
All You Want To Know About
CNNs
Yukun Zhu

Deep Learning

Deep Learning

Image from http://imgur.com/

Deep Learning

Image from http://imgur.com/

Deep Learning

Image from http://imgur.com/

Deep Learning

Image from http://imgur.com/

Deep Learning

Image from http://imgur.com/

Deep Learning

Image from http://imgur.com/

Deep Learning in Vision

33.4

DPM
(2010)

Object detection performance, PASCAL VOC 2010

Deep Learning in Vision

33.4

DPM
(2010)

40.4

segDPM
(2014)

Object detection performance, PASCAL VOC 2010

Deep Learning in Vision

33.4

DPM
(2010)

40.4

segDPM
(2014)

53.7

RCNN
(2014)

Object detection performance, PASCAL VOC 2010

Deep Learning in Vision

33.4

DPM
(2010)

40.4

segDPM
(2014)

53.7

RCNN
(2014)

Object detection performance, PASCAL VOC 2010

62.9

RCNN*
(Oct 2014)

Deep Learning in Vision

33.4

DPM
(2010)

40.4

segDPM
(2014)

53.7

RCNN
(2014)

67.2

segRCNN
(Jan 2015)

Object detection performance, PASCAL VOC 2010

62.9

RCNN*
(Oct 2014)

Deep Learning in Vision

33.4

DPM
(2010)

40.4

segDPM
(2014)

53.7

RCNN
(2014)

67.2

segRCNN
(Jan 2015)

Object detection performance, PASCAL VOC 2010

62.9

RCNN*
(Oct 2014)

70.8

Fast RCNN
(Jun 2015)

A Neuron

Image from http://cs231n.github.io/neural-networks-1/

A Neuron in Neural Network

Image from http://cs231n.github.io/neural-networks-1/

Activation Functions
● Sigmoid: f(x) = 1 / (1 + e

-x

)

● ReLU: f(x) = max(0, x)

● Leaky ReLU: f(x) = max(ax, x)

● Maxout: f(x) = max(w

0

x + b

0

, w

1

x + b

1

)

● and many others…

Neural Network (MLP)

Image modified from http://cs231n.github.io/neural-networks-1/

The network simulates a function y = f(x; w)

Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-3.00

-2.00

-3.00

Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00

Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00

Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37

Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37 1.37

Forward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37 1.37 0.73

Loss Function
Loss function measures how well prediction matches true value

Commonly used loss function:

● Squared loss: (y - y’)

2

● Cross-entropy loss: -sum

i

(y

i

’ * log(y

i

))

● and many others

Loss Function
During training, we would like to minimize the total loss on a set

of training data

● We want to find w* = argmin{sum

i

[loss(f(x

i

; w), y

i

)]}

Loss Function
During training, we would like to minimize the total loss on a set

of training data

● We want to find w* = argmin{sum

i

[loss(f(x

i

; w), y

i

)]}

● Usually we use gradient based approach

○ w

t+1

 = w

t

 - a∇w

Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37 1.37 0.73

1.00

Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37 1.37 0.73

1.00-0.53

f = 1/x
df/dx = -1/x2

Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37 1.37 0.73

1.00-0.53-0.53

f = x + 1
df/dx = 1

Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37 1.37 0.73

1.00-0.53-0.53-0.20

f = ex

df/dx = ex

Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37 1.37 0.73

1.00-0.53-0.53-0.200.20

f = -x
df/dx = -1

Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37 1.37 0.73

1.00-0.53-0.53-0.200.20

0.20

0.20

f = x + a
df/dx = 1

Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37 1.37 0.73

1.00-0.53-0.53-0.200.20

0.20

0.20

0.20

0.20

Backward Computation

Image and code modified from http://cs231n.github.io/optimization-2/

f(x

0

, x

1

) = 1 / (1 + exp(-(w

0

x

0

 + w

1

x

1

 + w

2

)))

x

0

x

1

1

sigmoid

2.00

-1.00

-2.00

-3.00

-2.00

-3.00

6.00

4.00

1.00 -1.00 0.37 1.37 0.73

1.00-0.53-0.53-0.200.20

0.20

0.20

0.20
0.40

-0.20

-0.40

-0.60

0.20

f = ax
df/dx = a

Why NNs?

Universal Approximation Theorem
A feed-forward network with a single hidden layer containing a

finite number of neurons, can approximate continuous functions

on compact subsets of R

n

, under mild assumptions on the

activation function.

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Stone’s Theorem
● Suppose X is a compact Hausdorff space and B is a

subalgebra in C(X, R) such that:

○ B separates points.

○ B contains the constant function 1.

○ If f ∈ B then af ∈ B for all constants a ∈ R.

○ If f, g ∈ B, then f + g, max{f, g} ∈ B.

● Then every continuous function defined on C(X, R) can be

approximated as closely as desired by functions in B

Why CNNs?

Problems of MLP in Vision
For input as a 10 * 10 image:

● A 3 layer MLP with 200 hidden units contains ~100k

parameters

For input as a 100 * 100 image:

● A 1 layer MLP with 20k hidden units contains ~200m

parameters

Can We Do Better?

Can We Do Better?

Can We Do Better?

Can We Do Better?

Can We Do Better?
Based on such observation, MLP can be improved in two ways:

● Locally connected instead of fully connected

● Sharing weights between neurons

We achieve those by using convolution neurons

Convolutional Layers

Image from http://cs231n.github.io/convolutional-networks/

Convolutional Layers

Image from http://cs231n.github.io/convolutional-networks/. See this page for an excellent example of convolution.

depth

height

width

http://cs231n.github.io/convolutional-networks/

Pooling Layers

Image from http://cs231n.github.io/convolutional-networks/

Pooling Layers Example: Max Pooling

Image from http://cs231n.github.io/convolutional-networks/

Pooling Layers
Commonly used pooling layers:

● Max pooling

● Average pooling

Why pooling layers?

● Reduce activation dimensionality

● Robust against tiny shifts

CNN Architecture: An Example

Image from http://cs231n.github.io/convolutional-networks/

Layer Activations for CNNs

Image modified from http://cs231n.github.io/convolutional-networks/

 Conv:1 ReLU:1 Conv:2 ReLU:2 MaxPool:1 Conv:3

Layer Activations for CNNs

Image modified from http://cs231n.github.io/convolutional-networks/

 MaxPool:2 Conv:5 ReLU:5 Conv:6 ReLU:6 MaxPool:3

Learnt Weights for CNNs: First Conv Layer of AlexNet

Image from http://cs231n.github.io/convolutional-networks/

Why CNNs Work Now?

Convolutional Neural Networks
● Faster heterogeneous parallel computing

○ CPU clusters, GPUs, etc.

● Large dataset

○ ImageNet: 1.2m images of 1,000 object classes

○ CoCo: 300k images of 2m object instances

● Improvements in model architecture

○ ReLU, dropout, inception, etc.

AlexNet

Krizhevsky, Alex, et al. "Imagenet classification with deep convolutional neural networks." NIPS 2012

GoogLeNet

Szegedy, Christian, et al. "Going deeper with convolutions." arXiv preprint arXiv:1409.4842 (2014).

Quiz
of parameters for the first conv layer of AlexNet?

Quiz
of parameters if the first layer is fully-connected?

Quiz
Given a convolution operation written as

f(x

3x3

; w

3x3

, b) = sum

i,j

(x

i,j

w

i,j

) + b

Can you derive its gradients (df/dx, df/dw, df/db)?

Ready to Build Your Own Networks?

Tips and Tricks for CNNs
● Know your data, clean your data, and normalize your data

○ A common trick: subtract the mean and divide by its std.

Image from http://cs231n.github.io/neural-networks-2/

Tips and Tricks for CNNs
● Augment your data

Tips and Tricks for CNNs
● Organize your data:

○ Keep training data balanced

○ Shuffle data before batching

● Feed your data in the correct way

○ Image channel order

○ Tensor storage order

Tips and Tricks for CNNs

First Order, in order. First Order, out of order.

Tips and Tricks for CNNs
Common tensor storage order:

● BDRC

○ Used in Caffe, Torch, Theano, supported by CuDNN

○ Pros: faster for convolution (FFT, memory access)

● BRCD

○ Used in TensorFlow, limited support by CuDNN

○ Pros: Fast batch normalization, easier batching

Tips and Tricks for CNNs
Designing model architecture

● Convolution, max pooling, then fully connected layers

● Nonlinearity

○ Stay away from sigmoid (except for output)

○ ReLU preferred

○ Leaky ReLU after

○ Use Maxout if most ReLU units die (have zero activation)

Tips and Tricks for CNNs
Setting parameters

● Weights

○ Random initialization with proper variance

● Biases

○ For ReLU we prefer a small positive bias to activate ReLU

Tips and Tricks for CNNs
Setting hyperparameters

● Learning Rate / Momentum (Δw

t*

 = Δw

t

 + mΔw

t-1

)

○ Decrease learning rate while training

○ Setting momentum to 0.8 - 0.9

● Batch Size

○ For large dataset: set to whatever fits your memory

○ For smaller dataset: find a tradeoff between instance

randomness and gradient smoothness

Tips and Tricks for CNNs
Monitoring your training:

● Split your dataset to training, validation and test

○ Optimize your hyperparameter in val and evaluate on test

○ Keep track of training and validation loss during training

○ Do early stopping if training and validation loss diverge

○ Loss doesn’t tell you all. Try precision, class-wise precision, and

more

Tips and Tricks for CNNs
Borrow knowledge from another dataset

● Pre-train your CNN on a large dataset (e.g. ImageNet)

● Remove / reshape the last a few layers

● Fix the parameters of first a few layers, or make the learning

rate small for them

● Fine-tune the parameters on your own dataset

Tips and Tricks for CNNs
Debugging

● import unittest, not import pdb

● Check your gradient [**deprecated**]

● Make your model large enough, and try overfitting training

● Check gradient norms, weight norms, and activation norms

Talk is Cheap, Show Me Some Code

Image from http://www.linkresearchtools.com/

Fully Convolutional Networks

Long, Jonathan, et al. "Fully convolutional networks for semantic segmentation." arXiv preprint arXiv:1411.4038 (2014).

