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University of Toronto

FLAVIO RIZZOLO

University of Ottawa and Carleton University

and

ALEJANDRO A. VAISMAN

Universidad de Buenos Aires

As web applications mature and evolve, the nature of the semistructured data that drives these ap-
plications also changes. An important trend is the need for increased flexibility in the structure of

web documents. Hence, applications cannot rely solely on schemas to provide the complex knowl-

edge needed to visualize, use, query and manage documents. Even when XML web documents
are valid with regard to a schema, the actual structure of such documents may exhibit significant

variations across collections for several reasons: the schema may be very lax (e.g., RSS feeds), the

schema may be large and different subsets of it may be used in different documents (e.g., industry
standards like UBL), or open content models may allow arbitrary schemas to be mixed (e.g., RSS

extensions like those used for podcasting). For these reasons, many applications that incorporate

XPath queries to process a large web document collection require an understanding of the actual
structure present in the collection, and not just the schema.

To support modern web applications, we introduce DescribeX, a powerful framework that is

capable of describing complex XML summaries of web collections. DescribeX supports the con-
struction of heterogenous summaries that can be declaratively defined and refined by means of

axis path regular expression (AxPREs). AxPREs provide the flexibility necessary for declar-
atively defining complex mappings between instance nodes (in the documents) and summary

nodes. These mappings are capable of expressing order and cardinality, among other properties,

which can significantly help in the understanding of the structure of large collections of XML
documents and enhance the performance of web applications over these collections. DescribeX

captures most summary proposals in the literature by providing (for the first time) a common

declarative definition for them. Experimental results demonstrate the scalability of DescribeX
summary operations (summary creation, as well as refinement and stabilization, two key enablers

for tailoring summaries) on multi-gigabyte web collections.
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1. INTRODUCTION

The web is fueled by semistructured data, so called because of the lack of a clear
separation between data and metadata. The most common format for web accessi-
ble data is XML which is used for hypertext document collections like Wikipedia as
well as for data exchange among web applications (e.g., blogs, news feeds, podcasts,
web services messaging). In semistructured data, such as XML, tags (metadata)
and content (data) are mixed together in the same file.

The vast majority of applications for managing XML rely on XPath [W3C 2007].
Hence, web developers use XPath queries for many of the tasks involved in the
processing of XML collections. Such collections are normally handled one docu-
ment at a time, whether the document is an individual RSS1 file (used by content
distributors to deliver to subscribers frequently updated content over the Web), a
single SOAP2 message, or a Wikipedia article in XHTML.

Even when XML collections have a schema (which can be either a DTD [W3C
2006] or an XML Schema [W3C 2004]), the actual structure present in each docu-
ment may exhibit significant variations for several reasons. First, schemas can be
very lax. One reason for this is the extensive use of the <xsd:choice> construct
in XML schemas, which allows optional elements to occur any number of times,
including zero. Such a construct is very common in RSS for instance. Second, a
schema can be very large and only subsets may be used in a given instance. This
is the situation with several industry specific standards for different application
domains that may contain hundreds of elements, such as UBL3 or HR-XML4. UBL
is designed to handle supply chain transactions and applications such as purchase
orders, shipping notices, and invoices. HR-XML contains schemas for human re-
source management such as resumes, payroll information, and benefits enrollment.
Both are domains requiring sophisticated applications to manage, publish, and ex-
change information among complex document collections. Finally, a schema can be
extended by using the <xsd:any> XML Schema construct, which allows arbitrary
content from other schemas to appear under a given element. Such a construct
enables different user communities to pick and choose how to combine schemas.
Consequently, it provides great flexibility, but makes it harder to determine the
structure of the documents that actually appear in a given collection. Examples
of the <xsd:any> extensions can be found in a wide variety of industry standards,
including RSS, UBL and HR-XML. For instance, the UBL standard permits a con-
tractor to represent invoice documents that include HR-XML TimeCard elements
for the contractor employee’s time and expenses. The actual structure of invoice
collections will vary significantly across contractors and customers. If an enclosing
messaging schema is used, even the UBL and HR-XML fragments in the document
can be replaced by other invoicing and time billing schemas. In these scenarios,
schemas alone are insufficient for understanding the structure (metadata) of the
documents in the collection for either writing or optimizing XPath evaluation.

An application developer working with this type of collection faces several chal-

1http://www.rss-specifications.com/
2http://www.w3.org/TR/soap/
3http://oasis-open.org/committees/ubl/
4http://hr-xml.org
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lenges. She must learn enough about the structure present in the XML collection
to be able to write meaningful XPath queries. She must also develop an under-
standing of how the XPath expressions behave across different documents in the
collection. Even when a task deals with a single document at a time, the developer
needs to extrapolate the behaviour of queries over a single document across the
entire collection over which the task may be repeatedly applied. In this context,
understanding the actual metadata of a web collection can be a significant barrier,
even for collections validated against a schema.

XML structural summaries are graphs representing relationships between sets of
XML elements (i.e., extents). Extents can also be viewed as mappings between
instance (document) nodes and summary nodes, i.e., all document nodes that are
map to the same summary node form the extent of the summary node. Unlike
schemas, which prescribe what may and may not occur in an instance, summaries
describe the metadata that is actually present in a given collection.

There is an abundant literature on structural summaries (see Section 2). How-
ever, none of these proposals summarize ordering and cardinality metadata. Such
information is very important in understanding collections of documents, and in
helping users to write meaningful queries.5 Consider for instance Wikipedia articles
containing sections with a variable number of images and captions. A summary that
provides information on the number of articles containing images and the number
of images containing captions can help a user in writing queries related to images.
For example, a user wanting all articles containing images of Barack Obama may
(without metadata) simply query for images mentioning Barack Obama in the cap-
tion. However, if she knows that few images are captioned, she can understand
that the empty answer to her first query may be more a reflection of the structure
of the documents, rather than their contents. Based on this summary information,
she can then modify her query to better find the information she is seeking.

Furthermore, since the previously known summaries are defined via their own
unique creation and manipulation algorithms, it is hard to determine how they
can be used together effectively for processing today’s increasingly heterogeneous
and large web collections. Specifically, the summary information is not defined
declaratively, limiting the ease with which these summaries can be used within
standard data management tasks.

In this paper, we propose a novel approach for flexibly summarizing the struc-
ture of metadata actually present in an XML collection. We introduce DescribeX,
a framework that supports constructing heterogeneous summaries. DescribeX sum-
maries create a partition of the document nodes, i.e., a set of pairwise disjoint sub-
sets of document nodes whose union consists exactly of all document nodes in the
collection. Each set of this partition is an extent defined by a path regular expres-
sions on axes, or axis path regular expression (AxPRE, for short). AxPREs provide
the flexibility necessary for declaratively defining complex mappings between docu-
ment nodes and summary nodes capable of expressing order and cardinality, among
other properties. Each AxPRE can be specified by the user or obtained from any
expression in the complete XPath language (all the axes, document order, use of

5By user, we mean a DescribeX user who is an IT specialist that manages large document collec-

tions. Note that we are not referring to average web users.
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Fig. 1. Axis graphs of RSS feed samples

parentheses, etc.) Given an arbitrary XPath expression posed by a user, DescribeX
can create a partition defined by an AxPRE that captures exactly the structural
aspects expressed in the query.

AxPRE summaries have a unique capability that makes them suitable for de-
scribing the structure of XML collections: they are the first summaries capable of
declaratively defining and refining the summary extents using a powerful language.
In addition, DescribeX summaries express relationships between instance nodes
that go beyond the traditional parent-child (e.g., next sibling, following, preceding,
etc.) DescribeX can significantly help in the understanding of the structure of large
collections of XML documents. As has already been established elsewhere [Consens
and Rizzolo 2007], DescribeX can also improve the performance of XPath queries
over collections. Most importantly, DescribeX captures most summary proposals
in the literature by providing (for the first time) a common declarative definition
for them.

1.1 Motivating example: exploring RSS feeds with summaries and XPath queries

Consider a web application developer, Sue, who works for a leading web content
syndication company, like YellowBrix6 and Comtex News7. One of the main ser-
vices offered by these companies is to provide subscribers with customized content
solutions aggregated from thousands of content providers worldwide. Sue has to
implement the web application that retrieves RSS feeds from the content providers
in order to produce aggregated meta-feeds tailored to the subscriber’s needs. This
kind of aggregation is typically implemented using languages ranging from Perl,
PHP and Java to XSLT, XPath and XQuery. The most flexible option is to use
XPath to extract the individual elements of the source RSS feeds and XQuery to
generate each aggregated meta-feed.

Figure 1 shows instances of two sample RSS feeds represented as axis graphs.

6http://www.yellowbrix.com/
7http://www.comtexnews.net/
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Fig. 2. Label SD (a), and heterogeneous SD (b) of the RSS feed samples

An axis graph can display selected binary relations between elements in an XML
document tree, like doc, c, ns, and fc shown in the figure (shorthands for XPath
axes document, child, next-sibling, and for the derived axis firstchild, respectively).
The semantics of these axes is straightforward: the edge from element 6 to 7 labeled
fc means that 7 is the first child of 6 in document order, and the edge from element
15 to 21 labeled ns means that 21 is the next sibling of 15, also in document order.
For simplicity, we display only selected ns edges, and we do not draw the c edge
between two nodes when a fc edge already exists between them (even though every
first child is also a child). Being binary relations, axes have inverses, e.g., the
inverse of c is p (shorthand for parent) and the inverse of ns is ps (shorthand for
preceding-sibling). For clarity, these inverses are not shown in the figure.

Subscribers to this type of syndication service require tailored information prod-
ucts with customized content and structure. Each source RSS feed may span several
days or weeks, and there might be more than one item in the feed per day. Some
subscribers may ask for all the items in a feed whereas others are only interested
in the most recent ones. Some want items in specific media formats or even in
multiple formats (in separate enclosure elements). Others use readers that support
only a few RSS extensions. Since the source feeds come from thousands of different
providers using a large number of RSS extensions and formats, channels and items
may contain hundreds of possible distinct combinations of subelements. From these
large, heterogenous collections of feeds Sue needs to find and extract elements with
similar substructure in order to create customized aggregations for the subscribers.

Sue has access to a repository containing several months of sample feeds published
by the content providers (a collection with hundreds of thousands of XML files).
She could manually open a few files from each RSS feed to get a sense of their

ACM Journal Name, Vol. V, No. N, Month 20YY.
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broad structure. With thousands of content providers and feeds, Sue would need to
browse thousands of files. Even if she manages to do that, she will have to check if
each sample file is indeed characteristic of the entire feed it comes from. Sue could
use XPath queries for this task, but with such high degree of heterogeneity she will
have to come up with a very large number of queries on her own.

Using DescribeX, Sue can create a summary descriptor (SD for short) like the
one shown on Figure 2 (a). This label SD, created from the two feeds in Figure 1,
partitions the elements in the feeds by element name. For example, SD node s6
represents all the item elements in the two documents, {6, 15, 21, 27} (this set is
called the extent of s6). An SD edge is labeled by the axis relation it represents.
For instance, edge (s6, s5) is labeled by c, which means that there is a c axis relation
between elements in the extent of s6 and s5. (More expressive types of edges will
be introduced in Section 4.)

From the label SD, Sue gets a first glimpse of the feeds structure. She learns that
channel elements in the collection always contain title, link, description, and item
subelements. The ns loop on node s8 indicates that an item may contain repeated
enclosure elements (different enclosures within the same item are often used to
post the same content in different media formats or languages). Furthermore, the
structure of item elements may vary: they always include a title element, but may
contain any combination of description, enclosure, pubDate, and link elements.
Note that the label SD does not provide information on exactly which combinations
actually appear.

At this point Sue has two options:

(1) She can interactively refine the SD node s2 in the label SD in order to learn
how many different types of channels exist in the collection (i.e., how many
subsets of title, enclosure, description, link and pubDate are present within
item elements).

(2) Since she already knows that some item elements have a pubDate from the
label SD and she is interested in channels that contain such items (most of
their subscribers require items with a known publication date), she can write
query Q1 to retrieve them.

Q1 = /rss/channel/item[pubDate]

Sue can now decide either to run Q1 using the current SD or to make DescribeX
adapt the current SD to Q1. Adapting an SD to a query workload entails refining
the SD according to characteristics common to the workload. If she picks the former
option, DescribeX finds the only SD node that contains a superset of the answer
(s2) and runs Q1 on its entire extent. If Sue chooses the latter option, DescribeX
changes the SD by partitioning the single channel node s2 in Figure 2 (a), which
represents all channels in the collection, into two channel nodes: one with a pubDate
within their item elements and another without a pubDate (s22 and s21 in Figure
2 (b), respectively).

Summaries in DescribeX are defined and manipulated via axis path regular ex-
pressions (AxPREs). In short, AxPREs are path regular expressions over binary
relations (in our case, the relations labeling the edges of an axis graph). These
expressions define patterns over an axis graph. We denote each occurrence of a
ACM Journal Name, Vol. V, No. N, Month 20YY.
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pattern as a neighbourhood. More precisely, a neighbourhood of an element v by
an AxPRE α is the subgraph local to v that matches α. For example, the Ax-
PRE [item].c describes the neighbourhoods composed of item elements and their
children, while the AxPRE [channel].c.c describes the neighbourhoods of channel
elements containing not only their children, but also their grandchildren. Neigh-
bourhoods also determine how nodes are clustered in the extents: the extent of an
SD node labeled by an AxPRE α contains all axis graph nodes that have similar
neighbourhoods according to α. Consider nodes 2 and 11 from Figure 1 and their
neighbourhoods by AxPRE [channel].c.c. According to such an AxPRE together
with DescribeX’s notion of similarity, nodes 2 and 11 belong to different extents
(those of nodes s21 and s22 in Figure 2 (b), respectively) because the labels of
the grandchildren of 2 (title, link and description) are different from those of the
grandchildren of 11 (title, pubDate and enclosure). This makes nodes 2 and 11 not
similar with respect to AxPRE [channel].c.c. The notion of similarity used by Des-
cribeX and the syntax and semantics of AxPREs are studied in detail in Section 3.
AxPREs can be derived from a query in order to adapt an SD to it. Alternatively,
a developer like Sue could have written the expression herself had she wanted to
refine the s2 SD node in the label SD according to the substructure of the elements
in its extent.

The same process can be applied to more complex requirements. For instance,
some subscribers need just the media content and associated information (author,
duration, format, etc.) of podcasts that are published daily. The media content
in podcasts can appear inside many different element names with associated infor-
mation that varies drastically depending on the RSS extension used by the content
provider (for instance, Yahoo Media RSS8, Dublin Core9, iTunes10, etc.) Sue can
easily identify which elements are actually present in the collection by using the SD
of Figure 2 (b) without having to write a set of different queries for each potential
extension used by the providers.

Adapting the SD to a query workload is also useful in a document-at-a-time
approach to query evaluation. The adaptation process reduces the number of doc-
uments on which queries in the workload need to be evaluated, potentially yielding
a significant speedup. That is, after adapting the SD to a given query Q, Des-
cribeX can evaluate Q only on those documents that are guaranteed to provide a
non-empty answer for the structural subquery of Q (the expression that results from
removing all non-structural predicates such as those containing functions).

It is important to note that DescribeX can recognize two kinds of channels with
different structure beyond the elements directly contained by them, a capability not
available using DTD’s (unless channel elements are renamed, which is not a possi-
bility when the original DTD or the instances cannot be modified). In particular,
proposals to infer a DTD from an instance (such as [Bex et al. 2006; Garofalakis
et al. 2003]) do not help to identify the two kinds of channels as done above.
For instance, the DTD expression <!ELEMENT channel (title, link, description,

item)> can be inferred for the channel elements occurring in Figure 1. However,

8http://search.yahoo.com/mrss/
9http://dublincore.org/documents/dcmi-namespace/
10http://www.apple.com/itunes/whatson/podcasts/specs.html
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a DTD can only give a rule for the children of channel, there is no mechanism for
giving rules relating channel elements to their grandchildren or any other elements
farther away. In contrast, the AxPRE summary in Figure 2 (b) can distinguish
between a channel containing an item with a pubDate element from those that
contain a description. Since the XML Schema specification [W3C 2004] does not
allow an element name to have two different types, no XML Schema can recognize
the two kinds of channels represented by s21 and s22 either without renaming. More
importantly, even though XML Schemas are more expressive than DTDs [Martens
et al. 2006], schema types still depend solely on ancestors-descendant relationships
between elements. Thus, as in DTDs, we cannot have an item type for item ele-
ments that are part of a series (e.g., items 15, 21 and 27) and a different type for
single items (e.g., item 6). In contrast, DescribeX can distinguish between such
types of items by considering neighbourhoods including the ns axis.

1.2 Other Applications

In addition to the increasingly popular content syndication services just described,
many other web communities can benefit from a flexible summary framework like
DescribeX. We already described applications to web-based supply chain manage-
ment (UBL) and human resources (HR-XML). In the bioinformatics domain, the
protein informatics community has develop a common XML-based format for ex-
changing protein-protein interaction (PPI) data, called Proteomics Standards Ini-
tiative Molecular-Interaction (PSI-MI) format11. PSI-MI is the de-facto model for
PPI used by many molecular interaction databases such as BioGRID12, Human
Protein Reference Database 13, and IntAct14. These are all examples of “deep
Web” content (not indexed by standard search engines) published or exchanged in
XML format. The PSI-MI XML schema has a large number of optional elements
to allow flexibility. Since different databases use different fragments of the schema,
PSI-MI data can be very heterogeneous. As a result, finding common structural
patterns and understanding schema usage can be challenging [Samavi et al. 2007].

Wikipedia15 is a well known free content, multilingual encyclopedia written col-
laboratively by contributors around the world. XML collections extracted from
the Wikipedia have existed for several years now. INEX has used several corpora
based on the English part of Wikipedia for structured information retrieval since
2006 [Denoyer and Gallinari 2006]. Snapshots of the encyclopedia in XML format
are also available at the Wikipedia site16. Wikipedia is an example of a classical
hypertext document collection that can be used more effectively with the assis-
tance of a summary management tool like DescribeX. In our evaluation, we will use
both content syndication data (RSS feeds) and Wikipedia data as representative
collections of the diverse data managed by web applications.

11http://psidev.sourceforge.net/mi/xml/doc/user/
12http://www.thebiogrid.org/
13http://www.hprd.org/
14http://www.ebi.ac.uk/intact/
15http://wikipedia.org/
16http://en.wikipedia.org/wiki/Wikipedia database
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1.3 Organization

The rest of the paper is structured as follows. Section 2 gives an overview of the
large body of related work in the literature. Section 3 introduces the DescribeX
framework, including the AxPRE language and some basic notions such as neigh-
bourhood and bisimilarity, whereas Section 4 defines summary descriptor (SD).
Section 5 revisits some of the related work discussed in Section 2 and explains
how they can be captured by the DescribeX framework and how DescribeX offers
significant new functionality. Section 6 presents two novel mechanisms, AxPRE
refinement and stabilization, for declaratively changing the description provided
by an SD using AxPREs. Refinement and stabilization are central to the use of
DescribeX summaries. Section 7 describes the implementation of the DescribeX
summarization engine for creating and manipulating SDs of XML collections and
provides experimental results, using gigabyte size XML collections, that validate
the performance of the techniques employed by our framework. Our evaluation is
focused on showing that our summarizations can be created and managed efficiently.
We also give examples of how they could be used interactively for document col-
lection exploration, and an intuition for their usefulness. We conclude in Section 8
by presenting some future research issues including the development of document
collection benchmarks focussed on the usability of such collections and the role of
summarization in enhancing usability.

This paper considerably expands our previous work on structural summaries.
An early version of the application example described in Section 1.1 appeared in
a short (three page) poster paper [Consens et al. 2008]. A visual, interactive tool
based on the DescribeX framework was presented in a system demonstration at
the ICDE conference [Ali et al. 2008]. The notions of axis graph, AxPRE, AxPRE
neighbourhood, labeled bisimulation, AxPRE partition and Summary Descriptor
(Definitions 3.1, 3.4, 3.10, 3.12, 3.16, and 4.1, respectively) first appeared in a
workshop paper [Consens and Rizzolo 2007], which also includes an experimental
study of XPath query evaluation using DescribeX. Other than the definitions just
mentioned, the rest of Sections 3 and 4 (including a new definition of a Summary
Descriptor and a construction algorithm), together with Sections 5, 6 and 7 in their
entirety, are published here for the first time. We should also mention that most of
the material in this paper is part of an unpublished PhD thesis [Rizzolo 2008].

2. RELATED WORK

2.1 Structural summaries

The large number of summaries that have been proposed in recent years clearly
establishes the value and usefulness of these structures for describing semistructured
data, assisting with query evaluation, helping to index XML data, and providing
statistics useful in XML query optimization.

Most of the summary proposals in the literature define synopses of predefined sub-
sets of paths in the data. They construct a labeled graph that represents relation-
ships between sets of XML elements. Examples of such summaries are region inclu-
sion graphs (RIGs) [Consens and Milo 1994], representative objects (ROs)[Nestorov
et al. 1997], dataguides [Goldman and Widom 1997], 1-index, 2-index and T-index
[Milo and Suciu 1999], and more recently, ToXin [Rizzolo and Mendelzon 2001],

ACM Journal Name, Vol. V, No. N, Month 20YY.
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A(k)-index [Kaushik et al. 2002], and F&B-Index [Kaushik et al. 2002]. Dataguides
and ROs group nodes into sets according to the label paths incoming to them (each
node may appear more than once in the dataguide if the document instance is
not just a tree). RIGs, 1-index, T-index, ToXin, F&B-Index, and F+B-Index, on
the other hand, partition the data nodes into equivalence classes (called extents in
the literature) so that each node appears only once in the summary. The parti-
tion is computed in different ways: according to the node labels (RIGs), the label
paths incoming to the nodes (1-index, ToXin, A(k)-index), the label paths going
out from the nodes (reversed dataguides), or label paths both incoming and out-
going (F&B-Index and F+B-Index). The length of the paths in the summary also
varies: ToXin, 1-index, F&B-Index and F+B-Index summarize paths of any length,
whereas A(k)-index is a synopsis of paths of a fixed length. Updates to structural
summaries have been studied in [Kaushik et al. 2002] and [Yi et al. 2004]. For XML
documents with temporal information, an extension to ToXin (called TempIndex)
summarizes paths that are valid continuously during a certain time interval [Rizzolo
and Vaisman 2008].

Based on the A(k)-index, a recent proposal [Fletcher et al. 2007] defines partitions
of paths, rather than nodes, called P(k)-partitions – where k is the maximum length
of the paths being summarized. Since this proposal is based on navigational XPath,
it supports only expressions containing composition of parent, ancestor, child,
and descendant axes. In contrast, DescribeX can be used to evaluate arbitrary
expressions in the complete XPath language (with all the axes, functions, use of
parenthesis, etc.).

Other summaries are augmented with statistical information of the instance for
selectivity estimation, including path/branching distribution [Polyzotis and Garo-
falakis 2006b], value distributions [Polyzotis and Garofalakis 2006a], and additional
statistical information for approximate query processing [Polyzotis et al. 2004].

A few adaptive summaries like APEX [Chung et al. 2002], D(k)-index [Qun et al.
2003], and M(k)-index [He and Yang 2004] use dynamic query workloads to de-
termine the subset of incoming paths to be summarized. APEX is a summary of
frequently used paths that summarizes incoming paths to the nodes and adapts to
changes in the workload by changing the set of path considered in the synopsis. The
workload APEX considers are expressions containing a number of child axis com-
position that may be preceded by a descendant axis, without any predicate. APEX
summarizes incoming paths to the nodes and adapts to changes in the workload
by changing the set of paths summarized. D(k)-index and M(k)-index, in contrast,
summarize variable-length paths based on both the workload and local similarity
(the length of each path depends on its location in the XML instance).

There has been almost no work on summaries that capture the node ordering
in the XML tree: the only proposals we are aware of are the early region order
graphs (ROGs) [Consens and Milo 1994] and the Skeleton summary [Buneman
et al. 2005] that clusters together nodes with the same subtree structure. Skeleton
has additional structures that store relationships between individual nodes that
belong to different equivalence classes.

In contrast to these proposals, DescribeX is capable of declaratively defining
complex mappings between instance nodes and summary nodes for expressing order,
ACM Journal Name, Vol. V, No. N, Month 20YY.
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cardinality, and relationships that go beyond the traditional parent-child (e.g., next
sibling, following, preceding, etc.) In addition, DescribeX provides a declarative
definition for the first time for most of the proposals discussed above (for more
details on how DescribeX captures other structural summaries see Section 5).

A summary can also be used for creating a simplified version of an XML Schema.
In this so called schema summary [Yu and Jagadish 2006b] related elements in the
original schema are represented by a single element in the summary, thus reducing
the schema information to a manageable size. The user can then expand the sum-
mary to get more detailed information of the parts of the schema she is interested
in for writing XQuery queries. This functionality is similar to the one provided by
the refinements in DescribeX, with two significant differences. First, the schema is
always required in this proposal whereas DescribeX summaries can be constructed
directly from the instance. Second, the schema summaries are a concise description
based on fixed statistical information of the instances. Therefore, the way in which
the user can expand or collapse summary nodes is also fixed for a given instance,
whereas DescribeX provides a declarative way (based on AxPREs) of obtaining
more or less detailed summaries and refinements on different axes. We must point
out that the notions of schema summary importance and coverage introduced in [Yu
and Jagadish 2006b] could be applied to our framework to determine what are the
most relevant parts of the data to refine.

2.2 Hierarchical encodings

We should mention that, in addition to the use of summaries, query evaluation can
be facilitated by encoding the hierarchical structure of an XML instance. Node
encoding evaluations use some sort of interval encodings [Santoro and Khatib 1985]
to label each node with its positional information within the XML instance. This
positional information is used by join algorithms to efficiently reconstruct paths
and label paths. Recent proposals for node encoding evaluations are region algebras
[Consens and Milo 1994; Young-Lai and Tompa 2003], path joins (XISS) [Li and
Moon 2001], relative region coordinates [Kha et al. 2001], structural joins [Al-
Khalifa et al. 2002; Chien et al. 2002], holistic twig joins [Bruno et al. 2002; Jiang
et al. 2003], XR-Tree [Jiang et al. 2003], PBiTree [Wang et al. 2003; Vagena et al.
2004], extended Dewey encoding for holistic twig joins [Lu et al. 2005], and FIX
[Zhang et al. 2006], a feature-based indexing technique.

Structural encoding proposals are based on mapping the XML tree structure into
strings and use efficient string algorithms for query processing. Since the size of
each string grows with the length of the encoded path, many approaches use some
sort of compression to offset this overhead. Examples of those are Index Fabric
[Cooper et al. 2001], tree signatures [Amato et al. 2004], tree sequencing (ViST
[Wang et al. 2003], PRIX [Rao and Moon 2004]), and NoK [Zhang et al. 2004].
These encodings can be used in conjunction with structural summaries to improve
query evaluation performance. In fact, the availability of summaries can be of great
assistance to an XML optimizer [Barta et al. 2005].

DescribeX uses an interval encoding derived from [Santoro and Khatib 1985] in
which each element in the collections is represented by its start and end positions
(the character offset from the beginning of the document they belong to).
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2.3 Query evaluation

Another area closely related to summarization is answering XPath and XQuery
queries using schemas and views. As in traditional database systems, the per-
formance of XPath queries can be improved by rewriting them using caching and
materialized views containing information relevant to the computation of the query.
A recent contribution in this area includes a framework for XPath view material-
ization and query containment [Balmin et al. 2004] that uses value and structure
indexes on views. Another framework was proposed in [Mandhani and Suciu 2005]
for maintaining a semantic cache of XPath query results as materialized views used
to speed-up query processing. Other work has considered the problem of deciding
the existence of a query rewriting and finding a minimal rewriting using XPath
views [Xu and Özsoyoglu 2005], and computing maximal contained rewriting for
tree pattern queries (a core subset of XPath) [Lakshmanan et al. 2006]. The prob-
lem of using DescribeX summaries for XPath query evaluation has been studied in
[Consens and Rizzolo 2007].

XML schemas, whenever present, can provide useful information for writing
meaningful queries. However, as we mentioned in the introduction, schemas can be
very large and difficult to comprehend. Even with the help of structural or schema
summaries, structure-free query models (such as labeled keyword search) might be
more useful in some cases than pure XQuery. Meaningful summary queries [Yu
and Jagadish 2007] combine both structural conditions obtained from the schema
summary together with structure-free conditions for the parts of the data not fully
described in the summary. In this same direction, an extension of XQuery based
on the notion of finding the most meaningful XML fragment that relates nodes
corresponding to variables in the XQuery expression was introduced in [Li et al.
2008].

Finally, recent work tries to exploit structural summaries in XML retrieval. This
kind of retrieval combines IR-style queries with structural constraints for querying
XML document collections. The use of summaries for efficient evaluation of retrieval
queries in the context of the Initiative for the Evaluation of XML Retrieval [Kazai
et al. 2003] has been considered in [Ali et al. 2006; Ali et al. 2007].

2.4 Validating summaries

DTDs [W3C 2006] and XML Schemas [W3C 2004] are proposals used for validation
and verification of XML documents. A DTD is a context-free grammar and an XML
Schema is a typed definition language. Both are schemas in the database sense, and
thus describe classes of documents and constrain their structure. However, they
provide only a limited description of the instances that satisfy them and no mecha-
nism to locate specific instance fragments. In contrast, summaries are constructed
for a particular instance and consequently provide a tighter description of the data.
They also contain the necessary information for locating the instance fragments
they describe. DTDs and XML Schemas can be used to constrain the construction
of summaries but they are no substitute for them. Moreover, summaries can be
constructed even when DTDs and XML Schemas are not present.

In addition to describing an instance, DescribeX summaries could potentially be
used for prescribing or constraining the data by adding schema constructs capable
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of expressing XML schema languages like DTDs, XML Schemas, and Relax NG
[Clark and Makoto 2001]. (For a survey on XML schema languages see [Murata
et al. 2005].) There are many ways of integrating schema constructs with DescribeX
summaries, but our study on this topic is very preliminar and we do not consider
it further here.

3. AXPRE SUMMARIES BACKGROUND

This section provides an overview of the DescribeX framework. The framework
includes a powerful language based on axis path regular expressions (AxPREs) for
describing each set in a partition of instance nodes (extents). AxPREs provide
the flexibility necessary for declaratively specifying the mapping between instance
nodes and summary nodes for a given collection. These AxPRE mappings are
capable of expressing order and cardinality, among other properties. AxPREs are
evaluated on a graph (called axis graph) in which nodes are XML elements and
edges are binary relations between them. Hence, AxPREs can be viewed as path
regular expressions on binary relations. These relations include all XPath axes and
additional ones that can be expressed in XPath.

Extents are defined using a novel approach: selective bisimilarity applied to sub-
graphs described by AxPREs (i.e., AxPRE neighbourhoods). This particular use of
bisimulation supports the definition of summaries that go beyond the traditional
parent and child hierarchical relationships covered by the abundant literature on
summaries. Intuitively, nodes that have bisimilar subgraphs “around” them (i.e.,
neighbourhoods) belong to the same extent. For instance, DescribeX can define
extents containing only nodes with the same set of outgoing label paths matching
a given sequence of axes. Neighbourhoods are a key mechanism in the declarative
definition of DescribeX summaries.

3.1 A regular expression language on axes

For representing an XML instance, DescribeX uses a model called an axis graph.

Definition 3.1 (Axis Graph). An axis graph A = (Inst , Axes, Label, λ) is a
structure where Inst is a set of nodes, Axes is a set of named binary relations
{EA1 , . . . , EAn } in Inst × Inst and their inverses, Label is a finite set of node names,
and λ is a function that assigns labels in Label to nodes in Inst . The edges of A
are the tuples in the relations in Axes and each edge is labeled by the name of the
relation to which it belongs.

An axis graph is an abstract representation of the XPath data model [W3C 1999]
extended with edges that represent XPath binary relations between elements. It
can also include additional axes, such as fc (where fc := child :: ∗[1], i.e., the first
child), ns (where ns := following-sibling :: ∗[1], i.e., the next sibling, same as the
first of the following siblings), id-idrefs or any binary relation that can be expressed
in XPath. When representing an XML instance, axis graph nodes are labeled by
element or attribute names (including namespaces). Figure 1 depicts an axis graph
for our running example.

In an axis graph we define paths and label paths as usual. We call a path defined
on edges an axis path, and the string resulting from the concatenation of its labels
is an axis label path.
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Definition 3.2 (Axis Path and Axis Label Path). Let A be an axis graph, and
v, vn be two nodes in a connected subgraph of A such that there is a path p =
(v, axis1, v1, axis2, . . . , axisn, vn) from v to vn. The axis label path of p is the
string λ(p) = axis1[λ(v1)].axis2[λ(v2)]. . . . . axisn [λ(vn)], where the string ap =
axis1.axis2. . . . .axisn is the axis path of p.

Example 3.3. Consider the axis graph of Figure 1. Two of the paths from node
15 to 20 are p = (15, c, 18, fc, 19, ns, 20) and p′ = (15, c, 18, c, 20). Their axis paths
are ap = c.fc.ns and ap′ = c.c, respectively. Finally, the axis label paths of p
and p′ are λ(p) = c[enclosure].fc[url].ns[type] and λ(p′) = c[enclosure].c[type],
respectively.

Definition 3.4 (Axis Path Regular Expression). An axis path regular expression
(AxPRE) is an expression generated by the grammar

E ← axis | axis[B(l)] | (E | E) | (E)∗ | E.E | ε | [B(l)]

where axis ∈ Axes and ε is the symbol representing the empty expression.

Definition 3.4 describes the syntax of path regular expressions on the binary
relations (labeled edges) of the axis graph including node label tests. The function
B(l) is a boolean function on a label l ∈ Label that supports elaborate tests beyond
just matching labels.

An AxPRE defines a pattern we want to find in an instance. We need a way
of computing all occurrences of such pattern in an axis graph – each occurrence
will be called a neighbourhood. We do this by computing an automaton for the
AxPRE, another for the axis graph, and then taking the intersection. Finally, a
summary will group nodes with similar patterns together into an extent (DescribeX
uses bisimulation as the notion of similarity).

The AxPRE semantics is given by the notion of AxPRE neighbourhood of a node
(Definition 3.10). In order to compute an AxPRE neighbourhood we need first to
define an automaton from the axis graph. Such an automaton will have two states
for each node in the axis graph, one named head and the other tail. In addition,
edges in the graph will be represented as transitions between tail and head states,
and node labels as transitions between head and tail states.

Definition 3.5 (Axis Graph Automaton). Let A = (Inst , Axes, Label, λ) be an
axis graph and v a node inA. The axis graph automaton of A from v,MA(v) = {Q,
Σ, δ, q0, F}, is an automaton [Hopcroft and Ullman 1979] defined as follows:

—For each node w ∈ Inst there is a state head(w) ∈ Q, a state tail(w) ∈ Q and a
transition δ(head(w), [λ(w)]) = tail(w);

—For each edge (wi, wj) labeled axis in A there is a transition δ(tail(wi), axis) =
head(wj);

—All tail(w) states in Q, w ∈ Inst, are final states in F , and head(v) is the initial
state q0.

Example 3.6. Figure 3 shows on the left hand side a fragment of the axis graph
of our running example containing node 15. The axis graph automaton from node
15 (on the right hand side of the figure) has head(15) as initial state and all tail
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Fig. 3. Axis graph fragment from node 15 (a) and its automaton MA(15) (b)

Fig. 4. Basic (left) and inductive (right) rules of the modified Thompson’s construction

states as final. Each node in the axis graph fragment is unfolded into a head and
a tail states in the automaton and its label is represented by a transition between
them. For instance, node 20 with label type that has ns and c incoming edges in
the axis graph and is represented in the automaton by a head(20) state that has
ns and c incoming transitions and an outgoing transition [type] to tail(20).

An automaton can be obtained from an AxPRE following the usual Thompson’s
construction for regular expressions with a minor change to the basis steps to ac-
count for AxPRE semantics (which requires accepting all prefixes of the language).
The language accepted by the so called AxPRE automaton thus constructed will
always be prefix-closed. (A language L is said to be prefix-closed if, given any word
l ∈ L, all prefixes of l are also in L [Hopcroft and Ullman 1979].)

Definition 3.7 (AxPRE Automaton). Let α be an AxPRE. The AxPRE automa-
ton of α is an automaton Mα obtained from α with a modified Thompson’s con-
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Fig. 5. AxPRE automaton M[enclosure].fc.ns∗

struction [Hopcroft and Ullman 1979] for accepting all prefixes (Figure 4), in which
only the final states of the basis rules are kept as final in the resulting automa-
ton (the inductive rules for concatenation, disjunction and Kleene closure do not
mark any additional state as final). The transition function δ̂(qα, axis) returns the
states that can be reached by an axis transition after following an arbitrary number
(possibly zero) of ε transitions.

Example 3.8. Consider the AxPRE [enclosure].fc.ns∗ and its automaton in Fig-
ure 5. The first rules that match are the concatenation (twice) and the Kleene
closure (for ns). Then, the application of rule [Label] of the modified Thompson’s
construction creates states q0, q1 and the [enclosure] transition between them.
Next, the application of rule axis (with fc and ns) creates q2, q3, q5, q6, and the
[l1], . . . , [lm] transitions from q2 to q3 and from q5 to q6 (there is one transition [li]
for each string in Label).

An automaton for the intersection of two languages can be constructed by taking
the product of the automata for the two languages [Mendelzon and Wood 1995;
Yannakakis 1990].

Definition 3.9 (Intersection Automaton). Let MA(v) be the automaton of an
axis graph A from a node v, and Mα be the automaton of an AxPRE α. The
intersection automaton MA(v) ∩ Mα is an automaton in which states are pairs
(qA, qα) consisting of a state qA ∈ MA(v) and a state qα ∈ Mα, and there is
a transition δ((qA, qα),X ) = (q′A, q

′
α) if there are transitions δ(qA,X ) = q′A in

MA(v) and δ̂(qα,X ) = q′α in Mα, where X is either an axis or a label. A state
〈qA, qα〉 is final (initial) if both qA and qα are final (initial).

The machinery introduced in Definitions 3.5 through 3.9 is required for comput-
ing AxPRE neighbourhoods of nodes in the axis graph. The neighbourhood of a
node v by α can be obtained by taking the intersection between the axis graph au-
tomaton from v and the AxPRE automaton of α, and then converting the resulting
automaton to an axis graph fragment as described in Definition 3.10.

Definition 3.10 (AxPRE Neighbourhood of a Node). Let A be an axis graph, v
a node in A, α an AxPRE, andMA(v)∩Mα the intersection automaton ofMA(v)
andMα. The AxPRE neighbourhood of v by α, denoted Nα(v), is the subgraph of
A defined as follows:
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Fig. 6. Intersection automaton MA(18) ∩ M[enclosure].fc.ns∗ (a) and resulting AxPRE neigh-

bourhood N[enclosure].fc.ns∗ (18) (b)

—For each transition δ((head(w), qα), l) = (tail(w), q′α), where (tail(w), q′α) is a
final state, there is a node w with label l in A;

—For each transition δ((tail(wi), qα), axis) = (head(wj), q′α), where (tail(wi), qα)
is a final state, there is an edge (wi, wj) labeled axis in A.

The evaluation of an AxPRE α on an axis graph node v returns the AxPRE
neighbourhood of v by α.

Example 3.11. Consider the intersection automaton of Figure 6 (a). States are
labeled by pairs (qA, qα), where qA is a state in automatonMA(18) and qα is a state
in automatonM[enclosure].fc.ns∗ . The intersection has been computed following Def-
inition 3.9. The figure shows only the states that have some incoming or outgoing
transition. Note that transition c between tail(18) and head(20) is not part of the
intersection because fc is the only outgoing transition from q1 in qα. Figure 6 (b)
shows the AxPRE neighbourhood of node 18, N[enclosure].fc.ns∗(18), obtained by
converting the intersection automaton to an axis graph fragment as described in
Definition 3.10. Note that transitions from (head(v), . . .) to (tail(v), . . .) in the in-
tersection are node labels in the AxPRE neighbourhood and that transitions from
(tail(v), . . .) to (head(w), . . .) are edge labels (axes) in the neighbourhood.

Consider now the four [item].c∗.c.ns neighbourhoods depicted in Figure 7. They
match different number of iterations of the Kleene closure of c (c∗): 0 iteration for
neighbourhood (a) and 1 iteration for the others.

3.2 Neighbourhoods and bisimulation

AxPRE neighbourhoods allow us to define a notion of similarity between nodes in
an axis graph. The idea underlying DescribeX is that nodes with similar AxPRE
neighbourhoods will be grouped together. In particular, DescribeX uses the familiar
concept of labeled bisimulation applied to AxPRE neighbourhoods, formalized by
Definition 3.12.

Definition 3.12 (Labeled Bisimulation and Bisimilarity). Let A = (Inst , Axes,
Label, λ) be an axis graph, and Nα(v0), Nβ(w0) be two AxPRE neighbourhoods
of A such that Axesα ⊆ Axes and Axesβ ⊆ Axes. A labeled bisimulation between
Nα(v0) and Nβ(w0) is a symmetric relation ≈ such that for all v ∈ Nα(v0), w ∈
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Fig. 7. All [item].c∗.c.ns neighbourhoods

Fig. 8. All [item].c∗ neighbourhoods

Nβ(w0), Eαi ∈ Axesα, and Eβi ∈ Axesβ : if v ≈ w, then λ(v) = λ(w); if v ≈ w, and
〈v, v′〉 ∈ Eαi , then 〈w,w′〉 ∈ Eβi and v′ ≈ w′. Two nodes v ∈ Nα(v0), w ∈ Nβ(w0)
are bisimilar, in notation v ∼ w, iff there exist a labeled bisimulation ≈ between
Nα(v0) and Nβ(w0) such that v ≈ w. Similarly, two neighbourhoods Nα(v0) and
Nβ(w0) are bisimilar, in notation Nα(v0) ∼ Nβ(w0), iff v0 ∼ w0.

Definition 3.12 captures outgoing label paths from the nodes. Bisimulation pro-
vides a way of computing a double homomorphism between graphs. The widespread
use of bisimulation in summaries is motivated by its relatively low computational
complexity properties. The bisimulation contraction of a labelled graph can be
done in time O(m log n) (where m is the number of edges and n is the number of
nodes in a labelled graph) as shown in [Paige and Tarjan 1987], or even linearly for
acyclic graphs, as shown in [Dovier et al. 2004]. Using bisimulation also allows us to
capture all the existing bisimulation-based proposals in the literature (Section 5).

Example 3.13. Let us consider the nodes 21 and 27 in the axis graph of Figure 1.
Their [item].c∗.c.ns neighbourhoods are depicted in Figure 7 (c) and (d), respec-
tively. Based on Definition 3.12, we can define a labeled bisimulation ≈ between
nodes 26 and 32 because they have the same labels and they do not have outgoing
edges. For the same reasons we have 26 ≈ 35, 25 ≈ 31, and 25 ≈ 34. However,
it is not possible to define a labeled bisimulation between 30 and 24 because, even
though they have the same labels, 30 has one ns outgoing edge whereas 24 does
not. Thus, 30 6≈ 24. This prevents us from defining a labeled bisimulation between
21 and 27 because 27 has a child (node 30) that is not bisimilar to any child of 21.
Consequently, neighbourhoods (c) and (d) of Figure 7 are not bisimilar.

Let us now compare nodes 21 and 27 but with respect to their [item].c∗ neigh-
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bourhoods, which are depicted in Figure 8 (c) and (d), respectively. In this case we
have 30 ≈ 24 and 33 ≈ 24 because they have the same label and there is a labeled
bisimulation between their children: 25 ≈ 31, 25 ≈ 34, 26 ≈ 32, and 26 ≈ 35.
Similarly, we can conclude that 21 ≈ 27. Consequently, neighbourhoods (c) and
(d) of Figure 8 are in fact bisimilar.

Definition 3.14 (AxPRE Bisimilarity). Let A = (Inst , Axes, Label, λ). When
two nodes v0 and w0 in A have bisimilar neighbourhoods by the same AxPRE α,
that is Nα(v0) ∼ Nα(w0), we say that v0 and w0 are AxPRE bisimilar by α or
α-bisimilar, in notation v0 ∼α w0.

Example 3.15. Consider again the neighbourhoods in Figure 7. Nodes 21 and 27
have non-bisimilar [item].c∗.c.ns neighbourhoods and thus 21 6∼α 27, where AxPRE
α = [item].c∗.c.ns. However, if we consider now their [item].c∗ neighbourhoods,
which are bisimilar, then 21 ∼α′ 27 for AxPRE α′ = [item].c∗.

AxPRE bisimilarity is used for defining partitions of an axis graph. Intuitively, a
so called AxPRE partition assigns two nodes v and w in an axis graph to the same
class if their AxPRE neighbourhoods by a given α are bisimilar. This is formalized
by Definition 3.16.

Definition 3.16 (AxPRE Partition). Let A = (Inst , Axes, Label, λ) be an axis
graph and α an AxPRE. An AxPRE partition of Inst by α, denoted Pα, is a set of
pairwise disjoint subsets of Inst whose union is Inst defined as follows: two nodes
v, w ∈ Inst belong to the same set P iα ∈ Pα iff v ∼α w.

Definition 3.17 (Positive Classes). Let A = (Inst , Axes, Label, λ) be an axis
graph, α an AxPRE and P ∅α = {v ∈ Inst | Nα(v) = ∅} the set of the empty
neighbourhoods in the AxPRE partition of Inst by α. Then, P+

α = Pα − P ∅α is the
set of positive classes of Pα.

Since all nodes that have an empty AxPRE neighbourhood belong to the same
equivalence class, Pα and P+

α differ in at most one set.
Given an AxPRE, the positive classes plus one additional class for the empty

neighbourhood forms a partition. If we have another AxPRE whose positive classes
fall exclusively within this empty neighbourhood class, then these two AxPREs may
be used together to summarize an axis graph. We are interested in sets of AxPREs
whose positive classes define a partition of Inst , which is formalized next.

Definition 3.18 (Positive Partition). Let A = (Inst , Axes, Label, λ) be an axis
graph. A set A = {α1, . . . , αn} of AxPREs defines a positive partition of A, denoted
PA, iff

⋃
i P+

αi
is a partition of Inst .

Note that a Positive Partition is indeed a partition (in particular, a node in
a document can only appear once). The intuition behind the notion of positive
partition from a set of AxPREs A = {α1, . . . , αn} can be explained as follows. We
know, by Definition 3.18, that each αi in A defines an AxPRE partition which has
positive classes and a unique empty neighbourhood class. In order for the set A to
define a positive partition, the empty neighbourhood class of αi has to be further
partitioned by some αj in A. In other words, when the entire set A is considered,
every node that belongs to the empty neighbourhood of some αi also belongs to
some positive class of some αj .
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Example 3.19. Let us consider first the AxPRE ε, which evaluated on each axis
graph node will produce as many different neighbourhoods as different labels in
the axis graph (each neighbourhood containing a single node). Since all nodes
with bisimilar neighbourhoods will belong to the same class, if there are n different
labels in the axis graph the ε positive partition will contain n classes (Figure 2 (a)
shows the sets of the ε positive partition for our running example below each SD
node). The same positive partition can be obtained with the set of expressions
A = {[l1], . . . , [ln]}, where l1, . . . , ln are all the different node labels that appear
in the axis graph. In our running example, the set of expressions equivalent to ε
would contain [RSS], [channel], [item], etc.

Let us consider now the AxPRE [item]. The partition by [item] is obtained as
follows: for each node in the axis graph, we compute the AxPRE neighbourhood
corresponding to [item], and all nodes with bisimilar neighbourhoods (i.e., all nodes
that are [item]-bisimilar) will belong to the same class. Thus, the partition will
consist of two classes: one containing all the nodes v such that λ(v) = item, which
is the set {6, 15, 21, 27} (the positive class), and the other one with the remaining
nodes (the empty neighbourhood class). On the other hand, the [¬item] partition
will create as many classes as nodes v with labels λ(v) 6= participant exist in Inst .
In our running example, the [¬item] partition will have nine positive classes (one
per label different from “item”) whereas all nodes with “item” label will belong to
the empty neighbourhood class. The two AxPREs [item] and [¬item], when put
together, define a positive partition with ten classes (one for each label).

4. DESCRIBING SUMMARIES WITH AXPRES

In the previous section, we have introduced the basic machinery we need to define
summary descriptor (SD, for short). Intuitively, an SD consists of an axis graph in
which each node has associated an AxPRE and a set in its AxPRE partition, and
whose edges represent axis relationships between those sets.

Definition 4.1 (Summary Descriptor). Let A = (Inst, Axes, Label, λ) be an axis
graph of an instance. A summary descriptor (SD for short) of A is a structure
DA = (A, G, axpre, extent) that consists of:

—a set A = {α1, . . . , αn} of AxPREs such that PA is the positive partition of A by
A;

—an axis graph G = (Sum,AxesD, Label, λD), called SD graph, representing axis
relationships between nodes in the sets (extents) of the positive partition PA
where:
—Sum is a set of nodes;
—AxesD is a set of binary relations {ED1 , . . . , EDn } in Sum×Sum such that there

is a tuple 〈sj , sk〉 in EDi iff ∃EAi ∈ Axes, ∃v ∈ extent(sj),∃w ∈ extent(sk) ∧
〈v, w〉 ∈ EAi (edges are labeled by axis names);

—Label is the set of node labels from A;
—λD is a function that assigns labels in Label to nodes in Sum.

—a bijective function axpre that assigns AxPREs from A to nodes in Sum;
—a bijective function extent that assigns a set from the positive partition PA to

each node in Sum (the set assigned is called the extent of the node).
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Fig. 9. Label SD (a), and heterogeneous SD (b), with stability-denoting edges

An SD has some particular characteristics. The set A uniquely defines the extents
of the SD, and therefore its nodes, for any particular axis graph instance. In other
words, given an axis graph A and the set A we can create the SD of A by A. On
the other hand, not any set of AxPREs define a positive partition and thus an SD.
The first SDs we can distinguish are those that are defined by a unique AxPRE
from those that have a multi-AxPRE definition. We denote the former ones as
homogeneous SDs because all their nodes are defined uniformly. Homogeneous
SDs are the most common in the summary literature (e.g., dataguides [Goldman
and Widom 1997], 1-index [Milo and Suciu 1999], ToXin [Rizzolo and Mendelzon
2001], A(k)-index [Kaushik et al. 2002], F&B-Index [Kaushik et al. 2002], Skeleton
[Buneman et al. 2005]). SDs defined by multiple AxPREs are called heterogeneous.

Definition 4.2 (Summary Axis Stability). Let e = 〈si, sj〉 be an SD graph edge
with label axis. We say that e is an existential edge if ∃x ∈ extent(si),∃y ∈
extent(sj) ∧ 〈x, y〉 ∈ axis, and a forward-stable edge if ∀x ∈ extent(si), ∃y ∈
extent(sj) ∧ 〈x, y〉 ∈ axis.

Summary axis stability captures the relationship between edges in the SD graph
and the axis graph, and generalizes to several axes the edge stability representation
in XSketch [Polyzotis and Garofalakis 2006b].

Example 4.3. Consider the label SD of Figure 9 (a). Since there are ten different
labels in the axis graph of the instance, there are ten summary nodes in the label
SD. Nodes in the figure are labeled by their AxPREs, so we are considering a
heterogeneous label SD in which A contains one AxPRE per label. The extent of
each node is depicted below it. Edges represent summary axis relations. The nodes
and edges in the figure constitute the SD graph of the label SD. Figure 9 (b) shows
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another heterogeneous SD with a different set A where [channel] and [item] from
the label SD have been replaced by [channel].c.c and [item].c, respectively.

In both figures, existential edges are represented by dashed lines and forward-
stable edges by solid lines. (Note that by definition all forward-stable edges are also
existential.) A dashed line does not necessarily mean that an edge is not forward-
stable, it might be that stability has not been checked on that edge (existential
edges in the figure have been checked and are not forward-stable). When an edge e
and its inverse are both forward-stable, e is shown in bold lines. Intuitively, dashed
edges, like (s6, s5) labeled c, mean that some element in the extent of s6 has a child
in the extent of s5. Regular edges, like (s6, s3) labeled fc, mean that every element
in the extent of s6 has a first child in the extent of s3. Finally, bold edges, like
(s9, s10) labeled ns, mean that every element in the extent of s10 is the next sibling
of some element in the extent of s9 and that every element in the extent of s9 has
a next sibling in the extent of s10.

Consider again Sue, the syndication company developer of our motivating ex-
ample. Bold edges give Sue an idea of where the homogeneous part of the data
is. For instance, edges (s8, s9) and (s9, s10) tell her that enclosure elements have
always a URL as a first child followed by a type. From the label SD she knows that
every item has a title because (s6, s3) is forward-stable, but she cannot tell which
items have exactly description, enclosure, pubDate and link because their edges are
just existential. However, after the refinement all edges from the item elements
are forward-stable and thus the sets of items with each combination of children are
clearly indicated in the item SD nodes.

Algorithm 4.4 computes an SD D from an axis graph A and a set X of AxPREs
that define a positive partition of A. Essentially, the algorithm creates the positive
partition in one pass over A (outer loop spanning steps 2-25). Loop 4-24 computes
the AxPRE neighbourhood of v for each α in X (step 5) and then finds the α for
which the AxPRE neighbourhood of v is non-empty. Since X defines a positive
partition as a precondition, then for every v there is one and only one α in X such
that Nα(v) 6= ∅. This guarantees that condition in step 6 is true exactly once for
every v in A.

The next task in the algorithm is to find the extent where v belongs. Loop 7-13
compares by bisimulation Nα(v) with every node in D that has the same AxPRE
α. If there is a node s in D with α but the α neighbourhoods of v and s are not
bisimilar (step 10), then a new node candidate is created (step 15). The same
happens if there is no s in D with α at all. In all cases v is added to the extent of
candidate (step 19). Since each v in A may be in an axis relationship with nodes
in any extent, the final loop 20-22 checks edge existence (for the input set of axes
AxesD) between the node candidate and every other node in D. The result of the
algorithm is an SD D where the extent of each node is a set in the positive partition
of A by X and the axes in AxesD satisfy the conditions in Definition 4.2.

As shown, the outer loop 2-25 performs |Inst | iterations. At any given moment,
there is at most the same number of nodes in D as in A (each extent having only one
node) and all have the same AxPRE. Therefore, loop 7-13 performs |Inst | iterations
in the worst case. Each iteration computes an AxPRE bisimulation (step 10) with
time complexity O(m.log|Inst |), where m is the total number of tuples (edges) in
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Algorithm 4.4. CreateSD(A,X)

Input: An axis graph A, a set X of AxPREs that defines a positive partition of A, and

a set AxesD of SD axes where each axis contains only the empty tuple
Output: An SD D

1: create empty SD D

2: for every v in A do
3: candidate := ∅
4: for every α in X do
5: compute the α neighbourhood of v: Nα(v)
6: if Nα(v) 6= ∅ then
7: for every node s in D such that axpre(s) := α do
8: let w be a node in extent(s)
9: compute the α neighbourhood of w: Nα(w)

10: if v ∼α w (i.e., Nα(v) ∼ Nα(w)) then
11: candidate := s

12: end if
13: end for
14: if candidate = ∅ then
15: create a new node candidate in D

16: axpre(candidate) := α
17: λD(candidate) := λ(v)

18: end if
19: add v to extent(candidate)
20: for every node s′ 6= candidate in D do
21: add tuple 〈candidate, s′〉 and 〈s′, candidate〉 to the corresponding axis in AxesD

if conditions in Definition 4.2 are satisfied
22: end for
23: end if
24: end for
25: end for

all axes in Axis. The worst case for loop 20-22 is the same as that of loop 7-13, so
it also performs |Inst | iterations. Thus, the total time complexity of Algorithm 4.4
is O(|Inst |.m.log|Inst |).

The notion of an AxPRE neighbourhood can also be defined for an SD graph,
and it is called summary AxPRE neighbourhood of a node. Since an SD Graph
is in fact an axis graph G = (Sum,AxesD, Label, λD), for any given SD node s
and AxPRE α we can define its SD graph automaton MG(s) (Definition 3.5) and
intersect it with the AxPRE automaton Mα (Definition 3.7) in order to obtain an
AxPRE neighbourhood (Definition 3.10) of s.

Definition 4.5 (Partition Refinement). Let A = (Inst, Axes, Label, λ) be an axis
graph. If PA and PB are positive partitions of A, PA is a partition refinement of
PB if every set of PA is contained in a set of PB.

Definition 4.6 (SD Refinement). LetA = (Inst, Axes, Label, λ) be an axis graph
and DA = (A,G, extent) and DB = (B,G′, extent′) be two SDs of A. DA is an SD
refinement of DB if PA is a partition refinement of PB.

Proposition 4.7. Let A = (Inst , Axes, Label, λ) be an axis graph, α and β be
AxPREs, and Pα and Pβ be AxPRE partitions of A. If α is contained in β then
Pβ is a refinement of Pα.
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Proof. (Sketch) The proof follows from the notion of AxPRE neighbourhoods.
If α is contained in β then for any given node v, its α neighbourhood is contained in
its β neighbourhood. Consequently, two nodes that are not distinguished by α (i.e.,
they are α-bisimilar) may be distinguished by β, but not the other way around.
This guarantees that β creates either the same partition as α or a refinement.

Corollary 4.8. Let A = (Inst , Axes, Label, λ) be an axis graph and DA =
(A,G, extent) and DB = (B, G′, extent′) be two SDs of A. If every β ∈ B is con-
tained in some α ∈ A then DA is an SD refinement of DB.

Example 4.9. Consider the label SD of Figure 9 (a). Recall that in the label SD,
A = {[l1], ..., [ln]}, where li ∈ Label, li 6= lj ∀ i, j, and

⋃
i li = Label. Suppose we

want to refine node s6. For this node, the partition represented in the figure was
produced by the AxPRE [item]. If we replace this AxPRE by [item].c in A, and
apply this set of AxPREs to Inst , s6 will be replaced by two new nodes: s61 and
s62 (which appear in Figure 9 (b) with their respective extents). The new extents
represent the fact that node 6 in the axis graph has children labeled title, link and
description whereas nodes 15, 21 and 27 have children labeled title, pubDate and
enclosure. Thus, applying [item]c we obtain two different AxPRE neighbourhoods
of s6, plus the empty neighbourhood, which is itself partitioned by the remaining
AxPREs.

Finally, suppose now that the label SD is defined using A = ε, and we want to
refine node s6 with [item].c. In this case, just adding the new AxPRE does not
suffice, because we would not obtain an SD: the union of positive partitions will
not be a partition of Inst because ε will still produce its own partitions. We solve
this by adding the AxPRE [¬item], which will produce the remainder of the label
SD and will send all nodes labeled item to the empty neighbourhood class.

The notions of partition and SD refinement, besides describing the axis structure
of an axis graph, allows us to define a hierarchy of SDs. This provides the basis
for recognizing a lattice among different SDs, where each node corresponds to a
different AxPRE definition. We will show that this lattice covers all the summaries
addressed in the literature, plus more complex new ones. At the top of this hi-
erarchy (i.e., the coarsest partition), the empty AxPRE defines a SD where each
node is partitioned by label (as shown in Figure 10), a typical summary found in
the literature [Consens and Milo 1994; Nestorov et al. 1997]. The bottom of the
lattice may vary, although the finest partition granularity can be represented by
the expression (fc.ns∗)∗, that produces a partition in which each node in the axis
graph will belong to a different equivalence class.

Definition 4.10 (DescribeX Lattice). A DescribeX lattice with respect to a set
of axes A = {a1, . . . , an} is defined as follows: each node corresponds to an Ax-
PRE generated by the grammar of Definition 3.4 when the terminal axis is one of
a1, ..., an. Also, there is an edge (n1, n2) in the lattice if and only if the AxPRE of
n2 is contained in the AxPRE of n1.

From Definition 4.10 it follows that the coarsest partition that the lattice may
define is the label SD. The finest partition depends on the chosen set of axes.
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Fig. 10. AxPRE summary lattice capturing earlier homogeneous proposals

5. CAPTURING EARLIER LITERATURE PROPOSALS WITH DESCRIBEX

DescribeX summaries can be classified in a lattice that describes a refinement rela-
tionship between entire summaries (Definition 4.10). In this section we revisit some
of the related work discussed in Section 2 that can be captured in such a lattice by
the DescribeX framework.

Figure 10 shows a fragment of a DescribeX summary lattice that captures earlier
proposals based on the notion of bisimilarity (in green) and ad-hoc constructions
(in red). Each node in the figure corresponds to a homogeneous SD defined by an
AxPRE. DescribeX not only captures most summary proposals but also provides a
declarative way of defining entirely new ones: nodes and edges in blue are a sample
of the richer SDs that were never considered in the literature, like the one that
appears in Figure 7 ([item].c∗.c.ns).

The earliest bisimilarity-based summary proposal is the family presented in [Milo
and Suciu 1999], which contains a p∗ summary: the 1-index. The 1-index partition
is computed by using bisimulation as the equivalence relation. The F&B-Index
[Kaushik et al. 2002], is an example of a (p|c)∗ SD. The F&B-Index construction
uses bisimulation like the 1-index, but applied to the edges and their inverses in
a recursive procedure until a fix-point. With this construction, the F&B-Index’s
equivalence classes are computed according to the incoming and outgoing label
paths of the nodes. The same work introduces the F+B-index (a p∗|c∗ AxPRE
summary constructed by applying bisimulation to the edges and their inverses only
once) and the BPCI(k,j,m) index (a (pk|cj)m AxPRE summary, where k, and j
controls the lengths of the paths and m the iterations of the bisimulation on the
edges and their inverses). The F+B-index and the F&B-index are BPCI(∞,∞, 1)
and BPCI(∞,∞,∞) respectively. The A(k)-index [Kaushik et al. 2002] is a pk

AxPRE summary based on k-bisimilarity (bisimilarity computed for paths of length
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k). Thus, the A(0)-index is a label SD, the A(1)-index is a p SD, the A(2)-index is
a p.p SD, and the A(h)-index is the ph SD.

Unlike standard definitions in the bisimulation literature [Paige and Tarjan 1987;
Dovier et al. 2004], 1-index, A(k)-index, F&B-index, and BPCI(k,j,m) use a bisim-
ulation defined backwards in order to capture incoming paths to the nodes.

The notion of backwards k-bisimilarity used in the A(k)-index was defined to
capture incoming paths on c and idref edges of length up to k. We provide next a
more general definition for axis graphs that supports paths on all types of axes.

Definition 5.1 (Backwards k-Bisimilarity). Let G1 and G2 be two rooted sub-
graphs of an axis graph A = (Inst , Axes, Label, λ), such that AxesG1 ⊆ Axes
and AxesG2 ⊆ Axes, and let r1, r2 ∈ Inst be the roots of G1 and G2 respectively.
A backwards k-bisimulation between G1 and G2 is a symmetric relation ≈kb such
that for all v ∈ G1, w ∈ G2, EG1i ∈ AxesG1 , and EG2i ∈ AxesG2 : if v ≈0

b w, then
λ(v) = λ(w); if v ≈kb w, and 〈v′, v〉 ∈ EG1i , then 〈w′, w〉 ∈ EG2i and v′ ≈k−1

b w′. Two
nodes v ∈ G1, w ∈ G2 are backward k-bisimilar, in notation v ∼kb w, iff there exist a
backwards k-bisimulation ≈kb between G1 and G2 such that v ≈kb w.

Note that backwards k-bisimilarity defines an equivalence relation on the nodes in
the axis graph. The partition created by the backwards k-bisimilarity corresponds
to the A(k)-index, where k is a parameter that represents the length of the incoming
paths summarized by the index.

Proposition 5.2. Let G be an axis graph with Axes = {c} (Axes = {c, idref },
respectively). The A(k)-index of G is a pk SD (a (p|idref )k SD, respectively).

Proof. Consider an axis graph G with Axes = {c}. Two nodes v, w belong to
the same extent in the pk SD iff they are pk-bisimilar. In addition, we know that
v ∼pk w iff there exists neighbourhoods Npk(v) and Npk(w) such that v ∼ w. This
means we can define a backwards k-bisimulation ≈kb between Npk(v) and Npk(w)
such that v ≈kb w and thus v ∼kb w.

The BPCI index is also based on the notion of backwards k-bisimulation. Al-
gorithm 5.3 [Kaushik et al. 2002] constructs a BPCI(kin, kout, td) index using kin-
bisimilarity for the reversed edges (line 5), kout-bisimilarity for the original edges
(line7), and a td number of iterations (loop 3-8). The next proposition shows that
the index constructed by Algorithm 5.3 can be captured by a specific SD.

Proposition 5.4. Let G be an axis graph with Axes = {c} (Axes = {c, idref },
respectively). The BPCI(kin, kout , td)-index of G is a (pkin |ckout )td SD (a (pkin |ckout |
idref kout | (idref −1)kin)td SD, respectively).

Proof. The input data graph G can be viewed as an axis graph with the c
axis, in which the reversed edges correspond to the c−1 (or p) axis. If id-idrefs are
considered, then Axes = {c, idref }. Let us consider first the case of Axes = {c}.
Lines 4 and 5 are equivalent to refining all nodes in the initial label SD (line 2) by
the ckout AxPRE. This produces a ckout SD. Then, lines 6 and 7 produce a refine-
ment of all ckout nodes by the pkin AxPRE, thus obtaining a ckout .pkin SD. The
iterative process is repeated td times (loop 3-8), which is equivalent to construct-
ing a (ckout .pkin)td SD. Again, by identity of regular expressions (ckout .pkin)td is
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Algorithm 5.3. BPCI−construction(G, kin, kout, td)

Input: Data graph G, local similarities kin and kout, tree depth td

Output: BPCI(kin, kout, td) index I

1: let P be a partition of the nodes in G

2: P ← label SD partition of G

3: for i=1 to td do
4: reverse all edges in G

5: P ← compute the backwards kin-bisimilarity partition of G initializing the computation

with P
6: reverse all edges in G, obtaining the original G

7: P ← compute the backwards kout-bisimilarity partition of G initializing the computation
with P

8: end for
9: for each equivalence class Pi ∈ P do

10: create an index node s ∈ I
11: extent(s)← Pi
12: end for
13: for each edge from v to w in G do
14: let s ∈ I be an index node such that v ∈ extent(s)
15: let s′ ∈ I be an index node such that w ∈ extent(s)
16: if there is no edge from s to s′ then
17: create an edge from s to s′

18: end if
19: end for

equivalent to as (ckout |pkin)td. The remaining of the algorithm (lines 9-16) creates
existential edges like in Definition 4.2. When Axes = {c, idref }, the final AxPRE
for the SD is (ckout |pkin |idref kout |(idref −1)kin)td.

The Skeleton summary [Buneman et al. 2005] clusters together nodes with the
same subtree structure, thus capturing node ordering in subtrees. Skeleton uses
an entirely different construction approach, but its essence can be captured by the
(fc.ns∗)∗ AxPRE.

The D(k)-index [Qun et al. 2003], and M(k)-index [He and Yang 2004] are het-
erogeneous SD proposals. All nodes si are described by pk AxPREs with a different
k per si. They use different construction strategies based on dynamic query work-
loads and local similarity (i.e., the length of each path depends on its location in
the XML instance) to determine the subset of incoming paths to be summarized.

XSketch [Polyzotis and Garofalakis 2006b] manages summaries capturing many
(but not all) heterogeneous SD’s along the p and c axis, ranging from the label
summary to the F&B-Index. However there is no control over the refinements
chosen, nor a description of the intermediate summaries obtained. This makes
sense given that XSketch objective is to provide selectivity estimates. As such,
its construction algorithm is guided by heuristics to optimize the space/accuracy
trade-off.

Region inclusion graphs (RIGs) [Consens and Milo 1994] and representative ob-
jects of length 1 (1-RO) [Nestorov et al. 1997] are label SDs, that is ε SDs (because
all their nodes si are described by the ε AxPRE). In general, representative objects
are pk SDs for XML tree instances. Therefore, the 1-RO is a label SD, the 2-RO is
a p SD, the 3-RO is a p.p SD, and the FRO (full RO) is the p∗ SD.
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Dataguides [Goldman and Widom 1997] group instance nodes into sets called
target sets according to the label paths from the root they belong to. The dataguide
construction is basically a nondeterministic-to-deterministic automaton translation.
When the data instance is a tree, the dataguide’s target sets are equivalent to the
extents in our framework: a dataguide of an XML tree is a p∗ SD.

ToXin [Rizzolo and Mendelzon 2001] also has a component that can be viewed
as an p∗ SD. ToXin consists of three index structures: the ToXin schema, the path
index, and the value index. The ToXin schema is defined only for tree instances,
and it is equivalent to a p∗ SD graph.

6. REFINING SUMMARIES

The theoretical framework presented in previous sections set the foundation for
developing an SD-based tool to help understand the metadata structure of highly
heterogenous XML collections. Such a tool should provide the ability to interac-
tively change an SD in order to obtain descriptions at different levels of detail. An
obvious first choice for this would be to rebuild the entire SD from scratch using
Algorithm 4.4. A better approach consists in defining an operation that changes
the description provided by a single SD node by modifying its AxPRE. When the
new AxPRE partition constitutes a refinement of the old one, we denote the oper-
ation an AxPRE refinement. (This operation was illustrated in Section 1.1 when
Sue wanted to find out the different kinds of channel elements that appeared in
the collection she was analyzing). The notion of refinement is tightly related to
that of stabilization (discussed in Section 4). An edge stabilization determines the
partition of an extent into two sets based on the participation (total or partial) of
the extent nodes in the axis relation the edge represents. In this section, we discuss
in detail the mechanisms for refinement and stabilization provided by DescribeX.

6.1 Concise descriptions

Since several SD nodes can share the same AxPRE, we need a mechanism for
uniquely describing each SD node and its extent. The most straightforward way
to do that would be just to list all nodes that belong to the extent (extensional
representation). A more concise description is provided by the α neighbourhood of
any node in the extent (intensional representation). Since all nodes in an extent
are bisimilar, any α neighbourhood can be used to find all the other nodes in the
extent by bisimulation.

In order to get the most concise description of the intensional representation, we
need to find the smallest (in terms of number of nodes) neighbourhood in the extent
of s that is bisimilar to all the others. This is achieved by computing a bisimulation
contraction over all neighbourhoods in the extent of s. The bisimulation contrac-
tion of a given graph is the smallest graph that is bisimilar to it, which can be
computed in time O(m log n) (where m is the number of edges and n is the number
of nodes) [Paige and Tarjan 1987], or even linearly for acyclic graphs [Dovier et al.
2004]. Based on bisimulation contraction we define the notion of representative
neighbourhood.

Definition 6.1 (Representative Neighbourhood). Let D be an SD and s a node
in D such that axpre(s) = α. The representative neighbourhood of node s for
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Fig. 11. The [channel].c[item].c[enclosure] neighbourhood (a) and its representative neighbour-

hood (b)

AxPRE α, denoted Rα(s), is an axis graph that is the bisimulation contraction of
all neighbourhoods Nα(vi), where vi ∈ extent(s). Rα(s) has a single root node v0
that is bisimilar to all vi ∈ extent(s).

Note that the bisimulation contraction is not necessarily one of the neighbour-
hoods in the extent – it could be smaller than any of them. Rather, a representative
neighbourhood is an entirely new axis graph that happens to be the smallest that
is bisimilar to all neighbourhoods in an extent.

Example 6.2. Consider the AxPRE partition of our running example described
by AxPRE [interaction].c[participantList].(c|p). It has only one set, the extent of
node s, which contains nodes 2 and 14, and their representative neighbourhood is
the graph shown in Figure 11. Note that such a neighbourhood does not belong
to the extent of s (there is no participantList in the axis graph with only one
participant node).

For some neighbourhoods, deciding bisimilarity is equivalent to comparing the
sets of simple label paths from their roots to their leaves. (A path is simple when it
has no repeated edges.) In those cases, the neighbourhoods of an SD node s can be
described by an extent expression (EE for short), denoted ee(s), which is capable
of computing precisely the set of elements in the extent of s. Interestingly enough,
these EEs can be expressed in XPath [W3C 1999] and their functionality is similar
to that of virtual views, as studied in [Rizzolo 2008].

Definition 6.3 (Path and LPath Sets). Let N be a neighbourhood in an axis
graph A, and v a node in N . We denote by Path(v) and LPath(v) the set of
simple axis paths and simple axis label paths from v, respectively.

If deciding bisimilarity between a given set of neighbourhoods is equivalent to
comparing their LPath sets, we say that such neighbourhoods are LPath distin-
guishable.

Definition 6.4 (LPath Distinguishable Neighbourhoods). LetA be an axis graph
and N1(v1), . . . ,Nm(vm) be neighbourhoods in A. We say that N1, . . . , Nm are
LPath distinguishable when, for all 1 ≤ i, j ≤ m : Ni(vi) ∼ Nj(vj) iff LPath(vi) =
LPath(vj).

We are interested in LPath distinguishable neighbourhoods because they can be
described by EEs. In general, determining whether a given set of neighbourhoods is
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Algorithm 6.5. RefineNode(D, s, α)

Input: An SD D, a node s in D, and an AxPRE α ⊆ axpre(s)
Output: An SD D where s has been refined by α

1: for every v in extent(s) do
2: candidate := ∅
3: compute the α neighbourhood of v: Nα(v)

4: for every node s′ in D such that axpre(s′) = α do
5: let w be a node in extent(s′)
6: compute the α neighbourhood of w: Nα(w)

7: if v ∼α w (i.e., Nα(v) ∼ Nα(w)) then
8: candidate := s′

9: end if
10: end for
11: if candidate = ∅ then
12: create a new node candidate in D

13: axpre(candidate) := α
14: λD(candidate) := λ(v)

15: end if
16: move v from extent(s) to extent(candidate)
17: end for
18: let S be the set of nodes connected to s

19: for every node s′′ in S do
20: add edges 〈candidate, s′′〉 and 〈s′′, candidate〉 if conditions in Definition 4.2 are satisfied

21: end for
22: delete s and all its incoming and outgoing edges from D

LPath distinguishable entails computing the bisimulation between them and then
comparing the result to their LPath sets.

There is a class of neighbourhoods, however, that are guaranteed to be always
LPath distinguishable. For neighbourhoods in that class, we can bypass the bisim-
ulation computation and obtain the EEs directly from the LPath sets. Such is
the class of the tree neighbourhoods. How to characterize other classes of LPath
distinguishable neighbourhoods without resorting to bisimulation remains an open
problem.

6.2 Changing descriptions

The description provided by a node in the SD can be changed by an operation that
modifies its AxPRE and thus its AxPRE neighbourhood. This operation is called a
refinement of an SD node. The refinement of an SD node is computed by changing
the AxPRE of the node.

Algorithm 6.5 computes a refinement of an SD node s by changing its former
AxPRE into a new AxPRE α. Loop 1-17 iterates over every node v in the extent
of s and moves each v to the corresponding new SD nodes one by one. For every
SD node s′ with AxPRE α, loop 4-10 takes any node w in its extent and compares
by bisimulation Nα(v) with Nα(w). (All nodes in the extent of s′ are bisimilar
by α, so any one suffices for the test.) If they are bisimilar (step 7), then s′ is a
candidate and v is moved to the extent of s′ (step 16). If they are not bisimilar,
then a new candidate node is created (step 12) with AxPRE α (step 13) and label
λ(v) (step 14). After every node v in the extent of s has been moved to some new
node, loop 19-21 creates new edges if necessary and delete the original SD node
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Algorithm 6.6. StabilizeEdge(D, si, sj)

Input: An SD D containing a non forward-stable edge e = 〈si, sj〉 with label axis
Output: An SD D where e has been replaced by forward-stable e′ = 〈s′i, sj〉
1: α := axpre(si)|axis.axpre(sj)
2: for every node s in D such that axpre(s) = axpre(si) do
3: RefineNode(D, s, α)

4: end for

Algorithm 6.7. UnfoldEdge(D, si, axis)

Input: An SD D, a node si such that there exists a non forward-stable e = 〈si, si〉 with label
axis

Output: The SD D where any edge e = 〈si, si〉 with label axis is forward-stable

1: α := axpre(si)|axis∗
2: for every node s in D such that axpre(s) = axpre(si) do
3: RefineNode(D, s, α)

4: end for

Fig. 12. Stabilization of the c[pubDate]|c[enclosure].ns neighbourhood of s6

s, whose extent is now empty. Note that the algorithm in fact changes one of the
AxPREs in the definition of the SD, so all nodes that share the modified AxPRE
will be affected.

Alternatively, the description provided by an SD node can be changed by sta-
bilizing the edges (according to Definition 4.2) in the summary neighbourhood of
the SD node. The goal of this particular refinement operation is to make forward-
stable all edges in the neighbourhood of an SD node. As usual, the neighbourhood
to stabilize is given by an AxPRE. DescribeX uses Algorithm 6.6 to stabilize an
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edge linking two different nodes and Algorithm 6.7 to stabilize an edge forming
a loop. Both algorithms essentially reduce edge stabilization to refinement: step
1 composes a new AxPRE and step 3 refines the affected nodes by calling Algo-
rithm 6.5. The next example illustrates how non forward-stable edges are stabilized
by Algorithms 6.6 and 6.7.

Example 6.8. Consider the 〈s6, s8〉 edge from Figure 12 (a). This edge is not
forward-stable because node 6 is not related to any node in extent(s8) via the c
axis. Edge stabilization (Algorithm 6.6) creates two nodes, s61 and s62, such that
extent(s61) = {6} and extent(s62) = {15, 21, 27}. Since axpre(s6) = [item] and
axpre(s8) = [enclosure], then line 1 of Algorithm 6.6 creates the new AxPRE
[item]|c[enclosure], which is then used to refine all [item] nodes (in this case just
node s6) in lines 2 and 3. The new edge 〈s62, s8〉 is forward-stable. The result of
stabilizing edge 〈s4, s6〉 is shown in Figure 12 (b).

Consider now the ns loop on node s8. The edge is not forward-stable because
some element in extent(s8) is not in a ns relation with elements in the same extent
(for instance, there is no node that is the next sibling of node 18). Since axpre(s8) =
[enclosure], then line 1 of Algorithm 6.7 creates the new AxPRE [enclosure]|ns∗,
which is then used to refine all [enclosure] nodes (just node s8 in our example)
in lines 2 and 3. The new edges are forward-stable. The result of unfolding ns
loop on s8 is shown in Figure 12 (c). This last stabilization created two new non
forward-stable edges that can be in turn stabilized by applying Algorithm 6.6 one
more time. The final stable neighbourhood appears in Figure 12 (d).

Refinements can also be the result of adapting an SD to an XPath expression.
DescribeX can transform the structural subquery of an XPath expression Q (the
expression that results from removing all non-structural predicates such as those
containing functions) into an equivalent AxPRE α. Once DescribeX has computed
α, it needs to find the SD node whose AxPRE contains α in order to get the
candidate documents for evaluating Q. Candidate documents are those that are
guaranteed to provide a non-empty answer for the structural subquery of Q. If
there is an SD node s with the exact AxPRE α, then all documents in the extent
of s are in fact candidate documents. In contrast, if s has an AxPRE α′ containing
α, DescribeX can adapt the SD by refining s with α and then get the candidate
documents as in the previous case. Note that, by adapting the SD to the structural
subquery, DescribeX has found a restricted superset of the answer and hence has
considerably reduced the search space for computing the entire query. Once the
candidate documents are found, finding the answer documents entails running Q
on all candidates. (See [Consens and Rizzolo 2007] for a detailed study on how to
evaluate XPath queries on SDs.)

7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

In this section, we present the results of an empirical study we conducted using
the DescribeX framework. The study evaluates the performance of the initial p∗

SD construction and the feasibility of two approaches, materialized and virtual, for
computing extents and edges in DescribeX’s main exploration operations, refine-
ment and stabilization. From nodes in the initial p∗ SD we performed three sets
of experiments: c∗ refinements, AxPRE refinements and edge stabilizations. The
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first one is an example of a refinement easy to express, but relatively expensive
to compute, since the number of different outgoing label paths in an axis graph
(captured by c∗) is usually large for any given node. In addition, the c∗ allows
us to evaluate DescribeX with a common axis used throughout the summary lit-
erature. In contrast, AxPRE refinements and stabilizations are intended to test
operations unique to DescribeX by specifying more expressive AxPREs including
label selection, disjunctions and/or combinations of axes. The overall objective of
this study is twofold. First, to understand how key parameters, namely extent
size (documents and elements) and number of resulting new SD nodes and edges,
impact each operation. Second, to determine what method performs better under
what kind of conditions. The experiments demonstrate that DescribeX easily scales
up to gigabyte sized XML collections with important performance results.

Before introducing the experimental results, we discuss how DescribeX is imple-
mented in the DescribeX engine.

7.1 DescribeX Engine

The DescribeX architecture is tailored to process XML collections one file at a time,
the prevalent data processing model for the Web. Each file is parsed, processed
and stored before continuing with the next file in the collection. Such an approach
supports the interactive creation and refinement of AxPRE SDs for large collections
of XML documents.

The DescribeX engine is implemented in Java using Berkeley DB Java Edition17

to store and manage indexed collections (tables). The implementation can invoke
an arbitrary JAXP 1.318 XPath processor for the evaluation of XPath EEs. JAXP
is an implementation independent portable API for processing XML with Java. For
our experiments, we employed the Saxon19 XPath processor. Saxon conforms to
the XPath 2.0 standard set by the W3C [W3C 2007].

We tested two different storage strategies for the extents. One is based on ma-
terializing the SD partitions whereas the other is a virtual approach that relies
exclusively on XPath EEs to compute extents and edges. When materializing
the partitions, extents are stored in an indexed table named elemDB with schema
elemDB(SID, docID, endPos, startPos, SID2), where the underlined attributes are
the key (also used for indexing). The elemDB table contains a tuple for each XML
element in the collection. Each SD node is identified by a unique id called SID.
Each element belongs to the extent of a unique SD node, whose SID is stored in
the SID attribute. The attribute docID holds the identifier of the document in
which the element appears. The startPos and endPos are the positions, in the
document, where the element starts and ends, respectively; they are used to quickly
determine the ancestor-descendant relationship between any pair of XML elements.
This encoding is a variant of Dietz’s numbering scheme [Dietz 1982] in which nodes
are labeled with their preorder and postorder traversals [Kaplan et al. 2002]. SID2
allows us to maintain an SID for a second SD. For testing the virtual approach,
the DescribeX engine stores a docDB table instead of the elemDB table described

17http://www.oracle.com/technology/products/berkeley-db/je/
18http://jaxp.dev.java.net/1.3/
19http://saxon.sourceforge.net/
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Table I. Test collections
Name Size #Docs #SD Nodes Load Time (s)

(MB) p∗ label p∗ label

RSS2 210 9600 1058 301 64.2 41.4

Wiki5 545 30000 15602 259 438.6 175.7
Wiki45 4520 659388 66073 1245 8089.1 6201.2

above. The schema of the docDB table is docDB(SID, docID), which contains for
each sid s the docIDs of all XML documents containing elements in the extent of
s. This can be used to efficiently locate the XML documents to be evaluated by
the EE of s in order to get the extent of s. The DescribeX engine keeps the SD
graph in main memory in separate hash tables for each axis relation in the SD,
e.g. the parentsMap and childrenMap maps contain the edge definitions for the p
and c SD axes respectively. In other words, each binary axis relation is stored as
a map between a key SID s and a set of SIDs s1, . . . , sn such that 〈s, si〉 ∈ axis,
1 ≤ i ≤ n. In addition, there is a label map, labelMap, that contains the label of
each SD node. The XPath EEs are stored in a separate XML file.

We discuss next how a refinement is computed from the data structures just
described. Suppose that SD node si is one of the refinements of SD node s. The
extent of si is computed by evaluating ee(si) on the set of documents that contain
elements in the extent of s. This set of documents are obtained from ElemDB (if the
extent of s is materialized) or from docDB (if the extent of s is virtual). Once we
have the extent of si, the edges in the SD graph can be constructed either from the
EE when the extent is virtual or from ElemDB when the extent is materialized. In
order to update the edges with virtual extents, DescribeX needs to check whether
there is an axis edge between si and a set of candidate SD nodes c1, . . . , cn that
are mapped to s in axisMap. This is performed by evaluating the XPath expression
ee(si)/axis :: ∗ ∩ ee(cj), for 1 ≤ j ≤ n, which tests whether it is possible to reach
elements in the extent of cj from elements in the extent of si by following axis.
If the evaluation of the expression is not empty, then there exists an edge from si
to cj , otherwise there is no edge. When using materialized extents, in contrast,
DescribeX simply computes a merge of the ElemDB using the startPos and endPos
attributes to check for containment (in case of fc, c, p, a, and d axes) or precedence
(for ns, fs, f , and p axes).

7.2 Experimental Setup

Our experiments were conducted over three collections of documents. Table I sum-
marizes the size and number of documents in each collection, and the number of
nodes and load times for the p∗ and label SDs, which includes computing the SD
graph and the partitions, and storing the extents in the ElemDB table. For mea-
suring times, we conducted five separate runs starting with a cold Java Virtual
Machine (JVM) for each query. The best and worst times were ignored and the
reported runtime is the average of the remaining three times. The experiments were
carried out on a Windows XP machine with a 2.4GHz Intel Core 2 Quad processor,
and the JVM was allocated 1 GB of RAM.

The selected collections have different characteristics, namely total size, size and
number of individual documents, and document heterogeneity. The first collection
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Table II. Selected p∗ SD nodes and EEs from the RSS collection
p∗ SD Extent Expression RSS2

Node (EE) Extent Size
Docs Elems

r468 /rss/channel/image 3296 3296
r449 /rss/channel/item 6509 90583

r653 /rss/channel/item/body 18 320

r452 /rss/channel/item/description 6253 82022

Table III. Selected p∗ SD nodes and EEs from the Wikipedia collections
p∗ SD Extent Expression Wiki5 Wiki45

Node (EE) Extent Size Extent Size
Docs Elems Docs Elems

w372 /article/body/section/section/section/figure 252 522 898 2166

w199 /article/body/section/p/sub 463 2194 1479 6963
w333 /article/body/section/section/section/section 128 500 736 3714

w967 /article/body/template/template/wikilink 155 241 2330 3662

(RSS2) was obtained by collecting RSS feeds from thousands of different sites listed
in specialized search engines like Fagan Finder20 and Syndic821, which index news
feeds on a wide variety of topics. The second and third collections (Wiki5 and
Wiki45, respectively) were created from the Wikipedia XML Corpus provided in
INEX 2006 [Denoyer and Gallinari 2006]. Document sizes in the collections ranges
from 1 KB to a few hundred KBs. The number of nodes in both p∗ and label
SDs provide a measure of heterogeneity and structural complexity. Wiki45 is the
most heterogenous collection with over one thousand different labels and over 66
thousand different label paths from the root.

7.3 Refinements

We tested the performance of two operations: refinements and stabilization. We
report here results for refinements, stabilizations are discussed in the next section.

Times were measured on an initial p∗ SD. We identified a number of parameters
that influence the performance of the operations: extent size, location in the SD
and number of new SD nodes resulting from the operation. Extents were chosen
based on two criteria: selectivity of the extents (i.e., size) and location in the
summary. For testing selectivity, we ran experiments with extents varying several
orders of magnitude in size, both in terms of number of documents and elements.
The location in the summary has two components: the depth of the initial p∗

nodes (closer and farther from the root, given by the length of the EE) and how
far from the initial p∗ node the refinements reach (which could be all the way down
to the leaves in some cases, such as the c∗ and d AxPREs). The location in the
summary also affects the number of resulting new SD nodes (and thus edges) in
the c∗ refinement. These parameters allowed us to probe a wide range of summary
and instance fragments.

20http://www.faganfinder.com
21http://www.syndic8.com
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Table IV. RSS2 c∗ refinements
p∗ SD # New Times (s)

Node Nodes Extent M. Edges V. Edges

r468 7 100.1 1.7 119.1
r449 201 575.2 23.0 14211.0

r653 42 3.7 0.8 47.8
r452 3 185.1 4.5 173.3

Table V. Wiki5 c∗ refinements
p∗ SD # New Times (s)
Node Nodes Extent M. Edges V. Edges

w372 16 25.7 0.6 270.1

w199 4 29.9 3.9 418.5
w333 61 79.1 8.7 2059.8

w967 6 10.4 2.5 225.5

Table VI. Wiki45 c∗ refinements
p∗ SD # New Times (s)
Node Nodes Extent M. Edges V. Edges

w372 37 446.1 9.1 1003.0
w199 14 748.7 24.4 1744.8
w333 203 537.5 37.2 12275.9

w967 8 552.3 17.1 1283.6

Tables II and III show the SIDs, EEs and extent sizes of the selected p∗ SD nodes
in our test collections. For instance, r468 corresponds to the p∗ SD node that has
/rss/channel/image as its EE in the RSS2 collection. Refinements were selected
to test a wide range of selectivity on the extents: smallest and largest extents are
three orders of magnitude apart with respect to number of documents and elements,
ranging from 18 to 6509 documents and from 320 to 90583 elements. The SD nodes
reported in these tables are those we use as a starting point for refinements and
edge stabilization in our experiments reported below.

Tables IV, V and VI report c∗ refinement times for the selected p∗ SD nodes.
We choose the c∗ refinement to show the performance of an AxPRE (p∗|c∗) that
captures a well-known homogeneous summary from the literature (see Figure 10)
that is expensive to compute in general. The number of new SD nodes created by
the refinements (which is the same as the number of EEs evaluated) are reported
in the # New Nodes columns. The number of new SD nodes span two orders of
magnitude, from 3 in the r452 refinement (Table IV) to 203 as a result of the w333

refinement (Table VI). Times reported under Extent comprise locating the affected
files using the SD, opening them and evaluating the EE in order to update the
materialized extent information in the ElemDB table. For instance, the c∗ refinement
partitions node r449 into 201 new SD nodes, which requires the evaluation of 201
XPath expressions on the documents in the extent of r449. Times reported under
M. Edges and V. Edges correspond to edge computation using the materialized
and the virtual approaches, respectively. Columns M. Edges and V. Edges give
us an idea of how much overhead DescribeX incurs on the edges. It is easy to see
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Table VII. AxPRE refinements for the RSS2 collection
p∗ SD Refining RSS2
Node AxPRE Extent Size Times

Docs Elems (s)

r468 c[title] | c[link] | c[width] | c[height] 172 172 3.9
r449 c[enclosure].fs[enclosure].fs[enclosure] 9 37 10.8
r449 c[pubDate] 3552 53148 9.9

r653 d[img] 12 119 0.4
r452 fs[link] 688 13885 10.1

Table VIII. AxPRE refinements for the Wikipedia collections
p∗ SD Refining Wiki5 Wiki45
Node AxPRE Extent Size Times Extent Size Times

Docs Elems (s) Docs Elems (s)

w372 c[caption] 242 522 1.7 1350 1929 36.2
w199 c[sub].c[sub] 1 1 2.1 3 3 37.1
w333 c[p].fs[p].fs[p] 39 79 1.0 155 320 26.5

w967 fs[collectionLink] 24 34 1.4 53 64 51.2

from the tables that the virtual approach tends to have worse performance than
the materialized one. The reason for this is that computing edges with EEs always
involves at least one intersection operation, which becomes quite expensive when
the expressions are complex.

In general, the extent size affects the refinement times more than the number
of new nodes created. Consider SD nodes r449 and r452 for instance, with roughly
the same number of documents and elements in the their extents: 6509 vs. 6253
documents and 90583 vs. 82022 elements, respectively (Table II). Let us take a
look at the refinements information in Table IV. Despite having almost a two orders
of magnitude difference in the number of EEs needed to compute the refinement
(201 vs. 3, respectively), the time difference between them for computing extents
is only a little over three times (575.2 s. vs. 185.1 s., respectively). In contrast,
consider SD nodes w199 and w967 from Table V. Computing the refinement of the
one with the smaller number of EEs (w199) takes almost three times longer than
the other (w967), mainly because the extent size of the former is much larger than
that of the latter: 463 vs. 155 in terms of documents and 2194 vs. 241 in terms of
elements (see Wiki5 extent sizes in Table III). Clearly, the number of documents
that need to be opened for computing the refinement and the number of elements
involved weighs more than the number of EEs to be evaluated in those documents.

Tables VII and VIII report refinements that are intended to test functionality
unique to DescribeX. Such refinements are specified by AxPREs containing novel
axes (like fs and d), label selection and disjunctions. The tables show the refining
AxPRE for each p∗ SD node, the number of documents and elements that contain
neighbourhoods matching the entire AxPRE (Docs and Elems columns, respec-
tively), together with how long it takes to compute the extent (Times column). For
any given expression, the number of elements with either empty neighbourhoods or
matching prefixes of the AxPRE is the complement of the number reported under
Elems. For instance, the first r449 row of Table VII indicates that 37 elements in 9

ACM Journal Name, Vol. V, No. N, Month 20YY.



38 · M. P. Consens at al.

documents have exact c[enclosure].fs[enclosure].fs[enclosure] neighbourhoods and
obtaining them from the r449 extent takes 10.8 seconds. In addition, we know that
the number of elements either matching prefixes or with empty neighbourhoods is
90546, which comes from the number in column Elems and row r449 in Table II
(90583) minus the number in column Elems and row r449 in Table VII (37). Such
subtraction would not be meaningful for the Docs columns because the same doc-
ument may contain elements in different extents (remember that an SD contains a
partition of elements, not documents, so document extents may in fact overlap).

The expressions were chosen with practical scenarios in mind, like the motivating
example of Sections 1.1. For example, the refining AxPRE of SD node r468 will
distinguish /rss/channel/image elements that have a title, a link, a width and a
height from those that do not. Although these elements are required for better
formatting and linking an image, they are not always present in RSS feeds and
a robust syndication application would process differently all images that have
the additional information. Another useful information is to distinguish between
multiple instances of the same element. For example, the first refining AxPRE of
SD node r449 will cluster in different nodes /rss/channel/item elements based on
the number of enclosure elements they have. This happens when an item has the
same content in different media formats, which need to be handled differently by
some applications.

These results suggest that, even though computing generic refinements like c∗

may be expensive, more specific refinements can be performed in less than a minute
and most of them in just a few seconds for under-a-gigabyte collections.

7.4 Edge stabilization

We report here the experimental results for stabilization of selected SD edges. As
in the refinement experiments, we start from selected nodes in an initial p∗ SD.
The edges to stabilize were chosen in order to get extents that vary several orders
of magnitude in size. We stabilize two different edges for most of our selected p∗

SD nodes. After one edge stabilization, the resulting SD node that does not have
the stabilized edge is indicated by an SID with an apostrophe (in Tables IX, X, and
XI). The second edge stabilized always corresponds to a node with an apostrophe
from the previous stabilization.

Tables IX, X, and XI report edge stabilization times and extent sizes for the
selected p∗ SD nodes. The edge stabilized is indicated in the tables by an AxPRE
containing the axis and the label of the target node. The four Extent Sizes
columns show the number of document and elements that do contain the edge
(under Stable Edge) and the number of those that do not (under No Edge). The
times reported correspond to computing the extents in the materialized approach,
as explained in the previous section for refinements. The times for computing the
edges are not reported because it does not involve additional computation (once
we know the two resulting extents, we just draw an edge to the stable extent). For
instance, the first edge stabilized from node r449 (Table IX) was the ps edge to
an item node, which resulted in two SD nodes: one containing a stable ps edge
with 84063 elements in its extent, and another one (r′449) with no edge and 6520
elements. From node r′449, we stabilize then the c edge to a body node obtaining
again two nodes: one with a stable c edge with 15 elements in its extent, and the
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Table IX. RSS2 edge stabilization
p∗ SD Edge Extent Sizes Times
Node Stabilized Stable Edge No Edge (s)

Docs Elems Docs Elems

r468 c[description] 492 492 2804 2804 0.5
r′468 c[link] 2792 2792 12 12 0.2

r449 ps[item] 6263 84063 6509 6520 2.9
r′449 c[body] 15 15 6494 6505 3.7

r653 d[font] 8 14 18 306 0.3

r′653 d[table] 7 7 3 14 0.2

r452 c[br] 12 12 6249 81968 5.9

Table X. Wiki5 edge stabilization
p∗ SD Edge Extent Sizes Times
Node Stabilized Stable Edge No Edge (s)

Docs Elems Docs Elems

r372 d[collectionLink] 125 207 169 315 0.6

r′372 d[small] 2 4 169 311 0.5

r199 c[sub] 3 3 462 2191 0.8

r′199 c[small] 5 35 458 2156 0.8

r333 c[outsideLink] 7 12 126 488 0.7
r′333 c[unknownLink] 10 14 123 474 0.6

r967 c[template] 4 5 151 236 0.6
r′967 c[sup] 66 123 85 113 0.5

Table XI. Wiki45 edge stabilization
p∗ SD Edge Extent Sizes Times
Node Stabilized Stable Edge No Edge (s)

Docs Elems Docs Elems

w372 d[collectionLink] 335 592 695 1574 2.3
w′372 d[small] 3 5 694 1569 2.2

w199 c[sub] 28 33 1469 6930 5.4
w′199 c[small] 18 83 1454 6847 5.4

w333 c[outsideLink] 34 83 724 3631 3.6

w′333 c[unknownLink] 68 131 705 3500 3.8

w967 c[template] 26 27 2304 3635 3.5

w′967 c[sup] 174 246 2130 3389 3.4

other one with 6505 elements and no edge. The time for computing the ps edge
stabilization is 2.9 seconds. The times for the c edge stabilization are 10.9 and 3.7
seconds respectively.

Our results show that DescribeX can provide interactive response times (from
sub-second to just a few seconds) for all edge stabilizations tested when using
the materialized approach for computing the extents. This is compelling evidence
that DescribeX can be used in scenarios in which SDs need to be manipulated
interactively in order to selectively explore the structure of an XML collection (e.g.,
providing subscribers with customized content solutions aggregated from thousands
of content providers, as described in Section 1.1).
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8. CONCLUSION AND FUTURE WORK

DescribeX is a powerful new tool for describing the actual heterogeneous structure
of web collections of XML documents. Understanding the metadata structure of
such collections is fundamental for writing meaningful XPath queries. We proposed
a novel framework for declaratively describing the structure of a web collection
based on highly customizable summaries that can be conveniently tailored by axis
paths regular expressions (AxPREs). Our main results demonstrate the scalability
of AxPRE summary refinements and stabilization (the key enablers for tailoring
summaries) using gigabyte XML collections.

Familiar research issues can be re-visited in the context of AxPRE summaries.
For instance, providing guidelines for selecting good summaries (similar to schema
design) and inferring general and succinct AxPRE expressions from an XML collec-
tion (similar to DTD inference from instances). In this direction, extending recent
proposals for discovering and modeling XML data redundancies via functional de-
pendencies [Yu and Jagadish 2006a; 2008] from XML schemas to DescribeX sum-
maries seems promising. The development of benchmark tasks for evaluating and
comparing solutions designed to help in large-scale document collection manage-
ment and exploration is also an important area to pursue.

In the context of XML messaging, we came across the problem of creating schema
mappings when the schemas are too general to create meaningful mappings between
them. The schema mapping problem consists of defining correspondences between
two schemas in order to translate data from one to the other [Miller et al. 2000;
Popa et al. 2002]. An interesting research direction would be to develop a strategy
to do summary mapping in the same spirit as schema mapping, perhaps using EEs
definitions to create the correspondences in XPath.

We also plan to study the impact of adjusting the workload (e.g, by finding fre-
quent patterns), and also how to optimize SD selection given budget constraints.
There are also opportunities for exploiting the flexibility available in AxPRE sum-
maries in the context of the more traditional summary applications to indexing,
selectivity estimation, and query optimization.

The notion of bisimulation originated in fields other than databases (concurrency
theory, verification, modal logic, set theory), where it continues to find applications.
It would be interesting to explore whether the more flexible notion introduced in
this paper (selective bisimilarity applied to subgraphs described by AxPREs) can
also find novel applications in such areas.
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