
Cameras and Images
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Pinhole Camera

[Source: A. Torralba]

Make your own camera

http://www.foundphotography.com/PhotoThoughts/archives/2005/

04/pinhole_camera_2.html
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Pinhole Camera – How It Works

[Source: A. Torralba]

The pinhole camera only allows rays from one point in the scene

to strike each point of the paper.
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Pinhole Camera – How It Works

[Source: A. Torralba]

Example
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Pinhole Camera – Example

[Source: A. Torralba]
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Pinhole Camera

[Source: A. Torralba]

You can make it stereo
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Pinhole Camera – Stereo Example

[Source: A. Torralba]

Try it with 3D glasses!
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Pinhole Camera

[Source: A. Torralba]

Remember this example?

In this case the window acts as a pinhole camera into the room

Sanja Fidler CSC420: Intro to Image Understanding 8 / 59



Digital Camera

[Adopted from S. Seitz]

A digital camera replaces film with a sensor array

Each cell in the array is a light-sensitive diode that converts

photons to electrons

http://electronics.howstuffworks.com/cameras-photography/

digital/digital-camera.htm
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Image Formation

Image formation process producing a particular image depends on:

lighting conditions

scene geometry

surface properties

camera optics
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Digital Image

Continuous image projected to sensor array

Sampling and quantization

http://pho.to/media/images/digital/digital-sensors.jpg

Sample the 2D space on a regular grid

Quantize each sample (round to nearest integer)
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Digital Image

Image is a matrix with integer values

We will typically denote it with I

I (i , j) is called intensity

Matrix I can be m ⇥ n (grayscale)

or m ⇥ n ⇥ 3 (color)
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Intensity

We can think of a (grayscale) image as a function f : R2 ! R giving
the intensity at position (i , j)
Intensity 0 is black and 255 is white
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Image Transformations

As with any function, we can apply operators to an image, e.g.:

We’ll talk about special kinds of operators, correlation and

convolution (linear filtering)

[Adapted from: N. Snavely]
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Linear Filters

Reading: Szeliski book, Chapter 3.2
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Motivation: Finding Waldo

How can we find Waldo?

[Source: R. Urtasun]
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Answer

Slide and compare!

In formal language: filtering
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Motivation: Noise reduction

Given a camera and a still scene, how can you reduce noise?

[Source: S. Seitz]
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Image Filtering

Modify the pixels in an image based on some function of a local
neighborhood of each pixel

In other words... Filtering
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[Source: L. Zhang]
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Applications of Filtering

Enhance an image, e.g., denoise.

Detect patterns, e.g., template matching.

Extract information, e.g., texture, edges.

Filtering is used in Convolutional Neural Networks
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Applications of Filtering

Enhance an image, e.g., denoise. Let’s talk about this first

Detect patterns, e.g., template matching.

Extract information, e.g., texture, edges.
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Noise reduction

Simplest thing: replace each pixel by the average of its neighbors.

This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

[Source: S. Marschner]
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Noise reduction

Simplest thing: replace each pixel by the average of its neighbors

This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

Moving average in 1D: [1, 1, 1, 1, 1]/5

[Source: S. Marschner]
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Noise reduction

Simplest thing: replace each pixel by the average of its neighbors

This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

Non-uniform weights [1, 4, 6, 4, 1] / 16

[Source: S. Marschner]
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Moving Average in 2D

[Source: S. Seitz]
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Moving Average in 2D

[Source: S. Seitz]
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Linear Filtering: Correlation

Involves weighted combinations of pixels in small neighborhoods:

G (i , j) =
1

(2k + 1)2

kX

u=�k

kX

v=�k

I (i + u, j + v)

The output pixels value is determined as a weighted sum of input
pixel values

G (i , j) =
kX

u=�k

kX

v=�k

F (u, v) · I (i + u, j + v)

The entries of the weight kernel or mask F (u, v) are often called the
filter coe�cients.
This operator is the correlation operator

G = F ⌦ I
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Linear Filtering: Correlation

It’s really easy!
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Linear Filtering: Correlation

What happens along the borders of the image?

G (i , j) =
kX

u=�k

kX

v=�k

F (u, v) · I (i + u, j + v)
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Boundary E↵ects

What happens at the border of the image? What’s the size of the
output matrix?

MATLAB: filter2(g, f, shape)
Python: scipy.ndimage.convolve

shape = “full” output size is sum of sizes of f and g

shape = “same”: output size is same as f

shape = “valid”: output size is di↵erence of sizes of f and g

[Source: S. Lazebnik]
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Filtering with Correlation: Example

What’s the result?

[Source: D. Lowe]
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Filtering with Correlation: Example

What’s the result?

Original!

!"!"!"

!"!"!"

!"!"!"

#"#"#"

#"$"#"

#"#"#" -! %"* 
[Source: D. Lowe]
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Filtering with Correlation: Example
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!"!"!"

!"!"!"

!"!"!"

#"#"#"

#"$"#"

#"#"#" -!
!"#$%&'(')*+,-&$*

%&''()*+&*(,"(-.(,/*

0"* 
[Source: D. Lowe]
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Sharpening

[Source: D. Lowe]
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Sharpening

!"#$%&'&()

#$%&'&()

[Source: N. Snavely]
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Example of Correlation

What is the result of filtering the impulse signal (image) I with the
arbitrary filter F?

[Source: K. Grauman]
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Smoothing by averaging

What if the filter size was 5 x 5 instead of 3 x 3?

[Source: K. Graumann]
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Gaussian filter

What if we want nearest neighboring pixels to have the most influence
on the output?

Removes high-frequency components from the image (low-pass filter).

[Source: S. Seitz]
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Smoothing with a Gaussian

[Source: K. Grauman]
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Mean vs Gaussian
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Gaussian filter: Parameters

Size of filter or mask: Gaussian function has infinite support, but
discrete filters use finite kernels.

[Source: K. Grauman]

Sanja Fidler CSC420: Intro to Image Understanding 36 / 59



Gaussian filter: Parameters

Variance of the Gaussian: determines extent of smoothing.

[Source: K. Grauman]
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Gaussian filter: Parameters

[Source: K. Grauman]
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Is this the most general Gaussian?

No, the most general form for x 2 <d

N (x; µ,⌃) =
1

(2⇡)d/2|⌃|1/2
exp

✓
�1

2
(x� µ)T⌃�1(x� µ)

◆

We typically use isotropic filters (i.e., circularly symmetric)
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Properties of the Smoothing

All values are positive.

They all sum to 1.

Amount of smoothing proportional to mask size.

Remove high-frequency components; low-pass filter.

Note: This holds for smoothing filters, not general filters
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Finding Waldo

image I

How can we use what we just learned about filtering to find Waldo?
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Finding Waldo

image I filter F

Is correlation a good choice?
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A Slight Detour: Correlation in Matrix Form

Remember correlation:

G (i , j) =
kX

u=�k

kX

v=�k

F (u, v) · I (i + u, j + v)

Can we write that in a more compact form (with vectors)?
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ij
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= T
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(:)
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A Slight Detour: Correlation in Matrix Form

Remember correlation:

G (i , j) =
kX

u=�k

kX

v=�k

F (u, v) · I (i + u, j + v)

Can we write that in a more compact form (with vectors)?

Define f = F (:), T
ij

= I (i � k : i + k , j � k : j + k), and t
ij

= T

ij

(:)

G (i , j) = fT · t
ij

where · is a dot product

Homework: Can we write full correlation G = F ⌦ I in matrix form?
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A Slight Detour: Correlation in Matrix Form

Remember correlation:

G (i , j) =
kX

u=�k

kX

v=�k

F (u, v) · I (i + u, j + v)

Can we write that in a more compact form (with vectors)?

Define f = F (:), T
ij

= I (i � k : i + k , j � k : j + k), and t
ij

= T

ij

(:)

G (i , j) = fT · t
ij

where · is a dot product

Finding Waldo: How could we ensure to get the best “score” (e.g. 1)

for an image crop that looks exactly like our filter?
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A Slight Detour: Correlation in Matrix Form

Remember correlation:

G (i , j) =
kX

u=�k

kX

v=�k

F (u, v) · I (i + u, j + v)

Can we write that in a more compact form (with vectors)?

Define f = F (:), T
ij

= I (i � k : i + k , j � k : j + k), and t
ij

= T

ij

(:)

G (i , j) = fT · t
ij

where · is a dot product

Finding Waldo: How could we ensure to get the best “score” (e.g. 1)

for an image crop that looks exactly like our filter?

Normalized cross-correlation:

G (i , j) =
fT · t

ij

||f|| · ||tij||
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Back to Waldo

image I filter F
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Back to Waldo

Result of normalized cross-correlation
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Back to Waldo

Find the highest peak
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Back to Waldo

And put a bounding box (rectangle the size of the template) at the point!
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Back to Waldo

Homework: Do it yourself! Code on class webpage. Don’t cheat!
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Convolution

Convolution operator

G (i , j) =
kX

u=�k

kX

v=�k

F (u, v) · I (i � u, j � v)
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Convolution

Convolution operator

G (i , j) =
kX

u=�k

kX

v=�k

F (u, v) · I (i � u, j � v)

Equivalent to flipping the filter in both dimensions (bottom to top,
right to left) and apply correlation.
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Correlation vs Convolution

Correlation

=

Convolution
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Correlation vs Convolution

For a Gaussian or box filter, how will the outputs F ⇤ I and F ⌦ I di↵er?
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How will the outputs di↵er for: 0

B@
0 0 0

0 0 1

0 0 0

1

CA
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Correlation vs Convolution

For a Gaussian or box filter, how will the outputs F ⇤ I and F ⌦ I di↵er?

How will the outputs di↵er for: 0

B@
0 0 0

0 0 1

0 0 0

1

CA

If the input is an impulse signal, how will the outputs di↵er? � ⇤ I and � ⌦ I?
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”Optical” Convolution

Camera Shake

* !"
Figure: Fergus, et al., SIGGRAPH 2006

Blur in out-of-focus regions of an image.

Figure: Bokeh: http://lullaby.homepage.dk/diy-camera/bokeh.html
Click for more info

[Source: N. Snavely]
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Properties of Convolution

Commutative : f ⇤ g = g ⇤ f
Associative : f ⇤ (g ⇤ h) = (f ⇤ g) ⇤ h
Distributive : f ⇤ (g + h) = f ⇤ g + f ⇤ h

Assoc. with scalar multiplier : � · (f ⇤ g) = (� · f ) ⇤ h

The Fourier transform of two convolved images is the product of their
individual Fourier transforms:

F(f ⇤ g) = F(f ) · F(g)

Homework: Why is this good news?

Hint: Think of complexity of convolution and Fourier Transform

Both correlation and convolution are linear shift-invariant (LSI)
operators: the e↵ect of the operator is the same everywhere.
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Gaussian Filter

Convolving twice with Gaussian kernel of width � is the same as
convolving once with kernel of width �

p
2

* !"
We don’t need to filter twice, just once with a bigger kernel

[Source: K. Grauman]
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Separable Filters: Speed-up Trick!

The process of performing a convolution requires K 2 operations per

pixel, where K is the size (width or height) of the convolution filter.

Can we do faster?

In many cases (not all!), this operation can be speed up by first

performing a 1D horizontal convolution followed by a 1D vertical

convolution, requiring only 2K operations.

If this is possible, then the convolution filter is called separable.

And it is the outer product of two filters:

F = v hT

Homework: Think why in the case of separable filters 2D

convolution is the same as two 1D convolutions

[Source: R. Urtasun]
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How it Works
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Separable Filters: Gaussian filters

One famous separable filter we already know:

Gaussian : f (x , y) = 1

2⇡�2
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2

�2

Sanja Fidler CSC420: Intro to Image Understanding 51 / 59



Separable Filters: Gaussian filters

One famous separable filter we already know:

Gaussian : f (x , y) = 1

2⇡�2

e

� x

2

+y

2

�2

=
�

1p
2⇡�

e

� x

2

�2

�
·
�

1p
2⇡�

e

� y

2

�2

�

Sanja Fidler CSC420: Intro to Image Understanding 51 / 59



Let’s play a game...

Is this separable? If yes, what’s the separable version?

[Source: R. Urtasun]
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How can we tell if a given filter F is indeed separable?

Inspection... this is what we were doing.

Looking at the analytic form of it.

Look at the singular value decomposition (SVD), and if only one

singular value is non-zero, then it is separable

F = U⌃VT =
X

i

�
i

u

i

v

T

i

with ⌃ = diag(�
i

).

Matlab: [U,S,V] = svd(F);

p
�
1

u
1

and
p
�
1

vT
1

are the vertical and horizontal filter.

[Source: R. Urtasun]
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Summary – Stu↵ You Should Know

Correlation: Slide a filter across image and compare (via dot product)

Convolution: Flip the filter to the right and down and do correlation

Smooth image with a Gaussian kernel: bigger � means more blurring

Some filters (like Gaussian) are separable: you can filter faster. First apply
1D convolution to each row, followed by another 1D conv. to each column

Applying first a Gaussian filter with �
1

and then another Gaussian with �
2

is
the same as applying one Gaussian filter with � =

p
�2

1

+ �2

2
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Functions

Python functions:

scipy.ndimage.correlate: correlation

scipy.ndimage.convolve: convolution

Many filters available: https://docs.scipy.org/doc/scipy-0.15.1/

reference/ndimage.html#module-scipy.ndimage.filters

Matlab functions:

imfilter: can do both correlation and convolution

corr2, filter2: correlation, normxcorr2 normalized correlation

conv2: does convolution

fspecial: creates special filters including a Gaussian
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Edges

What does blurring take away?

!"#$#%&'( )*!!+,-.(/0102(

!"

.-+&#'(

#"

[Source: S. Lazebnik]
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Next time:

Edge Detection
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