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Neural Network

@ A network connecting numerous neurons
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Analogy

@ Imagine a neural network as a map
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Analogy

@ Suppose you (information flow) wants to reach Bakery (neuron B)
from City Hall (neuron A), what will you do?
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Analogy

@ Suppose you (information flow) wants to reach Bakery (neuron B)
from City Hall (neuron A), what will you do?

@ You have to follow the path of network!
@ What if there is a highway connecting Bakery and City Hall directly?
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Highway Networks

Allowing direct pass (highway) between neurons in different layers.
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Allowing direct pass (highway) between neurons in different layers.

Inputs

(%
(X
&

X
X3
Xﬂ
'
layer 1 layer 2

Renjie Liao (UofT) Highway Networks and Residual Networks Jan 26, 2016 5/23



Highway Networks

Original network:

=0 ZW,];Xn—l-b (1)

n=1
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Highway Networks

Original network:

=0 (Z wrx, + b) (1)
n=1

Highway network:

zn=To <Z wix, + b) +(1-T)xy (2)

n=1
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Highway Networks

Original network:
z1=0 (Z wix, + b) (1)
n=1
Highway network:
n=To (Z Wy + b> +(1-Tx (2)
n=1

Gating function:
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Highway Networks

@ Remember the shape of sigmoid function.
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Highway Networks

@ Remember the shape of sigmoid function.
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Highway Networks

@ Remember the shape of sigmoid function.
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@ We can set bias b’ to negative values such that gating value T — 0.
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Benefits of Highway networks

@ Enable training of very deep neural networks (e.g., hundreds of layers)
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“Srivastava, R.K., Greff, K. and Schmidhuber, J., 2015. Highway Networks. arXiv preprint arXiv:1505.00387".
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Benefits of Highway networks

@ Enable training of very deep neural networks (e.g., hundreds of layers)
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Residual Networks

@ Motivation: Does depth matter for deep learning?
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Residual Networks

@ Motivation: Does depth matter for deep learning?
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“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385" .
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Residual Networks

@ Motivation: Does depth matter for deep learning?
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“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385".
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Residual Networks

@ We need new architecture to make depth matter.
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Residual Networks

@ We need new architecture to make depth matter.

@ Suppose you have a plain 2-layer network H.

"
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HE) lrelu

“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
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Residual Networks

@ We need new architecture to make depth matter.

@ Suppose you have a plain 2-layer network H.

@ We use a new building block which forces the previous 2-layer F to
learn the residual H — x.
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Residual Networks

@ We need new architecture to make depth matter.
@ Suppose you have a plain 2-layer network H.

@ We use a new building block which forces the previous 2-layer F to

learn the residual H — x.

F(x)

Hx)=F(x)+«x

X

Y

weight layer

relu
\ 4

weight layer

identity
X

“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint

arXiv:1512.03385".
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Residual Networks

@ What we have done?
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Residual Networks

@ What we have done?

"

o weight layer weight layer
stacked layers v relu F(x) identity
- weight layer X
weight layer

H(x) lrelu Hx)=F(x)+x @

“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385".
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Residual Networks

@ Based on this building block, we can do some crazy things like...
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Residual Networks

@ Based on this building block, we can do some crazy things like...

Revolution of Depth

AlexNet, 8 layers VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)
Iccvit =

“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385".
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Image Net Challenge Results

Revolution of Depth 28.2
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“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385" .

Renjie Liao (UofT) Highway Networks and Residual Networks Jan 26, 2016 16 /



PASCAL VOC Challenge Results

. 101 layers
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“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385" .
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More Results

2nd-place margin
winner (relative)

ImageNet Localization (wp-serron 12.0 27%

6 absolute 62.1 16%
8.5% better!

33.5 373

ImageNet Detection mare.s)

COCO Detection mare.s:95) 11%

COCO Segmentation (mare.s:ss) 25.1 28.2 12%

“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385" .
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More Results
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“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385".
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More Results

person : 0.989 \
o refrigerator : 0.979
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“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385".
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More Results

T person :0.910 ‘
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person 0.998 umbrella : 0.910

“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
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More Results
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“He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv preprint
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Thanks!
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