively. These

di�erences were again signi®cant (pos/ph: P < 0.0001,
pos/hyb: P < 0.001, ph/hyb: P < 0.01).

In addition, generalization to disparities outside the
range presented in training was observed (Fig. 3b).

The values of the response maxima were independent
of the preferred disparity of the teacher in the position-
type and hybrid-type nets (Fig. 4b,d). The phase-type
nets, in contrast, showed a decline of maxima from 0.8
to 0.5 when the absolute value of disparity of the teacher
increased from 0 to 0.19 deg (Fig. 4f). This reveals a
characteristic property of phase-type coding; namely,
disparities greater than 50% of the wavelength of the
monocular receptive ®eld cannot be coded by energy
neurons of the phase-type (Fleet et al. 1996a). This e�ect
must also hamper the coding in our phase-type net-
works. While the response maxima were smaller, the
width of the disparity tuning curves of the nets showed
no signi®cant di�erences. The disparity at which the
tuning curves are maximal were highly correlated with
the disparity of the teacher (Fig. 4a±c). The maximum
di�erence between the disparity of the teacher and the
disparity of the output of a net were 0.016 deg for all
nets. Thus, we conclude that the training of these nets
was e�ective.

While the mean responses were closely related to the
teacher function (Fig. 3a), the responses of the nets to
individual images showed greater variations. In some
instances, the disparity curves exhibited more than one
response maximum (Fig. 5b), and the width and height
of the tuning curves sometimes varied (Fig. 5a±c). The
summary plot (Fig. 5d) demonstrates that nearly all

Fig. 3a±e. Learning success. a The output function in response to test
stimuli (dots with standard deviations) of this hybrid net resembled the
teacher function (dashed line). The response did not increase for
disparities outside the training range (b). c±e Distributions of the
amplitude of the responses to training stimuli (®lled bars) and test
stimuli (open bars) for the three model types. Note that the responses
in the phase-type model are smaller (c) than those of the position-type
(d) and the hybrid-type (e) nets. Means for training and test stimuli are
plotted as vertical lines
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images caused a high response at the disparity corre-
sponding to the maximum of the teacher function.
However, responses to some patterns showed lower
amplitudes at the best disparity. Disparities far away
from the teacher's preferred disparity usually produced
small responses, but they occasionally exceeded 0.4.

As was done with V1 cells (Cumming and Parker
1997) we compared the responses of the output units to
correlated RDS and aRDS. In aRDS, a black dot in one
eye's input pattern is matched by a white dot in the other
eye. While the response of the output unit to correlated
RDS was high and exhibited a clear maximum at the
preferred disparity, the response of the same output unit
to aRDS was constantly weak (Fig. 6a) and showed no
modulation. Moreover, the histogram of all responses to
aRDS demonstrated, in contrast to the results of Cum-
ming and Parker (1997), that the responses to these
stimuli were much lower than those obtained with cor-
related RDS (Fig. 6b). The mean ratio between re-
sponses to aRDS and RDS was 10.5%.

3.2 Responses to sine gratings

To learn more about the mechanism, we examined the
disparity tuning to sinusoidal grating inputs (Fig. 7).
Spatial frequency tuning curves were broader than in

Fig. 4a±f. Maximum response of the networks. The results were
obtained with test stimuli. The disparity producing a maximal
responses (a, c, e) was closely related to the best disparity of the
teacher. The maximum responses were evenly distributed for the
hybrid-type (b) and the position-type nets (d). In the phase-type nets
(f), the responses declined as absolute disparity values increased

Fig. 5a±d. Disparity tuning curves in response to di�erent test stimuli.
Individual curves may resemble the teacher closely (a, see also
Fig. 3a), or they may vary widely and exhibit smaller peaks (c) or
peaks at wrong disparities (b). The responses were obtained with a
hybrid-type net. The response pro®le of the network to all 100 test
stimuli is shown in (d). Note the di�erent amplitude values in the
responses

Fig. 6a,b. Responses to anti-correlated random dot stereograms.
a Example of a hybrid network's response to RDS and anti-correlated
RDS (aRDS) (dashed lines). b Histogram of the maximum responses
to RDS (®lled bars) and aRDS (open bars) of the hybrid nets
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real cells. Disparity tuning over frequencies, i.e., also
scale, examined by phase-frequency plots showed devi-
ations from energy neuron behavior.

Responses to high spatial frequencies showed weaker
disparity tuning than responses to low frequencies
(compare Fig. 7a±d to e±l). Also, as shown in the ex-
amples in Fig. 7, the disparity of the response maximum
was sometimes frequency dependent. This observation
will be analyzed in greater detail below.

3.2.1 Frequency-tuning curves. Frequency tuning was
determined from the response magnitudes to sine
gratings of the same amplitude, and thus represented

iso-intensity functions and not threshold-tuning curves
(see Sect. 2, Fig. 8). They measure how the activity of
the output unit changes with frequency. The resulting
frequency tuning curves were divided into six classes
(Table 1):

Class 1: untuned (responses at all frequencies at least
50% of the maximum, Fig. 8d).

Class 2: peaked (one peak, responses at highest and
lowest frequencies below 50%, Fig. 8c).

Class 3: low pass (responses at low frequencies are
high, and those at high frequencies are below 50% of the
maximum, Fig. 8a,b).

Class 4: high pass (responses at high frequencies are
high, and those at low frequencies are below 50% of the
maximum).

Class 5: trough (response below 50% in middle range,
and high at the highest and lowest frequencies, Fig. 8e).

Class 6: complex (tuning curves having several peaks
and troughs, Fig. 8f).

All six classes could be found in the tuning curves
(Table 1). While the high pass and peaked class were
rare, the other four classes were quite abundant in all
three net types.

3.2.2 Disparity tuning and vector strength tuning curves.
The disparity tuning to sinusoidal gratings of di�erent
frequencies provides further insight into the mechanism
of disparity tuning. To measure the degree of disparity
tuning, we computed the VS of the modulation of
disparity response curves for each output unit. Disparity
response curves for sinusoidal stimulation were generally

Fig. 7a±n. Disparity-tuning curves obtained with sinusoidal stimuli.
Responses were obtained from one hybrid-type net. The wavelength
of the stimulus varied from 0.12 deg (a) to 1.5 deg (n). The testing
range covered one period of the stimulus (�0.5/mi). The inset shows
the mean phase (MP) and the vector strength (VS) as derived from
circular statistics. The result of the Rayleigh test for tuning is indicated
by s (signi®cant) or ns (not signi®cant). Note that the maximum of the
response shifts as frequency is changed

Fig. 8a±f. Examples of frequency-tuning curves of hybrid nets. Solid
lines show iso-intensity tuning curves; half-height is indicated by the
horizontal line. Peaked responses (c) resemble physiological response
curves. The majority of the tuning curves were, however, low pass
(a, b), complex (f), untuned (d) or trough (e). Dashed lines show vector
strength tuning; half-height is indicated by the dashed horizontal line.
We observed low pass (a) but also peaked (b±e) and complex
tunings (f)

66



tuned. However, especially if the stimulus frequency was
high, disparity tuning was sometimes weak or even
absent (Fig. 7a,b). We used P < 0.05 in the Rayleigh
test as a criterion for disparity tuning, and measured
tuning curves at 27 di�erent wavelengths ranging from
0.065 to 1.5 degrees (Fig. 7). Averaged over all net-
works, 16.9 (ph: 18.33, pos: 16.8; hyb: 15.56, with
medians ph: 17, pos: 17, hyb: 19) of these curves
exhibited tuning. In some nets, however, less (min: ph
13, pos 8, hyb 4) disparity response curves were tuned,
while in others more (max: ph 21, pos 22, hyb 21)
frequencies lead to tuned disparity curves. In those
disparity curves that were tuned, the shape of the tuning
curve varied. A typical tuning curve had one peak, the
width of which was frequency dependent. The response
¯anks to the sides of the peaks tended to be asymmet-
rical (Fig. 7m,n). Maxima in the medium-frequency
range were often very pronounced, and widths were
smaller than those of the sinusoidal inputs (Fig. 7e±k).
At high and low frequencies, the opposite e�ect was
found (Fig. 7a±d and Fig. 7m,n).

By plotting VS as a function of stimulus frequency
(Fig. 8) we could classify the observed VS-tuning curves
according to the same classi®cation scheme as used for
the frequency-tuning curves. For VS-tuning only the
low-pass, peaked and complex class occurred (Table 1).
The low-pass class was the most prominent (Figs. 7, 8).
As illustrated in Fig. 8, even those nets showing a tuning
of the complex or peaked class had a clear cut-o� fre-
quency above which the VS monotonically decreased to
zero. The cut-o� frequency is a measure for the highest
frequency that still has an e�ect on the disparity tuning
of the output. Higher frequencies could only produce a
baseline e�ect.

The correlation between the cut-o� frequency, de-
®ned as the highest tested frequency at which the VS ®rst
reaches 50% of the maximum VS, and the absolute
value of the preferred disparity of a network's teacher
was weak (hyb: r = )0.33, pos: r = 0.00; ph: r = )0.2).

This was counterintuitive because narrow ®lters with
relatively high best frequencies produce uncorrelated
signals at large disparities and should, therefore, be
eliminated during the training. To answer the question
whether the cut-o� frequency depended on the proper-
ties of the teacher function, we conducted some extra
tests. We varied the widths and the center of the
Gaussian teacher (i.e., the preferred disparity), and de-
termined the cut-o� frequency.

We trained a total of 72 hybrid-type networks to
disparities between 0 deg and 1.13 deg (0, 0.25, 0.5, 0.75,
0.94, 1.13 deg, 12 networks for each disparity value) and
determined the cut-o� frequency. For this purpose, we
generated training noise stimuli as above, but we pro-
duced a set of stereograms with a wider range of dis-
parities and with bigger disparity steps (maximum
disparity: 1.875 deg, disparity step: 0.063 deg). We
found a negative correlation (with r = )0.42) between
the disparity of the teacher and the cut-o� frequency of
the net. The cut-o� frequency declined from 5.4 cyc/deg
at 0 deg disparity to 3.0 cyc/deg at 1.13 deg with a slope
of 2.2 cyc/deg2.

Secondly, to check for a correlation between teacher
width and cut-o� frequency, hybrid nets were trained
with teachers having 0.13 deg preferred disparity and
widths of 0.00078, 0.0078, 0.016, 0.031, 0.063 and
0.13 deg. The training involved eight nets at each width,
a total of 48 nets. The result was a negative correlation
with a r = )0.73 between the teacher width and the cut-
o� frequency of a net. The cut-o� frequency declined
from 4.9 cyc/deg at 0.00078 deg teacher width to 1.0 cyc/
deg at 0.125 deg with a slope of 31 cyc/deg2.

3.2.3 Phase-frequency plots. Phase-frequency plots are a
means to analyze the way disparity is represented in the
nets. As described in Sect. 2.3, di�erent CD and CP
values result from di�erent combinations of monocular
RFs. We assembled plots from the MP in the disparity
curves and the corresponding stimulus frequencies

Table 1. Classi®cation of frequency-tuning curves. Maximum and vector strength (VS) tuning curves of all three network types were
classi®ed as untuned, low pass, high pass, trough, peaked or complex

Net type/class Untuned Low pass Trough High pass Peaked Complex

Hybrid type Max N 18 15 17 2 4 19
Max % 24 20 22.7 2.7 5.3 25.3
VS N 0 12 0 0 39 24
VS % 0 16 0 0 52 32

Position type Max N 27 17 7 0 7 17
Max % 36 22.7 9.3 0 9.3 22.7
VS N 0 31 0 0 14 30
VS % 0 41.3 0 0 18.7 40

Phase type Max N 24 20 16 1 2 12
Max % 32 26.7 21.3 1.3 2.7 16
VS N 0 54 0 0 10 11
VS % 0 72 0 0 13.3 14.7

Total Max N 69 53 41 2 13 47
Max % 30.7 23.6 18.2 0.9 5.8 20.8
VS N 0 97 0 0 64 64
VS % 0 43.1 0 0 28.4 28.4
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(insets in Fig. 7). Phase-frequency plots were analyzed
separately for each type of network.

Testing for linearity (MSE test) rendered signi®cance
in all nets with the exception of one hybrid-type net that
showed no tuned responses to sinusoidal stimuli. A step-
like appearance of some plots, however, suggested that
the MSE test was not sensitive enough to discriminate
between di�erent classes of phase-frequency relations.
Within limited frequency ranges, phase sometimes even
remained almost constant (Fig. 9b,d,f). Between such
frequency regions, there was a change of CD or there
were jumps to higher or lower phases following the
network's overall CD. In these cases, the jumps were
responsible for the overall slope. To obtain an objective
criterion for the classi®cation of these types of networks
and phase-frequency relations, we applied a Runs test to
the signs of the residuals of the plots. The test results
a�orded discrimination between two classes of phase-
frequency plots. Those that exhibited signi®cantly
(P < 0.005) less changes in sign than expected for a
random distribution were termed complex type, because
of the appearance of their plots, those having no sig-
ni®cant deviation from a random scatter were termed
simple-linear type (Fig. 9a,c,e).

The fewest complex-type networks were found for the
hybrid model (P < 0.005: 19%). Of the position-type
nets, 32% were classi®ed as complex type. The greatest
number of complex-type plots were found for the phase-
model nets (41%).

One can hypothesize that the frequency regions with
nearly constant phase frequency are due to the behavior
of units at the hidden layer that receive input from units
tuned to a narrow range of spatial frequencies. To ex-
amine this, we tested all phase-type networks for which
the inputs from the hidden layer to the output unit were
set to zero for all but one frequency band. This was done
for all bands. The resulting phase-frequency plots again
exhibited the two subclasses simple linear and complex
(data not shown).

3.2.4 Distributions of characteristic disparity and char-
acteristic phase. To measure the contribution of position
and phase shifts to the disparity tuning of the output
units, we calculated their CD and CP. Although
predictions concerning CD and CP were originally made
using the energy model, they provide information about
position shifts and phase shifts for a broader class of
binocular models. They also provide another way that
we can compare the behavior of the neural nets with that
of real V1 cells.

CD and CP were calculated from all phase-frequency
plots except the one hybrid-type net that was not dis-
parity tuned when tested with sinusoids. As outlined in
Sect. 1, the predictions for the three models regarding
CD and CP are di�erent. Figure 9a,c and e show
selected examples of plots of the three network types.
Both the position-type and the phase-type examples
(Fig. 9c,e) comply with the theoretically derived expec-
tations for the phase-frequency relation. The plot of the
position net in Fig. 9c has a zero CP but a non-zero CD
and the plot of the phase type net in Fig. 9e shows zero
CD but non-zero CP. A typical example of a hybrid-type
net is shown in Fig. 9a. It shows, as do the majority of
the hybrid-type nets, a phase-frequency plot very much
like those from position nets.

When the distributions of CD and CP (Fig. 10) were
analyzed for each type of model, we observed a distri-
bution around zero for both parameters (Fig. 10). The
CP distribution in the phase-type nets was broader than
the CP distributions of the position-type and hybrid-
type nets, which proved signi®cant in the Levene test
(P < 0.0001; Fig. 10a,c,e; Levene 1960). The distribu-
tions of CP in the nets representing the latter two types
were similar (Fig. 10c,e). In contrast, the CDs were more
or less evenly distributed within the range of disparities
used in the learning process in the position-type and
hybrid-type models. Again, no statistical di�erence was
found between hybrid-type and position-type nets
(Fig. 10d,f), while the distribution of CDs was smaller in
the phase-type nets (Fig. 10b, P < 0.0001 Levene test).

Testing for correlations between CP/CD and the
preferred disparities of the teacher, we found a positive
correlation between the preferred disparity of the
teacher of a net and its CP only for the phase-type nets
(hyb: r = 0.26, pos: r = 0.14, ph: r = 0.83). For all
three net types, the CD showed a positive correlation
with the preferred disparity of the teacher (hyb:
r = 0.79, pos: r = 0.89, ph: r = 0.79). However, ap-
plying a linear regression to our data, we did not only
®nd a slope di�ering from unity for the phase and the

Fig. 9a±f. Examples of phase-frequency plots for three network types.
All plots exhibited a signi®cant relation betweenmean phase (MP) and
frequency according to the MSE test. Insets show the characteristic
disparity (CD), the characteristic phase (CP), the MSE, and the
number of runs. The results of the Runs test are indicated by s
(signi®cant) or ns (not signi®cant). a Typical hybrid-type simple-linear
plot. b hybrid-type complex plot. c Typical position-type simple-linear
example plot. d position-type complex plot. e Typical phase-type
simple-linear example plot. f Phase-type complex plot
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hybrid nets but also for the position-type nets, where the
theory of the energy model predicts a slope of 1 (hyb:
slope = 0.77, pos: slope = 0.77, ph: slope=0.22). In
contrast, when we restricted this analysis to those nets
that were trained on the smaller range of teacher dis-
parities of )0.09 deg to 0.09 deg, we found slopes much
closer to the predictions of the energy model (hyb:
slope = 0.97, r = 0.89; pos: slope = 0.95, r = 0.79;
ph: slope = 0.27, r = 0.82).

The distributions of CD and CP resulting for phase-
type networks under conditions where input to the
output unit from all but one frequency band was set to
zero were similar to those found for the whole networks.
While the CP was evenly distributed over the whole
range of possible phases, the CDs were concentrated
around zero (data not shown).

4 Discussion

We trained our neural networks to respond to, and
thereby represent, disparities just as real tuned excitatory
neurons do (Pettigrew et al. 1968; Pettigrew and Konishi
1976; Poggio and Fischer 1977; Wagner and Frost 1993,
1994; Poggio 1995; Ohzawa et al. 1997; Anzai et al.
1997, 1999). Three types of networks were used to study
the position and phase shift encoding.

A comparison with V1 cells and the energy neuron
model revealed some di�erences that give insights into
the mechanism of disparity coding.

The results of our simulations will be discussed with
respect to (1) the representation of disparity, (2) the
frequency tuning, (3) the relation between phase and
frequency, and (4) the relation to biological neurons.

4.1 The representation of disparity

It is known that neural network implementations can
extract disparities from stereograms (Becker and Hinton
1992). Neural networks have been used to investigate
several aspects of the extraction of depth from dispar-
ities (Pouget and Sejnowski 1994; Gray et al. 1998).
However, our study is the ®rst to show that disparity
selectivity based on Gabor ®lters can be achieved within
a simple backpropagation paradigm. The structure of
the energy model suggested this result for all three types
of networks.

We interpreted the amplitude of the response of the
output unit as a straightforward measure of the quality
of the representation of disparity in our nets. As baseline
responses of our networks are all very low, the response
amplitude carries the same information as a signal-
to-noise ratio. The mean amplitude was highest in the
position-type networks. Di�erences between the hybrid-
type and the position-type networks were less
pronounced than di�erences between the phase type and
the other two types (Fig. 3c±e). This was mainly a con-
sequence of the phase type's low amplitudes for larger
disparities (Fig. 4f). At zero disparity, where the three
energy neurons are equivalent, no di�erence was found
in our network types.

Although the hybrid-type networks had access to ®ve
times the number input units, and hence ®ve times as
many connections between the input and the hidden
layers, position-type nets showed slightly higher re-
sponses than hybrid networks. This may have happened
if hybrid nets had been hampered by irrelevant infor-
mation that, ®rst, had to be eliminated. Extra inputs
would not be an advantage if all the relevant informa-
tion was already contained in a subset of the input. The
good results of the position type suggest that this was the
case. Despite its overall lower performance, the phase
type also solved the task by extracting most of the rel-
evant information contained in the input.

All nets exhibited signi®cant responses at wrong dis-
parities when single input patterns were tested. This
observation is consistent with results by Fleet et al.
(1996a) and Qian and Zhu (1997). These authors sug-
gested the use of spatial pooling to solve the problem of
false responses (ghost matches). Besides the pooling over
the spatial scale (frequency) done by the networks
themselves, we have not pooled over cells at di�erent
positions, but we have e�ectively pooled over many in-
put patterns. Our pooling is equivalent to pooling over a
spatial position within one frequency band as long as the
spatial pooling takes place over a su�ciently large spa-
tial extent as to include statistically independent mea-
surements. Thus, our results are in agreement with the
earlier studies.

4.2 Frequency tuning

The frequency tuning of the output units in our nets
(Fig. 8) was often broader than the mean bandwidths
measured in neurons of the visual cortex of monkeys

Fig. 10a±f. Distributions of characteristic phases and characteristic
disparities for the three di�erent net types. a, c, e Distributions of the
characteristic phase (CP) for the phase- position- and hybrid-type
networks. b, d, f Distributions of the characteristic disparity (CD),
respectively
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and cats (Movshon et al. 1978; DeValois et al. 1982;
Foster et al. 1985; Hammond and Fothergill 1994). As a
consequence of the broad frequency tuning, our output
units did not respond to aRDS (Fig. 9, Table 2). This
could be expected for broadly tuned neurons with a non-
linear output function (i.e., a threshold function) and
demonstrates a di�erence between our nets and the
recordings from neurons in the visual forebrain (Cum-
ming and Parker 1997; Ohzawa et al. 1997).

The VS tuning of all networks was best described by
low-pass or band-pass ®lters. A broader teacher function
and higher preferred disparities resulted in lower cut-o�
frequencies. The latter can easily be understood. The
spatial width of the input ®lters was related to the fre-
quency of the ®lters by the width of the Gaussian en-
velope (ri = 0.5/mi). At high disparities, the responses of
two high frequency ®lters from the two eyes are essen-
tially uncorrelated. This should lead to a suppression of
higher frequencies when the nets were trained with larger
disparities. The e�ect of the teacher width can also be
explained. High frequency ®lters produce, as a result of
the periodicity of their response, several peaks within the
range of the maximum of a broad teacher. This also
tends to make their responses irrelevant for the training
task.

4.3 Relation between phase and
frequency ± di�erences from the energy model

The MSE test demonstrated the general linearity of the
phase-frequency plots. However, using the MSE test
over a large frequency range has some shortcomings. We
found that nets that exhibited a complex relation of
phase and frequency were still judged to be linear
(P < 0.005, Fig. 10). Therefore, we analyzed all plots
with the Runs test and, indeed, two subclasses, simple
linear and complex, could be distinguished. While the
linear phase-frequency plots can be interpreted as the
result of a network that is homogenous over the entire
frequency range, the complex phase-frequency plots
require more discussion. One possible explanation for
complex phase-frequency curves lies in the frequency
tuning of the input. The distribution of the ®lters was

such that, at most frequencies, only one frequency band
was dominant. Thus, this band should have dominated
the response and, consequently, the disparity tuning and
mean phase. Since all training procedures started from
random weight values, complex plots can be either
interpreted as an intermediate state, when training has
not yet reached a possible ®nal solution, or as a more
complex solution to the demanded task. A phase-type
network, for example, could use di�erences in CP
between bands to imitate non-zero CD, and indeed,
complex phase-frequency plots were mainly seen in the
phase-type nets. To test this hypothesis we carried out
some extra tests with the phase-type networks. We
assembled phase-frequency plots, along with CD and CP
distributions, when only one frequency band was
connected to the output unit. However, the resulting
phase-frequency plots were not linear with zero CD.
Rather, again we observed two classes of phase-fre-
quency curves. We conclude that complex plots might
represent an alternative way of disparity coding that
cannot be explained with the energy neuron model.

The distributions of CP and CD were di�erent
between the position-type and phase-type nets (Fig. 10).
These di�erences, broad CP and peaked CD distribu-
tions and vice versa in the phase nets and the position
networks, respectively, correspond to the theoretical
expectations of the energy neuron model. Due to their
generality, the behavior of CD and CP is not tightly
constrained by the hybrid energy model. It was therefore
surprising to see that the distributions of CD and CP
obtained from the hybrid nets were similar to those of
the position model. We interpret this ®nding as evidence
for the more e�ective coding by position shifts, which
was also seen in the analysis of Fleet et al. (1996a).

The results of our simulations are consistent with
most predictions of the energy model. Yet, there are two
important di�erences (see Table 2). First, energy neu-
rons respond to aRDS, while the output units of our
networks do not. Secondly, the energy model predicts a
linear phase-frequency relation. Our networks agree
with the latter property but only for restricted subranges
of spatial frequency. This implies the existence of a
mechanism for the encoding of disparities that di�ers
from the energy mechanism.

Table 2. Main di�erences between network features and real cells and energy neurons. aRDS Anti-correlated random dot stereogram, CD
characteristic/disparity, CP, characteristic phase

Feature Neural network Real neurons Energy neurons

Disparity tuning at
high disparities

Worse for phase-type networks Tuning to disparities of more
than 1 deg

Impossible for phase-type
energy neurons

Responses to aRDS No response Responses invert, amplitude
of response modulation
can decrease

Responses invert, amplitude
of response modulation does
not decrease

Frequency tuning Broad, sometimes complex Smaller, normally band-pass-like Band-pass-like, width depending
on Gabor ®lter

Phase-frequency plots Step-like plots, some phase-
type networks show
non-zero CD

No data Linear, zero CD for phase-type
neurons

Hybrid-type coding Preference for non-zero
CD versus non-zero CP

Cat data suggest a mixture;
owl data favor CD

All possible combinations
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4.4 Relation to biological neurons

One main di�erence from real cells is given by the broad
frequency tuning of our networks. Together with the
output non-linearity of our units, the frequency tuning
can account for the absence of responses to aRDS,
which is the second important di�erence to real cell
responses in monkey V1. Interestingly, disparity-sensi-
tive neurons in the owl with high response latencies
respond also very weak to aRDS (Nieder and Wagner,
personal communication).

There has been some discussion as to whether dis-
parity is represented in the visual system of birds and
mammals according to the phase-type, the position-type
or the hybrid-type model (Wagner and Frost 1993, 1994;
Anzai et al. 1997, 1999; Ohzawa et al. 1997). Although
our simulations cannot replace experiments, and
although we did not implement the energy model
directly, our data might be helpful in the discussion of
the e�ectiveness of the three types of energy neurons.
The elements of our nets were biologically motivated.
We restricted the model parameters concerning the input
and the teacher of the nets to those stimulus qualities
that are relevant for disparity sensitivity. This is an im-
poverished representation of the stimuli that animals are
exposed to during development. Nevertheless, we assert
that our model reveals general principles of disparity
coding from bandpass monocular signals that are also
valid for biological systems. Although there is some
experimental evidence for the existence of backpropa-
gation in biological neural networks (Fitzsimonds et al.
1997), the biological relevance of the backpropagation
algorithm that we used here has been questioned. Still,
the algorithm is a simple but very powerful tool for
learning solutions to certain problems. The preference of
hybrid-type nets to encode their best disparities mainly
with non-zero CDs and to a lesser extent with non-zero
CPs and the higher output amplitudes for position-type
networks suggest that CDs are more robust than CPs in
the encoding of disparities.

Nevertheless, hybrid-type coding with a prominent
phase component seems to be realized in the cat visual
system (Anzai et al. 1997, 1999). One could argue that
the multitude of possible tasks of neurons in V1 and V2
could lead to constraints under which the stereo task
only plays a subordinate role. This could force disparity
sensitive neurons to develop a suboptimal solution for
the stereo task.
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