
In-Place	Activated	
BatchNorm for	Memory-
Optimized	Training	of	

DNNs
Samuel	Rota	Bulò,	Lorenzo	Porzi,	Peter	Kontschieder

Mapillary Research
Paper:	https://arxiv.org/abs/1712.02616

Code:	https://github.com/mapillary/inplace_abn

CSC2548,	2018	Winter
Harris	Chan
Jan	31,	2018

Overview

• Motivation	for	Efficient	Memory	management
• Related	Works	
• Reducing	precision
• Checkpointing
• Reversible	Networks	[9]	(Gomez	et	al.,	2017)

• In-Place	Activated	Batch	Normalization
• Review:	Batch	Normalization
• In-place	Activated	Batch	Normalization

• Experiments
• Future	Directions

Overview

• Motivation	for	Efficient	Memory	management
• Related	Works	
• Reducing	precision
• Checkpointing
• Reversible	Networks	[9]	(Gomez	et	al.,	2017)

• In-Place	Activated	Batch	Normalization
• Review:	Batch	Normalization
• In-place	Activated	Batch	Normalization

• Experiments
• Future	Directions

Why	Reduce	Memory	Usage?

• Modern	computer	vision	recognition	models	use	deep	
neural	networks	to	extract	features
• Depth/width	of	networks	~ GPU	memory	requirements

• Semantic	segmentation:	may	even	only	do	just	a	single	crop	
per	GPU	during	training	due	to	suboptimal	memory	
management

• More	efficient	memory	usage	during	training	lets	you:
• Train	larger	models
• Use	bigger	batch	size	/	image	resolutions

• This	paper	focuses	on	increasing	memory	efficiency	of	
the	training	process	of	deep	network	architectures	at	
the	expense	of	small	additional	computation	time

Approaches	to	Reducing	Memory

Reduce	Memory	by…

Reducing
Precision
(&	Accuracy)

Increasing	
Computation
Time

Overview

• Motivation	for	Efficient	Memory	management
• Related	Works	
• Reducing	precision
• Checkpointing
• Reversible	Networks	[9]	(Gomez	et	al.,	2017)

• In-Place	Activated	Batch	Normalization
• Review:	Batch	Normalization
• In-place	Activated	Batch	Normalization

• Experiments
• Future	Directions

Related	Works:	
Reducing	Precision
Work Weight Activation Gradients

BinaryConnect
(M.	Courbariaux et	
al.	2015)

Binary Full	Precision Full	Precision

Binarized neural	
networks
(I.	Hubara et	al.	
2016)

Binary Binary Full	Precision

Quantized	neural	
networks (I.	
Hubara et	al)

Quantized 2,4,6	
bits

Quantized 2,4,6	
bits

Full	Precision

Mixed	precision	
training	
(P.	Micikevicius et	
al.	2017)

Half	Precision	
(fwd/bw) &	
Full	Precision	

(master	weights)

Half	Precision Half	Precision

Related	Works:	
Reducing	Precision
• Idea: During	training,	lower	the	precision	(up	to	
binary)	of	the	weights	/	activations	/	gradients

Strength Weakness

Reduce	memory requirement	and	
size	of	the	model	

Often	decrease in	accuracy
performance	(newer	work	attempts	
to	address	this)

Less	power:	efficient forward	pass

Faster:	1-bit	XNOR-count	vs.	32-bit
floating	point	multiply

Related	Works:	
Computation	Time
• Checkpointing: trade	off	memory	with	
computation	time
• Idea:	During	backpropagation,	store	a	subset	of	
activations	(“checkpoints”)	and	recompute the	
remaining	activations	as	needed
• Depending	on	the	architecture,	we	can	use	
different	strategies	to	figure	out	which	subsets	of	
activations	to	store

Related	Works:	
Computation	Time

Work Spatial Complexity Computation	Complexity

Naive Ο(𝐿) Ο(𝐿)
Checkpointing (Martens	
and	Sutskever, 2012)

Ο(𝐿�) Ο(𝐿)

Recursive	Checkpointing
(T.	Chen	et	al., 2016)

Ο(log 𝐿) Ο(𝐿 log 𝐿)

Reversible	Networks
(Gomez	et	al.,	2017)

Ο(1) Ο(𝐿)

Table	adapted	from	Gomez	et	al.,	2017.	“The	Reversible	Residual	Network:	Backpropagation	Without	Storing	
Activations”.	ArXiv Link

• Let	L be	the	number	of	identical	feed-forward	
layers:

Related	Works:	Computation	Time
Reversible	ResNet (Gomez	et	al.,	
2017)

Residual	Block

RevNet (Forward) RevNet (Backward)

Gomez	et	al.,	2017.	“The	Reversible	Residual	Network:	Backpropagation	Without	Storing	Activations”.	ArXiv Link

Basic	Residual	
Function

Idea:	Reversible	Residual	module	allows	the	current	layer’s	
activation	to	be	reconstructed	exactly	from	the	next	layer’s.	
No	need	to	store	any	activations	for	backpropagation!		

Related	Works:	Computation	Time
Reversible	ResNet (Gomez	et	al.,	
2017)

• No	noticeable	loss	in	performance
• Gains	in	network	depth:	~600	vs	

~100
• 4x	increase	in	batch	size	(128	vs	32)Ad

va
nt
ag
e

Di
sa
dv
an

ta
ge

Gomez	et	al.,	2017.	“The	Reversible	Residual	Network:	Backpropagation	
Without	Storing	Activations”.	ArXiv Link

• Runtime	cost:	1.5x	of	normal	
training	(sometimes	less	in	
practice)

• Restrict	reversible	blocks	to	have	a	
stride	of	1	to	not	discard	
information	(i.e.	no	bottleneck	
layer)

Overview

• Motivation	for	Efficient	Memory	management
• Related	Works	
• Reducing	precision
• Checkpointing
• Reversible	Networks	[9]	(Gomez	et	al.,	2017)

• In-Place	Activated	Batch	Normalization
• Review:	Batch	Normalization
• In-place	Activated	Batch	Normalization

• Experiments
• Future	Directions

Review:	Batch	Normalization	(BN)

• Apply	BN	on	current	
features	(𝑥+)	across	the	
mini-batch	
• Helps	reduce	internal	
covariate	shift &	
accelerate	training	
process
• Less	sensitive	to	
initialization Credit:	Ioffe &	Szegedy,	2015.	ArXiv link

Memory	Optimization	Strategies

• Let’s	compare	the	various	strategies	for	BN+Act:
1. Standard
2. Checkpointing (baseline)
3. Checkpointing (proposed)
4. In-Place	Activated	Batch	Normalization	I
5. In-Place	Activated	Batch	Normalization	II

1:	Standard	BN	Implementation

Gradients	for	Batch	Normalization

Credit:	Ioffe &	Szegedy,	2015.	“Batch	Normalization:	Accelerating	Deep	Network	Training	by	Reducing	Internal	Covariate	
Shift”.	ArXiv	link

2:	Checkpointing (baseline)

3:	Checkpointing (Proposed)

In-Place	ABN

• Fuse	batch	norm	and	
activation	layer	to	enable	
in-place	computation,	using	
only	a	single	memory	
buffer	to	store	results.	
• Encapsulation	makes	it	easy	
to	implement	and	deploy
• Implemented	INPLACE	
ABN-I	layer	in	PyTorch as	a	
new	module	

4:	In-Place	ABN	I	(Proposed)

Invertible	
Activation	
Function

𝛾 ≠ 0

Leaky	ReLU is	Invertible

5:	In-Place	ABN	II	(Proposed)

Strategies	Comparisons
Strategy Store Computation	Overhead

Standard 𝒙, 𝒛, 𝝈ℬ, 𝝁ℬ	 -

Checkpointing 𝒙, 𝝈ℬ, 𝝁ℬ 𝐵𝑁8,9, 𝜙

Checkpointing
(proposed)

𝒙, 𝝈ℬ 𝜋8,9, 𝜙

In-Place	ABN	I	
(proposed)

𝒛, 𝝈ℬ 𝜙<=, 𝜋8,9<=

In-Place	ABN	II
(proposed)

𝒛, 𝝈ℬ 𝜙<=

In-Place	ABN	(Proposed)

In-Place	ABN	(Proposed)
Strength Weakness

Reduce	memory requirement	by	half
compared	to	standard;	same	savings	
as	check	pointing

Requires	invertible	activation	
function

Empirically	faster	than	naïve
checkpointing

…but	still	slower	than	standard
(memory	hungry)	implementation.	

Encapsulating BN	&	Activation	
together makes	it	easy	to	implement	
and	deploy	(plug	& play)

Overview

• Motivation	for	Efficient	Memory	management
• Related	Works	
• Reducing	precision
• Checkpointing
• Reversible	Networks	[9]	(Gomez	et	al.,	2017)

• In-Place	Activated	Batch	Normalization
• Review:	Batch	Normalization
• In-place	Activated	Batch	Normalization

• Experiments
• Future	Directions

Experiments:	Overview

• 3	Major	types:
• Performance	on:	(1)	Image	Classification,	(2)	Semantic	
Segmentation
• (3)	Timing	Analysis	compared	to	standard	/	
checkpointing

• Experiment	Setup:
• NVIDIA	Titan	Xp (12	GB	RAM/GPU)
• PyTorch
• Leaky	ReLU activation

Experiments:	Image	Classification
ResNeXt-101/ResNeXt-152 WideResNet-38

Dataset ImageNet-1k ImageNet-1k

Description Bottleneck	residual	units	are	
replaced	with	a	multi-branch	
version	=	“cardinality”	of	64

More feature	channels	but	
shallower

Data	
Augmentation

Scale	smallest	side	=	256	
pixels	then	randomly	crop	
224	× 224,	per-channel	mean	
and	variance	normalization

(Same	as	ResNeXt-101/152)

Optimizer • SGD	with	Nesterov
Updates

• Initial	learning	rate=0.1
• weight	decay=10-4
• momentum=0.9
• 90	Epoch,	reduce	by

factor	of	10	per	30	epoch

• (Same as	ResNeXt)
• 90	Epoch,	linearly	

decreasing	from	0.1 to	10-6

Experiments:	Leaky	ReLU impact

• Using	Leaky	ReLU performs	slightly	worse	than	with	ReLU
• Within	~1%	,	except	for	3202	center	crop—authours argued	it	was	due	

to	non-deterministic	training	behaviour
• Weaknesses

• Showing	an	average	+	standard	deviation	can	be	more	convincing	
of	the	improvements.

Experiments:	Exploiting	Memory	
Saving

Baseline
1)	Larger	Batch	Size
2)	Deeper	Network
3)	Larger	Network
4)	Sync	BN

• Performance	increase	for	1-3	
• Similar	performance	with	larger	batch	size	vs	deeper	model	(1	vs	2)
• Synchronized	INPLACE-ABN	did	not	increase	the	performance	that	

much
• Notes	on	synchronized	BN:	http://hangzh.com/PyTorch-

Encoding/notes/syncbn.html

Experiments:	Semantic	Segmentation

• Semantic	Segmentation:	Assign	categorical	labels	
to	each	pixel	in	an	image
• Datasets
• CityScapes
• COCO-Stuff
• Mapillary Vistas

Figure	Credit:	https://www.cityscapes-dataset.com/examples/

Experiments:	Semantic	Segmentation

• Architecture	contains	2	parts	that	are	jointly	fine-tuned	
on	segmentation	data:
• Body:	Classification	models	pre-trained	on	ImageNet
• Head:	Segmentation	specific	architectures

• Authours used	DeepLabV3*	as	the	head
• Cascaded	atrous (dilated)	convolutions	for	capturing	
contextual	info

• Crop-level	features	encoding	global	context
• Maximize	GPU	Usage	by:

• (FIXED	CROP)	fixing	the	training	crop	size	and	therefore	
pushing	the	amount	of	crops	per	minibatch to	the	limit	

• (FIXED	BATCH) fixing	the	number	of	crops	per	minibatch and	
maximizing	the	training	crop	resolutions

*L.	Chen,	G.	Papandreou,	F.	Schroff,	and	H.	Adam.	“Rethinking	atrous convolution	for	semantic	image	segmentation.”	ArXiv
Link

Experiments:	Semantic	Segmentation

• More	training	data	(FIXED	CROP) helps	a	little	bit
• Higher	input	resolution	(FIXED	BATCH) helps	even	more	than	adding	

more	crops

• No	qualitative	result:	probably	visually	similar	to	DeepLabV3

Experiments:	Semantic	Segmentation
Fine-Tuned	on	CityScapes and	Mapillary
Vistas

• Combination	of	INPLACE-ABN	sync	with	larger	crop	sizes	improves	by	≈	
0.9%	over	the	best	performing	setting	in	Table	3	

• Class- Uniform	sampling:	Class-uniformly	sampled	from	eligible	image	
candidates,	making	sure	to	take	training	crops	from	areas	containing	
the	class	of	interest.

Experiments:	Semantic	Segmentation
• Currently	state	of	the	art	for	CityScapes for	IoU class	
and	iIoU (instance)	Class
• iIoU:	Weighting	the	contribution	of	each	pixel	by	the	ratio	of	
the	class’	average	instance	size	to	the	size	of	the	respective	
ground	truth	instance.	

Experiments:	Timing	Analyses

• They	isolated	a	single	
BN+ACT+CONV	block	&	
evaluate	the	
computational	times	
required	for	a	forward	
and	backward	pass	
• Result:	Narrowed	the	gap	
between	standard vs	
checkpointing by half
• Ensured	fair	comparison	
by	re-implementing	
checkpointing in	PyTorch

Overview

• Motivation	for	Efficient	Memory	management
• Related	Works	
• Reducing	precision
• Checkpointing
• Reversible	Networks	[9]	(Gomez	et	al.,	2017)

• In-Place	Activated	Batch	Normalization
• Review:	Batch	Normalization
• In-place	Activated	Batch	Normalization

• Experiments
• Future	Directions

Future	Directions:

• Apply	INPLACE-ABN	in	other…
• Architectures:	DenseNet,	Squeeze-Excitation	Networks,	
Deformable	Convolutional	Networks
• Problem	Domains: Object	detection,	instance-specific	
segmentation,	3D	data	learning

• Combine	INPLACE-ABN	with	other	memory	
reduction	techniques,	ex:	Mixed	precision	training
• Apply	same	InPlace idea	on	’newer’	Batch	Norm,	
ex:	Batch	Renormalization*

*S.	Ioffe.	“Batch	Renormalization:	Towards	Reducing	Minibatch Dependence	in	Batch-Normalized	Models.”	ArXiv	Link

Links	and	References

• INPLACE-ABN	Paper:	https://arxiv.org/pdf/1712.02616.pdf
• Official	Github code	(PyTorch):	
https://github.com/mapillary/inplace_abn
• CityScapes Dataset:	https://www.cityscapes-
dataset.com/benchmarks/#scene-labeling-task
• Reduced	Precision:

• BinaryConnect:	https://arxiv.org/abs/1511.00363
• Binarized Networks:	https://arxiv.org/abs/1602.02830
• Mixed	Precision	Training:	https://arxiv.org/abs/1710.03740

• Trade	off	with	Computation	Time
• Checkpointing:	
https://www.cs.utoronto.ca/~jmartens/docs/HF_book_chapter.pdf

• Recursive	Checkpointing:	https://arxiv.org/abs/1604.06174
• Reversible	Networks:	https://arxiv.org/abs/1707.04585

