YOLO9000: Better, Faster, Stronger

Date: January 24, 2018

Prepared by Haris Khan (University of Toronto)

Haris Khan

Overview

1. Motivation for one-shot object detection and weakly-supervised learning

2. YOLO

- 3. YOLOv2 / YOLO9000
- 4. Future Work

One-Shot Detection

• Eliminates regional proposal steps used in R-CNN [3], Fast R-CNN [4] and Faster R-CNN [5]

Motivation:

- Develop object detection methods that predict bounding boxes and class probabilities at the same time
 - Want to achieve real-time detection speeds
 - Maintain / exceed accuracy benchmarks set by previous region proposal methods

Improving Detection Datasets

VOC 2007 / 2012:

- 20 classes
 - i.e. person, cat, dog, car, chair, bottle

ImageNet1000:

- 1000 classes
 - i.e. German shepherd, golden retriever, European fire salamander

Motivation:

• Increase the number and detail of classes that can be learned during training using existing detection and classification datasets

• 80 classes

• i.e. book, apple, teddy bear, scissors

You Only Look Once (YOLO) [1]

2. Bounding box feature vector = [x, y, w, h, c]

1. Assume each grid cell has *B* objects. 3. Merge predictions Bounding boxes + confidence into $S \times S \times (5B + C)$ output tensor S × S grid on input **Final detections PASCAL VOC:** Class probability map S = 7, B = 2, C = 202. C object classes Output tensor size = $7 \times 7 \times 30$

Image Credit: [1]

Haris Khan

YOLO - Architecture

- Inspired by GoogLeNet
- 24 convolutional layers + 2 FC layers

Image Credit: [1]

Haris Khan

YOLO - Training Loss

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ &+ \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ &+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ &+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ &+ \sum_{i=0}^{S^2} \mathbb{1}_{ij}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

Image Credit: [1]

• Only back-propagate loss if object is present

Haris Khan

YOLO - Test Results

• Primary evaluation done on VOC 2007 & 2012 test sets

	VOC 2007	lest Results			
	Real-Time Detectors	Train	mAP	FPS	
	100Hz DPM [31]	2007	16.0	100	
	30Hz DPM [31]	2007	26.1	30	
	Fast YOLO	2007+2012	52.7	155	
* [YOLO	2007+2012	63.4	45	
	Less Than Real-Time				
	Fastest DPM [38]	2007	30.4	15	
	R-CNN Minus R [20]	2007	53.5	6	
_	Fast R-CNN [14]	2007+2012	70.0	0.5	
	Faster R-CNN VGG-16[28]	2007+2012	73.2	7	
	Faster R-CNN ZF [28]	2007+2012	62.1	18	
C	YOLO VGG-16	2007+2012	66.4	21	
					_

VOC 2012 Test Results

VOC 2012 test	mAP	
MR_CNN_MORE_DATA [11]	73.9	
HyperNet_VGG	71.4	
HyperNet_SP	71.3	
Fast R-CNN + YOLO	70.7	
MR_CNN_S_CNN [11]	70.7	Γ.
Faster R-CNN [28]	70.4	
DEEP_ENS_COCO	70.1	
NoC [29]	68.8	
Fast R-CNN [14]	68.4	
UMICH_FGS_STRUCT	66.4	
NUS_NIN_C2000 [7]	63.8	
BabyLearning [7]	63.2	
NUS_NIN	62.4	
R-CNN VGG BB [13]	62.4	
R-CNN VGG [13]	59.2	
YOLO	57.9	
Feature Edit [33]	56.3	
R-CNN BB [13]	53.3	
SDS [16]	50.7	
R-CNN [13]	49.6	

Table Credits: [1]

*Speed measured on Titan X GPU

Haris Khan

YOLO - Limitations

- Produces more localization errors than Fast R-CNN
 - Struggles to detect small, repeated objects (i.e. flocks of birds)
 - Bounding box priors not used during training

Image Credit: [1]

Haris Khan

YOLO9000 - Paper Overview

YOLOv2 [2]:

 Modified version of original YOLO that increases detection speed and accuracy

YOLO9000 [2]:

 Training method that increases the number of classes a detection network can learn by using weakly-supervised training on the union of detection (i.e. VOC, COCO) and classification (i.e. ImageNet) datasets

YOLOv2 - Modifications

	Modification	Effect
	Anchor Boxes	7% recall increase
Bounding Boxes	Dimension clusters + new bounding box parameterization	4.8% mAP increase
Architecture	New Darknet-19 replaces GoogLeNet	33% computation decrease, 0.4% mAP increase
	Convolutional prediction layer	0.3% mAP increase
	Batch normalization	2% mAP increase
Training	High resolution fine-tuning of weights	4% mAP increase
Iranning	Multi-scale images	1.1% mAP increase
	Passthrough for fine-grained features	1% mAP increase

YOLOv2 - Bounding Boxes

- Anchor boxes allow multiple objects of various aspect ratio to be detected in a single grid cell
- Anchor boxes sizes determined by k-means clustering of VOC 2007 training set
 - k = 5 provides best trade-off between average
 IOU / model complexity
 - Average IOU = 61.0%
- Feature vector parameterization directly predicts bounding box centre point, width and height

Image Credit: [2]

YOLOv2 - DarkNet-19

- 19 convolutional layers and 5 maxpooling layers
- Reduced number of FLOPs
 - VGG-16 -> 30.67 billion
 - YOLO -> 8.52 billion
 - YOLOv2 -> 5.58 billion

DarkNet-19 for Image Classification

Туре	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56 imes 56
Convolutional	128	3×3	56 imes 56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1×1	7×7
Avgpool		Global	1000
Softmax			

Table Credit: [2]

YOLOv2 - Example

Video link: https://youtu.be/Cgxsv1riJhl?t=290

Haris Khan

Image Credits: [2]

Haris Khan

Can't just mash classes together...

Slide Credit: Joseph Redmon [3]

Haris Khan

YOLO9000 - WordTree

Image Credit: [2]

Haris Khan

Each node is a conditional probability

Slide Credit: Joseph Redmon [3]

Haris Khan

Image Credit: Joseph Redmon [3]

Haris Khan

Image Credit: Joseph Redmon [3]

Haris Khan

YOLOv2 - Detection Training

Datasets:

• VOC 2007+2012, COCO trainval35k

Data Augmentation:

• Random crops, colour shifting

Hyperparameters:

- # of epochs = 160
- Learning rate = 0.001
- Weight decay = 0.0005
- Momentum = 0.9

Training Enhancements:

- Batch normalization
- High resolution fine-tuning
- Multi-scale images
- Three 3x3 & 1x1 convolutional layers replace last convolutional layer of DarkNet-19 base model
- Passthrough connection between 3x3x512 and second-to-last convolutional layers, adding finegrained features to prediction layer

YOLO9000 - Detection Training

Datasets:

- 9418 classes
 - ImageNet (top 9000 classes)
 - COCO detection dataset
 - ImageNet detection challenge

Bounding Boxes:

- Minimum IOU threshold = 0.3
- # of dimension clusters =3

Backpropagating Loss:

• For detection images,

backpropagate as in YOLOv2

 For unsupervised classification images, only backpropagate classification loss, while finding best matching bounding box from WordTree

YOLOv2 - Test Results

Image Credit: Joseph Redmon [3]

Haris Khan

VOC 2012 Test Results

Method	data	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
Fast R-CNN [5]	07++12	68.4	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	65.7	80.4	64.2
Faster R-CNN [15]	07++12	70.4	84.9	79.8	74.3	53.9	49.8	77.5	75.9	88.5	45.6	77.1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5
YOLO [14]	07++12	57.9	77.0	67.2	57.7	38.3	22.7	68.3	55.9	81.4	36.2	60.8	48.5	77.2	72.3	71.3	63.5	28.9	52.2	54.8	73.9	50.8
SSD300 [11]	07++12	72.4	85.6	80.1	70.5	57.6	46.2	79.4	76.1	89.2	53.0	77.0	60.8	87.0	83.1	82.3	79.4	45.9	75.9	69.5	81.9	67.5
SSD512 [11]	07++12	74.9	87.4	82.3	75.8	59.0	52.6	81.7	81.5	90.0	55.4	79.0	59.8	88.4	84.3	84.7	83.3	50.2	78.0	66.3	86.3	72.0
ResNet [6]	07++12	73.8	86.5	81.6	77.2	58.0	51.0	78.6	76.6	93.2	48.6	80.4	59.0	92.1	85.3	84.8	80.7	48.1	77.3	66.5	84.7	65.6
YOLOv2 544	07++12	73.4	86.3	82.0	74.8	59.2	51.8	79.8	76.5	90.6	52.1	78.2	58.5	89.3	82.5	83.4	81.3	49.1	77.2	62.4	83.8	68.7

COCO Test-Dev 2015 Results

		0.5:0.95	0.5	0.75	S	Μ	L	1	10	100	S	Μ	L
Fast R-CNN [5]	train	19.7	35.9	-	-	-	-	-	-	-	-	-	-
Fast R-CNN[1]	train	20.5	39.9	19.4	4.1	20.0	35.8	21.3	29.5	30.1	7.3	32.1	52.0
Faster R-CNN[15]	trainval	21.9	42.7	-	-	-	-	-	-	-	-	-	-
ION [1]	train	23.6	43.2	23.6	6.4	24.1	38.3	23.2	32.7	33.5	10.1	37.7	53.6
Faster R-CNN[10]	trainval	24.2	45.3	23.5	7.7	26.4	37.1	23.8	34.0	34.6	12.0	38.5	54.4
SSD300 [11]	trainval35k	23.2	41.2	23.4	5.3	23.2	39.6	22.5	33.2	35.3	9.6	37.6	56.5
SSD512 [11]	trainval35k	26.8	46.5	27.8	9.0	28.9	41.9	24.8	37.5	39.8	14.0	43.5	59.0
YOLOv2 [11]	trainval35k	21.6	44.0	19.2	5.0	22.4	35.5	20.7	31.6	33.3	9.8	36.5	54.4
Faster R-CNN[10] SSD300 [11] SSD512 [11] YOLOv2 [11]	trainval trainval35k trainval35k trainval35k	23.0 24.2 23.2 26.8 21.6	45.2 45.3 41.2 46.5 44.0	23.5 23.4 27.8 19.2	5.4 7.7 5.3 9.0 5.0	26.4 23.2 28.9 22.4	37.1 39.6 41.9 35.5	23.2 23.8 22.5 24.8 20.7	34.0 33.2 37.5 31.6	34.6 35.3 39.8 33.3	12.0 9.6 14.0 9.8	38.5 37.6 43.5 36.5	54 56 59 54

Table Credits: [2]

Haris Khan

YOLO9000 - Test Results

 Evaluated on ImageNet detection task 	Best and Worst Classes	on ImageNet
 200 classes total 44 detection labelled classes shared between ImageNet and COCO 156 unsupervised classes 	diaper horizontal bar rubber eraser sunglasses swimming trunks	0.0 0.0 0.0 0.0 0.0
 Overall detection accuracy = 19.7% mAP 16.0% mAP achieved on unsupervised classes 	 red panda fox koala bear tiger armadillo	50.7 52.1 54.3 61.0 61.7

Table Credit: [2]

Haris Khan

YOLO9000 - Paper Evaluation

Strengths:

- Speed performance of YOLOv2 far exceeds competitors (i.e. SSD)
- Anchor box priors via clustering allow detector to learn ideal aspect ratios from training data
- WordTree method increases the number of learnable classes using existing datasets

Weaknesses:

- Detection performance of YOLOv2 on COCO is well below state-of-the-art
- Description of how loss function uses unsupervised training examples is vague
- Results from YOLO9000 tests are inconclusive
 - Does not compare method with alternative weakly-supervised techniques

Future Work

- Improve the accuracy of one-shot detectors in dense object scenes
 - RetinaNet [7]
- Investigate the transferability of weakly-supervised training to other domains, such as image segmentation or dense captioning

Questions?

Haris Khan

References

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2016, pp. 779–788.

[2] J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," arXiv preprint. ArXiv161208242, 2016.

[3] J. Redmon, "YOLO9000 Better, Faster, Stronger," presented at the CVPR, 2017.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2014, pp. 580–587.

[5] R. Girshick, "Fast r-cnn," in *Proceedings of the IEEE international conference on computer vision*, 2015, pp. 1440–1448

[6] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," in *Advances in neural information processing systems*, 2015, pp. 91–99

[7] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, "Focal loss for dense object detection," arXiv preprint. ArXiv170802002, 2017.