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Last Class: Image Captioning
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From Kiros et al. [2014]



This Week: Video Captioning

AKA: Image captioning through time!

S2VT: A man is shooting a gun at a target.

From Venugopalan et al. [2015]



Related Work (1)

Toronto: Joint Embedding from Skip-thoughts + CNN :
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oach other? What will we.

When | think of my wife | always think of her head.
| picture cracking her lovely skull unspooling her brains
trying to get answers.

from Zhu et al. [2015]: Aligning books and movies: Towards story-like visual explanations by watching movies
and reading books



Related Work (2)

Berkeley: Long-term Recurrent Convolutional Networks:
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From Donahue et al. [2015]: Long-term recurrent convolutional networks for visual recognition and description



Related Work (3)

MPI: Ensemble of weak classifiers - LSTM:
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from Rohrbach et al. [2015]: The long-short story of movie description



Related Work (4)

Montréal: (SIFT, HOG) Features + 3-D CNN + LSTM
+ Attention:
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From Yao et al. [2015]: Video description generation incorporating spatio-temporal features and a
soft-attention mechanism



We can simplify the problem. ..

In captioning, we translate one modality (image) to another
(text).

Image captioning : Fixed length sequence (image) to
variable length sequence (words).

Video captioning : Variable length sequence (video frames)
to variable length sequence (words).



Formulation

> Let (xl, ...,Xp) be the sequence of video frames.
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» Let (y1,...,Ym) be the sequence of words.

(The, cat, is, afraid, of, the, cucumber.)

» We want to maximise p(y1,. -, Ym | X1,---,Xn).



Formulation contd.

Idea:

» Accumulate the sequence of video frames into a single
encoded vector.
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» Decode that vector into words one-by-one.
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The S2VT Model
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From Venugopalan et al. [2015]: Sequence to sequence-video to text



Optimization
During decoding, maximise

1ng(y17"'7ym ’ Xla"'axn)

= Zlogp(yt | Pony1-1,Ye-1))

t=1

Train using stochastic gradient descent.

Encoder weights are jointly updated with decoder weights
because we are backpropagating through time.



S2VT Model in Detail

T T
Encoding stage Decoding stage time

From Venugopalan et al. [2015]



S2VT Results (Qualitative)

Correct descriptions.

Relevant but incorrect
descriptions.

S2VT: A herd of zebras are walking i

S2VT: A man is shooting a gun at a target.

(a)

n a field.

i .
S2VT: A small bus is running into a building.

S2VT: A man is cutting a piece of a pair of a paper.

S2VT: A cat is trying to get a small board.
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S2VT: A man is spreading butter on a tortilla.
(b)

From Venugopalan et al. [2015]

Irrelevant descriptions.

S2VT: A man is pouring liquid in a pan.

S2VT: A black clip to walking through a path.
(c)



S2VT Results (Quantitative)

Model METEOR
FGM Thomason et al. [2014] 23.9
Mean pool

- AlexNet Venugopalan et al. [2015] 26.9
- VGG 27.7
- AlexNet COCO pre-trained Venugopalan et al. [2015] 29.1
- GoogleNet Yao et al. [2015] 28.7
Temporal attention

- GoogleNet Yao et al. [2015] 29.0
- GoogleNet + 3D-CNN Yao et al. [2015] 29.6
S2vT

- Flow (AlexNet) 24.3
- RGB (AlexNet) 27.9
- RGB (VGG) random frame order 28.2
- RGB (VGG) 29.2
- RGB (VGG) + Flow (AlexNet) 29.8

Table: Microsoft Video Description (MSVD) dataset (METEOR in
%, higher is better).

From Venugopalan et al. [2015]



Datasets

» Microsoft Video Description corpus (MSVD) Chen and
Dolan [2011]

» web clips with human-annotated sentences

» MPII Movie Description Corpus (MPII-MD) Rohrbach
et al. [2015] and Montreal Video Annotation Dataset
(M-VAD) Yao et al. [2015]

» movie clips with captions sourced from audio/script



Resources

» Implementation of S2VT: Sequence-to-Sequence
Video-to-Text

» Microsoft Video Description corpus (MSVD)

» MPII Movie Description Corpus (MPII-MD)

» Montreal Video Annotation Dataset (M-VAD)


https://github.com/vsubhashini/caffe/tree/recurrent/examples/s2vt
https://github.com/vsubhashini/caffe/tree/recurrent/examples/s2vt
http://research.microsoft.com/en-us/downloads/38cf15fd-b8df-477e-a4e4-a4680caa75af/
http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset/
http://www.mila.umontreal.ca/Home/public-datasets/montreal-video-annotation-dataset
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