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A Neuron

Image from http://cs231n.github.io/neural-networks-1/



A Neuron in Neural Network

Image from http://cs231n.github.io/neural-networks-1/



Activation Functions
● Sigmoid: f(x) = 1 / (1 + e

-x

)

● ReLU: f(x) = max(0, x)

● Leaky ReLU: f(x) = max(ax, x)

● Maxout: f(x) = max(w

0

x + b

0

, w

1

x + b

1

)

● and many others… 



Neural Network (MLP)

Image modified from http://cs231n.github.io/neural-networks-1/

The network simulates a function y = f(x; w) 



Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/
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Image and code modified from http://cs231n.github.io/optimization-2/
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Forward Computation
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Forward Computation
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Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/
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Loss Function
Loss function measures how well prediction matches true value

Commonly used loss function:

● Squared loss: (y - y’)

2

● Cross-entropy loss: -sum

i

(y

i

’ * log(y

i

))

● and many others



Loss Function
During training, we would like to minimize the total loss on a set 

of training data

● We want to find w* = argmin{sum

i

[loss(f(x

i

; w), y

i

)]}



Loss Function
During training, we would like to minimize the total loss on a set 

of training data

● We want to find w* = argmin{sum

i

[loss(f(x

i

; w), y

i

)]}

● Usually we use gradient based approach

○ w

t+1

 = w

t

 - a∇w



Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/
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Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/
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Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/
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Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/
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Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/
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Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/
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Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/
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Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/
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Why NNs? 



Universal Approximation Theorem
A feed-forward network with a single hidden layer containing a 

finite number of neurons, can approximate continuous functions 

on compact subsets of R

n

, under mild assumptions on the 

activation function.

https://en.wikipedia.org/wiki/Universal_approximation_theorem



Stone’s Theorem
● Suppose X is a compact Hausdorff space and B is a 

subalgebra in C(X, R) such that:

○ B separates points. 

○ B contains the constant function 1. 

○ If f ∈ B then af ∈ B for all constants a ∈ R. 

○ If f, g ∈ B, then f + g, max{f, g} ∈ B.

● Then every continuous function defined on C(X, R) can be 

approximated as closely as desired by functions in B



Why CNNs? 



Problems of MLP in Vision
For input as a 10 * 10 image:

● A 3 layer MLP with 200 hidden units contains ~100k 

parameters

For input as a 100 * 100 image:

● A 1 layer MLP with 20k hidden units contains ~200m 

parameters



Can We Do Better?
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Can We Do Better?
Based on such observation, MLP can be improved in two ways:

● Locally connected instead of fully connected

● Sharing weights between neurons

We achieve those by using convolution neurons



Convolutional Layers

Image from http://cs231n.github.io/convolutional-networks/



Convolutional Layers

Image from http://cs231n.github.io/convolutional-networks/. See this page for an excellent example of convolution.

depth

height

width

http://cs231n.github.io/convolutional-networks/


Pooling Layers

Image from http://cs231n.github.io/convolutional-networks/



Pooling Layers Example: Max Pooling

Image from http://cs231n.github.io/convolutional-networks/



Pooling Layers
Commonly used pooling layers:

● Max pooling

● Average pooling

Why pooling layers?

● Reduce activation dimensionality

● Robust against tiny shifts



CNN Architecture: An Example

Image from http://cs231n.github.io/convolutional-networks/



Layer Activations for CNNs

Image modified from http://cs231n.github.io/convolutional-networks/

       Conv:1                  ReLU:1               Conv:2                 ReLU:2            MaxPool:1             Conv:3



Layer Activations for CNNs

Image modified from http://cs231n.github.io/convolutional-networks/

    MaxPool:2                Conv:5               ReLU:5                 Conv:6               ReLU:6              MaxPool:3



Learnt Weights for CNNs: First Conv Layer of AlexNet

Image from http://cs231n.github.io/convolutional-networks/



Why CNNs Work Now? 



Convolutional Neural Networks
● Faster heterogeneous parallel computing

○ CPU clusters, GPUs, etc.

● Large dataset

○ ImageNet: 1.2m images of 1,000 object classes

○ CoCo: 300k images of 2m object instances

● Improvements in model architecture

○ ReLU, dropout, inception, etc.



AlexNet

Krizhevsky, Alex, et al. "Imagenet classification with deep convolutional neural networks." NIPS 2012



GoogLeNet

Szegedy, Christian, et al. "Going deeper with convolutions." arXiv preprint arXiv:1409.4842 (2014).



Quiz
# of parameters for the first conv layer of AlexNet?



Quiz
# of parameters if the first layer is fully-connected?



Quiz
Given a convolution operation written as

f(x

3x3

; w

3x3

, b) = sum

i,j

(x

i,j

w

i,j

) + b 

Can you derive its gradients (df/dx, df/dw, df/db)?



Ready to Build Your Own Networks?



Tips and Tricks for CNNs 
● Know your data, clean your data, and normalize your data

○ A common trick: subtract the mean and divide by its std. 

Image from http://cs231n.github.io/neural-networks-2/



Tips and Tricks for CNNs 
● Augment your data



Tips and Tricks for CNNs 
● Organize your data:

○ Keep training data balanced

○ Shuffle data before batching

● Feed your data in the correct way

○ Image channel order

○ Tensor storage order



Tips and Tricks for CNNs 

First Order, in order. First Order, out of order.



Tips and Tricks for CNNs 
Common tensor storage order:

● BDRC

○ Used in Caffe, Torch, Theano, supported by CuDNN

○ Pros: faster for convolution (FFT, memory access)

● BRCD

○ Used in TensorFlow, limited support by CuDNN

○ Pros: Fast batch normalization, easier batching



Tips and Tricks for CNNs 
Designing model architecture

● Convolution, max pooling, then fully connected layers

● Nonlinearity

○ Stay away from sigmoid (except for output)

○ ReLU preferred

○ Leaky ReLU after

○ Use Maxout if most ReLU units die (have zero activation)  



Tips and Tricks for CNNs 
Setting parameters

● Weights

○ Random initialization with proper variance

● Biases

○ For ReLU we prefer a small positive bias to activate ReLU



Tips and Tricks for CNNs 
Setting hyperparameters

● Learning Rate / Momentum (Δw

t*

 = Δw

t

 + mΔw

t-1

)

○ Decrease learning rate while training

○ Setting momentum to 0.8 - 0.9

● Batch Size

○ For large dataset:  set to whatever fits your memory

○ For smaller dataset: find a tradeoff between instance 

randomness and gradient smoothness



Tips and Tricks for CNNs 
Monitoring your training:

● Split your dataset to training, validation and test

○ Optimize your hyperparameter in val and evaluate on test

○ Keep track of training and validation loss during training

○ Do early stopping if training and validation loss diverge

○ Loss doesn’t tell you all. Try precision, class-wise precision, and 

more



Tips and Tricks for CNNs 
Borrow knowledge from another dataset

● Pre-train your CNN on a large dataset (e.g. ImageNet)

● Remove / reshape the last a few layers

● Fix the parameters of first a few layers, or make the learning 

rate small for them

● Fine-tune the parameters on your own dataset



Tips and Tricks for CNNs 
Debugging

● import unittest, not import pdb

● Check your gradient [**deprecated**]

● Make your model large enough, and try overfitting training

● Check gradient norms, weight norms, and activation norms



Talk is Cheap, Show Me Some Code



Image from http://www.linkresearchtools.com/



Fully Convolutional Networks

Long, Jonathan, et al. "Fully convolutional networks for semantic segmentation." arXiv preprint arXiv:1411.4038 (2014).


