RECURSIVE DEEP MODELS FOR SEMANTIC COMPOSITIONALITY¹

Zhicong Lu

DGP Lab luzhc@dgp.toronto.edu

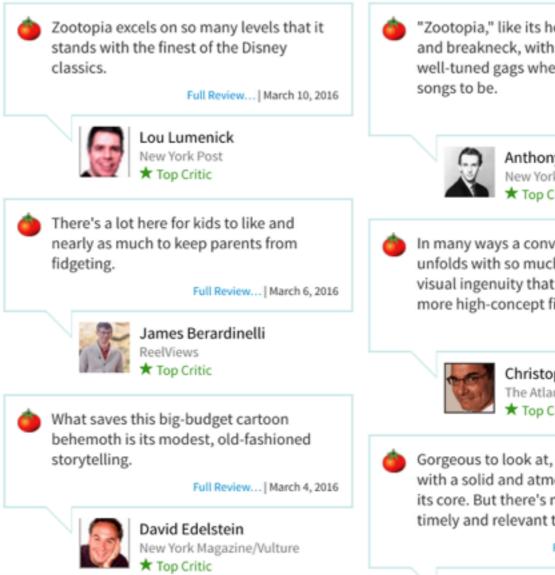
¹Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher Manning, Andrew Ng and Christopher Potts. **Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank**. *Conference on Empirical Methods in Natural Language Processing (EMNLP 2013)*

OVERVIEW

- Background
- Stanford Sentiment Treebank
- Recursive Neural Models
- Experiments

SENTIMENT ANALYSIS

- Identify and extract subjective information
- Crucial to business intelligence, stock trading, ...



"Zootopia," like its heroine, is zesty, bright, and breakneck, with chase scenes and well-tuned gags where you half expect

Full Review... | March 7, 2016

- Anthony Lane New Yorker ★ Top Critic
- In many ways a conventional movie, but it unfolds with so much wit, panache, and visual ingenuity that it outstrips many a more high-concept film.

Full Review... | March 6, 2016

- Christopher Orr The Atlantic ★ Top Critic
- Gorgeous to look at, clever, funny and with a solid and atmospheric mystery at its core. But there's more here in the film's timely and relevant thematic content.

Full Review... | March 13, 2016

¹Adapted from: http://www.rottentomatoes.com/

RELATED WORK

- Semantic Vector Spaces
 - Distributional similarity of single words (e.g., tf-idf)
 - Do not capture the differences in antonyms
 - Neural word vectors (Bengio et al.,2003)
 - Unsupervised
 - Capture distributional similarity
 - Need fine-tuning for sentiment detection

RELATED WORK

- Compositionally in Vector Spaces
 - Capture two word compositions
 - Have not been validated on larger corpora
- Logical Form
 - Mapping sentences to logic form
 - Could only capture sentiment distributions using separate mechanisms beyond the currently used logic forms

RELATED WORK

Deep Learning

- Recursive Auto-associative memories
- Restricted Boltzmann machines etc.

SENTIMENT ANALYSIS AND BAG-OF-WORD MODELS¹

- Most methods use bag of words + linguistic features/ processing/lexica
- Problem: such methods can't distinguish different sentiment caused by word order:
 - + white blood cells destroying an infection
 - an infection destroying white blood cells

¹Adapted from Richard Socher's slides: <u>https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf</u>

SENTIMENT DETECTION AND BAG-OF-WORD MODELS¹

- Sentiment detection seems easy for some cases
- Detection Accuracy for <u>longer documents</u> reaches 90%
- Many easy cases, such as horrible or awesome
- For dataset of single sentence movie reviews (Pang and Lee, 2005), accuracy never reached >80% for >7 years
- Hard cases require actual understanding of negation and its scope + other semantic effects

¹Adapted from Richard Socher's slides: <u>https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf</u>

TWO MISSING PIECES FOR IMPROVING SENTIMENT DETECTION

- Large and labeled compositional data
 - Sentiment Treebank
- Better models for semantic compositionality
 - Recursive Neural Networks

STANFORD SENTIMENT TREEBANK

¹Adapted from <u>http://nlp.stanford.edu/sentiment/treebank.html</u>

DATASET

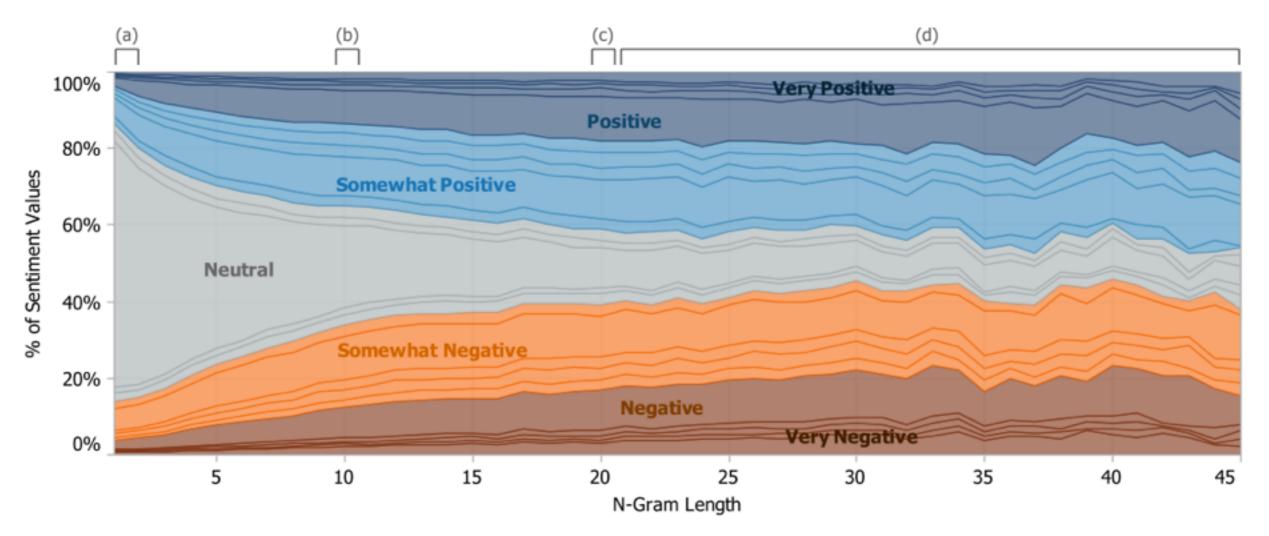
> 215,154 phrases with labels by Amazon Mechanical Turk

11

- Parse trees of 11,855 sentences from movie reviews
- Allows for a complete analysis of the compositional effects of sentiment in language.

FINDINGS

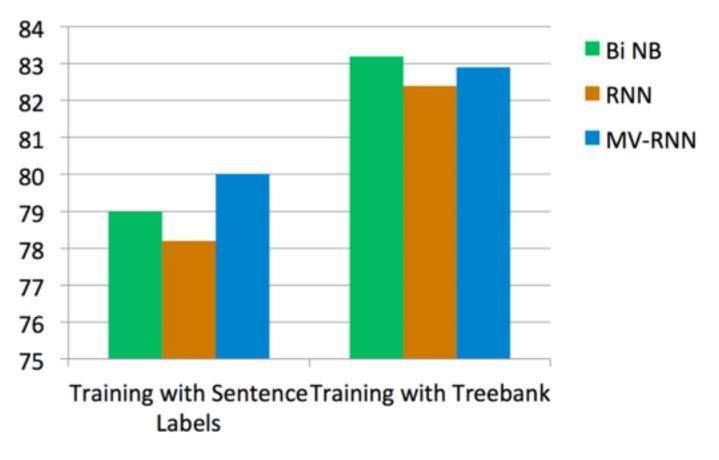
- Stronger sentiment often builds up in longer phrases and the majority of the shorter phrases are neutral
- The extreme values were rarely used and the slider was not often left in between the ticks



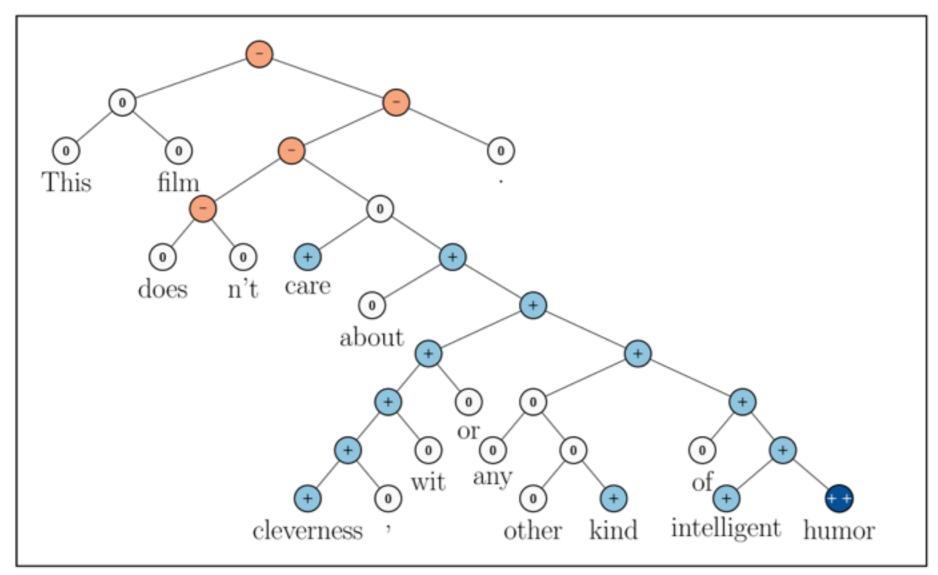
BETTER DATASET HELPED¹

- Performance improved by 2-3%
- Hard negation cases are still mostly incorrect
- Need a more powerful model

Positive/negative full sentence classification



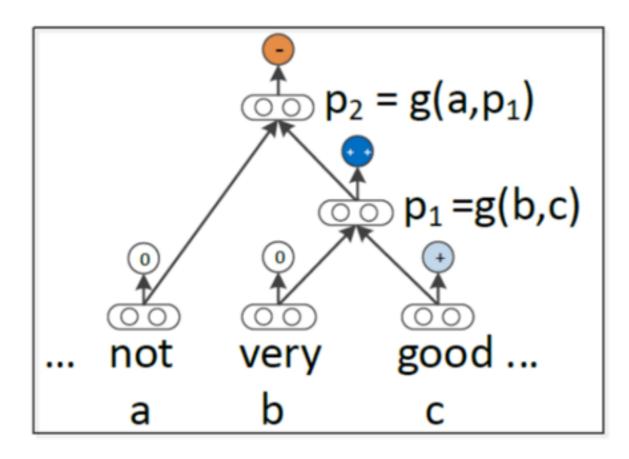
RECURSIVE NEURAL MODELS



Example of the Recursive Neural Tensor Network accurately predicting 5 sentiment classes, very negative to very positive (-, -, 0, +, +), at every node of a parse tree and capturing the negation and its scope in this sentence.

RECURSIVE NEURAL MODELS

- RNN: Recursive Neural Network
- MV-RNN: Matrix-Vector RNN
- RNTN: Recursive Neural Tensor Network



OPERATIONS IN COMMON

Word vector representations

Word vectors: d-dimensional, initialized by randomly from a U(-r,r), r = 0.0001

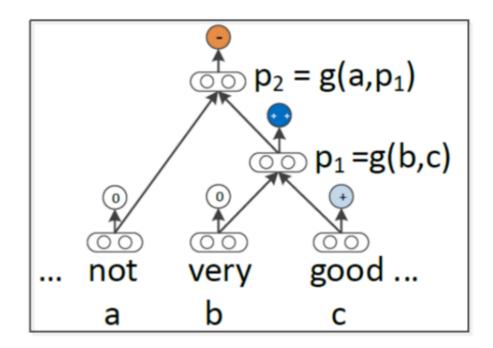
Word embedding Matrix L $\in \mathbb{R}^{d \times |V|}$, stacked by all the word vectors, trained jointly with compositionality models

Classification

Posterior probability over labels given the word vector:

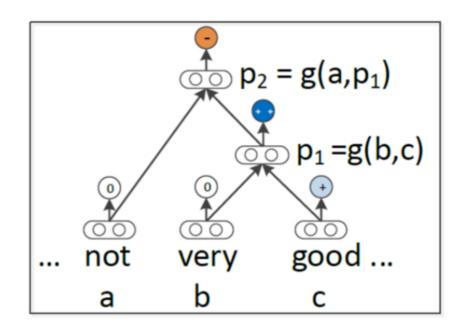
 $y^a = \operatorname{softmax}(W_s a)$

 $W_s \in \mathbb{R}^{5 imes d}$ – Sentiment classification matrix



RECURSIVE NEURAL MODELS¹

- Focused on compositional representation learning of
 - Hierarchical structure, features and prediction
- Different combinations of
 - Training Objective
 - Composition Function
 - Tree Structure



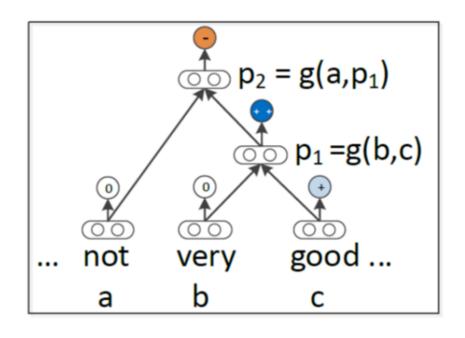
STANDARD RECURSIVE NEURAL NETWORK

Compositionality Function:

$$p_1 = f\left(W\left[\begin{array}{c}b\\c\end{array}\right]\right), p_2 = f\left(W\left[\begin{array}{c}a\\p_1\end{array}\right]\right)$$

 $f = \tanh - \text{standard}$ element-wise nonlinearity

 $W \in \mathbb{R}^{d imes 2d}$ – main parameter to learn

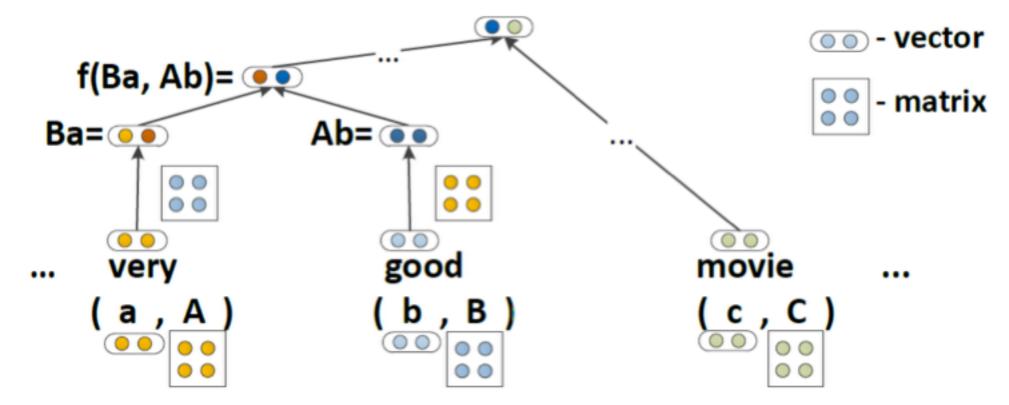


MV-RNN: MATRIX-VECTOR RNN

Composition Function:

$$p_1 = f\left(W\left[\begin{array}{c}Ba\\Ab\end{array}\right]\right), P_1 = f\left(W_M\left[\begin{array}{c}A\\B\end{array}\right]\right)$$

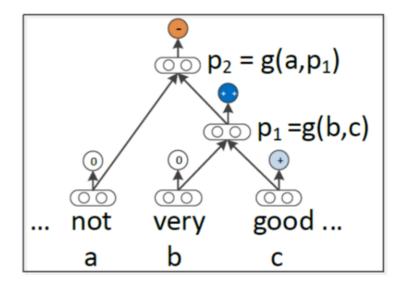
 $W_M \in \mathbb{R}^{d \times 2d}$



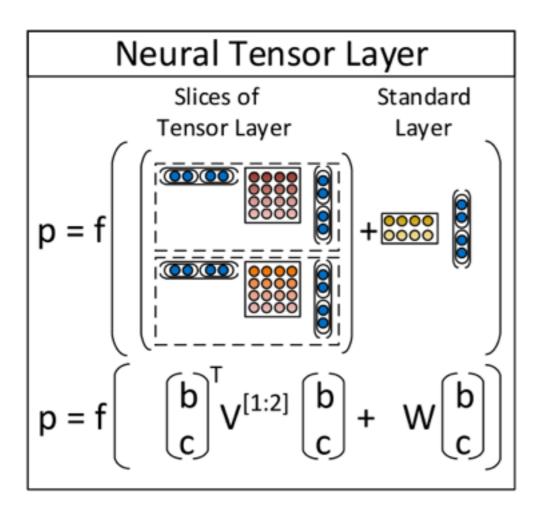
Adapted from Richard Socher's slides: <u>https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf</u>

RECURSIVE NEURAL TENSOR NETWORK

More expressive than previous RNNs



Basic idea: Allow more interactions of vectors



- Composition Function $p_{1} = f\left(\begin{bmatrix} b \\ c \end{bmatrix}^{T} V^{[1:d]} \begin{bmatrix} b \\ c \end{bmatrix} + W \begin{bmatrix} b \\ c \end{bmatrix}\right)$ $p_{2} = f\left(\begin{bmatrix} a \\ p_{1} \end{bmatrix}^{T} V^{[1:d]} \begin{bmatrix} a \\ p_{1} \end{bmatrix} + W \begin{bmatrix} a \\ p_{1} \end{bmatrix}\right)$
- The tensor can directly relate input vectors
- Each slice of the tensor captures a specific type of composition

Minimizing cross entropy error:

$$E(\theta) = \sum_{i} \sum_{j} t_{j}^{i} \log y_{j}^{i} + \lambda \|\theta\|^{2} \qquad \theta = (V, W, W_{s}, L)$$

$$p_2 = g(a,p_1)$$

$$p_1 = g(b,c)$$

$$mot \quad very \quad good \dots$$

$$a \quad b \quad c$$

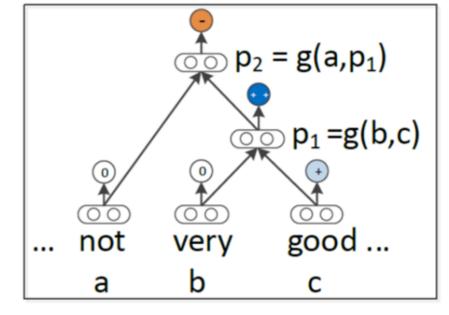
- Standard softmax error vector: $\delta^{i,s} = \left(W_s^T (y^i - t^i) \right) \otimes f'(x^i),$
- Update for each slice:

$$\frac{\partial E^{p_2}}{\partial V^{[k]}} = \delta_k^{p_2,com} \left[\begin{array}{c} a \\ p_1 \end{array} \right] \left[\begin{array}{c} a \\ p_1 \end{array} \right]^T$$

TENSOR BACKPROP THROUGH STRUCTURE

Main backdrop rule to pass error down from parent:

$$\delta^{p_2,down} = \left(W^T \delta^{p_2,com} + S \right) \otimes f' \left(\begin{bmatrix} a \\ p_1 \end{bmatrix} \right)$$
$$S = \sum_{k=1}^d \delta^{p_2,com}_k \left(V^{[k]} + \left(V^{[k]} \right)^T \right) \begin{bmatrix} a \\ p_1 \end{bmatrix}$$



Add errors from parent and current softmax

 $\delta^{p_1,com} = \delta^{p_1,s} + \delta^{p_2,down}[d+1:2d]$

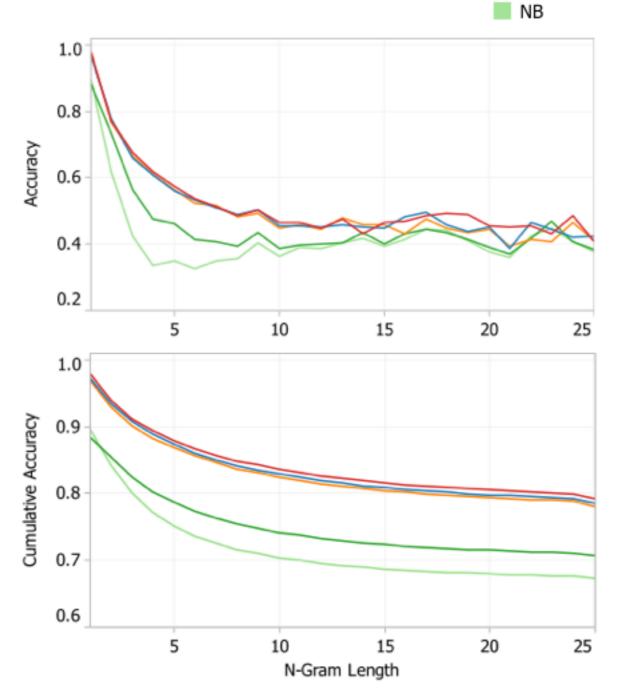
Full derivative for slice V^[k]
$$\frac{\partial E}{\partial V^{[k]}} = \frac{E^{p_2}}{\partial V^{[k]}} + \delta_k^{p_1,com} \begin{bmatrix} b \\ c \end{bmatrix} \begin{bmatrix} b \\ c \end{bmatrix}^T$$

RESULTS ON TREEBANK

Fine-grained and Positive/Negative results

Model	Fine-grained		Positive/Negative	
	All	Root	All	Root
NB	67.2	41.0	82.6	81.8
SVM	64.3	40.7	84.6	79.4
BiNB	71.0	41.9	82.7	83.1
VecAvg	73.3	32.7	85.1	80.1
RNN	79.0	43.2	86.1	82.4
MV-RNN	78.7	44.4	86.8	82.9
RNTN	80.7	45.7	87.6	85.4

Table 1: Accuracy for fine grained (5-class) and binary predictions at the sentence level (root) and for all nodes.



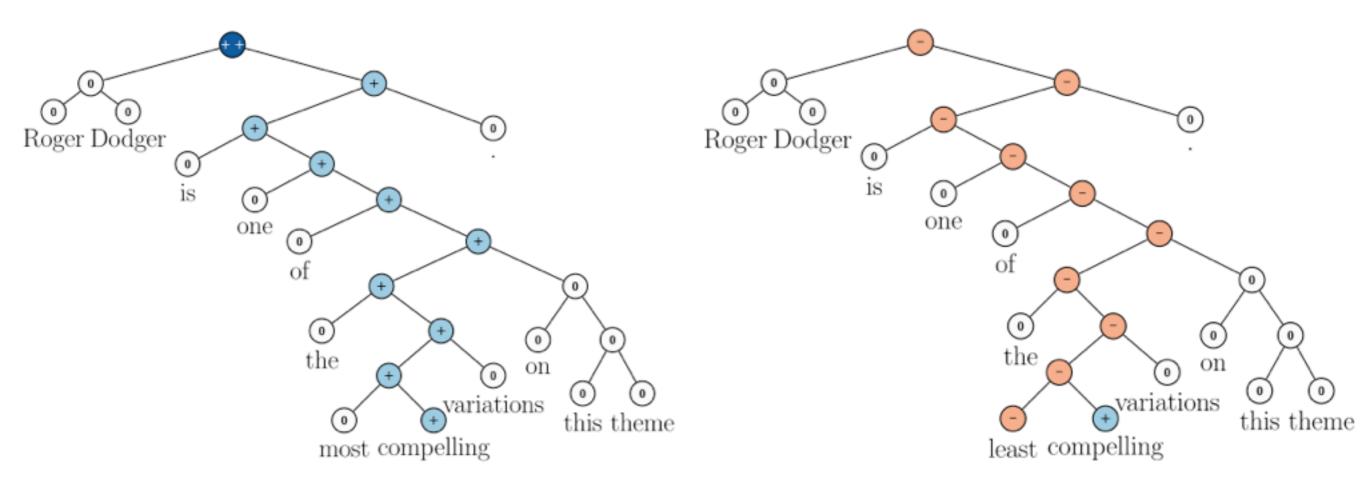
Model

RNTN

RNN biNB

MV-RNN

NEGATION RESULTS



NEGATION RESULTS

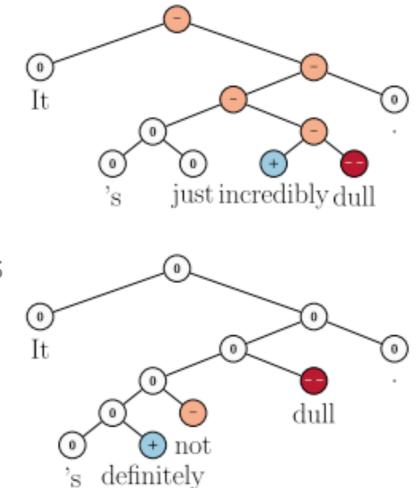
Negating Positive

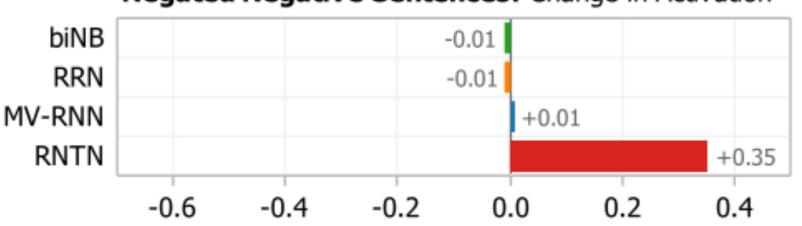
Model	Accuracy			
	Negated Positive	Negated Negative		
biNB	19.0	27.3		
RNN	33.3	45.5		
MV-RNN	52.4	54.6		
RNTN	71.4	81.8		

biNB -0.16 -0.16 RRN -0.34 -0.34 MV-RNN -0.5 -0.4 RNTN -0.57 -0.2 -0.6 -0.4 -0.2 0.0 0.2

NEGATION RESULTS

- Negating Negative
 - When negative sentences are negated, the overall sentiment should become less negative, but not necessarily positive
 - Positive activation should increase



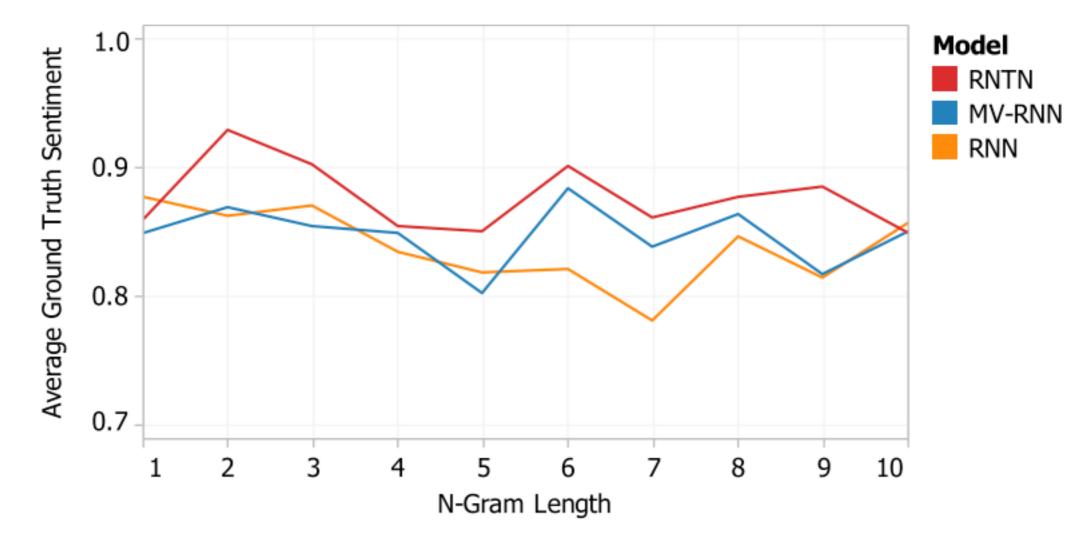


Model	Accuracy		
	Negated Positive	Negated Negative	
biNB	19.0	27.3	
RNN	33.3	45.5	
MV-RNN	52.4	54.6	
RNTN	71.4	81.8	

Negated Negative Sentences: Change in Activation

n	Most positive <i>n</i> -grams	Most negative n-grams
1	engaging; best; powerful; love; beautiful	bad; dull; boring; fails; worst; stupid; painfully
2	excellent performances; A masterpiece; masterful	worst movie; very bad; shapeless mess; worst
	film; wonderful movie; marvelous performances	thing; instantly forgettable; complete failure
3	an amazing performance; wonderful all-ages tri-	for worst movie; A lousy movie; a complete fail-
	umph; a wonderful movie; most visually stunning	ure; most painfully marginal; very bad sign
5	nicely acted and beautifully shot; gorgeous im-	silliest and most incoherent movie; completely
	agery, effective performances; the best of the	crass and forgettable movie; just another bad
	year; a terrific American sports movie; refresh-	movie. A cumbersome and cliche-ridden movie;
	ingly honest and ultimately touching	a humorless, disjointed mess
8	one of the best films of the year; A love for films	A trashy, exploitative, thoroughly unpleasant ex-
	shines through each frame; created a masterful	perience ; this sloppy drama is an empty ves-
	piece of artistry right here; A masterful film from	sel.; quickly drags on becoming boring and pre-
	a master filmmaker,	dictable.; be the worst special-effects creation of
		the year

Examples of n-grams for which the RNTN predicted the most positive and most negative responses



Average ground truth sentiment of top 10 most positive n-grams at various n. RNTN selects more strongly positive phrases at most n-gram lengths compared to other models.

DEMO

- http://nlp.stanford.edu:8080/sentiment/rntnDemo.html
- Stanford CoreNLP