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1 Introduction

This extended abstract presents a logic, called Lp, that is capable of representing and
reasoning with a wide variety of both qualitative and quantitative statistical information.
The advantage of this logical formalism is that it offers a declarative representation of
statistical knowledge; knowledge represented in this manner can be used for a variety of
reasoning tasks.

The logic differs from previous work in probability logics in that it uses a probability
distribution over the domain of discourse, whereas most previous work (e.g., Nilsson
[2], Scott et al. [3], Gaifman [4], Fagin et al. [5]) has investigated the attachment of
probabilities to the sentences of the logic (also, see Halpern [6] and Bacchus [7] for further
discussion of the differences).

The logic Lp possesses some further important features. First, Lp is a superset of first
order logic, hence it can represent ordinary logical assertions. This means that Lp provides
a mechanism for integrating statistical information and reasoning about uncertainty into
systems based solely on logic. Second, Lp possesses transparent semantics, based on sets
and probabilities of those sets. Hence, knowledge represented in Lp can be understood
in terms of the simple primative concepts of sets and probabilities. And finally, the there
is a sound proof theory that has wide coverage (the proof theory is complete for certain
classes of models). The proof theory captures a sufficient range of valid inferences to
subsume most previous probabilistic uncertainty reasoning systems. For example, the
linear constraints like those generated by Nilsson’s probabilistic entailment [2] can be
generated by the proof theory, and the Bayesian inference underlying belief nets [8] can be
performed. In addition, the proof theory integrates quantitative and qualitative reasoning
as well as statistical and logical reasoning.

∗Support for preparing this paper was provided through a grant from the University
of Waterloo, and NSERC grant OGP0041848. Parts of this work have been previously
reported at CSCSI–88 [1].



In the next section we briefly examine previous work in probability logics, comparing
it to Lp. Then we present some of the varieties of statistical information that Lp is
capable of expressing. After this we present, briefly, the syntax, semantics, and proof
theory of the logic. We conclude with a few examples of knowledge representation and
reasoning in Lp, pointing out the advantages of the declarative representation offered by
Lp. We close with a brief discussion of probabilities as degrees of belief, indicating how
such probabilities can be generated from statistical knowledge encoded in Lp. The reader
who is interested in a more complete treatment should consult Bacchus [7].

2 Other Probability Logics

Previous work in probability logic has investigated the attachment of probabilities to sen-
tences. To appreciate the difference between this and the expression of statistical informa-
tion consider the two assertions: “The probability that Tweety can fly is 0.75,”
and “More than 75% of all birds can fly.” The first statement is an expression of
a degree of belief. It is expressing the internal state of some agent—an agent who believes
the assertion “Tweety can fly” to degree 0.75. It is not an objective assertion about the
state of the world (i.e., an assertion that is independent of any believers). In the world
Tweety can either fly or not fly—there is no probability involved. The second statement,
on the other hand, is making an objective assertion about the state of the world; i.e., in
the world there is some percentage of birds that can fly and this percentage is either 75%
or some other number.1

This example shows that there is an essential difference between the attachment of
a probability to a sentence and the expression of a statistical assertion. Probabilities
attached to sentences, which have been the focus of previous work on probability logics,
op. cit., are not capable of efficiently expressing statistical assertions (Bacchus [9]).

There has been some work similar to Lp. This work is discussed in more detail in
Bacchus [10].

3 Types of Statistical Knowledge

Statistical information can be categorized into many different types. The development of
Lp was guided by a desire to represent as many different types of statistical knowledge
as possible. The key consideration was the desire to represent qualitative statistical
knowledge, i.e., not only the types of statistical knowledge used in statistics but also
the types of “commonsense” statistical knowledge that would be useful in AI domains.
The following is an incomplete list of some different types of statistical information that
Lp is capable of expressing.

Relative: Statistical information may be strictly comparative, e.g., the assertion “More
politicians are lawyers than engineers.”

1As stated it is clear that it is extremely unlikely that the actual percentage is exactly
75%. More likely that it is in some interval around 75%. Lp is also capable of making
such interval assertions.



Interval: We may know that the proportion is in a certain range, e.g., the assertion
“Between 75% to 99% of all politicians are lawyers.”

Functional: We may know that a certain statistic is functionally dependent on
some other measurement, e.g., “The proportion of flying birds decreases

as weight increases.” This type of functional dependence in an uncertainty
measure is prominent in the medical domain.

Independence: We may know that two properties are statistically independent of each
other. Work by Pearl and his associates has demonstrated the importance of this
kind of knowledge ([11, 12, 13]).

4 Syntax and Semantics

Lp is based on two fairly straightforward ideas. First, there is a probability distribution
over the domain of discourse. This means that any set of domain individuals can be
assigned a probability. Through the use of open formulas (i.e., formulas with free vari-
ables) we can assert that various sets of domain individuals possess certain probabilities.
An open formula can be viewed, as in lambda abstraction, as specifying a set of domain
individuals—the set of individuals which satisfy that formula. For example the open for-
mula “Bird(x)” can be viewed as denoting the set of birds, i.e., the set of individuals that
satisfy the formula. Sentences in Lp can be used to assert that the probability of this
set (i.e., the measure of the set of individuals that satisfy the formula) possesses various
properties. For example, the Lp sentence “[Bird(x)]x > 0.9” asserts that the probability
of the set of birds has the property that it is greater than 0.9.2

The second idea is to have a field of numbers in the semantics as a separate sort. With
numbers as a separate sort the probabilities become individuals in the logics. That is, the
probabilities become numeric terms3 and, by asserting that these terms stand in various
numeric relationships with other terms, we can assert various qualitative relationships
between these probabilities. In the above example, ‘[Bird(x)]x’ is a numeric term, and the
sentence asserts that it stands in the ‘greater-than’ relation with the numeric term ‘0.9’.
The existence of numbers as a separate sort also allows the use of ‘measuring’ functions,
functions that map individuals to numbers. An example of such a function is ‘Weight’,
which maps individuals to a number representing their weight (in some convenient units).
The measuring functions greatly increase the expressiveness of the logic.4

2This unconditional probability does not make much sense; it is through the use of
conditional probabilities that meaningful statistical assertions can be made. For exam-
ple, the Lp sentence “[Fly(x)|Bird(x)]x > 0.9” makes an assertion about the relative
probability of flying birds among birds, i.e., about the proportion of birds that fly.

3This means that the probabilities are field-valued not real-valued. There are technical
difficulties with using the reals instead of a field of numbers. In particular, it is not
possible to give a complete axiomatization of the reals without severely restricting the
expressiveness of the logic. We can be assured, however, that the field of numbers will
always contain the rational numbers, so the probabilities can be any rational number that
we wish (in the range 0–1, of course).

4These “measuring” functions are called random variables in statistics, but I avoid
that terminology to eliminate possible confusion with the ordinary variables of Lp.



5 Syntax

We now present a more detailed picture of the syntax of Lp. This description should give
the reader a better idea of the types of sentences that one can form in the language.

We start with a set of constant, variable, function, and predicate symbols. The con-
stants, variables, and predicates can be of two types, either field or object.5 The function
symbols come in three different types: object, field, and measuring functions. The mea-
suring functions will usually have special names like Weight or Size.

Along with these symbols we also have a set of distinguished symbols, including the
following field symbols: 1, 0 (constants), =, ≥ (predicates), +, −, ×, and ÷6 (functions).
The symbol = is also used to represent the object equality predicate. Also included is the
logical connective ‘∧’, the quantifier ‘∀’, and the probability term formers ‘[’, ‘]’.

5.1 Formulas

The major difference between the formulas of Lp and the formulas of first order logic is
the manner in which terms are built up.

T0) A single object variable or constant is an o-term; a single field variable or constant
is an f-term.

T1) If f is an n-ary object (field) function symbol and ~nt are o-terms (f-terms) then
f(t1 . . . tn) is an o-term (f-term). If ν is an n-ary measuring function symbol and ~nt
are o-terms then ν(t1 . . . tn) is an f-term.

T2) If α is a formula and ~x is a vector of n object variables, 〈~nx〉, then [α]~x is an f-term.7

The formulas of Lp are built up in the standard manner, with the added constraint
that predicates can only apply to terms of the same type. The notable difference with first
order logic is that f-terms can be generated from formulas by the probability term former.
For example, from the formula “Have(y, x) ∧ Zoo(x)” the f-term “[Have(y, x) ∧ Zoo(x)]x”
can be generated. This term can then be used to generate new formulas of arbitrary
complexity, e.g.,

(∀yz)
(
Rare(y) ∧ ¬Rare(z) ∧ Animal(y) ∧ Animal(z)

⇒ [Have(z, x) ∧ Zoo(x)]x > [Have(y, x) ∧ Zoo(x)]x
)
.

In this formula some of the variables are universally quantified while the ‘x’ is bound by the
probability term former. The intuitive content of this formula can be stated as follows:
if there are two animals one of which is rare while the other is not then the measure
(probability) of the set of zoos which have the rare animal is less than the measure of the
set of zoos which have the non-rare animal.

5When there is a danger of confusion the field symbols will be written in a bold font.
6The division function is added by extending the language through definition. See [10]

for the technical details.
7Note, ~x does not have to include all of the free variables of α. If it does not we have

a term with free variables which must be bound by other quantifiers or probability term
formers to produce a sentence.



Through standard definitions we add ∨,⇒, ∃, and the extended set of field inequality
predicates, ≤, <, >, and ∈ (denoting membership in an interval). We use infix form for
the predicate symbols = and ≥ as well as for the function symbols +, ×, −, and ÷.

Conditional probabilities are represented in Lp with the following abbreviation.

Definition 5.1

[α|β]~x =df [α ∧ β]~x ÷ [β]~x.

5.2 Semantic Model

This section outlines the semantic structure over which Lp is interpreted. As indicated
above it consists of a two sorted domain (individuals and numbers) and a probability
distribution over the set of individuals. What was not discussed was the need for a
distribution over all vectors of individuals. This is necessary since the open formulas
used to generate the probability terms may have more than one free variable. Hence one
may need to examine the probability of a set vectors of individuals which satisfy a given
formula.

An Lp-Structure is defined to be the tuple M:〈
O,F , {µn | n = 1, 2 . . . }

〉
Where:

a) O represents a finite set of individual objects (the domain of discourse).8

b) F represents a totally ordered field of numbers. The rationals, the real, the complex
numbers are all examples of fields of numbers. In fact, every field of numbers
contains the rationals as a subfield (MacLane [14]).

c) {µn | n = 1, 2, . . . } is a sequence of probability functions. Each µn is a set function
whose domain includes the subsets of On defined by the formulas of Lp,9 whose
range is F , and which satisfies the axioms of a probability function (i.e., µn(A) > 0,
µn(A ∪B) = µn(A) + µn(B) if A ∩B = ∅, and µn(On) = 1).

The sequence of probability functions is a sequence of product measures. That is,
for any two sets A ∈ On and B ∈ Om and their Cartesian product A × B ∈ On+m, if
A ∈ domain(µn) and B ∈ domain(µm), then A×B ∈ domain(µn+m) and µn+m(A×B) =
µn(A)× µm(B).

The product measure ensures that the probability terms satisfy certain conditions of
coherence. For example, the order of the variables cited in the probability terms makes
no difference, e.g., [α]x,y = [α]y,x. Another example is that the probability terms are
unaffected by tautologies, e.g., [P (x) ∧ (R(y) ∨ ¬R(y))]〈x,y〉 = [P (x)]x.

It should be noted that this constraint on the probability functions is not equivalent
to a restrictive assumption of independence, sometimes found in probabilistic inference
engines (e.g., the independence assumptions of the Prospector system [15], see Johnson
[16]). See [7] for a full discussion of the intuitive implications of using product measures.

8We restrict ourselves to finite domains to avoid the difficulty of sigma additivity. This
issue is dealt with in [10].

9This set of subsets can be shown to be a field of subsets [7].



5.3 Semantics of Formulas

The formulas of Lp are interpreted with respect to the semantic structure in the same
manner as first order formulas are interpreted with respect to first order structures. The
only difference is that we have to provide an interpretation of the probability terms.
As indicated above the probability terms denote the measure (probability) of the set of
satisfying instances of the formula. In more detail:

We define a correspondence, called an interpretation, between the formulas and the
Lp-StructureM augmented by the truth values > and ⊥ (true and false). An interpreta-
tion maps all of the symbols to appropriate entities in the Lp-Structure, including giving
an initial assignment to all of the variables.

These assignments serve as the inductive basis for an interpretation of the formulas.
This interpretation is built up in the same way as in first order logic, with the added
consideration that universally quantified object variables range over O while universally
quantified field variables range over F . The only thing which needs to be demonstrated
is the semantic interpretation of the probability terms.

Let σ be an interpretation of Lp. Let σ(~x/~a), where ~a = 〈~na〉 and ~x = 〈~nx〉 are vectors
of individuals and variables (of matching type), denote a new interpretation identical to
σ except that (xi)

σ(~x/~a) = ai, (i = 1, . . . , n).
The probability terms are given the following semantic interpretation: For the f-term

[α]~x,
([α]~x)

σ = µn{~a|ασ(~x/~a) = >}.

In other words, the probability term denotes the probability of the set of satisfying in-
stances of the formula. Since µn is a probability function which maps to the field of
numbers F , it is clear that [α]~x denotes an element of F under the interpretation σ; thus,
it is a valid f-term.

6 Examples of Representation

We can now give a indication of the representational power of Lp. By considering the
semantic interpretation of the formulas it should be reasonably clear that the formulas
do in fact represent the gist of the stated English assertions.10

1. More politicians are lawyers than engineers.

[Lawyer(x)|Politician(x)]x

> [Engineer(x)|Politician(x)]x.

2. The proportion of flying birds decreases with weight. Here y is a field variable.

∀y([fly(x)|bird(x) ∧ weight(x) < y]x

> [fly(x)|bird(x) ∧ weight(x) > y]x).

10It should be noted that the aim is to give some illustrative examples, not to capture
all of the nuances of the English assertions.



3. Given R the property P is independent of Q. This is the canonical tri-functional
expression of independence (see Pearl [11]).

[P (x) ∧Q(x)|R(x)]x = [P (x)|R(x)]x×[Q(x)|R(x)]x.

Thus Lp can represent finely grained notions of independence at the object language
level.

4. Quantitative notions from statistics, e.g, The height of adult male humans is nor-
mally distributed with mean 177cm and standard deviation 13cm:

∀yz([height(x) ∈ (y, z)|Adult male(x)]x

= normal(y, z, 177, 13)).

Here normal is a field function which, given an interval (y, z)11, a mean, and a
standard deviation, returns the rational number approximation12 of the integral of
a normal distribution, with specified mean and standard deviation, over the given
interval.

7 Deductive Proof Theory

This section outlines the deductive proof theory of Lp. The proof theory provides a
specification for wide class of valid inferences that can be made from a body of knowledge
expressed in Lp. In particular, it provides a full specification for most probabilistic
inferences, including Baysian inference, all first order inferences, as well as inferences
which follow from the combination of qualitative and quantitative as well as statistical
and logical knowledge.

The proof theory consists of a set of axioms and rules of inference, and can be shown
to be both sound. It can also be shown to be complete with respect to various classes of
models. The proof theory for Lp is similar to the proof theory for ordinary first order
logic. The major change is that two new sets of axioms must be introduced, one to deal
with the logic of the probability function, and another set to define the logic of the field
F .

The axioms include the axioms of first order logic (e.g., [17]) along with the axioms
of a totally ordered field (MacLane [14]). There are also various axioms which specify
the behavior of the probability terms. We give some examples of these axioms to give a
indication of their form.

Some of the Probability Function Axioms

P1) ∀x1 . . . ∀xnα⇒ [α]~x = 1,
where ~x = 〈~nx〉, and every xi is an object variable.

P2) [α]~x ≥ 0.

11One would probably want to constrain the values of y and z further, for example,
y < z.

12A rational number approximation is returned since the numbers are from a totally
ordered field, not necessarily the reals.



P3) [α]~x + [¬α]~x = 1.

P4) [α]~x + [β]~x ≥ [α ∨ β]~x.

P5) [α ∧ β]~x = 0⇒ [α]~x + [β]~x = [α ∨ β]~x.

The first axiom simply says that if all individuals satisfy a given formula then the
probability of this set is one (i.e., the probability summed over the entire domain is one).
The other axioms state similar facts from the calculus of probabilities.

Rule of inference

The only rule of inference is modus ponens, i.e., from {α, α⇒ β} infer β.
If we also have an axiom of finiteness (see Halpern [6]) then the above axioms and rule

of inference comprise a sound and complete proof theory for the class of models we have
defined here (i.e., models in which O is bounded in size and where the probabilities are
field valued). Let Φ be a set of Lp sentences. We have:

Theorem 7.1 (Completeness) If Φ |= α, then Φ ` α.

Theorem 7.2 (Soundness) If Φ ` α, then Φ |= α.

Lemma 7.3 The following are provable13 in Lp:

a) ([α⇒ β]~x = 1 ∧ [β ⇒ α]~x = 1)⇒ [α]~x = [β]~x.

b) [α ∨ β]~x = [α]~x + [β]~x − [α ∧ β]~x.

The following gives an indication of the scope of the proof theory.

Example 1 Nilsson’s Probabilistic Entailment

Nilsson [2] shows how probabilities attached to sentences in a logic are constrained by
known probabilities, i.e., constrained by the probabilities attached to a base set of sen-
tences. For example, if [P ∧Q] = 0.5, then the values of [P ] and [Q] are both constrained
to be ≥ 0.5. Nilsson demonstrates how the implied constraints of a base set of sentences
can be represented in a canonical manner, as a set of linear equations. These linear
equations can be used to identify the strongest constraints on the probability of a new
sentence, i.e., the tightest bounds on its probability. These constraints are, in Nilsson’s
terms, probabilistic entailments.

These bounds are simply consequences of the laws of probability. The statistical terms
in Lp also obey the laws of probability. Hence, although these statistical probabilities
have a different meaning than probabilities attached to sentences, they obey similar kinds
of linear constraints. In fact, the linear constraints investigated by Nilsson depend only
on finite properties of probabilities, and since the proof theory of Lp is complete with
respect to finite domains, all such linear constraints can be deduced from the proof theory
of Lp.

13That is, deducible directly from the axioms.
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Figure 1: A Bayes’s Net

For example, if we have {[P ] = 0.6, [P ⇒ Q] = 0.8}, Nilsson’s probabilistic entailment
gives the conclusion 0.4 ≤ [Q] ≤ 0.8. These probabilities are to be interpreted as being
probabilities attached to propositions, i.e., the propositions P , Q and P ⇒ Q. A statistical
analogue of this example is the set of Lp sentences: {[P (x)]x = 0.6, [P (x) ⇒ Q(x)]x =
0.8}. These probabilities are to be interpreted as probabilities of sets of individuals, i.e.,
the measure of the set of P ’s, Q’s and ¬P ∪Q.

From this knowledge it is easy to deduce the bounds [0.4, 0.8] on the probability term
[Q(x)]x.

Example 2 Bayesian Networks.

Bayes’s theorem is immediate in Lp.

Lemma 7.4 (Bayes’s Theorem) The following is provable in Lp:

[β|α]~x = [α|β]~x ×
[β]~x
[α]~x

.

Consider the Bayes’s Net in figure 1. If all of the variables X1–X4 are propositional
(binary) variables one could write them as one place predicates in Lp. Hence, the open
formula ‘X1(x)’, for example, would denote the set of individuals with property X1. The
Bayes’s Net gives a graphical device for specifying a product form for the joint distribution
of the variables Xi (Pearl [8]).14 In this case the distribution represented by the Bayes’s
Net in Figure 1 could also be specified by the Lp sentence

[X1(x) ∧X2(x) ∧X3(x) ∧X4(x)]x

= [X4(x)|X3(x) ∧X2(x)]x × [X3(x)|X1(x)]x

×[X2(x)|X1(x)]x × [X1(x)]x

14Normally, e.g., Pearl [8]), such distributions are specified over a set of propositions.
In Lp we are instead dealing with statistical probabilities. However, as with probabilistic
entailment, the form of the inferences is the same.



It can easily be demonstrated that any probability distribution which satisfies this
equation will also satisfy every equation of the same form with any number of the predi-
cates negated (uniformly). For example, the equation

[X1(x) ∧ ¬X2(x) ∧X3(x) ∧ ¬X4(x)]x

= [¬X4(x)|X3(x) ∧ ¬X2(x)]x × [X3(x)|X1(x)]x

×[¬X2(x)|X1(x)]x × [X1(x)]x

will be satisfied by every probability distribution which satisfies the first equation. Fur-
thermore, the proof depends only on finite properties of the probability function, i.e., only
on properties true of the field valued probabilities used in the Lp-structure. Hence, by
the completeness result, all such equations will be provable from Lp’s proof theory.

This means that the behavior of the Bayes’s net is captured by the first Lp sen-
tence. That is, the fact that this product decomposition holds for truth assignment of the
predicates Xi, is captured by the proof theory.

In addition to the structural decomposition Bayes’s nets must provide a quantification
of the links. This means the conditional probabilities in the product must be speci-
fied. In this example if we add the Lp sentences {[X1(x)]x = 0.5, [X2(x)|X1(x)]x = .75,
[X3(x)|X1(x)]x = .4, [X4(x)|X2(x)∧X3(x)]x = .3}, we can then determine the probability
of the set of individuals that have some properties Xi given that these individuals possess
some other properties, e.g., the values of terms like [X1(x)|X2(x)∧¬X4(x)]x. Again these
probabilities will be semantically entailed by the product decomposition and by the link
conditional probabilities. Thus, the new probability values will be provable from the proof
theory.

Of course the proof theory has none of the computational advantages of the Bayes’s
net. However, what is important is that Lp gives a declarative representation of the
net. The structure embedded in the net is represented in a form that can be reasoned
with and can be easily changed. There is also the possibility of automatically compiling
Bayes’s net structures from declarative Lp sentences. Furthermore, the proof theory
captures all of the Baysian reasoning within its specification, and offers the possibility
of integrating Bayes’s net reasoning with more general logical and qualitative statistical
reasoning. Hence the proof theory gives a unifying formalism in which both types of
inferences could be understood.

8 Degrees of Belief

Besides their use in expressing statistical information, probabilities have an important use
in expressing degrees of belief. One can assert that prob[Fly(Tweety)] > .75, indicating
that one’s degree of belief in the assertion Fly(Tweety) is greater than 0.75. Interestingly,
Lp is cannot (easily) express such probabilities. It can be shown that the probability of
any sentence (i.e., formula with no free variables) is either 1 or 0 in Lp. This fact is
interesting because, as was demonstrated in [9], probability logics capable of assigning
probabilities to sentences cannot (easily) represent statistical probabilities. Hence, these
two types of probability logics have very different uses which coincide with their very
different semantics.

However, one advantage of a logic like Lp is that it can be used to generate statistically
founded degrees of belief, via a system of direct inference (e.g., Kyburg [18], Pollock [19]).



Degree of belief probabilities generated in this manner have a number of advantages over
purely subjective probabilities (Kyburg [20]); not the least of which is that they yield
degrees of belief which are founded on empirical experience.

A system of direct inference based on the use of Lp is presented in Bacchus [7]. The
following simplified example should serve to illustrate the basic idea behind this system.

Example 3 Belief Formation

Say we know that we have the following Lp knowledge base

KB =
[Fly(x)|Bird(x)]x > 0.9
Bird(Tweety)

That is, we know that more than 90% of all birds fly, and that Tweety is a bird. Say that
we want to generate a degree of belief about Fly(Tweety), i.e., Tweety’s flying ability.
We can accomplish this by considering what is know about Tweety (i.e., what is provable
from our knowledge base), and then equating our degree of belief with the statistical
probability term which results when we substitute a variable for the constant Tweety.
This yields

prob(Fly(Tweety)|Bird(Tweety)) = [Fly(x)|Bird(x)]x,

which by our knowledge base is greater than 0.9. Semantically, this can be interpreted
in the following manner: our degree of belief that Tweety can fly, given that all we know
about Tweety is that he is a bird, is equal to the proportion of birds that can fly. The
main complexities arise when we know other things about Tweety, e.g., when we know
that Tweety is yellow as well as a bird.
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