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ABSTRACT

We present 4DiM, a cascaded diffusion model for 4D novel view synthesis (NVS),
supporting generation with arbitrary camera trajectories and timestamps, in nat-
ural scenes, conditioned on one or more images. With a novel architecture and
sampling procedure, we enable training on a mixture of 3D (with camera pose),
4D (pose+time) and video (time but no pose) data, which greatly improves gen-
eralization to unseen images and camera pose trajectories over prior works that
focus on limited domains (e.g., object centric). 4DiM is the first-ever NVS method
with intuitive metric-scale camera pose control enabled by our novel calibration
pipeline for structure-from-motion-posed data. Experiments demonstrate that
4DiM outperforms prior 3D NVS models both in terms of image fidelity and
pose alignment, while also enabling the generation of scene dynamics. 4DiM
provides a general framework for a variety of tasks including single-image-to-3D,
two-image-to-video (interpolation and extrapolation), and pose-conditioned video-
to-video translation, which we illustrate qualitatively on a variety of scenes. See
https://4d-diffusion.github.io for video samples.

1 INTRODUCTION

4D generative models cast novel view synthesis (NVS) as a form of image-conditioned multi-view
generation with control of camera pose and time. They extend the impressive capabilities of generative
image and video models, leveraging large-scale learning to enable image generation with consistent
3D scene geometry and dynamics. As such, they promise to unlock myriad generative tasks such
as novel view synthesis from a single image, image to 4D generation, image(s) to video, and video
to video translation. Nevertheless, designing and training 4D models that generalize well to natural
scenes, with accurate control over camera pose and time, remains challenging.

While there has been interest in diffusion models for NVS (Watson et al., 2022; Liu et al., 2023b),
much of this work has focused on isolated objects with cameras located on the viewing sphere around
the object. A key barrier to generalization, both to arbitrary scenes and free-form camera poses,
has been the lack of rich, posed training data. The predominant datasets, i.e., RealEstate10K (Zhou
et al., 2018) and CO3D (Reizenstein et al., 2021), are restricted to narrow domains, with camera
poses estimated from structure-from-motion (SfM) that are noisy and lack metric scale information.
Consequently, state-of-the-art 3D NVS models with good generalization to date have focused on
somewhat specific domains (e.g., CAT3D (Gao et al., 2024) for object-centric scenes, or PNVS (Yu
et al., 2023a) for indoor scenes), and they exhibit issues with pose alignment, where generated images
do not coincide with the specified target viewpoints. In the case of 4D NVS, said challenges around
lack of large-scale posed training data and quality of pose estimation are exacerbated. To this end, we
advocate co-training with unposed video, as diverse video is available at scale and contains valuable
information about the spatiotemporal regularities of the visual world.

To address these challenges, we introduce 4DiM, a diffusion model for NVS conditioned on one or
more images of arbitrary scenes, camera pose, and time. 4DiM extends previous 3D NVS diffusion
models in three key respects: 1) from objects to scenes; 2) to free-form camera poses specified in
meaningful physical units; and 3) with simultaneous control of camera pose and time. 4DiM is trained
on a mixture of data sources, including posed 3D images/video and unposed video, of both indoor
and outdoor scenes. We make this possible through an architecture with FiLM layers (Dumoulin
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Figure 1: Zero-shot samples from 4DiM on LLFF (Mildenhall et al., 2019) and Davis (Pont-
Tuset et al., 2017) given one or two input images. 4DiM excels at a wide variety of generative
tasks involving camera and temporal control (e.g., free-form camera control, temporal interpolation
and extrapolation). Note that 4DiM is a 32-frame model, so here we evenly sub-sample outputs.
Samples are best seen as video: https://4d-diffusion.github.io.

et al., 2018) that default to the identity function for missing conditioning signals (e.g., videos without
pose, or static scenes without time), which we call Masked FiLM, and through multi-guidance, which
leverages this kind of model to adjust guidance weights for different conditioning signals separately.
We also introduce calibrated versions of datasets posed via COLMAP (Schönberger & Frahm, 2016);
calibrated data makes it easier to learn metric regularities in the world, like the typical sizes of
everyday objects and spatial relations, and it enables one to specify camera poses in meaningful
physical units for precise camera control. As we later show, training on poses with unknown scale
will (unsurprisingly) make scale itself stochastic when generating samples given one input image,
whereas fixing this problem yields both improved fidelity and pose alignment.

To summarize our main contributions:
• We introduce 4DiM, a pixel-based diffusion model for novel view synthesis conditioned on one

or more images of arbitrary scenes, camera pose, and time. 4DiM comprises a base model that
generates 32 images at 64×64 and a super resolution model that upsamples to 32×256×256;
• We devise an effective data mixture for 4D models comprising posed and unposed video of indoor

and outdoor scenes, yielding compelling results on camera control, time control, and promising
zero-shot results controlling both simultaneously in video-to-video translation;
• We propose Masked FiLM layers to enable training with incomplete conditioning signals, and

multi-guidance which leverages such training to further improve sample quality at inference time;
• We create a scale-calibrated version of RealEstate10K to improve model fidelity and enable

metric pose control;
• We include extensive evaluation and comparisons to prior work, including fixes to SfM-based

metrics (He et al., 2024), and a novel keypoint distance metric to detect the presence of dynamics.

2 RELATED WORK

Unlike the typical setting of Neural Radiance Fields (Mildenhall et al., 2021) (NeRF) where tens-to-
hundreds of images are used as input for 3D reconstruction, pose-conditional diffusion models for
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NVS aim to extrapolate plausible, diverse, 3D consistent samples with as few as a single image input.
Conditioning diffusion models on an image and relative camera pose was introduced by Watson et al.
(2022) and Liu et al. (2023b) as an effective alternative to prior few-view NVS methods, overcoming
severe blur and floater artifacts (Sitzmann et al., 2019; Yu et al., 2021; Niemeyer et al., 2022; Sajjadi
et al., 2022). However, they rely on neural architectures unsuitable for jointly modeling more than two
views, and consequently require heuristics such as stochastic conditioning or Markovian sampling
with a limited context window (Yu et al., 2023a), for which it is hard to maintain 3D consistency.

Subsequent work proposed attention mechanisms leveraging epipolar geometry to improve the 3D
consistency of image-to-image diffusion models for NVS (Tseng et al., 2023), and more recently,
finetuning text-to-video models with temporal attention layers or attention layers limited to overlap-
ping regions (He et al., 2024; Wang et al., 2023a; Bahmani et al., 2024) to model the joint distribution
of generated views and their camera extrinsics. These models however still suffer from several issues:
they have difficulty with static scenes due to persistent dynamics from the underlying video models;
they still suffer from 3D inconsistencies and low fidelity; and they exhibit poor generalization to
out-of-distribution image inputs. Alternatives have been proposed to improve fidelity in multi-view
diffusion models of 3D scenes, albeit sacrificing the ability to model free-form camera pose; e.g., see
MVDiffusion and follow-ups (Tang et al., 2023; 2024) focusing on few, specific pose trajectories.

A concurrent body of related work on 3D extraction has recently emerged following DreamFusion
(Poole et al., 2022), where instead of directly training diffusion models for NVS, new techniques
for sampling views parametrized as a NeRF with volume rendering are proposed, such as Score
Distillation Sampling (SDS) and Variational Score Distillation (Wang et al., 2024) (VSD). Here,
a pre-existing diffusion model acts as a prior that drives the generation process. This enables, for
example, text-to-3D using a text-to-image diffusion model. As demonstrated by ZeroNVS (Sargent
et al., 2023), MVDream (Shi et al., 2023), ReconFusion (Wu et al., 2023) and CAT3D (Gao et al.,
2024), using a pose-conditional diffusion model offers the advantage that the diffusion model can
be conditioned on the sampled viewpoint for volume rendering during score distillation or NeRF
postprocessing. Still, the extension of 3D extraction methods to 4D dynamic scenes and complex view-
dependent reflectance phenomena remains challenging. In contrast, geometry-free diffusion models
show encouraging results at scale with camera control, time control, and even their combination
(Seitzer et al., 2023). Large-scale video models also provide encourage evidence of 3D geometrically
consistent generation without an explicit rendering model (Brooks et al., 2024a; Li et al., 2024). Our
success with 4DiM further supports this perspective, showing that one can simultaneously achieve
fine-grained camera control and dynamics with a multiview diffusion model alone.

3 4D NOVEL VIEW SYNTHESIS MODELS FROM LIMITED DATA

4DiM uses a continuous-time diffusion model to learn a joint distribution over multiple views,

p(xC+1:N |x1:C , p1:N , t1:N ) , (1)

where xC+1:N are generated images, x1:C are conditioning images, p1:N are relative camera
poses (extrinsics and intrinsics) and t1:N are scalar, relative timestamps.* Following Ho et al.
(2020), we choose our loss function to be the error between the predicted and actual noise (Lsimple in
their paper), though we use the L1 rather than L2 norm, because, like prior work (Saharia et al., 2022a;
Saxena et al., 2023), we found that it improves sample quality. Our models use the “v-parametrization”
(Salimans & Ho, 2022), which helps stabilize training, and we adopt the noise schedules proposed
by Kingma et al. (2021). Our current models process N = 8 or 32 images at resolution 256×256
(N is the combined number of conditioning plus generated frames). To this end, we decompose the
task into two models similar to prior work (Ho et al., 2022a;b); we first generate images at 64×64,
and then up-sample using a 4× super-resolution model trained with noise conditioning augmentation
(Saharia et al., 2022c). We also finetuned the 32-frame model to condition on 2 and 8 frames to
enable more comparisons and example applications of 4DiM models.

Training data. While 3D assets, multi-view image data, and 4D data are limited, video data is
available at scale and contains rich information about the 3D world, despite not having camera poses.
One of our key propositions is thus to train 4DiM on a large-scale dataset of 30M videos without pose

*4DiM does not require sequential temporal ordering as in video models as the architecture is permutation-
equivariant over frames. All N images (conditioning and generated) are processed by the diffusion model.
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Figure 2: Architecture – We illustrate the 4DiM base model architecture, including choices for
attention blocks and our conditioning mechanism. The 4DiM super-resolution model follows the same
choices modulo minor differences to condition on low-resolution images. Outputs corresponding to
the conditioning frames are always discarded from the training objective.

annotations, jointly with 3D and 4D data. As shown in Section 5.1, video plays a key role in helping
to regularize the model. The 3D datasets used to train 4DiM include ScanNet++ (Yeshwanth et al.,
2023) and Matterport3D (Chang et al., 2017), which have metric scale, and more free-form camera
poses compared to other common 3D datasets in the literature (e.g., CO3D (Reizenstein et al., 2021)
and MVImgNet (Yu et al., 2023b)). We also use 1000 scenes from Street View with permission from
Google, comprising posed panoramas with timestamps (i.e., it is a “4D” dataset). During training, we
randomly sample views from Street View from the set of panorama images within K consecutive
timesteps (K=5 for our 8-view models, and K=20 for 32-view models). We sample unposed videos
with probability 0.3 and views from posed datasets otherwise. 3D datasets are sampled in proportion
to the number of scenes in each dataset.

Calibrated RealEstate10K. One particularly rich dataset for training 3D models is RealEstate10K
(Zhou et al., 2018) (RE10K). It comprises 10,000 video segments of static scenes for which SfM
(Schönberger & Frahm, 2016) has been used to infer per-frame camera pose, but only up to an
unknown length scale. The lack of metric scale makes training more difficult because metric
regularities of the world are lost, and it becomes more difficult for users to specify the target camera
poses or camera motions in any intuitive units. This is especially problematic when conditioning on a
single image, where scale itself otherwise becomes ambiguous. We therefore created a calibrated
version of RealEstate10K by regressing the unknown metric scale from a monocular depth estimation
model (Saxena et al., 2023). (For details, see Supplementary Material A.) The resulting dataset,
cRE10K, has a major impact on model performance (see Section 4 below). We follow the same
procedure to calibrate the LLFF dataset (Mildenhall et al., 2019) for evaluation purposes.

Architecture. Relatively little training data has both time and camera pose annotations. Most 3D
data represent static scenes, while video data rarely include camera pose. Finding a way to effectively
condition on both camera pose and time in a way that allows for incomplete training data is essential.
We thus propose to chain Masked FiLM layers (Dumoulin et al., 2018) for (positional encodings of)
diffusion noise levels, per-pixel ray origins and directions, and video timestamps. When any of these
conditioning signals is missing (due to incomplete training data or random dropout for classifier-free
guidance (Ho & Salimans, 2022)), the FiLM layers are designed to reduce to the identity function,
rather than simply setting missing values to zero. This avoids the network from confusing a timestamp
or ray coordinate of value zero with dropped or missing data. In practice, we replace the FiLM shift
with zeros and scale with ones for masked signals. We illustrate the overall choices in Fig. 2. (For
details see Supplementary Material C.)

Sampling. Steering 4DiM with the correct sampling hyperparameters is essential, especially the
guidance weights for classifier-free guidance (Ho & Salimans, 2022) (CFG). In its usual formulation,
CFG treats all conditioning variables as “one big variable”. In practice, placing a different weight on
each variable is important; e.g., text requires high guidance weights, but high guidance weights on
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images can quickly lead to unwanted artifacts. We thus propose multi-guidance, where we generalize
CFG to do exactly this, without making independence assumptions between conditioning variables.
In essence, multi-guidance generalizes 2-guidance originally proposed in InstructPix2Pix (Brooks
et al., 2023) to N variables. We start from a classifier-guided formulation (Dhariwal & Nichol, 2021),
where we wish to sample with k conditioning signals, v1, v2, ...vk, using the score

∇x log p(x) + w1∇x log p(v1|x) +
∑

j=2...k

wj∇x log p(vj |v1:j−1,x) . (2)

In the classifier-free formulation, this is equivalent to

(1− w1)∇x log p(x) +
∑

j=2...k

(wj−1 − wj)∇x log p(x|v1:j−1) + wk∇x log p(x|v1:k) . (3)

If we train our model such that it drops out only vk, or vk−1 and vk, ... , or all of v1:k, we can sample
with different guidance weights wi on each conditioning variable vi. 4DiM is trained to drop out
conditioning signals with probability 0.1, and it drops either t1:N , t1:N and p1:N , or all of t1:N , p1:N

and x1:C . This is a natural choice, since poses and timestamps without corresponding conditioning
images do not convey useful information. For best results, 4DiM uses a guidance weight 1.25 on
conditioning images and weights of 2.0 on camera poses and timestamps. We include an ablation
study in our Supplementary Material B that demonstrates how multi-guidance provides additional
knobs to push the Pareto frontiers between fidelity and dynamics / pose alingnment.

4 EVALUATION

Evaluating 4D generative models is challenging. Typically, methods for NVS are evaluated using
generation quality. In addition, for pose-conditioned generation it is desirable to find metrics that
capture 3D consistency (rendered views should be grounded in a consistent 3D scene) and pose
alignment (the camera should move as expected). Furthermore, evaluating temporal conditioning
requires some measure that captures the motion of dynamic content. We leverage several existing
metrics and propose new ones to cover all these aspects, as described below.

Image and Video fidelity. FID (Heusel et al., 2017) is a key metric for image quality, but if used in
isolation it can be uninformative and a poor objective for hyper-parameter selection. For example,
Saharia et al. (2022b) found that FID scores for text-to-image models are optimal with low CFG
weights (Ho & Salimans, 2022), but text-image alignment suffers under this setting. In what follows
we report FID as well as the improved Frechet distance with DINOv2 features (FDD) (Oquab et al.,
2023), which appears to correlate with human judgements better than InceptionV3 features (Szegedy
et al., 2016). For video quality, we also report FVD scores (Unterthiner et al., 2018).

3D consistency. The work of Yu et al. (2023a) introduced the thresholded symmetric epipolar
distance (TSED) to evaluate 3D consistency, as a more computationally efficient alternative to
training separate NeRF models (Mildenhall et al., 2021) on every sample (e.g., like (Watson et al.,
2022)). First, SIFT is used to obtain keypoints between a pair of views. For each keypoint in the
first image, we can compute the epipolar line in the second image and its minimum distance to the
corresponding keypoint. This is repeated for each keypoint in the second image to obtain a SED
score. A hyperparameter threshold is selected, and the percentage of image pairs whose median SED
is below the threshold is reported. Below, we report TSED with a threshold of 2.0 and include the
TSED score of ground truth data, as poses in the data are noisy and do not achieve a perfect score.

Pose alignment (revised metric: SfM distances). We follow He et al. (2024) to quantify pose
alignment, i.e., by running COLMAP pose estimation on the generated views, and comparing the
camera extrinsics predicted by COLMAP to the target poses. To ensure the results are reasonable
metrics, however, we modify the procedure of He et al. (2024) in several ways. First, due to the
inherent scale and rotational ambiguity of COLMAP, we observe that it is necessary to align the
estimated poses to the original ones before comparing their differences as described above. We also
report the relative error in camera positions (SfMDpos) and the angular deviation of camera rotations
in radians (SfMDrot) to account for scale variation across scenes. Finally, to get best results from
COLMAP, we also feed it the input views. Please see our Supplementary Material E for more detail.
We refer to this set of metrics as SfM distances hereon. Like we do for TSED scores, we also report
the SfM distances for the ground truth data.

Metric scale pose alignment. The aforementioned metrics for 3D consistency and pose alignment
are invariant to the scale of the camera poses as they rely on epipolar distances and SfM. In order to
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Figure 3: Qualitative comparison of 3D NVS across various diffusion models on in-distribution
(RE10K) and out-of-distribution (LLFF) datasets. The model is an 8-frame 4DiM model trained
solely on RE10K for 3D data for fair comparison with prior work (it is not our final 4DiM model).
4DiM demonstrates superior image fidelity and pose alignment compared to other methods, as can be
seen in (1) the quality and realism of images furthest away from the input image, and (2) the location
of objects and scene content alignment aligning with the ground truth images (shown in the bottom
row). See our website for more samples: https://4d-diffusion.github.io .

evaluate the metric scale alignment of 4DiM we report PSNR, SSIM (Wang et al., 2004) and LPIPS
(Zhang et al., 2018). These reconstruction-based metrics are not generally suitable to measure sample
quality, as generative models can produce different but plausible samples. But for the same reason
(i.e., that reconstruction metrics favor content alignment), we instead find them useful as an indirect
indicators of metric scale alignment; i.e., given metric-scale poses, we would like models to not
over/undershoot in position and rotation.

Dynamics (new metric: keypoint distance). One common failure mode that we observed early in
our work is a tendency for models to copy input frames instead of generating temporal dynamics.
Prior work has also noted that good FVD scores can be achieved with static videos (Ge et al., 2024).
We therefore propose a new metric called keypoint distance (KD), where we compute the average
motion of SIFT keypoints(Lowe, 2004) across image pairs with k ≥ 10 matches. We report results on
generated and reference views to assess whether generated images have a similar motion distribution.

5 EXPERIMENTS

We consider both in-distribution and OOD evaluations for 3D NVS in ablations and comparisons
to prior work. We use the RealEstate10K dataset (Zhou et al., 2018) as a common in-distribution
evaluation. We use 1% of the dataset as our validation split and compute metrics on all baselines
ourselves for this split, noting they might instead be advantaged as our test data may exist in their
training data (for PNVS, all our test data is in fact part of their training dataset). For the OOD case,
we use the LLFF dataset (Mildenhall et al., 2019). We present our main results on 3D novel view
synthesis conditioned on a single image in Tab. 1 and Fig. 3, comparing the capabilities of our 4DiM
cascade against PhotoConsistentNVS* (Yu et al., 2023a) (PNVS), MotionCtrl (Wang et al., 2023b),

*For PNVS, we follow Yu et al. (2023a) and use a Markovian sliding window for sampling, as they find it is
the stronger than stochastic conditioning (Watson et al., 2022).
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FID (↓) FDD (↓) TSEDt=2 (↑) SfMDpos(↓) SfMDrot(↓) LPIPS (↓) PSNR (↑) SSIM (↑)
cRE10k test
PNVS 51.41 1007. 0.9961 (1.000) 0.9773 (1.024) 0.3068 (0.3638) 0.3899 16.07 0.3878
MotionCtrl 43.07 370.6 0.4193 (1.000) 1.027 (1.032) 0.2549 (0.3634) 0.5003 12.74 0.2668
ZeroNVS 37.35 522.3 0.6638 (1.000) 1.049 (1.028) 0.3323 (0.3579) 0.3792 15.30 0.3617
4DiM-R 31.23 306.3 0.9974 (1.000) 1.023 (1.075) 0.3029 (0.3413) 0.2630 18.09 0.5309
4DiM 31.96 314.9 0.9935 (1.000) 1.008 (1.034) 0.3326 (0.3488) 0.3016 17.08 0.4628
cLLFF zero-shot
PNVS 185.4 2197. 0.7235 (0.9962) 0.9346 (0.8853) 0.2213 (0.1857) 0.5969 12.04 0.1311
MotionCtrl 106.0 531.5 0.1515 (0.9962) 0.9148 (0.9415) 0.1366 (0.2216) 0.7016 9.722 0.06756
ZeroNVS 75.95 860.2 0.2205 (0.9962) 0.9315 (0.8980) 0.2015 (0.1947) 0.5008 12.58 0.1578
4DiM-R 63.48 353.2 0.9659 (0.9962) 0.9265 (0.8951) 0.2011 (0.1934) 0.5403 11.55 0.1444
4DiM 63.78 356.8 0.9167 (0.9962) 0.9131 (0.8960) 0.1838 (0.1943) 0.5415 11.58 0.1408

Table 1: Comparison to prior work in 3D NVS. We compare 8-frame 4DiM models against prior
work, with one model trained solely with cRE10K (4DiM-R) for a more fair comparison, and one
model trained with our full dataset mixture (4DiM). We evaluate in-distribution and zero-shot on
LLFF. For 3D consistency and pose alignment, we include scores on real views (in parenthesis) to
indicate plausible upper bounds (which may be imperfect as poses are noisy and SfM may fail). We
highlight the best result in bold, and underline results where models score better than real images. We
do not report scores when SfM fails, denoted with n/a. Our models generally outperform baselines
substantially across all metrics.

FID (↓) FDD (↓) TSEDt=2 (↑) SfMDpos(↓) SfMDrot(↓) LPIPS (↓) PSNR (↑) SSIM (↑)
RE10k test
4DiM-R (RE10k) 32.40 335.9 1.000 (1.000) 1.021 (1.022) 0.3508 (0.3737) 0.3002 16.64 0.4704
4DiM-R (cRE10k) 31.23 306.3 0.9974 (1.000) 1.023 (1.075) 0.3029 (0.3413) 0.2630 18.09 0.5309
LLFF zero-shot
4DiM-R (RE10k) 71.07 521.2 0.7727 (0.9962) 0.9003 (0.8876) 0.2108 (0.1915) 0.4568 12.87 0.2016
4DiM-R (cRE10k) 63.48 353.2 0.9659 (0.9962) 0.9265 (0.8951) 0.2011 (0.1934) 0.5403 11.55 0.1444
ScanNet++ zero-shot
4DiM-R (RE10k) 23.68 248.0 0.9512 (0.9815) 1.885 (1.858) 1.534 (1.520) 0.1938 20.74 0.6716
4DiM-R (cRE10k) 22.89 243.2 0.9685 (0.9815) 1.851 (1.917) 1.541 (1.550) 0.1809 21.25 0.6952

Table 2: Ablation showing the advantage of using calibrated data (metric-scale camera poses).
We compare 8-frame 4DiM models trained on cRE10K vs uncalibrated RE10K. For RE10K and
LLFF, models trained on cRE10K are tested on calibrated data, and models trained on uncalibrated
RE10K are tested on uncalibrated data for a fair comparison. The exception is ScanNet++, which is
already scale-calibrated. We find that training on cRE10K substantially improves in-domain and OOD
performance both in terms of alignment and image quality. This is especially clear on reference-based
image metrics such as PSNR, LPIPS, SSIM (with the exception of LLFF, where scores may be too
low to be significant).

FID (↓) FDD (↓) TSEDt=2 (↑) SfMDpos(↓) SfMDrot(↓) LPIPS (↓) PSNR (↑) SSIM (↑)
cRE10k test
4DiM (no video) 32.45 326.5 0.9974 (1.000) 1.023 (1.029) 0.3356 (0.3692) 0.2713 17.80 0.5209
4DiM 31.96 314.9 0.9935 (1.000) 1.008 (1.034) 0.3326 (0.3488) 0.3016 17.08 0.4628
ScanNet++ test
4DiM (no video) 24.61 250.7 0.9615 (0.9815) 1.895 (1.764) 1.446 (1.431) 0.1824 21.34 0.6969
4DiM 23.48 223.7 n/a (0.9815) 1.706 (1.889) 1.550 (1.503) 0.1965 20.67 0.6434
cLLFF zero-shot
4DiM (no video) 64.34 401.4 0.9886 (0.9962) 0.9157 (0.9067) 0.1872 (0.1965) 0.5437 11.45 0.1430
4DiM 63.78 356.8 0.9167 (0.9962) 0.9131 (0.8960) 0.1838 (0.1943) 0.5415 11.58 0.1408

Table 3: Ablation showing the advantage of co-training with video data. We train an identical
8-frame 4DiM model without video data to reveal the net-positive impact of co-training with video.
Co-training with video data improves fidelity and generalization. Qualitatively, this is evident in
4DiM’s ability to extrapolate realistic content.

and the diffusion model prepared by ZeroNVS (Sargent et al., 2023). These are the strongest 3D
NVS diffusion models for natural scenes with code and checkpoints available. For LLFF, we load
the input trajectory of views in order, subsample frames evenly, and then generate 7 views given a
single input image. RealEstate10K trajectories are much longer, so following PNVS, we subsample
with a stride of 10. We use the 7-view NVS task conditioned on a single image, in order to avoid
weakening the baselines: MotionCtrl can only predict up to 14 frames, and PNVS performance
degrades with the length of the sequence as it is an image-to-image model. We trained versions of
4DiM that process 8-frames to this end (as opposed to using the main 32-frame 4DiM model and
subsampling the output) for a more apples-to-apples comparison. Quantitative metrics are computed
on 128 scenes from our RealEstate10K test split, and on all 44 scenes in LLFF.
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ReferencecRE10KRE10K ReferencecRE10KRE10K ReferencecRE10KRE10K

Figure 4: Qualitative comparison of 4DiM trained on calibrated vs uncalibrated RealEstate10K.
The reference images show the scene that should be generated given the target camera pose. The
model trained on calibrated data predicts scenes close to the ground truth, while the model trained
on uncalibrated data often predicts scenes that have “overshot” along the trajectories. We include
colored dotted lines on the furthest view from the conditioning input image to help illustrate the
(mis)alignment of scene content (e.g., doorways, trees, stairs, etc.) of the generated samples when
compared to the reference images.

We find that 4DiM achieves superior results in image quality (FID, FDD, FVD) by a wide margin
compared to all the baselines, and generally outperforms them in reconstruction-based metrics
(PSNR, SSIM, LPIPS) with the exception of ZeroNVS on the LLFF dataset. As much prior work has
shown (Saharia et al., 2022c; Watson et al., 2022), reconstruction-based metrics penalize generated
samples that may be plausible and tend to favor blurry images (for instance, diffusion architectures
trained purely as regression models tend to outperform their generative counterparts in these metrics).
Indeed, ZeroNVS generally produces samples with significant blur (more qualitative comparisons
are included in our Supplementary Material G). Qualitatively, we find that MotionCtrl does not
suffer similarly from blur, but has trouble aligning with the conditioning target poses, as is evident in
Figure 3. We also observe that PNVS exhibits more artifacts, with a substantial drop in quality in the
zero-shot setting. Surprisingly, PNVS achieves the best TSED in LLFF but upon closer inspection,
we find that the number of SIFT keypoint matches is ∼3x less than for 4DiM when computing TSED
scores. This suggests potential improvements for TSED which we leave for future work, such as a
higher threshold for the number of minimum keypoint matches, or requiring more spatial coverage of
keypoints to discard examples for which the matches are too localized.

5.1 3D DATASETS SIGNIFICANTLY AFFECT NVS QUALITY

One of the most critical ingredients for 3D NVS, especially in the out-of-distribution setting, is the
training data mixture. We ablate this in three ways:

More diverse 3D data is helpful. Table 1 shows that adding more diverse 3D data beyond
RealEstate10K to the training mixture improves pose alignment (SfM distances) on LLFF (zero-shot).
The evaluation suggests a very small loss in fidelity when using the full mixture, which is expected
since the mixture is more diverse and includes both indoor and outdoor scenes.

Scale-calibrated data resolves ambiguity. To determine the impact of consistent, metric scale
training data, we compare a model trained with on the original RE10k data against one with calibrated
metric scale poses. Neither model includes the other 3D data sources in their training data used to
train our best 4DiM model. Quantitative results on 3D NVS from a single conditioning image are
shown in Tab. 2 (including zero-shot performance on LLFF and ScanNet++), and qualitative results
in Fig. 4. We find that models trained on uncalibrated data often overshoot or undershoot when scale
is ambiguous, and that models trained on scale-calibrated data solve this problem.

Large-scale video data improves generalization. We also show the importance of video as a source
of training data. Table 3 shows results comparing 8-frame 4DiM trained on our final data mixture to
an otherwise identical model but trained without video. We find that including video data improves
fidelity and generalization ability which is expected since available 3D/4D data is not as diverse.
The improvement is significantly more apparent qualitatively (see Supplementary Material I for
side-by-side samples), where it is clear that without video geometry becomes much worse.
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Figure 5: Stitching panoramas is non-trivial due to exposure differences, which is hard to fix with
simple gamma/gain adjustment (middle row). Here we show novel views generated by 4DiM
conditioned on 6 input frames covering a 360◦ field of view (bottom row). To use our 8-frame-input
model, conditioning frames are randomly replicated to achieve the desired arity. (Note this is a subset
of the 24 generated frames by 4DiM.)

30M video dataset test split
FID (↓) FDD (↓) FVD (↓) KD (↑)

4DiM (1-frame conditioned) 62.73 355.4 934.0 2.214 (11.64)
4DiM (2-frame conditioned) 56.92 334.7 809.8 2.820 (11.51)
4DiM (8-frame conditioned) 43.34 320.7 400.2 3.181 (6.269)

Table 4: Comparing different numbers of input frames for video extrapolation. With 32-frame
4DiM models, we find that increasing the number of conditioning frames greatly improves dynamics.
Note that, because this is an extrapolation task with constant video frame rate, the true keypoint
distance decreases with more conditioning frames (i.e., less frames to generate).

5.2 EMERGENCE OF TEMPORAL DYNAMICS

Early in our experiments, we observed that video from a single image can often yield samples with
little motion. While this can be remedied by using more guidance weight on timestamps than on
the conditioning images (see our Supplementary Material B), the single-image-conditioned case
remains difficult. Nevertheless, with two or more input frames, 4DiM can successfully interpolate
and extrapolate video and generate very rich dynamics. We quantitatively illustrate these results
through our keypoint distance metric (along with other standard metrics) in Tab. 4. We also include
quantitative and qualitative comparisons to prior frame interpolation methods in our Supplementary
Material H. We suspect that future work including additional controls (e.g., text) on models like 4DiM,
as well as larger scale, will likely play a key role in breaking modes for temporal dynamics, given
that text+image-to-video has been successful for large models (Brooks et al., 2024b) and the same
large-scale efforts report that at smaller scales dynamics quickly worsen (e.g., see SORA samples
with 16x less compute).

5.3 MULTIFRAME CONDITIONING

While we (and most baselines) focus on single frame conditioning, using more than one frame
unlocks interesting capabilities. Here we show two applications. First, we consider 4DiM on the task
of panorama stitching (rendering novel viewpoints), given discrete images that collectively cover a
full 360◦ FOV (see Fig. 5). For reference we stitch the images using a naive homography warp and
gamma adjustment (Brown & Lowe, 2007). We find that outputs from 4DiM have higher fidelity than
this baseline, and they avoid artifacts like those arising from incorrect exposure adjustment.
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Figure 6: Novel views conditioned on a space-time trajectory on the Street View dataset. We condition
on 8 consecutive time steps from the front-left camera and generate views at the same time steps
with a camera facing the front. We find that the hallucinated regions (right half of the images) are
consistent across space-time. Warped input images are provided for reference. We include more
samples for video-to-video translation at https://4d-diffusion.github.io .

# conditioning Street View panoramas Matterport3D 360◦ panoramas
frames FID (↓) FDD (↓) PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) FDD (↓) PSNR (↑) SSIM (↑) LPIPS (↓)
1 (60◦FOV) 119.7 1601 12.16 0.2925 0.5438 86.41 1080 9.366 0.1638 0.6467
6 (360◦FOV) 37.43 354.1 17.76 0.5249 0.2663 24.86 239.4 15.64 0.4974 0.2987

Table 5: Quantitative performance on generating panos in the extrapolation (number of conditioning
frames is 1) and interpolation (number of conditioning frames is 6) regime. Using more conditioning
frames improves image fidelity which is to be expected. See Fig. 5 for samples.

We finally consider the task of rendering an existing space-time trajectory from novel view-
points (i.e., pose-conditional video-to-video translation). In Fig. 6, we condition on images
from a single camera at eight consecutive frames from a Street View sequence and render dif-
ferent views yielding 3D-consistent hallucinated regions in the generated images. In our website
(https://4d-diffusion.github.io), we include many more samples on video-to-video
translation to demonstrate this works well in non-street scenes. We show that 4DiM can be used to
stabilize the camera in an input video, and also move it along a novel trajectory even when the input
video may feature a different camera motion.

6 DISCUSSION AND FUTURE WORK

To the best of our knowledge, 4DiM is the first model capable of generating multiple, approximately
consistent views over simultaneous camera and time control from as few as a single input image.
4DiM achieves state-of-the-art pose alignment and much better generalization compared to prior
work on 3D NVS. This new class of models opens the door to myriad downstream applications, some
of which we demonstrate, e.g., changing camera pose in videos and seamlessly stitching panoramas.
While still not perfect, 4DiM also achieves previously unseen quality in extremely challenging camera
trajectories such as 360◦ rotation from a single image in the wild, indoor or outdoor.

Limitations and future work. Results with 4DiM are promising, but there is room for improvement,
with more calibrated 3D/4D data and larger models, with which the improved capacity is expected to
improve image fidelity, 360◦ camera rotation, and dynamics with single-frame conditioning.

Societal impact. Like all generative image and video models, it is important to develop and deploy
models responsibly and with care. 4DiM is trained largely on data of scenes without people (or
anonymized where present), and does not condition on text prompts, which mitigates many of the
safety issues that might otherwise arise.
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Diffusion Models for 4D Novel View Synthesis
Supplementary Material

This supplementary material expands upon the main paper, ‘Diffusion Models for 4D Novel View
Synthesis’, by providing in-depth details and analyses. We first delve into the scale calibration process
for the RealEstate10K dataset and the scene filtering methodology (Section A). We also discuss
the effect of multi-guidance (Section B). Next, we provide a comprehensive overview of the 4DiM
architecture, including its UViT backbone, transformer blocks, and camera ray conditioning (Section
C). We then detail the training methodology and compute cost (Section D) and elaborate on the
evaluation metrics used (Section E). Section F offers details of the implementation of baseline models
from previous work, and Section G presents a qualitative comparison of 360◦ scene generation
between 4DiM and ZeroNVS. Finally, we showcase the capabilities of 4DiM with an extensive
collection of generated samples (Section J). For a more complete collection of samples, please also
visit https://4d-diffusion.github.io.

A MORE DETAILS ON CALIBRATING AND FILTERING REALESTATE10K

To calibrate RealEstate10K, we predict a single length scale per scene with the help of a recent
zero-shot model for monocular depth (Saxena et al., 2023) that predicts metric depth from RGB
and FOV. For each image we compute metric depth using the FOV provided by COLMAP. The
length-scale is then obtained by regressing the 3D points obtained by COLMAP to metric depth at
image locations to which the COLMAP points project. An L1 loss provides robustness to outliers
in the depth map estimated by the metric depth models. The mean and variance of the per-frame
scales yields a per-sequence estimator. We use the variance as a simple measure of confidence to
identify scenes for which the scale estimate may not be reliable, discarding ∼30% of scenes with the
highest variance. Table 6 shows the importance of filtering out scenes with less reliable calibration.
The calibrated dataset will be made public to facilitate quantitative comparisons.

FID (↓) FDD (↓) FVD (↓) TSEDt=2 (↑) SfMDpos(↓) SfMDrot(↓) LPIPS (↓) PSNR (↑) SSIM (↑)
cRE10k test
4DiM-R (no filtering) 31.81 313.8 237.6 0.9815 (1.000) 1.035 (1.049) 0.3328 (0.3529) 0.3107 16.49 0.4465
4DiM-R (w/ filtering) 31.23 306.3 195.1 0.9974 (1.000) 1.023 (1.075) 0.3029 (0.3413) 0.2630 18.09 0.5309
ScanNet++ zero-shot
4DiM-R (no filtering) 24.35 232.0 143.1 n/a (0.9815) 1.881 (1.774) 1.639 (1.512) 0.1990 20.15 0.6436
4DiM-R (w/ filtering) 22.89 243.2 130.6 0.9685 (0.9815) 1.851 (1.917) 1.541 (1.550) 0.1809 21.25 0.6952
cLLFF zero-shot
4DiM-R (no filtering) 62.55 369.5 848.5 0.9167 (0.9962) 0.9214 (0.8844) 0.2194 (0.1932) 0.5412 11.48 0.1389
4DiM-R (w/ filtering) 63.48 353.2 841.6 0.9659 (0.9962) 0.9265 (0.8951) 0.2011 (0.1934) 0.5403 11.55 0.1444

Table 6: Data filtering ablation. We show the importance of discarding scenes where scale calibra-
tion is least reliable. Beyond the clear impact on fidelity, metric scale alignment itself improves by a
wide margin. This is quantitatively shown through the reference-based image metrics (LPIPS, PSNR,
SSIM) which favor content alignment, as discussed in Section 4.

B PUSHING PARETO FRONTS WITH MULTI-GUIDANCE

To assess the effectiveness of multi-guidance, we conducted a two-stage evaluation. First, we
evaluated samples generated with various ‘standard’ guidance weights, where all conditioning
variables (image, pose, and timestamp) were treated uniformly (illustrated in blue in Figure 7).
Through qualitative and quantitative analysis, we identified the optimal standard guidance weight.
Next, while holding this image guidance weight constant, we systematically varied the pose or
timestamp guidance weights (shown in red). This procedure was applied to two tasks: single-image
3D generation using the cRE10K dataset, and video extrapolation from the first two frames using
the DAVIS dataset. As demonstrated in Figure 7, our findings indicate that for video extrapolation,
a slightly stronger timestamp guidance enhances performance in both dynamics and FID. For 3D
generation, a slightly stronger pose guidance improves pose alignment (measured by TSED) with
minimal impact on FID.

16

https://4d-diffusion.github.io


Published as a conference paper at ICLR 2025

Figure 7: Multi-guidance ablation. Left: Pareto plot between FID and TSED (with threshold 1)
for the single image to 3D task on the RealEstate10K dataset. Right: Pareto plot between FID and
keypoint distance for the video extrapolation task from the two initial input frames on the Davis
dataset. First, shown in blue, standard guidance, denoted with “gw”, is swept. I.e., all conditioning
variables have the same guidance weight. Then, shown in red, pose guidance (left) and timestamp
guidance (right), denoted “pgw” and “tgw” respectively, are varied starting from the Pareto-optimal
configuration in the initial sweep, leaving the guidance weights of other variables fixed. We find
that overemphasizing pose guidance only helps marginally, likely because even without guidance
the worst scores for pose alignment are already near-perfect (≥ 98% of keypoint matches are less
than a pixel away from the epipolar line). And in the case of timestamp guidance, we find that this
dramatically improves the presence of temporal dynamics in generated videos with a very small
trade-off on FID score.

C FURTHER DETAILS ON NEURAL ARCHITECTURE

UViT backbone. As hinted by Figure 2, 4DiM uses a UViT architecture following Hoogeboom et al.
(2023). Compared to the commonly employed UNet architecture (Ronneberger et al., 2015), UViT
uses a transformer backbone at the bottleneck resolution with no convolutions, leading to improved
accelerator utilization. Information across frames mixes exclusively in temporal attention blocks,
following (Ho et al., 2022b). We find that this is key to keep computational costs within reasonable
limits compared to, say, 3D attention (Shi et al., 2023). Because the temporal attention blocks have a
limited sequence length (32 frames), we insert them at all UViT resolutions. To mitigate the quadratic
cost of attention, we use per-frame self-attention blocks only at the 16x16 bottleneck resolution where
the sequence length is the product of the current resolution’s dimensions. And to further minimize the
amount of activations stored for backpropagation, we use only two UNet blocks when the resolution
is at 32x or beyond, with hidden sizes (channels) decreasing in powers of two to a minimum of
256. Convolutional kernels at the 32x resolution have 3x3 kernels, and we increase the kernel size
additively by 2 for higher resolutions to a maximum of 7x7. Our base model uses 16 transformer
blocks at the bottleneck resolution of hidden size 128 with 16 heads, and our super-resolution model
uses 8 transformer blocks of hidden size 128 with 8 heads.

Transformer block design. Our transformer blocks combine helpful choices from several prior
work. We use parallel attention and MLP blocks following Dehghani et al. (2023), as we found in
our early experiments that this leads to slightly better hardware utilization while achieving almost
identical sample quality. We also inject conditioning information in a similar fashion to Peebles &
Xie (2023), though we use fewer conditioning blocks due to the use of the parallel attention + MLP.
We additionally emply query-key normalization following the findings of Gilmer et al. for improved
training stability, but with RMSNorm (Zhang & Sennrich, 2019) for simplicity.

Conditioning. We use the same positional encodings for diffusion noise levels and relative times-
tamps as (Saharia et al., 2022b). For relative poses, we follow 3DiM (Watson et al., 2022), and
condition generation with per-pixel ray origins and directions, as originally proposed by SRT (Sajjadi
et al., 2022) in a regressive setting. Xiong et al. (2023) has compared this choice to conditioning
via encoded extrinsics and focal lengths a-la Zero-1-to-3 (Liu et al., 2023b), finding it advantageous.
While a thorough study of different encodings is missing in the literature, we hypothesize that rays
are a natural choice as they encode camera intrinsics in a way that is independent of the target
resolution, yet gives the network precise, pixel-level information about what contents of the scene are
visible and which are outside the field of view and therefore require the model to extrapolate. Unlike
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Plucker coordinates, which parametrize lines in 3D space, rays additionally preserve information
about camera positions, which is key to deal with occlusions in the underlying 3D scene.

D FURTHER DETAILS ON COMPUTE, TRAINING TIME, AND SHARDING

We train 8-frame 4DiM models for ∼1M steps. Using 64 TPU v5e chips, we achieve a throughput
of approximately 1 step per second with a batch size of 128. All 8-frame models we train (i.e. base
and super-resolution models) use this batch size, and we train all models with an Adam (Kingma &
Ba, 2014) learning rate of 0.0001 linearly warmed up for the first 10,000 training steps, which we
found was the best peak value in early sweeps. No learning rate decay is used. We follow Ho et al.
(2020) and keep an exponential moving average of the parameters with a decay rate of 0.9999 to use
at inference time for improved sample quality.

Available HBM is maximized with various strategies: first, we use bfloat16 activations (but still use
float32 weights to avoid instabilities). We also use FSDP (i.e., zero-redundancy sharding (Rajbhandari
et al., 2020) with delayed and rematerialized all-gathers). We then finetune this model to its final
32-frame version. This strategy allows us to leverage large batch-size pre-training, which is not
possible with too many frames because the amount of activations stored for backpropagation scales
linearly with respect the number of frames per training example. The model is finetuned with the
same number of chips, albeit only for 50,000 steps and at batch size of 32. This allows us to shard the
frames of the video and use more than one chip per example at batch size 1. When using temporal
attention, we simply all-gather the keys and values and keep the queries sharded over frames (one of
the key insights from Ring Attention (Liu et al., 2023a)), though we don’t decompose the computation
of attention further as we find we have sufficient HBM to fully parallelize over all-gathered keys and
values. FSDP is also enabled on the frame axis to maximize HBM savings so the number of shards
is truly the number of chips (as opposed to the number of batch-parallel towers). This is possible
because frame sharding requires an all-reduce by mean on the loss over the frame axis. Identically to
zero-redundancy sharding, this can be broken down into a reduce-scatter followed by an all-gather.

E FURTHER DETAILS ON PROPOSED METRICS

We follow Yu et al. (2023a) and compute TSED only for contiguous pairs in each view trajectory,
and discard sequences where we find less than 10 two-view keypoint matches. We use a threshold of
2.0 in all our experiments. For our proposed SfM distances, in order to get a scale-invariant metric,
we first align the camera positions predicted by COLMAP by relativizing the predicted and original
poses with respect to the first conditioning frame. This should resolve rotation ambiguity. Then, we
resolve scale ambiguity by analytically solving for the least squares optimization problem that aligns
the original positions to re-scaled COLMAP camera positions. Finally, we report the relative error in
positions under the L2 norm, i.e., we normalize by the norm of the original camera positions.

F FURTHER DETAILS ON BASELINES FROM PRIOR WORK

For PNVS, the conditioning image is the largest square center crop of the original conditioning frame,
resized to 256× 256 pixels. This is the same preprocessing procedure used by all our 4DiM models.
PNVS generates output frames sequentially (one at a time), using 2000 denoising steps for each
frame. All 4DiM samples are produced with 256 denoising steps.

For MotionCtrl, we use the checkpoint based on Stable Diffusion, which generates 14 frames
conditioning on one image and 14 poses. We set the sampling hyper-parameter speed to 1, use 128
ddim denoising steps, and keep the other hyper-parameters as default values in the released script
from MotionCtrl. To avoid any loss of quality due to an out-of-distribution resolution or aspect ratio,
we use the resolution 576 × 1024, i.e. the same resolution as MotionCtrl was trained on. RE10K
images already have the desired aspect ratio. LLFF images have resolution 756 × 1008; we are
thus forced to crop them to 567× 1008 so they have the same aspect ratio MotionCtrl was trained
with. For comparability with 4DiM and PNVS, we postprocess MotionCtrl samples at 567× 1008
by taking the largest center crop and then resizing to 256× 256. Note that, in order to preserve the
aspect ratio of LLFF, the resulting square outputs are for a smaller region than 4DiM and PNVS,
hence the gray padding for MotionCtrl LLFF samples in Figure 3.
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Figure 8: Qualitative comparison of 360◦ generation between 4DiM and ZeroNVS. 4DiM achieves
superior sharpness and richer content.

For ZeroNVS, we use its diffusion model to evaluate novel view synthesis on RE10K and LLFF.
Both input and output images are 256× 256. We use default hyper-parameters as in the open sourced
configuration, except the ‘scene scale’ parameter used for dealing with length scale ambiguity. We
sweep over scale in [0.7, 1.0, 1.2, 1.5, 2.0, 3.0, 5.0] and choose 3.0 for RE10K and 1.5 for LLFF.

G QUALITATIVE COMPARISON OF 360◦ GENERATION VS ZERONVS

We employ the ZeroNVS pipeline with score distillation sampling (SDS) to generate 360◦ views
conditioned on a single image. For each scene, we use the default scene-generation configuration
as open sourced by ZeroNVS, as adjusting camera_distance and elevation_angle yield worse and
incoherent generation. We adjust the scale parameter for each scene, and use 1.0, 3.0, 3.0 for the three
scenes in Figure 8. Due to the computationally intensive nature of 360◦ generation with ZeroNVS
(2-3 hours per scene), exhaustive hyperparameter tuning is impractical. We also observe another
limitation: volume rendering will fail if the camera positions are not allowed to vary (or even if
camera_distance is too small, e.g., 0.5), i.e., it is not feasible to keep the camera position fixed and
only employ rotation. This occurs because there is no parallax and it is therefore not possible to infer
depth/density (rotation alone only warps pixels). Figure 8 presents a comparison between 4DiM and
ZeroNVS outputs, showing the superior sharpness and richer content achieved by 4DiM.

H COMPARISONS OF 4DIM VS PRIOR FRAME INTERPOLATION METHODS

We compare 4DiM against prior works on the task of frame interpolation (generating a video with
large amounts of motion given the first and last frames). We use the Davis dataset as the benchmark
and consider a generative baseline, LDMVFI (Danier et al., 2024), as well as the well-known (but
non-generative) works FILM (Reda et al., 2022) and RIFE (Huang et al., 2022).

Below, we report FID scores of the middle frame for all methods, in order to consider the most
challenging outputs and evaluate with the same number of samples despite that 4DiM generates 4x
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more frames. We take the immediately previous frame to the middle frame in the case where a model
generates an even number of frames.

Method FID
RIFE 57.68
FILM 68.88

LDMVFI 56.28
4DiM 52.89

Input views FILM RIFE

LDMVFI 4DiM

Figure 9: Comparison against frame interpolation baselines.

Qualitatively (Fig. 9), we find that 4DiM is competitive against all of these baselines, and does a
much better job when the amount of motion is large. Non-generative baselines suffer from severe
artifacts in these cases.

I ABLATION FOR CO-TRAINING WITH VIDEO DATA

In our main evaluations, we find that 4DiM trained without video performs slightly better on in-
distribution evaluations (e.g., RealEstate10K). This is not too surprising as much of the capacity of
the model now needs to be spent to model a more diverse data distribution. Still, to validate our claim
that co-training with video is of paramount importance, it is necessary to consider out-of-distribution
qualitative comparisons. Here it becomes evident that a model trained without video performs much
worse. In particular, such a model does not produce plausible geometry for unknown objects (Fig. 10),
whereas the model trained with large-scale video data does not suffer from this issue.

Input image Novel view (no video) Novel view (with video)

Figure 10: Ablation for co-training with video. We find this is key for geometric understanding in
the wild. The model trained w/o video data infers incorrect geometry frequently in the LLFF dataset.
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J ADDITIONAL 4DIM SAMPLES

We include more 4DiM samples below, though we strongly encourage the reader to
browse our website: https://4d-diffusion.github.io

Input Output

Figure 11: More 4DiM samples from the RealEstate10K dataset.
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Input Circular Pan

Input Translate Forward

Input Translate Backward

Figure 12: More 4DiM samples with custom trajectories from the LLFF dataset.
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Input Extrapolation

Input Interpolation

Figure 13: More 4DiM samples of videos generated from 2 input images.
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Input Output handling reflections from screen, floor, and water.

Input Output handling light, fog, rain etc.

Figure 14: 4DiM can handle challenging scenarios such as reflection, light rays, fog, rain, etc.
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