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One-Shot Detection
• Eliminates regional proposal steps used in R-CNN [3], Fast R-CNN [4] 

and Faster R-CNN [5]

Motivation:

• Develop object detection methods that predict bounding boxes and 

class probabilities at the same time 

• Want to achieve real-time detection speeds

• Maintain / exceed accuracy benchmarks set by previous region proposal 

methods
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Improving Detection Datasets
VOC 2007 / 2012:

• 20 classes 
• i.e. person, cat, dog, car, chair, bottle

ImageNet1000: 

• 1000 classes

• i.e. German shepherd, golden 

retriever, European fire salamander
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MS COCO:

• 80 classes 
• i.e. book, apple, teddy bear, scissors

Motivation:

• Increase the number and detail of classes that can be learned 

during training using existing detection and classification datasets
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You Only Look Once (YOLO) [1]
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PASCAL VOC:
• S = 7, 𝐵 = 2, 𝐶 = 20
• Output tensor size = 7 × 7 × 30

1. Assume each grid 
cell has 𝐵 objects.

2. Bounding box feature vector = [𝑥, 𝑦, 𝑤, ℎ, 𝑐]

3. Merge predictions 
into S × 𝑆 × (5𝐵 + 𝐶)
output tensor

Image Credit: [1]

2. 𝐶 object classes
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YOLO - Architecture
• Inspired by GoogLeNet

• 24 convolutional layers + 2 FC layers
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Image Credit: [1]

Grid creation, bounding 
box & class predictions
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YOLO - Training Loss
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• Only back-propagate loss if object is present Image Credit: [1]
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YOLO - Test Results
• Primary evaluation done on VOC 2007 & 2012 test sets
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VOC 2007 Test Results VOC 2012 Test Results

Table Credits: [1]

*

*Speed measured on Titan X GPU
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YOLO - Limitations
• Produces more localization errors than Fast R-CNN

• Struggles to detect small, repeated objects (i.e. flocks of birds)

• Bounding box priors not used during training

Haris Khan 9

Image Credit: [1]
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YOLO9000 - Paper Overview
YOLOv2 [2]:

• Modified version of original YOLO that increases detection speed and 

accuracy

YOLO9000 [2]:

• Training method that increases the number of classes a detection network 

can learn by using weakly-supervised training on the union of detection 

(i.e. VOC, COCO) and classification (i.e. ImageNet) datasets
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YOLOv2 - Modifications
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Modification Effect 

Bounding Boxes

Anchor Boxes 7% recall increase

Dimension clusters + new bounding 
box parameterization

4.8% mAP  increase

Architecture
New Darknet-19 replaces GoogLeNet

33% computation decrease, 
0.4% mAP increase

Convolutional prediction layer 0.3% mAP increase

Training

Batch normalization 2% mAP increase

High resolution fine-tuning of weights 4% mAP increase

Multi-scale images 1.1% mAP increase

Passthrough for fine-grained features 1% mAP increase
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YOLOv2 - Bounding Boxes
• Anchor boxes allow multiple objects of 

various aspect ratio to be detected in a 

single grid cell

• Anchor boxes sizes determined by k-means 

clustering of VOC 2007 training set

• k = 5 provides best trade-off between average 

IOU / model complexity 

• Average IOU = 61.0% 

• Feature vector parameterization directly 

predicts bounding box centre point, width 

and height
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Image Credit: [2]
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YOLOv2 - DarkNet-19
• 19 convolutional layers and 5 max-

pooling layers

• Reduced number of FLOPs
• VGG-16 -> 30.67 billion

• YOLO -> 8.52 billion

• YOLOv2 -> 5.58 billion
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Table Credit: [2]

DarkNet-19 for Image Classification
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YOLOv2 - Example
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Video link: https://youtu.be/Cgxsv1riJhI?t=290

https://youtu.be/Cgxsv1riJhI?t=290
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YOLO9000 - Concept
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Image Credits: [2]

+
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Slide Credit: Joseph Redmon [3]
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YOLO9000 - WordTree
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Image Credit: [2]
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Slide Credit: Joseph Redmon [3]
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Image Credit: Joseph Redmon [3]
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Image Credit: Joseph Redmon [3]
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YOLOv2 - Detection Training
Datasets: 

• VOC 2007+2012, COCO trainval35k

Data Augmentation:

• Random crops, colour shifting 

Hyperparameters:

• # of epochs = 160

• Learning rate = 0.001

• Weight decay = 0.0005

• Momentum = 0.9
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Training Enhancements: 

• Batch normalization

• High resolution fine-tuning

• Multi-scale images

• Three 3x3 & 1x1 convolutional 

layers replace last convolutional 

layer of DarkNet-19 base model

• Passthrough connection between 

3x3x512 and second-to-last 

convolutional layers, adding fine-

grained features to prediction layer
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YOLO9000 - Detection Training
Datasets: 

• 9418 classes 

• ImageNet (top 9000 classes)

• COCO detection dataset

• ImageNet detection challenge

Bounding Boxes:

• Minimum IOU threshold = 0.3

• # of dimension clusters =3 
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Backpropagating Loss:

• For detection images, 

backpropagate as in YOLOv2

• For unsupervised classification 

images, only backpropagate 

classification loss, while finding 

best matching bounding box from 

WordTree
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YOLOv2 - Test Results
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Image Credit: Joseph Redmon [3]

VOC 2007 Test Results
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Table Credits: [2]

VOC 2012 Test Results

COCO Test-Dev 2015 Results
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YOLO9000 - Test Results
• Evaluated on ImageNet detection task

• 200 classes total

• 44 detection labelled classes shared between 

ImageNet and COCO

• 156 unsupervised classes

• Overall detection accuracy = 19.7% mAP

• 16.0% mAP achieved on unsupervised 

classes
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Table Credit: [2]

Best and Worst Classes on ImageNet
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YOLO9000 - Paper Evaluation
Strengths:

• Speed performance of YOLOv2 far exceeds competitors (i.e. SSD) 

• Anchor box priors via clustering allow detector to learn ideal aspect ratios from 

training data

• WordTree method increases the number of learnable classes using existing 

datasets

Weaknesses:

• Detection performance of YOLOv2 on COCO is well below state-of-the-art

• Description of how loss function uses unsupervised training examples is vague 

• Results from YOLO9000 tests are inconclusive 

• Does not compare method with alternative weakly-supervised techniques
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Future Work
• Improve the accuracy of one-shot detectors in dense object scenes

• RetinaNet [7] 

• Investigate the transferability of weakly-supervised training to other 

domains, such as image segmentation or dense captioning 
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Questions?
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