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Abstract

Over the yearsincreasingly sophisticated planning algorithms have been developed. These
have made for more efficient planners, but unfortunately these planners still suffer from com-
binatorial complexity even in simple domains. Theoretical results demonstrate that planning is
in the worst case intractable. Nevertheless, planning in particular domains can often be made
tractable by utilizing additional domain structure. In fact, it has long been acknowledged that
domain independent planners need domain dependent information to help them plan effec-
tively. In thiswork we present an approach for representing and utilizing domain specific con-
trol knowledge. In particular, we show how domain dependent search control knowledge can
be represented in atemporal logic, and then utilized to effectively control a forward-chaining
planner. There are a number of advantages to our approach, including a declarative semantics
for the search control knowledge; a high degree of modularity (new search control knowl-
edge can be added without affecting previous control knowledge); and an independence of this
knowledge from the details of the planning algorithm. We have implemented our ideas in the
TLPLAN system, and have been able to demonstrate its remarkable effectiveness in a wide
range of planning domains.

I ntroduction

The classical planning problem, i.e., finding afinite sequence of actionsthat will transform agiven
initial state to a state that satisfies a given goal, is computationally difficult. In the traditional
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context, in which actions are represented using the STRIPS representation and the initial and goa
states are specified as lists of literals, even restricted versions of the planning problem are known
to be PSPACE-complete [20].

Although informative, these worst case hardness results do not mean that computing plansis
impossible. As we will demonstrate many domains offer additional structure that can ease the
difficult of planning.

There are avariety of mechanisms that can be used to exploit structure so as to make planning
easier. Abstraction and therelated use of hierarchical task network (HTN) planners have been stud-
ied in the literature and utilized in planning systems [36, 48, 62, 55], also mechanisms for search
control have received much attention. Truly effective planners will probably utilize a number of
mechanisms. Hence, it isimportant that each of these mechanisms be developed and understood.
This paper makes a contribution to the development of mechanisms for search control.

Search control is useful since most planning agorithms employ search to find plans. Planning
researchers have identified a variety of spaces in which this search can be performed. However,
these spaces are al exponential in size, and blind search in any of them isineffective. Hence, akey
problem facing planning systemsis that of guiding or controlling search.

Theideaof search control is not new—the notion of search heuristicsis one of the fundamental
ideas in Al. Most planning implementations use heuristically guided search, and various sophis-
ticated heuristics have been developed for guiding planning search [24, 30]. Knowledge-based
systems for search control have also been developed. In particular, knowledge bases of forward
chaining rules have been used to guide search (these are in essence expert-systems for guiding
search). The SOAR system was the first to utilize this approach [38], and a refined version is a
prominent part of the PRODIGY system [59]. A similar rule-based approach to search control has
also been incorporated into the UcPop implementation [7], and a more procedural search control
language has also been developed [43]. A key difference between the knowledge-based search
control systems and various search heuristics is that knowledge-based systems generally rely on
domain dependent knowledge, while the search heuristics are generally domain independent.

The work reported on here is a new approach to knowledge-based search control. In particu-
lar, we utilize domain dependent search control knowledge, but we utilize a different knowledge
representation and a different reasoning mechanism than previous approaches.

In previous work, search control has utilized the current state of the planning algorithm to
provide advice as to what to do next. This advice has been computed either by evaluating domain
independent heuristics on the current state of the planner, or by using the current state to trigger a
set of forward chaining rules that ultimately generate the advice.

Our approach differs. First, the control it provides can in general depend on the entire sequence
of predecessors of the current state not only on the current state. Aswe will demonstrate thisfacil-
itates more effective search control. And second, the search control information we use does not
make reference to the state of the planning algorithm, rather it only makes reference to properties
of the planning domain. It is up to the planning algorithm to take advantage of this information,
by mapping that information into properties of its own internal state. This means that although
the control information we utilize is domain dependent, the provider of this information need not

2



know anything about the planning algorithm.

Obtaining domain dependent search control information does of course impose a significant
overhead when modeling a planning domain.! This overhead can only be justified by increased
planning efficiency. In this paper we will give empirical evidence that such information can make
a tremendous difference in planning efficiency. In fact, as we will show, it can often convert an
intractabl e planning problem to atractable one; i.e., it can often be the only way in which automatic
planning is possible.

Our work makes an advance over previous mechanismsfor search control in two crucial areas.
First, it provides far greater improvements to planning efficiency that previous approaches. We
can sometimes obtain polynomial time planners with relatively ssmply control knowledge. In our
empirical tests, none of the other approaches have yiel ded speedups of thismagnitude. And second,
although our approach isof course more difficult to use than domain-independent search heuristics,
it seemsto be much easier to use than the previous rule-based mechanisms.? In sum, our approach
offers alower overhead mechanism that yields superior end results.

Our approach uses a first-order temporal logic to represent search control knowledge. By uti-
lizing alogic we gain the advantage of providing aformal semanticsfor the search control knowl-
edge, and open the door to more sophisticated off-line reasoning for generating and manipulating
this knowledge. In other words, we have a declarative representation of the search control knowl-
edge which facilitates a variety of uses. Through examples we will demonstrate that this logic
allows us the express effective search control information, and furthermore that thisinformation is
quite natural and intuitive.3

Logics have been previously used in work on planning. In fact, perhaps the earliest work on
planning was Green’s approach that used the situation calculus [25]. Subsequent work on planning
using logic has included Rosenschein’s use of dynamic logic [46], and Biundo et al.'s use of tem-
poral logic [10, 12, 11, 53]. However, al of this work has viewed planning as a theorem proving
problem. In this approach the initial state, the action effects, and the goal, are all encoded as log-
ical formulas. Then, following Green, plans are generated by attempting to prove (constructively)
that a plan exists. Planning as theorem proving has to date suffered from severe computational
problems, and this approach has not yet yielded an effective planner.

Our approach uses logic in a completely different manner. In particular, we are not viewing
planning astheorem proving. Instead we utilize traditional planning representationsfor actionsand
states, and we generate plans by search. Theorem provers also employ search to generate plans.
However, their performance seems to be hampered by the fact that they must search in the space
of proofs, a space that has no clear relation to the structure of plans.*

We shall arguein Section 9 that this overhead is manageable.

2The more recently devel oped procedural search control mechanisms seem to be just as hard to use [43].

3In fact, it can be argued that this information is no different from our knowledge of actions; it is simply part of
our store of domain knowledge. Hence, there is no reason why it should not be utilized in our planning systems.

4The most promising approaches to planning as theorem proving have utilized insights from non-theorem proving
approaches to provide specialized guidance to the theorem proving search. For example, Biundo and Stephan [53]
have utilized ideas from refinement planning to guide the theorem proving process.



In our approach we use logic solely to express search control knowledge. We then show how
this knowledge can be used to control search in a simple forward-chaining planner. We explain
why such a planner is particularly effective at utilizing information expressed in the chosen tem-
poral logic. We have implemented this combination of a simple forward-chaining planner and
temporal logic search control in a system we call the TLPLAN system. The resulting systemisa
surprisingly effective and powerful planner. The planner is also very flexible, for example, it can
plan with conditional actions expressed using the full AbL language [44], and can handle certain
types of resource constraints. We will demonstrate its effectiveness empirically on a number of
test domains.

Forward chaining planners have fallen out of favor in the Al planning community. Thisis due
to the fact that there are alternate spaces in which searching for plans is generally more effec-
tive. Partial order planners that search in the space of partially ordered plans have been shown to
possess a number of advantages [9, 41]. And more recently planners that search over GRAPH-
PLAN graphs [13] or over models of propositional theories representing the space of plans [32],
have been shown to be quite effective. Nevertheless, as we will demonstrate, the combination
of domain-specific search control information, expressed in the formalism we suggest, and a for-
ward chaining planner significantly outperforms competing planners in a range of test domains.
It appears that forward chaining planners, despite their disadvantages, are significantly easier to
control, and hence the ultimate choice of planning technology may still be open to question. The
point that forward chaining planners are easier to control has also been argued by McDermott [40]
and Bonet et a. [14]. They have both presented planning systems based on heuristically controlled
forward chaining search. They have methods for automatically generating heuristics, but there is
still considerable work to be done before truly effective control information can be automatically
extracted for a particular planning problem. As aresult the performance of their systemsis not yet
competitive with the fastest domain-independent planning systems like BLACKBoOX [33] or IPP
[37] (check, e.g., the performance of the HSP planning system [14] at the recent AIPS 98 planning
competition [1]). In this paper we utilize domain-specific search control knowledge, and present
results that demonstrate that with this kind of knowledge our approach can reach a new level of
performance in Al planning.

In therest of the paper we will describe the temporal logic we use to express domain dependent
search control knowledge. Then we present an example showing how control information can be
expressed in this logic. In Section 4 we show how a planning algorithm can be designed that
utilizes this information, and in section 6 we describe the TLPLAN system, a planner we have
constructed based on these ideas. To show the effectiveness of our approach we present the results
of anumber of empirical studiesin section 7. There has been other work on domain specific control
for planning systems, and HTN planners also employ extensive domain specific information. We
compare our approach with these worksin Section 9. Finaly, we close with some conclusions and
adiscussion of what we feel are some of the important research issues suggested by our work.



2 First-order Linear Temporal Logic

We use as our language for expressing search control knowledge a first-order version of linear
temporal logic (LTL) [19]. The language starts with a standard first-order language, £, containing
some collection of constant, function, and predicate symbols, along with a collection of variables.
We also include in the language the propositional constants TRUE and FALSE, which are treated
as atomic formulas. LTL adds to £ the following temporal modalities: U (until), O (always), <
(eventually), and O (next). The standard formula formation rules for first-order logic are aug-
mented by the following rules: if f; and f, are formulasthen so are f; U f5, Of1, O fy, and Of;.
Note that the first-order and temporal formulaformation rules can be applied in any order, so, e.g.,
guantifiers can scope temporal modalities allowing quantifying into modal contexts. We will call
the extension of £ to include these temporal modalities L7 .

LT isinterpreted over sequences of worlds, and the temporal modalities are used to assert
properties of these sequences. In particular, the temporal modalities have the following intuitive
interpretations. O f means that f holds in the next world; Of means that f holds in the current
world and in all future worlds; < f means that f either holds now or in some future world; and
f1 U f» meansthat either now or in some future world f, holds and until that world f, holds. These
intuitive semantics are, however, only approximations of the true semantics of these modalities. In
particular, the formulas f, f;, and f, can themselves contain temporal modalities so when we say,
e.g., that f holds in the next world we really mean that f istrue of the sequence of worlds that
starts at the next world. The precise semantics are given below.

The formulas of L7 are interpreted over models of the form M = (wy, w1, ...) where M isa
sequence of worlds. We will sometimes refer to this sequence of worlds as the timeline. Every
world w; isamodel for the base first-order language £. Furthermore, we require that each w; share
the same domain of discourse D. A constant domain of discourse across all worlds allows us to
avoid the difficulties that can arise when quantifying into modal contexts[23].

We specify the semantics of the formulas of our language with the following set of interpre-
tation rules. Let w; be the i"th world in the timeline M, V' be a variable assignment function that
maps the variables of L7 to thedomain D, and f; and f, be formulasof L7

e If f; isan atomic formulathen (M, w;, V) = fi iff (w;, V) = fi. Thatis, atomic formulas
are interpreted in the world w; under the variable assignment V' according to the standard
interpretation rules for first-order logic.

e Thelogical connectives are handled in the standard manner.

o (Myw;, V) | Va.fi iff (M,w;,V(z/d)) = fifordl d € D, where V(z/d) isavariable
assignment function identical to V' except that it maps = to d.

o (M,w;,V) k= fiUf,iff thereexistsj > i suchthat (M, w;, V') = foandforall k,i < k < j
we have (M, wy, V') = fi: fi1istrueuntil f5 isachieved.

o (Myw;, V) = Of iff (Myw; 11, V) = fi: fiistruein the next state.
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o (M w;, V) = <Of iff thereexistsj > i suchthat (M, w;, V') = fi: fi iseventualy true.

o (M, w;, V) [=0f iff foral j > i wehave (M,w;,V) = fi: fi istruein al states from the
current state on.

Finally, we say that the model M satisfies aformula f (M | f) iff (M, w,, V) E f (i.e, the
formula must be true in the initial world). It is not difficult to show that if f has no free variables
then the specific variable assignment function V' isirrelevant.

2.1 Discussion

One of the keysto understanding the semantics of temporal formulasisto realize that the temporal
modalities move us along the timeline. That is, the formulas that are inside of atemporal modality
are generally interpreted not at the current world, w;, but at some world further along the sequence,
w; With j > 4. This can be seen from the semantic rules given above. The expressiveness of
LT arises from its ability to nest temporal modalities and thus express complex properties of the
timeline.

Another point worth making isthat both the eventually and always modalities are in fact equiv-
alent to until assertions. In particular, &¢ = TRUE U ¢. That is, since TRUE is“true” in al states
we see that the until formula simply reduces to the requirement that ¢ eventually hold either now
or in the future. Alwaysisthe dua of eventually: O¢ = —0—¢. That is, no state now or in the
future can falsify ¢.

Finally, it should be noted that quantifiers require that the subformulas in their scope be in-
terpreted under a modified variable assignment function (this is the standard manner in which
quantifiers are interpreted). Since we can quantify into temporal contexts this means that variable
can be “bound” in the current world w; and then “passed on” to constrain future worlds.

Example 1 Here are examples of what can be expressed in L7 .
e If M = 000Nn(A, B), then A must be on B in the third world of the timeline, ws.
e If M = O=holding(C'), then at no world in the timelineis it true that we are holding C'.

e If M = 0(on(B,C) = (on(B,C) Uon(A4, B))), then whenever we enter aworld in which
Bison C it remainson C until A ison B, i.e., along thistimeline on(B, C) is preserved
until we achieveon(A, B).

e If M = O(3z.on(z, A) = O3z.on(z, A)), then whenever something is on A there is some-
thing on A in the next state. Thisis equivalent to saying that once something is on A there
will always be something on A. Note that in this example the scope of the quantifier does
not extend into the “next” modal context. Hence, thisformulawould betruein atimelinein
which there was a different object on A in every world.



e If M = Vz.ontable(x) = Oontable(x), then al objects that are on the table in the initial
state remain on the table in al future states. In this example we are quantifying into a modal
context, binding x to the various objects that are on the table in the initial world and passing
these bindings onto the future worlds.

We need two additionsto our language L7 . Thefirst extension introduces an additional modal-
ity, that of a“goal”, while the second extension is a syntactic one.

2.2 TheGoAL Modality.

We are going to use L7 formulas to express domain dependent strategies for search control. We
are trying to control search so as to find a solution to a goa; hence, the strategies will generally
need to take into account properties of the goal. In our empirical tests we have found that making
reference to the current goal is essential in writing effective control strategies.

To facilitate this we augment our language with an additional modality, a goal modality. The
intention of this modality isto be able to assert that certain formulas are true in every goal world.
Syntactically we add the following formula formation rule to the rules we aready have: if f isa
pure first-order formula containing no temporal or GOAL modalities, then GOAL (f) isaformulaof
LT . GOAL(f) can thus subsequently appear as a subformula of a more complex £7 formula. To
give semantics to these formulas we augment the models of our language £7 so that they become
pairsof theform (M, G), where M isatimeline as described above, and G isaset of worlds w with
domain D. Intuitively, G isthe set of all worlds that satisfy the agent’s goal, i.e., the agent wants
to modify its current world so as to reach a (any) world in G. Now we add the following semantic
interpretation rule to the ones given above:

e ((M,w;, V), G) = GoaL(f,) iff for al w € G wehave (w,V) = f,.°

Finaly, if f isaformulain the full language (i.e., the language £7 with the goal modality added)
containing no free variables, then we say that the model (M, G) satisfies f, (M,G) = f, iff
((M,we),G) = f. From now on we will use £7 to refer to the full language generated by
the formation rules given above including the formation rule that allows use of the goal modality.

For example, Vz, y.on(x, y) Aclear(x) AGOAL (on(z, y) Aclear(z)) = O(on(z,y) Aclear(x))
is a syntactically legal formula in the augmented language. This formula is satisfied in a model
(M, G) iff for every pair of objects = and y such that (1) on(z, y) A clear(x) istruein wy and (2)
on(z,y) A clear(z) istruein every w € G, we havethat on(z, y) A clear(x) istruein w; (the next
world in the timeline A/). On the other hand on( A, B) A GOAL(O(clear(B))) isnot awell formed
formula, as we cannot apply GOAL to aformula containing atempora modality.

Note that our syntax allows GOAL formulas to be nested inside of temporal modalities (but not
viceversa). For example O(3z, y.ontable(x) A on(z, y) A GOAL (on(z,y))) isasyntactically lega

®Remember that each w is afirst order model for £ and V' is a variable assignment. Hence (w, V') |= f, can be
decided by the standard interpretation rules for first order formulas.



formula. It saysthat in every world in the timeline there must exist a pair of blocks = and y such
that = is on the table and y is on x, and such that it is true in every goa world that = is on y.
Note that for any particular instantiation of = and y, GOAL (on(z, y)) will be either be truein every
world in the timeline or false in every world of the timeline: the semantics of GOAL makes GOAL
formulas independent of the timeline. However, the set of instantiations of « and y for which we
require GOAL (on(z, y)) to betrue might change in every world of thetimeline due to the outermost
awaysmodality. In particular, the formulawill be true evenif acompletely different pair of blocks
satisfies 3z, y.ontable(x) A on(z, y) A GOAL(on(x,y)) a each world w; of the timeline.

It can be noted that if we assert GOAL(¢) (i.e, that ¢ is our goal), then we will aso have
GOAL (¢) for any v logically entailed by ¢. (Clearly if ¢/ must be true in any world in which ¢ is
true, then ¢ must betrueinal w € G aswell).

2.3 Bounded Quantification.

In Section 4.2 we will demonstrate one method by which information expressed in our temporal
logic can be used computationally. To facilitate such usage, we eschew standard quantification and
use bounded quantification. Hence, it is convenient at this point to introduce some addition syntax.
For now we will take bounded quantification to be a purely syntactic extension. Later we will see
that some additional restrictions are required to achieve computational effectiveness.

Definition 2.1 Let ¢ be any formula. Let ~ be any atomic formula or any atomic formula inside
of aGoAL modality. The bounded quantifiers are defined as follows:

1. Viz:y(x)] ¢ 2 Vr.y(z) = ¢.

2. J[zy(z)] ¢ & dz.y(x) A .

3. For conveniAence we further define:
d[z:y(x)] = Fo.y(2).

It is easiest to think about bounded quantifiers semantically: V[x:v(z)] ¢ holdsiff ¢ istrue for
al z such that (x) holds, and J[z:v(x)] ¢ holds iff ¢ is true for some x such that v(z) holds.
That is, the quantifier bound () simply serves to limit the range over which the quantified vari-
able ranges. Without further restrictions bounded quantification is just as expressive as standard
quantification: simply take () to be the propositional constant TRUE.

We can al so use atomic GOAL formulasas quantifier bounds. By the above definition, V[z:GOAL (y(x))] ¢
isan abbreviation for Vx.GOAL (y(x)) = ¢, which can be seen to have the simple semantic mean-
ing of asserting that ¢ holds for every « such that () istrue in every goal world.



Two uses of the language.

We have defined a formal language that possess a declarative semantics. It is possible to use this
language asalogic, i.e., to perform inference from collections of sentences, by defining a standard
notion of entailment. Let f; and f, be two formulas of the full language £7, then we can define
f1 E fo iff for dl models (M, G) suchthat (M, G) = f; we havethat (M, G) = fs.

We will not explore the use of L7 asalogic in this paper, (except for afew wordsin about the
possibilitiesin Section 10). Rather we will explore its use as a means for declaratively specifying
search control information, and we will utilize its formal semanticsto verify the correctness of the
algorithms that utilize the control knowledge.

3 An Extended Example

In this section we demonstrate how £7 can be used to express domain specific information. This
information can be viewed as simply being additional knowledge of the dynamics of the domain.
Traditionally, the planning task has been undertaken using very simple knowledge of the domain
dynamics. In particular, al that is usually specified in a planning problem isinformation about the
primitive actions: when they can be applied and what their effects are. Given this knowledge the
planner is expected to be able to construct plans. Our experience with Al planners indicates that
this problem is difficult, both from the point of view of the theoretical worst-case behaviour, and
from the point of view of practical empirical experience.®

Part of the motivation for this work is our opinion that successful planning systems will have
access to addition useful knowledge about the dynamics of the domain, knowledge that goes be-
yond a simple specification of the primitive actions. Some of this knowledge can come from the
designer of the planning system, but in the long term we would expect that much of thisknowledge
would be learned or computed by the system itself. For example, human agents often use exper-
imentation and exploration to gather additional knowledge in dynamical domains, and we would
expect that eventually an autonomous planning system would have to do the same.

For now, however, since our work on automatically generating such knowledge is preliminary,
we will explore how to utilize such knowledge given that has been provided by the designer of
the planning system. In this section we will give an extended example, using the familiar blocks
world, that serves to demonstrate that there is often considerable additional knowledge available
to the designer. And we will advance the argument that our temporal logic £7 serves as a useful
and flexible means for representing this knowledge. In the next section we will discuss how this
knowledge can be put to computational use to reduce search during planning.

8]t can be noted that the Al planning systemsthat have had the most practical impact have been HTN-style planners.
HTN (hierarchical task network) planners utilize domain knowledge (in the form of task decomposition schema) that
goes well beyond the simple knowledge of action effects utilized by classical planners[62, 17]. We discuss this point
further in Section 9.



| Operator | Preconditions and Deletes | Adds |

pickup(zx) ontable(z), clear (z), handempty. | holding(z).

putdown(z) | holding(z). ontable(x), clear (z), handempty.
stack (x, y) holding(z), clear (y). on(z, y), clear (z), handempty.
unstack (x,y) | on(z,y), clear(x), handempty. holding(z), clear (y).

Table 1: Blocks World operators.

Blocks World. Consider the standard blocks world, which we describe using the four STRIPS
operators given in table 1. Despite its age the blocks world is still a hard domain for even the
most sophisticated domain independent Al planners. Our experimentsindicate (see Section 7) that
generating plans to reconfigure 11-12 blocks seems to be the limit of current planners

Nevertheless, the blocks world does have a specia structure that makes planning in thisdomain
easy [26, 35]. And it is easy to write additional information about the dynamics of the domain,
information that could potentially be put to use during planning.

The most basic ideain the blocks world is that towers can be built from the bottom up. That is,
once we have built a good prefix of atower we need never dismantle that prefix in order to finish
our task.

For example, consider the planning problem shown in Figure 1. To solve this problem it is
clear that we need not unstack B from C'. Thistower of blocksiswhat can be called a good tower,
i.e., atower that need not be dismantled in order to achieve the goal.

More generally, we can write a straightforward first-order formula that for any single world
describes when a clear block sits on top of a good tower, i.e., atower of blocks that does not need
to be dismantled.

goodtower () 2 clear(z) A =GOAL (holding(z)) A goodtowerbelow(z)

goodtower bel ow(x) = (ontable(x) A =3[y:GoOAL(on(x,y))]))
Vv 3ly:on(z, y)] ~GOAL (ontable(z)) A ~GOAL (holding(y)) A ~GOAL (clear(y))
AVY|[z:GOAL (on(z, 2))] 2 = y AV[2:GOAL (on(z,y))] 2 =«
A goodtowerbelow(y)

A block = satisfies the predicate goodtower (x) if it is on top of atower, i.e, it is clear, it is not
required that the robot be holding it, and the tower below it does not violate any goal conditions.
The varioustests for the violation of agoal condition in the tower below are given in the definition
of goodtowerbelow. If = is on the table, the goal cannot require that it be on another block .
On the other hand, if x is on another block y, then = should not be required to be on the table,
nor should the robot be required to hold y, nor should y be required to be clear, any block that is
required to be below x should be 3, any block that is required to be on y should be z, and finally
the tower below y cannot violate any goal conditions.

We can represent our insight that good towers can be preserved using an £7 formula. A plan
for reconfiguring a collection of blocksis a sequence of actions for manipulating those blocks. As
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Figure 1: A Blocks World Example

these actions are executed the world passes through a sequence of states, the states brought about
by the actions. Any “good” plan to reconfigure blocks should never dismantle or destroy a good
tower, i.e., it should not generate a sequence of states in which a good tower is destroyed. If a
good tower is destroyed it would eventually have to be reassembled, and there will be a better plan
that preserved the good tower. Formulas of £7 specify properties of sequences of states, so we
can write the following formula that characterizes those state sequences that do not destroy good
towers.

D(V[xzclear(x)] goodtower (x) = O(clear(z) V J[y:0n(y, x)] goodtower(y))), (1)

If a plan generates a state sequence that wastefully destroys good towers, then that state sequence
will fail to satisfy thisformula.

In the example given in Figure 1, the state transitions caused by unstacking B from C' or by
stacking any block except A on B will violate thisformula.

Note also that by our definition of goodtower, atower will be agood tower if none of its blocks
are mentioned in the goal: such a tower of irrelevant blocks cannot violate any goal conditions.
Hence, this formula also rules out state sequences that wastefully dismantle towers of irrelevant
blocks. The singleton tower F' in our example satisfies our definition of a good tower.

What about towersthat are not good towers? Clearly they violate some goal condition. Hence,
there is no point in stacking more blocks on top of them as eventually we must disassemble these
towers. We can define:

badtower (z) £ clear(x) A —goodtower ()

And we can augment our characterization of good state sequences by ruling out those which grow
bad towers using the formula:

D(V[x:clear(x)] goodtower () = O(clear(x) Vv J[y:on(y, x)] goodtower (1)) 2
A badtower (z) = O(~3[y:on(y, =)]))

This formula rules out sequences that place additional blocks onto a bad tower. Furthermore, by
conjoining the new control with the previous one, the formula continues to rule out sequences that
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dismantle good towers. With this formula a good sequence can only pickup blocks on top of bad
towers. Thisis what we want, as bad towers must be disassembled. In our example, the tower
of blocks under F' is a bad tower. Hence, any action that stacks a block on E will cause a state
transition that violates the second conjunction of Formula 2.

However, Formula 2 does not rule out all useless actions. In particular, by our definitions a
single block on the table that is not intended to be on the table is also a bad tower. In our example,
block D issuch asingleton bad tower. D isintended to be on block A but is currently on thetable.
Formula 2 still permits us to pick up blocks that are on top of bad towers, however, there is no
point in picking up D until we have stacked A on B. In general, there is no point in picking up
singleton bad tower blocks unless their final position isready. Adding thisinsight we arrive at our
final characterization of good state sequences for the blocks world:

D(V[x:clear(x)] goodtower () = O(clear(x) Vv J[y:on(y, x)] goodtower (y)) 3
A badtower (z) = O(—3[y:0n(y, x)])
A (ontable(z) A J[y:GOAL (on(z, y))] ~goodtower (y))
= O(=holding(z)) )

Although we have provided some intuitions as to how an £7 formula like Formula 3 can be
used to rule out bad state sequences, there are a number of details that remain to be fleshed out.
We will do thisin the next two sections.

4 Finding Good Plans

In the previous sections we have provided a formal logic £7 that can be used to assert various
properties of a timeline, and we have given some examples showing that timelines violating the
asserted properties are not worth exploring. To put these logical ideas to computational use we
need to be more concrete about the data structures that will be used to represent the timeline
models (M, G), the manner in which these models are constructed, and how we can determine
whether or not formulas of L7 are satisfied or falsified by these models. In the next two sections
we will provide these details.

We will utilize an extended version of the standard STRIPS database representation of the in-
dividual worlds of atimeline. In this representation each individual world is represented as a
complete list of the ground atomic formulas that hold in that world. The closed world assump-
tion is employed, so that every ground atomic formula not in a world’'s database is falsified by
the world. Every planning problem provides a complete STRIPS database specification of the ini-
tial world, and actions generate new worlds by specifying a complete set of database updates that
must be applied to the current world. Thus, every sequence of actions applied to the initial world
generates a sequence of complete STRIPS databases.

STRIPS databases are essentially identical to traditional relational databases, and can be viewed
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as being finite first-order models[57]. First-order formulas can be eval uated against such models,’
and in the next section we will provide the details of the evaluation algorithm. This algorithm
allows us to determine whether or not an individual world satisfies or falsifies any first-order for-
mula

In general we need to deal with formulas of £7 which go beyond standard first-order formulas
by their inclusion of temporal and GoAL modalities. We will treat the GoAL modality formulas
in the next section. In this section we will show how to deal with the temporal modalities. The
method we will present builds on the ability to evaluate atemporal formulas on individual worlds.

Our approach to using £7 formulas to guide planning search involves testing whether or not a
candidate plan falsifies the formula. We will first formalize the notion of a plan satisfying an L7
formula, then we will describe amechanism for checking aplan prefix to seeif al of itsextensions
necessarily falsify agiven £7 formula, and finally we describe a planning algorithm that can be
constructed from this mechanism.

4.1 Checking Plans

Actions map worldsto new worlds. Hence a plan, which we take to be afinite sequence of actions,
generates a finite sequence of worlds: the worlds that would arise as the plan is executed. Since
each of these worlds is a standard STRIPs-database, a plan in fact produces a finite sequence of
first-order models—almost a suitable model for L7 .

Theonly difficulty isthat modelsof L7 areinfinite sequences of first-order models. Intuitively,
our plan isintended to control the agent for some finite time, up until the time the agent completes
the execution of the plan.®

In classical planing it isassumed that the agent executing the plan is the only source of change.
Since this paper addresses the issue of search control in the context of classical planning, we adopt
the same assumption. This means that once execution of the plan is completed the world remains
unchanged, or to use the phrase common in the verification literature, the world idles [39]. We can
model thisformally in the following manner:

Definition 4.1 Let plan P be the finite sequence of actions (a4, ...,a,). Let S = (wy, ..., w,)
be the sequence of worlds such that w is theinitial world and w; = a;(w;_1). S is the sequence
of worlds visited by the plan. Then the £7 model corresponding to P and w, is defined to be
(wo, . .., Wy, wy, .. .), i.&, S extended to an infinite sequence by infinitely replicating the fina
world. In the verification literature thisis know asidling the final world.

Therefore, every finite sequence of actions we generate corresponds to a unique model in which
thefinal stateisidling. Thus, given any formulaof £7 agiven plan will either falsify or satisfy it.

"The fact that evaluating database queries in relational databases is essentially the same as evaluating logical
formulas against finite modelsis a central theme in database theory [31].

8Work on reactive plans [6] and policies [18, 54, 15] has concerned itself with on-going interactions between the
agent and its environment. However, there are still many applications where we only want the agent to accomplish a
task that has afinite horizon, in which case plans that are finite sequences of actions can generally suffice.
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Definition 4.2 Let P be a plan and w, be the initial world. We say that (P, w,) satisfies (or
falsifies) aformula¢ € LT justin casethe model corresponding to P and w satisfies (or falsifies)

0.

Given a formula like the blocks world control formula (Formula 3 above) designed to char-
acterize good sequences of blocks world transformations, we can then check any plan to seeiif it
iIsagood plan. That is, given an L7 control formula ¢, we say that a plan P is a good plan if
(P, wy) satisfies ¢. Unfortunately, although it can be tractable to check whether or not P satisfies
an arbitrary formula ¢° knowing this does not directly help us when searching for a plan.

When we are searching for a plan we need to be able to test partially constructed plans, asthese
are the objects over which we are searching. Furthermore, we need to be able to determine if a
good plan could possible arise from any further expansion of a partial plan. With such atest we
will be able to mark partial plans as dead ends, pruning them from the search space; thus avoiding
having to search any of their successors.

One of the contributions of this paper is a method for doing this in the space of partial plans
searched by aforward chaining planner.

4.2 Checking Plan Prefixes

A forward chaining planner, searches in the space of world states. In particular, it examines all
executable sequences of actions that emanate from the initial world, keeping track of the worlds
that arise as the actions are executed. Such sequences, besides being plansin their own right, are
prefixes of al the plans that could result from their expansion.

We have devel oped an incremental mechanism for checking whether or not a plan prefix, gen-
erated by forward chaining, could lead to aplan that satisfiesan arbitrary £7 formula. Our method
IS subject to the restriction that all quantifiers in the formula must range over finite sets, i.e., the
quantifier bounds in the formula must specify finite sets. Clearly this restriction is satisfied when
asin our application worlds are specified by finite STRIPS databases and the quantifier bounds are
atomic formulas involving described predicates.'® The key to our method is the progression algo-
rithm given in Table 2. This algorithm takes asinput an £7 formula and produces a new formula
asoutput. Ascan be seen from clauses 9 and 10, the algorithm handles quantification by expanding
al instances. Thisiswhere our assumption about bounded quantification comes into play; the al-
gorithm must iterate over all instances of the quantifier bounds.! It can be noted that the algorithm

9n particular, it is tractable to check whether or not a plan satisfies various formulas when we have that (1) thereis
abound on the size of the sets over which any quantification can range, (2) there is a bound on the depth of quantifier
nesting in the formulas, and (3) it is tractable to test at any world w ; visited by the plan whether or not w; satisfies any
ground atomic formula
10As defined in Section 5 described predicates are those predicates all of whose positive instances appear explicitly
in the STRIPS database.
1This is very much like the technique of expanding the universal base used in the UcrPop planner [61], and in a
similar manner UcPopP must assume that the universal baseis finite.
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Inputs: An L7 formula f and aworld w.
Output: A new LT formula f* representing the progression of f through the world w.

Algorithm Progresy( f,w)

Case

1. f=¢eL(ie,¢containsnotemporal modalities):
fT:=TRUEIifw | f, FALSE otherwise.

2. f=hAf f* = Progress( fi, w) A Progress( f», w)

3. f=-fi [ = —Progress( f1, w)

4. f=0f ff=nh

5. f=hHU/J [+ := Progress(fy, w) V (Progress(fi, w) A f)
6. f=93f: ft:= Progress(fi,w) V f

7. f=0ff: [+ = Progress(fi, w) A f

8. f=Vrv(@)]fii [T = Newena/ey Progress(fi(z/c), w)

9. f=3wv(@)]fii [T = Vicw=(a/c) Progress(fi(z/c), w)

Table 2: The Progression Algorithm.

relies on an ability to evaluate atemporal formulas against individuals worlds (Case 1), the next
section will provide the agorithm for thistest.

The progression algorithm also does Boolean simplification on its intermediate results at vari-
ous stages. That is, it applies the following transformation rules:

1. [FALSE A ¢|¢ A FALSE| — FALSE,
2. [TRUE A ¢|é A TRUE| — ¢,

3. =TRUE — FALSE,

4. —FALSE — TRUE.

These transformations allow the algorithm to occasionally short circuit some of itsrecursive calls.
For example, if the first conjunct of an A connective progresses to FALSE, there is no need to
progress the remaining conjuncts.

The key property of the algorithm is characterized by the following theorem:

Theorem 4.3 Let M = (wy, w1, ...) beany L7 model. Then, we have for any £7 formula f in
which all quantification is bounded, (M, w;) = f if and only if (M, w;;,) = Progress(f, w;).

Proof: We prove this theorem by induction on the complexity f.
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e When f is an atemporal formula then (M, w;) & f iff w; = f. Line 1 of the algorithm
applies, so Progress(f, w;) = TRUE or FALSE dependent on whether or not w; = f. Ev-
ery world satisfies TRUE and none satisfy FALSE. Hence, (M, w;;,) = Progress( f, w;) iff
(M, w;) = f asrequired.

e When [ is of the form f; A fo, then (M, w;) = f iff (M,w;) E fi and (M, w;) = fo,
iff (by induction) (M, w;,1) = Progress(fi,w;) and (M, w;,1) = Progress( fa, w;), iff
(M, w;+1) = Progress( f1, w;) A Progress( f2, w;), iff (by line 2 of the algorithm) (M, w;1) |=
Progress( f, w;).

e When f isof theform —f;. This caseis similar to the previous one.

e When f isof theform O f;, then (M, w;) |= f iff (by the semantics of O) (M, w; 1) | fi, iff
(by line 4 of the agorithm) (M, w; 1) = Progress(f, w;).

e When f isof theform f; U f,, then (M, w;) = f iff (by the semantics of U) there exists w;
(j > i) such that (M, w;) = fo andforal k (i < k < j) (M,wy) = fi, iff (M,w;) = f2
(f2 is satisfied immediately) or (M, w;) = f; and (M, w;,1) E f (the current state sat-
isfies f; and the next state satisfies the entire formula f), iff (by induction) (M, w;.;) =

Progress| f»,w;) V (Progress( fi,w1) A f), iff (by line 5) (M, w;11) = Progress( f, w;).
e When f isof theform O f; or < f;. Both cases are similar to previous ones.

e When f = V[z:y(x)] f1, then (M, w;) | f iff (Mw;) = fi(z/c) for al ¢ such that w =
v(z/c), iff (by induction) (M, w;,1) = Progress(fi(z,c),w;) for al such ¢, iff (since by
assumption ~y(z) is only satisfied by a finite number of objects in w;) (M, w; ;) satisfies
the conjunction of the formulas Progress( f; (z/c), w;) for al such ¢ (if there are not afinite
number of such ¢ the resulting conjunction would be infinite and not avalid formulaof £7),

iff (by line8) (M, w; 1) = Progress(f, w;).

e When f = J[x:y(x)] fi. Thiscaseis similar to the previous one.

Say that we wish to check plan prefixes to determine whether or not they could satisfy an L7
formula ¢, starting in the initial world w,. By Theorem 4.3, any plan starting from w, will satisfy
oo if and only if the subsegquent sequence of worlds it visits satisfies ¢; = Progress( ¢y, wy). If
¢ isthe formula FALSE, then we know that no plan starting in the world w, can possibly satisfy
¢1, 8 no model can satisfy FALSE. Similarly, if ¢, isthe formula TRUE then every plan starting
in the world w, will satisfy ¢, as every model satisfies TRUE. Otherwise, we will have to check
the subsequent sequences against the progressed formula ¢,. The progression through w, serves
to check the null plan, which isaprefix of every plan.

Now suppose we apply action a in w, generating the successor world w,. If we compute
¢o = Progress(¢,, wy), then we know that any plan starting with the sequence of worlds (wg, w;)
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(i.e., any plan starting with the action a) will satisfy ¢, if and only if the sequence of worlds it
vigits after w; satisfies ¢,. Once again if ¢, is FALSE then no such plan can satisfy ¢, and if ¢ is
TRUE then every such plan satisfies ¢. Otherwise, we will have to continue to check all extensions
of the action sequence (a) against the formula ¢s.

It is not difficult to see that this process can be iterated to yield a mechanism that given any
plan prefix (a sequence of actions) continually updates the original formula ¢, to a new formula
¢; that characterizes the property that must be satisfied by the subsequent actionsin order that the
entire action sequence satisfy ¢q. If at any stage the progressed formula becomes one of TRUE or
FAL SE, we can stop, as we then have a definite answer about any possible extension of the current
plan prefix. The above reasoning yields:

Observation 4.4 Let (wy, wy, ..., w,) beafinite sequence of worlds (generated by some finite se-
quence of actions (a4, . . ., a,) applied to w, theinitial world). Let ¢, beaformulaof L7 labeling
wo, and let ¢; be the output of Progress(¢; 1, w;_1) (i.e., the result of iteratively progressing ¢,
through the sequence of worlds wy, ..., w;_1). If ¢, isthe formula FALSE, then no sequence of
worlds starting with (wy, . . ., w,,) can satisfy ¢,.

This showsthat the progression algorithmissound. That is, if it rulesout aplan prefix (a1, . .., a,)
then we are guaranteed that thereis no extension of (ay, . . ., a,,) that could satisfy the original L7
formula ¢,.

Progression is a model checking algorithm: it operates by progressing an £7 formula over a
particular finite sequence of worlds (afinite prefix of atimeline); it does not reason about timelines
in general. Although progression often has the ability to give us an early answer to our question, it
cannot always give us a definite answer. That is, progression is not complete.

In the verification literature the class of safety formulas has been defined [39]. These formulas
are a subset of the set of linear temporal logic (LTL) formulas!? that have the property that every
violation of a safety formula occurs after a finite period of time. More precisely, ¢, is a safety
formulaif whenever M £ ¢, (i.e., atimeline M falsifies ¢,) there is some finite prefix of M such
that all extensions of this prefix falsify ¢,. More generally, we might have aformula ¢, that is the
conjunction of asafety formulaand aliveness (non-safety) formula. Inthis case, some prefixeswill
falsify the safety component of ¢, and some infinite timelines will falsify the liveness component
of ¢y.13

The progression algorithm has, to a certain extent, the ability to model check the safety compo-
nent of theinitial £7 formula¢,. In particular, the progression algorithms has the ability to detect
some of the finite prefixes that falsify the safety component of ¢,. The algorithm is not, however,
complete, so there may be plan prefixes all of whose extensionsfalsify ¢, that are not ruled out by
progression (i.e., ¢o might not progress to FALSE on these prefixes).

There are two components to thisincompleteness. First, progression cannot check the liveness
component of formulas. For example, it cannot check liveness requirements like the achievement

2T isafirst-order version of LTL with an added GOAL modality
13Some syntactic characterizations of safety formulas exists, but in general testing if apropositional LTL formulais
a safety formulais a PSPACE-compl ete problem [50].
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of eventualitiesin the formula. Given just the current world it does not have sufficient information
to determine whether or not these eventualitieswill be achieved in the future. So it could be that all
the extensions of aparticular plan prefix fail to satisfy the liveness requirements of ¢,. This cannot
be detected by the progression algorithm. For example, one of the actions in the prefix might use
up an unrenewabl e resource that is needed to satisfy one of the liveness requirements): progression
will not be able to detect this.}4

The second source of incompleteness arises from the fact that progression does not employ the-
orem proving. For example, if we havethe L7 formula<¢ where ¢ is unsatisfiable, then progress-
ing this formulawill never discover this. When we apply progression we obtain Progress(¢, w) V
<&¢. The agorithm may be able to reduce Progress(¢, w) to FALSE, but then it would still be left
withthe origina formula <. It will not reduce thisformulafurther. We know that that no worldin
the future can ever satisfy an unsatisfiable formula, so from the semantics of & we can seethat in
fact no plan can satisfy thisformula. In general, detecting if ¢ is unsatisfiable requires a complete
theorem prover. The advantage of giving up this component of completeness is computational
efficiency. Ignoring quantification, the progression algorithm has complexity linear in the size of
the formula (assuming that the testsin line 1 can be performed in time linear in the length of the
formula ¢).*® While the complexity of validity checking for quantifier free L7 (i.e., propositional
linear temporal logic) is known to be PSPACE complete [51].

It should be noted however, that progression does have the ability to detect unsatisfiable for-
mulas when they are not buried inside of an eventuality. For example, if we have the formula C¢
where ¢ is atemporal and unsatisfiable, then the progression of this formula through any world w
will be FALSE. The progression of ¢ will (dueto case 2 of the algorithm) return FALSE A O¢ which
will be simplified to FALSE. In this case progression is model checking the atemporal formula ¢
against the model w and determining it to be falsified by w. Thisis not the same as proving that
¢ isfalsified by every world, a process that requires a validity checker. Model checking aformula
against a particular world isamuch more tractable computation than checking its validity (see[27]
for afurther discussion of thisissue).

Example 2 Say that we progress the formula Oon( A, B) through the world w in which on( A, B)
istrue. Thiswill result in the formula TRUE A Oon(A, B), which will be reduced to Don( A4, B).
On the other hand, says that w falsifieson(A, B), then the progressed formulawould be FALSE A
Oon(A, B), which will be reduced to FALSE. This example shows that O formulas generate a test
on the current world and propagate the test to the next world.

As another example say that we progress the formula O(on( A, B) = Oclear(A)) through the
world w in which on(A, B) istrue. The result will be the formula O(on(A, B) = Oclear(A)) A
clear(A). That is, the always test will be propagated to the next world, and in addition the next
world will be required to satisfy clear(A) sinceon(A, B) iscurrently true. On the other hand, if w

14Unless the user can specify a safety formula prohibiting conditions that make liveness requirementsimpossible to
achieve.
15We will return to the issue of quantification and the tests in line 1 later.
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Inputs: A world w, an L7 formula f agoal G, aset of domain actions A, and the current plan
prefix P. To start planning we call TLPLAN(wy, fo,G,A,()), Where w, istheinitial world, f, isthe
initial £7 control formula, and the current plan prefix is empty.

Output: A plan (a sequence of actions) that will transform w, into aworld that satisfies G'.

Algorithm TLPLAN(w, f, G, A, P)

if wsatisfiesG thenreturn P.

Let f* = Progress(f,w).

if fTisFALSE return failure.

choose an action a from the set of actions A whose preconditions are satisfied in w.
if no such action existsreturn failure.

Let w™ be the world that arises from applying a to w.

return TLPLAN(w™, fT, G, A, P + a).

Sk whNE

Table 3: The planning algorithm.

falsified on(A, B) the progressed formula would simply be O(on(A, B) = Oclear(A)). That is,
we would simply propagate the constraint without any additional requirements on the next world.

It is possibleto add to the progression algorithm an “idling” checking algorithm so that we can
receive a definite answer to the question of whether or not a plan prefix satisfies an £7 formula
in the sense of Definition 4.2, see [2] for details. However, for the purposes of search control this
IS not necessary. In particular, the plan prefixes we are checking are not the final plan; all that
we want to know is if they could possibility lead to a good final plan. For this purpose the partial
information returned by progression is sufficient.

4.3 ThePlanning Algorithm

The progression algorithm admits the planning algorithm shown in Table 3. Thisagorithmisused
inthe TLPLAN system described in Section 6.

The algorithm is described non-deterministically, search will have to be performed to explore
the correct choice of action a to apply at each world w. This algorithm is essentially a simple
forward chaining planner (a progressive world-state planner by the terminology of [61]). The only
differenceisthat every world islabeled withan £7 formula f, with theinitial world being labeled
with a user supplied formula expressing a control strategy for this domain. When we expand
a world w we progress its formula f through w using the progression algorithm, generating a
new formula f*. This new formula becomes the label of al of w’s successor worlds (the worlds
generated by applying all applicable actionsto w). If f progressesto FALSE, (i.e., f* iSFALSE),
then Theorem 4.3 shows that none of the sequences of worlds emanating from w can satisfy our
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LT formula. Hence, we can immediately mark w as a dead-end in the search space and avoid
exploring any of its successors.

5 Evaluating Atemporal Formulasin Individual Worlds

The previous section showed how we can checks plan prefixes to determine whether or not they
(and thus all of their extensions) falsify an initial £7 control formula. The process was proved
to be sound but incomplete.'® The progression algorithm makes two assumptions: (1) each of the
plan prefixes generated during search consist of sequences of first-order models, and (2) for any
formula ¢ of L7 containing no temporal modalities and any of the modelsin this sequence w we
can determine whether w satisfies ¢ (case 1 of the algorithm).

In this section we will show that these assumptions are satisfied in the planning system we
construct. First, as mentioned in the previous section, we represent each state in the plan as a
STRIPS database (with some extensions described below) and once the closed world assumptionis
employed such databases are formally first-order models.t” Furthermore, our actions are modeled
as performing database updates (this also follows the STRIPS model). Thus each action maps a
database to a new database, i.e., afirst-order model to a new first-order model. Hence, assumption
(1) istrivialy satisfied—each plan prefix consists of a sequence of first-order models.

To satisfy assumption (2) we ssimply need to specify an algorithm for evaluating atemporal L7
formulasin these models (STRIPs databases). The formula evaluator algorithm is specified bel ow.
Once these two assumptions are satisfied we have that the progression algorithm is sound (in the
sense of Observation 4.4).

The planning algorithm specified in Table 3 searches for plans that transforms the initial world
to aworld satisfying the goal. It searches for this plan in the space of action sequences emanating
from the initial world and eliminating from that search space some set of plan prefixes. We have
the guarantee that any plan prefix eliminated from the search space has no extension satisfying the
initial £7 formula

The planning agorithm istrivially sound. That is, if a plan isfound then that plan doesin fact
correctly transform the initial state to a state satisfying the goa.*® The planning algorithm will
be complete, i.e., it will return a plan if one exists, when (1) the underlying search algorithm is

16Note that incompleteness does not pose a fundamental difficulty in our approach. Incompleteness means that we
fail to prune away some of the invalid plan prefixes. Thereal issue, however, is whether or not we can prune away a
sufficient number of prefixes to make search more computationally feasible. In Section 7 we will provide extensive
evidence that we can.

"The pure STRIPS databaseis afinite first-order model. However the eval uator we describe below also hasfacilities
to range variables over any finite set of integers and to evaluate numeric predicates and functions. Thisimplies that
our system is actually implicitly dealing with infinite models. In particular, it is checking formulas over afirst-order
model determined by the STRIPS database conjoined with the integers.

18Actions have a precise representation and a precise operational semantics (discussed below). The plan returned
will be correct under specific interpretation of the action effects.
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complete, and (2) whenever aplan existsaplan that does not falsify theinitial £7 formulaexists.®

The formula evaluator checks the truth of formulas in individual worlds. Each world is rep-
resented as an extended version of a STRIPS database. In particular, there are a distinguished set
of predicates called the described predicates. Each world has a database containing all positive
ground instances of the described predicates that hold in the world. The closed world assumption
isemployed to derive the negations of ground atomic facts.

In addition to the described predicates a world might also include a set of described functions.
These also are specified by adatabase, a database storing the val ue the described function has given
various arguments.

Actions map worlds to worlds, and their effects are ultimately specified as updates to the de-
scribed predicates functions. Thisisthe standard operational semanticsfor STRIPS actions, and in
fact these semantics are also applicableto AbL actions.?°

Building on the database of described predicates we add defined predicates and functions.
These are predicates and functions whose value is defined by a first-order formula. And we also
add computed predicates, functions and generators. These are mainly numeric predicates and
functions that rely on computations performed by the underlying hardware. Thus the evaluator
can evaluate complex atemporal formulas that involve symbols not appearing in the underlying
database of described predicates.

The formulaevauator is given in Tables 4-6.

The lowest level of the recursive algorithm is EvalTerm (Table 6) which is used to convert
complex first-order terms (containing functions and variables) into constants. Variables are easy,
we ssimply look up their value in the current set of variable bindings. It is not hard to see that as
long asthetop level formula passed to Eval contains no free variables (i.e., it isasentence), the set
of bindings will have avalue for every variable by the time that variable must be evaluated.?

EvalTerm alows for three types of functions: computed, described and defined functions.
Computed functions can invoke arbitrary computations on a collection of constant arguments (the
arguments to the function are evaluated prior to being passed as arguments). The value of the
function can depend on the current world or the function may be independent of the world. For
example, it ispossible to declare all of the standard arithmetic functions to be computed functions.
Then when the evaluator encounters aterm like ¢, + ¢, it first recursively evaluates ¢; and ¢, and
then invokes the standard addition function to compute their sum.

Every world contains a database of values for each described function, and these functions
can be evaluated by simple database lookup. The user must ensure that these function values
are specified in the initial state and that the action descriptions properly update these values. For
example, in the blocks world we could specify a function below such that below(x) is equal to
the object that is below of block x in the current world (using the convention that the table is

Thefirst condition is a standard one for any algorithm that employs search. The second condition meansthat it is
up to the user to specify sensible control knowledge, i.e., control knowledge that only eliminates redundant plans.

2ApL actions can have more complex first-order preconditions along with conditional add/deletes. However, the
set of add/del etes each action generatesis aways a set of ground atomic facts.

2The quantifier clausesin Eval will set the variable values prior to their use.
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Inputs: An atempora £7 formula f, aworld w, and a set of variable bindings V.
Output: TRUE or FALSE dependent on whether or not (w, V') |= f.

Algorithm Eval(f,w,V)
Case
1. f=P(t,...,t,) (anaomic formula)
return (EvalAtomic( P(EvalTerm(t,, w,V), ..., EvaTerm(t,, w,V))), w)

2. fF=FAAf2 if not Eval(f,,w, V) then return (FALSE)
elsereturn (Eval(f;,w,V))
3. f=-f return (not Eval(fi,w,V))

3.1 Similar processing for the other boolean connectives.

4. f=V]zy(z)] fi: generator := make-generator(vy(z), w, V)
tval := TRUE
while (c := generator.next() A tval)
tval := tval A Eval(fi,w,V U{zx = ¢})
return (tval)
5 f=3z] fi: generator := make-generator(y(x), w, V)
tval := FALSE
while (¢ := generator.next() V —tval)
tval := tval V Eval(f,w,V U{zx = ¢})
return (tval)
6. f=(x:=1): V(z) := EvaTerm(t,w, V)
return (TRUE)

Table 4: The formula evaluator.

below itself). The initial state would specify the initial values for below, and the actions stack
and putdown would have to update these function values. Updating function values by an action
is accomplished by utilizing the ADL representation of actions that allows for the specification of
updates to function values [44].

Defined functionsare functionswhose valueis defined by aformula. Evaluating such functions
requires arecursive call to the top-level of the formula evaluator. Hence, we describe the rest of
the evaluator prior to describing defined functions.

The next level up from terms is the evaluation of atomic formulas (ground atomic formulas
since all terms are evaluated prior to evaluating the formula). The evaluator allows for described,
computed, and defined predicates. Described predicates are the standard type. Each world main-
tains a database of all positive instances of such predicates, and the truth of any ground instance
can be determined by a database lookup. Asis standard the initial state must specify al positive
instances of the described predicates and the actions must specify correct adds and del etes to keep
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Inputs: Anground atomic formula P(cy, . .., ¢,) and aworld w.
Output: TRUE or FALSE dependent on whether or not w = P(cy, ..., ¢,).

Algorithm EvaAtomic(P(cy, . .., ¢,),w)
Case
1. P isadescribed predicate:

return (lookup(P(cy, ..., ¢,),w))
2. P isdefined by a computed predicate:

return (P(cy, - .., ¢, w)).
3. P isdefined by the formula ¢:

Letxy,...,xz, betheargumentsof ¢.

return (Eval(¢, w,V U{x, =c1,..., 2, = cp})).

Table 5: Evaluating Atomic Formulas.

Inputs: A term ¢, aworld w, and a set of variable bindings V.
Output: A constant that is the value of ¢ in the world w.

Algorithm EvalTerm(t,w,V’)
Case
1.t =z wherez isavariable:
return (V(z)) (i.e, return z’s binding)
2.t = c where c isa constant:
return (c).
3.t = f(ty,...,tx) Wwhere f isadescribed function:
return (lookup(f(EvaTerm(t,,w,V),..., EvaTerm(t;, w,V)), w)).
4.t = f(ty,...,tx) where f isacomputed function:
return (f(EvaTerm(t,,w,V), ..., EvaTerm(ty, w, V), w)).
5.t= f(ti,...,tx) where f isdefined by the formula ¢:
Fori=1,...,k,letc; = EvaTerm(t;, w, V'), x; be the argumentsfor ¢,
andVI:VU{f :?,.ZUl =C1y...,Tk :Ck}
Eval(¢,w, V")
return (V'(f))

Table 6: Evaluating Terms.
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the database up to date.

Computed predicates, like computed functions, can be used to invoke an arbitrary computation
(whichin thiscase must return true or false). Inthisway we can include, e.g., arithmetic predicates
in our formulas. For example, weight(A) > weight(B), would be alegitimate formula given that
weight has been declared to a function. The formula evaluator would first evaluate the terms
weight(A) and weight(B) prior to invoking the standard numeric comparison function to compare
the two values.

Finally, the most interesting type of predicate are the defined predicates. Like the defined func-
tions these predicates are defined by first-order formulas. The predicate goodtower (defined in
Section 3) is an example of a defined predicate. Defined predicates can be evaluated by simply
recursively invoking the formula evaluator on the formula that defines the predicate (with appro-
priate modifications to the set of bindings). The key feature is that this mechanism allows us to
write and evaluate recursively defined predicates. For example, we can define above to be the
transitive closure of on:

above(z, y) £ on(z, y) v 3[z:0n(z, y)] above(z, z).22

At the top level the evaluator simply decomposes a formula into an appropriate set of atomic
predicate queries. The decomposition is determined by the semantics of the formula connectives.

Quantifiers are treated in a special manner. As previously mentioned our implementation uti-
lizes bounded quantification. The formula specifying the quantifier bound is restricted: it can only
be an atomic formulainvolving a described predicate, agoa atomic formulainvolving a described
predicate, or a special computed function. Inside of the evaluator this is implemented by using
each quantifier bound to construct a generator of instances over that bound. The function make-
generator does this, and every time we send the returned generator a*“ next” message it returns the
next value for the variable. When a described predicate is used as a quantifier bound, a genera-
tor over itsinstances is easy to construct given the world's database: the generator simply returns
the positive instances of that predicate contained in the database one by one. The implementation
also allows for computed generators which invoke arbitrary computations to return the sequence
of variable bindings.?® There is considerable generality in the implementation. N-ary predicates
can be used as generators. Such generators will bind tuples of variables; e.g., when evaluating the
formula“V|z, y:on(x, y)] ...” agenerator of al pairs (x,y) such that on(x, y) holdsin the current
world will be constructed. The generators will also automatically take into account previously
bound variables. For example, when evaluating “V|[z:clear (z)] 3[y:on(z, y)] ...”, the outer gener-
ator will successively bind z to each clear block and the inner generator will bind y to the single
block that is below the block currently bound to z.

The last clause of the formula evaluator algorithm is used to deal with defined functions. We
will discuss defined functionsin Section 6.1.1.

220f course the user has to write their recursively defined predicates in such amanner that the recursion terminates.
The short circuiting of booleans and quantifiers (e.g., not evaluating the remaining digunctions of an v once one of
the digunctions evaluates to true) is essential to this process.

ZThis s often useful when we want a quantified variable to range over afinite set of integers.
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5.1 Evaluating GOAL Formulas

As mentioned in Section 2.2 the language utilized to express control formulas (and action precon-
ditionsin ADL formulas) includesa GOAL modality. In practice the user specifiesthe goal as some
first-order formula ®. This generally means that if we can transform the initial state to any world
satisfying ® we have found a solution to our problem. Hence, formally, the set of goal worlds G
used to interpret GOAL formulas (see Section 2.2) should be taken to be the set of al first-order
models satisfying ®.

By the semantics for GOAL given in Section 2.2 and the above interpretation of the set of goal
worlds, we have that GOAL (¢) istrue iff & = ¢. When the temporal control formula includes
a goal modality (most control formulas do), then at every world when we progress the control
formula through that world we may have to invoke the evaluator to determine the truth GoOAL
formulas, and hence the truth of & = ¢ for various ¢. To be of use in speeding up search we
must be able to efficiently evaluate GOAL formulas. In general, checking entailment (i.e., checking
® = ¢) isnot efficient.

When GoaL formulas are used in the control formulas (or as preconditions of ADL actions)
we must enforce some restrictions in our implementation to ensure that they can be evaluated
efficiently. In particular, if GOAL formulas are to be used we require that the goal, @, be specified
asalist of ground atomic facts involving only described predicates, {1, .. ., ax }, and we restrict
the GoaL formulas that appear in the domain specification to be of the form GOAL («) where «
is an atomic formula involving a described predicate. Under these restrictions we can evaluate
GOAL formulas efficiently with a simple lookup operation. Any set of ground atomic formulas has
amodel that falsifies every atomic formulanot in the set. Hence, under these restrictions GOAL («)
will be true if and only if & € ®. We can aso efficiently utilize GoAL formulas in bounded
quantification: all instances in the quantifier range must be instances that explicitly appear in ®.

Example 3 Let the goal be the set of ground atomic facts {ontable(A), clear(A)}.
e GOAL (ontable(A)) will evaluate to true.
e GOAL (ontable(C')) will evaluate to false.

e V[z:ontable(z)] GOAL (ontable(x)) will evaluate to true iff al the blocks on the table in the
current world are equal to A. The quantifier is evaluated in the current world w, and z is
successively bound to every instance satisfying ontable in w. If x isbound to A, i.e, if
ontable( A) istruein w, then GOAL (ontable(z)) will evaluateto true. It will evaluateto false
for every other binding. Hence, the formulawill be true if there are no blocks on thetablein
w or if theonly block on thetableis A.

e V[z:GOAL (ontable(x))] ontable(z), in this case the quantifier is evaluated in the goal world,
and the only binding for = satisfyingtheboundis {x = A}. Hence, thisformulawill evaluate
to truein aworld w iff A ison thetablein w. There may be any number of other blocks on
thetablein w.
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5.2

Correctness of the Evaluator

Since the evaluator breaks down formulas according to their standard first-order semantics, it is
not difficult to see that if it evaluates atomic formulas and quantifier bounds correctly it will im-
mediately follow that it evaluates all formulas correctly. First we deal with the quantifier bounds:

1

If the quantifier bound is GOAL (P(Z)), then by the previous restrictions P must be a de-
scribed predicate. Furthermore, a binding ¢ for the sequence of variables ¥ satisfies the
quantifier bound if and only if P(#/c) isin thelist of ground atomic facts that specifies the
goal. Hence iterating over thislist of facts will correctly evaluate the quantifier bound.

If the quantifier bound is P(¥) where P is a described predicate, then a binding & for the
variables 7 satisfies the quantifier bound if and only if P(Z/¢) isin the world’s database of
positive P instances. lterating over the world's database correctly evaluates the quantifier
bound.

If the quantifier bound is a computed generator then whatever function the user supplies it
must generate some sequence of bindings given the current world and current set of bindings.
We take this sequence to be the definition of the set of satisfying instances of the quantifier
bound. Thus by definition computed generators are correctly evaluated.?*

Atomic formulas require using Eval Term to evaluate the terms they contain:

1.

If the term is avariable, then its value isits the current binding which will have been set by
the generator for the quantifier bound. It has been shown above that the generators operate
set these bindings correctly.

Constants are their own value, thus Eval Term correctly evaluates such terms.

If the term is a described function, then the STRIPS database contains all of the values of that
function and a simple lookup will correctly evaluate such terms.

If the term is a computed or defined function then we take the value returned to define the
function. (The operational semantics of defined functions is described in the next section).
Hence, such terms are evaluated correctly by definition.

Finally, we have the atomic formulas.

2The system cannot ensure the user supplied generator function implements what the user intended. Rather all it
can do is provide a specific semantics as to how the output of that function will be used, and ensure that it correctly
implements those semantics. Thisis the same approach as that taken by, e.g., programming languages compilers. The
language specifies a specific semantics for every language construct and the compiler is correct if it correctly maps
programs to this specified semantics. Whether or not the program implements what the user intended is a separate

matter.
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Figure 2: The TLPLAN system

1. If the atomic formula involves a described predicate, then the STRIPS database contains all
positive instances of the predicate. Such predicates can be evaluated by a simple database
lookup procedure.

2. If the atomic formula involves a defined predicate then its evaluation is can be shown to
be correct by induction (with the base case being the atomic predicates that are not defined
predicates).?®

3. If the atomic formulais a computed predicate, then again we take the value returned by the
computation to define the predicate.

6 TheTLPLAN System

We have constructed a planning system called the TLPLAN system that utilizes the planning algo-
rithm shown in Table 3. In this section we describe the system and supply some final details about
the design of the system.

TLPLAN isavery ssmple system, as the diagram of its components shown in Figure 2 demon-
strates. The distinct components of the system are:

SThere is a subtlety when the defined predicate is recursive. In this case we need fixpoints to give a precise
semantics to the predicate. It goes beyond the scope of this paper to supply such semantics, but many approaches to
this problem have been developed by those concerned with providing semantics to database queries (which can be
recursive), e.g., see [58].
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A search engine which implements a range of search algorithms.

A goal tester that is called by the search engine to determine if it has reached a goal world.
The goal tester in turn calls the formula evaluator to implement this test.

A state expander that is called by the search engine to find all the successors of aworld. The
state expander in turn calls the formula eval uator to determine the actions that are applicable
at aworld. It also calls the formula progressor to determine the formula label of these new
worlds.

A formula progressor which implements the progression algorithm shown in Table 2. The
progression algorithm uses the formula evaluator to realize line 1 of the algorithm.

¢ A formulaevaluator which implements the a gorithm shown in Tables 4-6.

Forward-chaining plannerslike TLPLAN are inherently simple. Nevertheless, isit worth point-
ing out that all of the functionality needed in such a planner can be implemented using the eval-
uator. As Figure 2 shows, this is the design used by TLPLAN. A properly designed formula
evaluator also provides considerable additional flexibility and expressiveness to the system, and
understanding its operation provides insights into the worst case complexity of the planner’s basic
operations.

6.1 Utilizing the Evaluator’s Operational Semantics

It was shown in the previous section that the formula evaluator correctly determines the truth of
any atemporal £7 formula. However, there is another way to view of the evaluator: the evaluator
can be viewed as being an interpreter for alanguage, alanguage whose syntactic structure isthat of
the atemporal component of £7. When viewed as an interpreter the evaluator has an operational
semantics [28] that is precisely specified by the algorithm given in Tables 4-6.

In particular, when the evaluator is given a formula to evaluate it will perform a precise se-
guence of computations determined by the syntactic structure of the formula and the properties of
the world against which the formulais being evaluated. For example, say we evaluate the formula
on(4, B) Aon(B, C) inaworld w in which on(A, B) holdsand on(B, C') does not. The evaluator
will perform the following computations:

1. It will evaluateon(A, B) inw. Thiswill evaluate to TRUE.
2. It will then evaluate on(B, C') in w. Thiswill evaluate to FALSE.
3. It will return FALSE.

On the other hand if we evaluate the formulaon(B, C') Aon( A, B) the evaluator will never perform
the computation of evaluating on(A, B) in w.
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This behaviour stems from the fact that the evaluator utilizes early termination of boolean
connectives and quantifiers. From the point of view of correctness early termination makes no
difference; the evaluator returns the same value no matter how the formula is written. However,
early termination can be a very useful control flow mechanism when we add additional computed
predicates.

Computed predicates and functionsinvoke a user defined computation in order to return avalue
to the evaluator. Great economy in the implementation can be achieved by taking advantage of this
fact. In particular, much of the implementation is realized by simply supplying an additional set of
computed predicates and functions. These predicates and functions return specific values, but they
are mainly designed to invoke useful computation when they are eval uated.

Printing is a good example. The system defines a computed “print” predicate (taking an arbi-
trary number of arguments). This predicate always returns true as its truth value, thus any formula
containing print can always be rewritten by replacing all instances of print with TRUE. However,
when the evaluator evaluates the print predicate the computation it invokes generates I/O as a
side effect. Such predicates have atrivia declarative semantics (usualy they are equivalent to the
propositional constant TRUE). Thelr effects are determined by the computation they invoke when
evaluated and the evaluator’s operational semantics (which determines under what conditions they
will be invoked).

For example, in the world w used in the example above the formula

on(A, B) A print(*on(A, B) holds!”) A on(B, C) A print(“*on(B, C') holds!™)

will evaluate to FALSE just as before, but its evaluation will print out the string “on(A, B) holds!”
as aside effect, while the formula

on(B,C) A print(*on(B, C) holds!”) A on(A, B) A print(*on(A, B) holds!™)

will also return FALSE but will not generate any /O since its evaluation will terminate prior to the
first print statement being eval uated.

Thisexample showsthat viewing the evaluator as an interpreter makesformulaeval uation more
syntax dependent, but in no way affects the correctness of the final value it returns.?® Despite this
drawback, by utilizing the evaluator as an interpreter we can implement many of the remaining
components of the planner quite easily. We discuss these components next.

6.1.1 Defined Functions

The operational semantics of the evaluator provides a mechanism that alows the user to specify
defined functions. Such functions are handled by the last clause of the formulaevaluator algorithm
(Table 4).

28|t should also be noted that if we are thinking of the evaluator as an interpreter it should not be too surprising that,
e.g., the order of the conjunctionsin a formulamake a difference. The order of statements makes a difference in most
programming languages.
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Consider afunction depth(z) that returns the depth of ablock z, where clear blocks have depth
zero. Such afunction can be computed by evaluating the following formula:

depth(z) 2
clear(z) = depth:=0
A Jly:on(y, z)] = depth := 1 + depth(y)

That is, the depth of = iszero if = isclear, otherwise there must exist another block y that is on top
of = and then the depth of « is one more than the depth of .

Formulas defining functions utilize the computed assignment predicate “:=". Thispredicateis
handled by the last clause of the evaluator’s algorithm. Assignment always returns TRUE and as a
side effect it sets the binding of avariableto be equal to the value of the term on the left hand side.

Defined functions use the convention of assigning values to the function’s name as a shorthand
for setting the return value. The value of the function is the last value assigned to its name. In-
ternaly, defined functions are handled by adding the function name as a new unassigned variable
to the set of variable bindings (see clause 5 of the Eval Term algorithm Table 6). We then evaluate
the formula defining the function using this augmented set of variable bindings. When the evalua-
tor encounters an assignment “predicate” like depth := 0 it modifies the binding of that variable.
Thus, after the evaluator has processed the defining formula, the function’s name variable has been
set to a value, and that value is returned as the function’s value. This simple mechanism adds
considerable flexibility when defining a planning domain.?’

It should al so be noted that thisformuladefining depth has been written so that itsinterpretation
by the evaluator will yield the correct value for depth. In particular, the consequent of each of the
implications (i.e., the assignments) will only be evaluated when the antecedent evaluatesto TRUE.

6.1.2 TheProgression Algorithm

Asshownin Table 2 case one of the progression algorithm needs to eval uate whether or not various
subformulas holds in the current world. Thisis accomplished by calling the formula evaluator. A
useful illustration of the working of the progression algorithm and the formulaeval uator is provided
by the following example.

Example 4 Consider a control formulafrom the blocks world:
D(V[m:clear(aj)] ontable(z) A —=3[y:GoAL(on(z,y))] = O(—holdi ng(a:))) 4

Thisformula asserts that a good plan will never pickup ablock x from thetable if that block is not
required to be on another block y. Say that we wish to progress this formulathrough aworld w in
which the {ontable(a), ontable(b) }, and {clear (), clear (b) }, are the set of ontable and clear facts

270Our implementation extends this mechanism to allow defined functions (and predicates) to have local variables
that can be assigned to. Local variables are not essential, but they can speedup certain computations.
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that hold in w. Further, say that the goal is specified by the set {on(b, a)}. On encountering the O
modality the progressor will compute the progression of

V[z:clear(z)] ontable(z) A —3[y:GOAL (on(z, y))] = O(—holding(z)), )

and then return the conjunction of the result and the original formula4 (case 7 of Table 2).
To progress the subformula the evaluator will be called to make a generator of the instances of
clear (x) that hold in w, and for each of these instances the progressor will progress the subformula

ontable(z) A —3[y:GOAL (on(z, y))] = O(=holding(z)). (6)

The first call to this generator will return {z = a}. Using this binding subsequent calls to the
evaluator will return true for ontable(x), and then true for —3[y:GOAL (on(z, y))] , as there are no
instantiations for y that satisfy on(a, y) in the goa world. This terminates the progression of the
antecedent of the implication. Since the antecedent is true the progressor is forced to progress the
conseguent of the implication O(—holding(x)). The end result of the first instantiation for x is the
progressed formula —holding(a).

The next call to the top level generator returns the binding {x = b}. Under this new binding
ontable(z) evaluates to true but —3[y:GOAL (on(z, y))] evaluatesto false, as the binding {y = a}
satisfies the existential. Thus the conjunction evaluates to false, and the entire implication then
progresses to true.

Thefinal result is the formula

—holding(a) A
D(V[x:clear(x)] ontable(z) A —=3[y:GoAL (on(z,y))] = O(ﬂholding(:c))),

which says that in the subsequent state we should not be holding a (remember that the progressed
formulais used to label all of the successor worlds of w).

6.1.3 Implementing the Operators

Actions are specified as either STRIPS or ADL operators. When we instantiate the parameters of
the operators we obtain an action instance with instantiated precondition, add, and delete clauses.
An action can be applied to the current world if its instantiated precondition is satisfied in the
world.

It is easy to use the formula evaluator to determine if an action precondition is satisfied in the
current world. However, we can go further than this. By utilizing the evaluator as an interpreter and
adding some appropriate computed predicates, we can use the formulaevaluator to fully implement
the operators.

Thisprocessisbest illustrated by an example. Consider the STRIPS operator unstack specified
inTable 1. Itspreconditionlistis{on(z, y), clear(z), handempty}, itsadd listis { holding(x), clear (y) },
and itsdeletelist is {on(z, y), clear(x), handempty}. We can represent this operator as a formula
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When this formula is evaluated in the current world it will, as a side effect of some of its com-
puted predicates, correctly construct all of the successor worlds that could be generated by various
executabl e instances of the operator. The formulafor unstack is

handempty A
V[z:clear(z)] V[y:on(x, y)| MakeNewWorld
A Dél(on(z,y)) A Del(clear(z)) A Del(handempty)
A Add(holding(z)) A Add(clear (y)).

When this formulais evaluated in the current world the first thing that is done by the evaluator is
to test if handempty is true. If it is not then no instance of unstack is applicable and no further
computation is necessary. Then the quantified subformulas are evaluated. The variables » and y
will be instantiated to objects that satisfy the preconditions of the operator; i.e., by representing the
operator’s parameters as quantified variables we can use the standard processing of quantifiers to
find all executable actions. The new computed-predicates we need are “MakeNewWorld”, “Add”,
and “Del”. “MakeNewWorld”, generates a new copy of the current world, and “Add” and “Del”
modify the databases that describe the instances of the various predicates that hold in that copy.?®
(All of these predicates evaluate to TRUE in every world.) That is, by “evaluating” these predicates
the world generated by applying the current action (given by the current bindings of = and y) is
computed. Itisnot difficult to seethat any STRIPS operator can be translated into aformula of this
form.?®

Using the same mechanism it is also easy to handle ADL operators (in their full generality).
ADL operators can take arbitrary first-order formulas as their preconditions, and have conditional
add and delete lists. Furthermore, these operators can update function values. Every ADL operator
is converted into aformulawith the following form

VE.(Z)
= MakeNewWorld
AV (T, 7h) = AdA(4, (T, 771))

Theformula ¢ (%) isthe precondition of the operator. It contains a vector of free variables z. Ever
instantiation of Z that makes ¢(Z) truein the current world specifies asingle executable action. For
every action all of the conditional updates ;(Z, 7j;) are activated. Each of these conditional updates
can potentially add or delete many instances of a predicate ¢;. That is, for afixed instantiation of
7 there may be many instantiations of ¢; that satisfy the conditional update formula v;(Z, ;). The

2Add and Del are syntactically unusual in that they actually take atomic formulas as arguments. If we wanted to
be pedantic we would say that they are computed modalities not computed predicates.

2An interesting point is that since we convert operator into formulas universally quantified by the operator param-
eters, there is never any need to do unification. In particular, the unification algorithm plays no role in the TLPLAN
system.
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action instance will add or delete an instance of the predicate /; for every distinct instantiation of
y; that satisfies 1; (%, ;) (in the current world).

Function updates are handled in a uniform manner using equality as the predicate. That is, a
term like Add(f(c¢) = y) will update the function f so that its value on ¢ is equal to y (i.e., the
current binding of ). Since functions have unique values, the add of afunction value automatically
deletes the old value.

The actual ADL and STRIPS operators are specified using a sightly more standard syntax and
then translated to the above form. Once in this form we can make direct use of the formula
evaluator to apply these operators to the current world.

6.2 Testing Goal Achievement

As discussed above the godl is usually specified as alist of ground atomic facts {4, ..., ¢;}. To
test if aworld w satisfiesthe goal we evaluate the conjunction Z; A. .. A ¢ inw. Thusthe evaluator
isused directly to test for goal achievement.

Aswewill point out below checking arbitrary formulas against aworld is efficient. So we could
in principle give the planner goals, ®, expressed as complex first-order formulas. The planner can
perform search and at every world evaluate the formula @ in the current world to see if the god
has been achieved. Thiswould produce a planner capable of generating plans for achieving, e.g.,
disunctive or quantified goals, and in fact TLPLAN can be configured to accept an arbitrary first-
order formulaasitsgoal.

The only problem with genera goals of this form is that if ¢ is an arbitrary formula, then
checking if GOAL(¢) holds for various ¢ (i.e., checking if ® = ¢) becomes hard (it requires
theorem proving). For thisreason TLPLAN does not accept formulas as goals when the domain
utilizes GoaL formulas.

6.3 Complexity of the Planner’s Components

The domain specifications accepted by TLPLAN are sufficiently general so that it is quite possible
to write specifications which cause the planner’s basic operations to be intractable. Nevertheless,
we havefound that in practice the planner isvery efficient in its basic operations. Since theformula
evaluator is at the heart of the system, we start by examining its complexity.

6.3.1 Evaluating Formulas

Evauating a formula is usually very efficient. In particular, if ¢ is a quantifier free formula in
which no computed or defined functions or predicates appear, then evaluating ¢ has complexity
linear in the length of ¢. The basic set of described functions and predicatesin ¢ can be evaluated
in near constant time,* as can the bool ean connectives.

30Using indexing or hashing techniques we can perform these database |ookupsin near constant time. In the actual
implementation, however, we found that a simpler albeit log-time binary tree representation of the world databases
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When ¢ contains computed predicates or functions nothing can be said in general about the
performance of the evaluator, since such predicates and functions can invoke arbitrary computa-
tions. In our test domains have we found computed predicates and functions to be very useful, but
have never found a need to define ones that were particularly expensive to compute.

Once we alow ¢ to contain quantifiers, formula evaluation becomes PSPACE-complete. This
is easily shown by reduction to the quantified boolean formula problem, which is known to be
PSPACE-complete [29]. A quantified boolean formulais aformulaof the form

Q171.Q2ws ... Qpuy(F(21, 72, . .. ,xj)),

where each (); is either a universal or existential quantifier, each z; is a boolean variable, and F’
is a boolean expression involving the z;. The problem is to determine whether or not this formula
istrue. For example, Vz.3y.x Vv y isatrue formula, as no matter what value = takes there exists a
value for y (namely TRUE) that makes the formula = Vv y true. On the other hand, Vz,y.x V y is
false, asthevaluesx = FALSE and y = FALSE make x V y false.

Consider a world w in which we have two predicates, a type predicate Bool, and a “truth”
predicate 7. The only positive instances of these two predicates true in w are Bool(TRUE),
Bool(FALSE), and T(TRUE). We can convert any quantified boolean formula ¢ to a first-order
formula by replacing each universal (existential) quantifier Vo (3x) in ¢ by the bounded quan-
tification V[x:Bool(x)] (3[z:Bool(x)]). Similarly in ¢'s boolean expression F'(z1,...,x,) We
replace every variable x; by the atomic formula T'(z;). For example, the quantified boolean for-
mulaVz.3y.z V y becomes the formula V[z: Bool(x)] Y[y: Bool(y)] T'(x) V T'(y). It isnot difficult
to see that the converted formula evaluates to true in the world w if and only if the original quan-
tified boolean formula was true. This shows that evaluating quantified formulas is PSPACE-hard.
That the algorithm isin PSPACE is also an easy observation: although we may need to test many
different sets of bindings for the quantified variables, at any stage the algorithm need store only
one set of bindings.

This observation indicatesthat we can easily write quantified formulasthat would beintractable
for the formula evaluator. However, in practice things are not as bad. Let N be the total number
of objects in the domain, and let the deepest level of quantifier nesting in the formula ¢ be k.
Then at worst, evaluating ¢ will take time O(N*). The PSPACE result holds because we can write
formulas with £ nested quantifiersin length O(k). Every increase in quantifier nesting adds to the
size of the exponent. In practice we have rarely found a need to nest quantifier more than 3 deep,
in which case evaluating these formulas remains polynomial in complexity, O(N?) in fact. The
formula evaluator has not been a performance bottleneck in any of our test domains.

Thereisone area, however, where we must be careful about evaluating quantified formulas. As
mentioned above, we determine the set of actionsthat can be executed in the current world by eval-
uating a formula in which the operator’s parameters are converted into quantified variables. The
way in which we convert the operator description into a quantified formula can make a significant
differencein the planner’s performance. Thisis best illustrated by an example.

gives excellent performance.
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Consider the formulathat encodes the unstack operator (previously given in Section 6.1.3):

handempty A
V[z:clear(z)] V[y:on(zx, y)] MakeNewWorld
A Dél(on, z,y) A Del(clear, x) A Del(handempty)
A Add(holding, ) A Add(clear, y).

An alternate encoding of this operator would be the formula

V]z:clear(z)] V[y:on(z, y)] handempty
= MakeNewWorld
A Dél(on, z,y) A Del(clear, z) A Del(handempty)
A Add(holding, z) A Add(clear, y).

Thisformulaislogically equivalent, yet far less efficient. In worlds where handempty is false, the
evaluator can immediately recognize that no instance of unstack is applicable when using the first
formula. When using the second formula, however, the evaluator must iterate over every pair of
object z, y such that clear (z) and on(z,y). For every iteration, the evaluation of handempty will
fail to produce an applicableinstance of unstack. Thusthe first formulaevaluatesin constant time,
while the second takes O(N?) where N isthe number of blocks in the domain.

Since the action formulas must be evaluated at every world in the forward chaining search
such differences can have a significant impact on the planner’s efficiency. The issuesinvolved in
choosing which of the logically equivalent formulas to generate when converting an action into
aformula (e.g., how to choose the ordering of two adjacent universal quantifiers) are essentially
the same as the issues that arise in the area of query optimization in databases. And needless to
say there is a considerable body of work in this area that could be applied to this problem. Our
implementation employs some simple heuristics along these lines when it converts operators into
formulas.

The final issue that arises when examining the complexity of the formula evaluator is that of
defined predicates. As mentioned above, defined predicates invoke the evaluator on the formula
that defines the predicate. This formula can be recursive. This means that a single predicate
instance in a formula may end up invoking considerable additional computation as the evaluator
recurses over its definition. Again it is easy to see that there can be no a-priori bound on the
complexity of this process. However, as in the previous cases we have not found this to be a
particular problem in our test domains.

6.3.2 State Expansion and Goal Testing

Asdescribed above, state expansion (i.e., finding and applying the set of actionsthat can be applied
to the current world) and testing for goal achievement both involve utilizing the formula evaluator.
Hence, the complexity of these two components is determined by the complexity of the formula
evaluator.

35



6.3.3 Progressing Formulas

The process of progressing formulas is another area where expensive computations might be in-
voked. As can be seen from Table 2, the progression algorithm is generally quite efficient. In
particular, except for quantification the process is essentiadly linear in the size of the input for-
mula3! With quantification, however, it is possible to specify a short formula that takes a long
time to progress.

The difficulty with progression lies not so much with progressing a formula once, but rather
with the repeated progression of aformulathrough a sequence of worlds. During planning when we
explore a sequence of states wy, . . . , w; We have to progress the original temporal control formula
k times, one through every world w;. The formulamight grow in length with each progression, and
if we are not careful this can lead to excessive space and time requirements. For example, consider
the progression of the temporal formula

P(a)U (P(b) U (P(c) UQ(a)))

through a world w in which P(a), P(b), and P(c) al hold, but Q)(a) does not. The progression
algorithm yields the new formula

()UQ(a)
P(b)U (P(c) U Q(a))
P(a) U (P(b) U (P(c) U Q(a))).

Formulas of thisform progressto formulasthat have grown quadratically in size. Furthermore, the
formula grows even longer as we progress it through multiple worlds.

The key to an efficient implementation of the progression algorithm is to realize that the pro-
gressed formula has many subformulasin common with the original formula. Hence, considerable
efficiency can be gained by sharing these subformulas. In fact, in the above example, if we share
substructures the progressed formula only requires us to store two new top level “Vv” connec-
tives. Structure sharing is a well known technique in automated theorem provers, and we have
employed similar techniques in our implementation. In addition to space efficiency structure shar-
ing aso yields computational efficiency. Progression distributes over the logical connectives (e.g.,
Progress(¢ A 1)) = Progress(¢) A Progress(v)). Hence, once we have computed the progression
of subformulathat progression can be spliced in where ever the subformula appears, i.e., we need
only compute the progression of a subformulaonce. In the above example, if we have to progress
the new formula one more time we only need to progress the subformula” P(¢) UQ(a)” once, even
though it appears three times in the formula.

With these structure sharing techniques it is quantification that has the main impact on the
efficiency of progression in practice. Consider the formula

OV[z:object(x)] OP(x).

3lprogression also invokes the evaluator on atemporal subformulas, and, as noted above, this also has the potential
to beintractable.
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If we progress this formula through a world w in which no object satisfies P and object(a),
object(b), and object(c) al hold, then we get the new formula

OV[z:object(x)] OP(x)
A OP(a) N OP(b) A OP(c).

Since the progression algorithm deals with quantifiers by expanding each of the particular in-
stances, we see that the progression of the formula grows in length by a factor determined by the
number of objects satisfying object that currently fail to satisfy P. When there are £ nested quan-
tifiers the progressed formula can be of length O(N*), where N is the number of objects in the
domain. Thisbehaviour isanalogousto the behaviour of the formulaevaluator in the face of nested
quantification. However, asin that case, we have rarely found a need to nest quantifiers more than
3 deep in our temporal control formulas.

Furthermore, many natural control formulas do not continue to grow continually length. Con-
sider, for example, the control formula specified for the blocks world (Formula 3). This formula
when progressed through any world will generate a collection of conditions that must hold in the
next world. In particular, there will be a collection of good towers that must be preserved, a collec-
tion of bad towers that nothing can be placed on top of, and a collection of blocks that cannot be
held in the next state. These conditionsare all checked and discharged in the next world. Thus, the
length of the control formula grows and shrinks, but never grows monotonically as we progress it
through a sequence of worlds.

In summary, TLPLAN allows for very expressive domain specifications. It is sufficiently ex-
pressive that it is quite possible to express domains in which the basic operations of the planner
become intractable. In practice, however, we have have found the planner’s expressiveness to be
a boon not a bane. It allows for a easy specification of domains and the potential of intractability
of the basic operations has not been a major issue so far. Note that the tractability of planning
in any domain is a separate issue from the tractability of the planner’s basic operations. That is,
although tractability of the basic operationsis a necessary condition for tractable planning, it is by
no means sufficient. Our empirical results (Section 7), however, do show that with the right control
knowledge TLPLAN can plan very effectively in many test domains.

7 Empirical Results

We have implemented a range of test domains to determine how easy it is specify control informa-
tion in our formalism and how effective that information isin controlling planning search.

In our empirical tests we ran TLPLAN on a Pentium Pro 200MHz machine with 128MB of
RAM. This amount of memory was more than sufficient for TLPLAN in all of the tests. We also
ran varioustestsusing the BLACKBoOX [33], IPP [37], SATPLAN [32], PRODIGY [59], and UcPoP
[7] systems.

BLACKBOX and SATPLAN are similar systemsboth of which encode planning problems as sat-
isfiability problems. SATPLAN uses adifferent encoding that can be more efficient, while BLACK-
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Box employs various simplification steps interleaved with its generation of the encodings. IPP is
based on the GRAPHPLAN [13] algorithm, but has been optimized in various ways and extended
to handle a subset of the ADL language. BLACKBOX and I PP are both state of the art planning
systems. They were the best performers in the AIPS 98 planning competition [1] and are both
coded in C (asis TLPLAN). However both of these systems have tremendous appetites for mem-
ory, and so we ran them on a SUN Ultra 2 296MHz machine with 256MB of RAM. This still was
not sufficient memory for these systems, but we were careful in recording the cpu time used so as
not to count the time taken by swapping. Furthermore, fairly clear trends were already established
by time the problems became large enough to start excessive thrashing. It should be noted however
that BLACKBOX’s and I PP's high memory consumption is not something that should be ignored.
Space can be as much of alimiting resources as time, and in some cases more so.

The older systems UcpPop and PRODIGY are coded in lisp, and so we ran them on a 196MHz
SUN Ultra 2 that had support for lisp. However, the performance difference between these systems
and the others was so great that recoding in C and running of the faster machine would not have
hel ped much.

7.1 BlocksWorld

TLPLAN’s performance with the three different control formulas, (Formulas 1-3 given in Sec-
tion 3), using depth-first search is shown in Figure 3. Each (z,y) data point represents the average
time y taken to solve 10 randomly generated blocks world problems involving x blocks. In par-
ticular, for each value of x we generated a random initial configuration of blocks and asked the
planner to transform this configuration to arandomly generated goal configuration.

The graph also shows the time taken by the planner when it employed breadth-first search
using the final control strategy, and the time taken by blind breadth-first search. (Blind breath-first
outperforms blind depth-first search in this domain). The data shows that control information acts
incrementally, as we add more clauses to the control formula the planner is able to search more
efficiently by pruning more paths from the search space. It also showsjust how effective the search
control can be—TLPLAN is able to solve 100 blocks problems in about 8 minutes when using
depth-first search and control strategy 3 (compare this with the performance of other state of the
art planners shown in Fig. 5).

The data generated by the breadth-first search represent the time to find optimal plans.*> The
data shows that control strategies can be a considerable aid in solving the optimization problem
as well. Using control 3 TLPLAN is able to generate optimal plans for 18 block problems in
reasonable time (42 seconds on average), while without control optimal 6 block problems are
about the limit (7 blocks take more than 1000 seconds). Nevertheless, generating optimal plansin
the blocks world is known to be NP-hard [26], and even the control strategies are insufficient for
generating optimal solutionsto all of the 19 blocks problems.

$2A control strategy could eliminate optimal plans from the search space: if no optimal plan satisfies the control
strategy the strategy will stop the planner from finding an optimal plans. However, it is easy to show that no optimal
plan is eliminated by these blocks world control strategies.
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In the blocks world depth-first search can always find a solution,®® but the solution may be
very long. Figure 4 shows the length of the plan found by the planner using the different control
strategies. (Control 2 generates identical plans to Control 3, but takes longer). The data also
shows that the plans generated by control 3 are quite high quality plans (measuring quality by
plan length). They are only dlightly longer then the optimal length plans. In fact, it can be show
that the plans generated by control 3 (and control 2) are no longer than 2 times the length of the
optimal plan.3* Furthermore, TLPLAN is able to generate plans using these strategies without
backtracking. Hence, these control strategiesyield a polynomial-time blocks world planner with a
reasonable plan quality guarantee.

The blocks world remains a very difficult domain for current domain-independent planners.
Figure 5 shows how arange of the other planning systems perform in the blocks world.

7.2 Briefcase World

The briefcase world is a very simple domain invented by Pednault to illustrate his ADL action
representation [44]. In this domain we have a briefcase that can be moved between different
locations. Objects can be put in and taken out of the briefcase, and when they are in the briefcase
they are moved with it. Thereisasimpleand intuitive search control formulathat can be written for
thisdomain. What is most interesting however, isthat theideasin this search control appear almost
unchanged in another popular test domain, the logistics domain (see below). We have found that
there are many “meta-level” strategies that are applicable across different domains under slightly
different concrete realizations.
The operatorsin thisdomain are given in Table 7.

(def-adl-operator (MOVE-BRIEFCASE ?to) (def-adl-operator (PUT-IN ?x)
(pre (pre
(?from) (at briefcase ?from) (?loc) (at briefcase ?loc)
(?to) (location ?to) (?x) (at ?x ?loc)

(not (= ?from ?to))) (and (not (= briefcase ?x))
(add (at briefcase ?to)) (not (in-briefcase ?x))))
(del (at briefcase ?from)) (add (in-briefcase ?x)))

(forall (?z) (in-briefcase ?z)
(and (def-strips-operator (TAKE-OUT °?x)
(add (at 2z ?to)) (pre (in-briefcase ?x))
(del (at ?z ?from))))) (del (in-briefcase ?x)))

Table 7: The Briefcase World Operators.

The operators are given in TLPLAN’S input language, which is basically first-order logic writ-
ten in alisp syntax. Two types of operators are accepted, standard STRIPS operators and ADL

33| n the blocks world every state is reachable from every other state, so any cycle-free depth-first path must eventu-
ally reach the goal.

34Control 3 encodes a strategy very similar to the reactive strategy given by Selman in [49], and he proves that this
reactive strategy never exceeds the optimal by more than a factor of 2.
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operators. Each consists of a sequence of clauses. Thefirst clause is the name of the operator, and
it may contain variables (e.g., ?x in the “take-out” operator).®

Taking something out of the briefcase can be specified as a simple STRIPS-style operator with
aprecondition, an add and a delete list. Each of these isalist of atomic predicates. The other two
operators, “move-briefcase” and “put-in” are specified as ADL-style operators.

ADL operators are specified by using a precondition clause that acts exactly like a quanti-
fier clause. In particular, al of the variables in the clause must be specified first (as with all
quantifiers). All quantification is bounded quantification, so we must specify a quantifier bound
for each of these variables. For example, for the “put-in” operator, ? 1oc ranges over al of the
locations the briefcase is at (there is in fact only one such location), while ?x ranges over all
objects that are at that location. Note that ?x is scoped by ?1oc. Thus for each binding of
? 1oc we compute a distinct range of bindings for ?x. After the variable bindings the precondi-
tion can include an additional formula that can test the variable bindings and any other required
features of the current world. Note that this formula can be an arbitrary first-order formula, it
may include disjunction, other quantifiers, etc.%®. For example, the operator “put-in” includes
the formula (and (not (= briefcase ?x)) (not (in-briefcase ?x))). Each
binding of the precondition variables that satisfies the precondition formula generates a unique in-
stance of the operator (an operator instance is also called an action). The bindings of the variables
appearing in the operator name are then used to give each action a unique name.%’

Subsequent to the precondition formula come a sequence of clauses. These clauses are all
scoped by the precondition’s variables (and thus may access their bindings) and they are each
individually evaluated by the formula evaluator (see Section 6). During evaluation any “add” or
“del” clause always evaluates to TRUE and has the side-effect of modifying the new world. The
current state of the world as well as the manner in which the evaluator works (i.e., itsrules for the
early termination of formula evaluation) precisely specifies the set of adds and deletes generated
by thisinstance of the operator.

Thus, in the “move-briefcase” action, we add the briefcase’s new location and delete itsold lo-
cation.®® Then auniversal quantifier isused to successively bind ? z to all objectsthat are currently
in the briefcase. For each such binding the body of the universal is evaluated. The body of the
universal is a conjunction, so we evaluate the first add. All termsin the add clause are evaluated,
and in this case the variables ? z and ? t o evaluate to the objects they are currently bound to (see
Table 6). Thisresultsin aground atomic fact being added to the world database.*® The add clause
always evaluates to TRUE, so the evaluator moves on to evaluate the second conjunct, the delete.

Svariablesin TLPLAN are aways prefixed with “ 2.

360ther planning systems that accept ADL specified actions, e.g., UcPop and | PP, accept only a restricted subset
of the AbL specification. For example, disjunctive preconditions are usually not allowed.

7Every operator instance need not have a unique name. Sometimesiit is useful to treat different instances as being
the same action.

3BTLPLAN internally reorders the adds and deletes so that all deletes are executed prior to any adds.

39l of the predicates and functions that appear inside of an add or a delete must be described symbols, as only
these can be directly updated.



The end result is that we update the locations of the briefcase and all the objects in the briefcase.
Search control formulasfor this domain are easy to write. They embody the following obvious
ideas:

1. Don’'t movethe briefcase fromits current location if there is an object that needs to be taken
out or put into the briefcase.

2. Don't take an object out of the briefcase if the briefcase is not at the object’s goal location.
3. Don't put objects that don’t need to be moved into the briefcase.

4. Don't move the briefcase to an irrelevant location. In this domain alocation isirrelevant if
there is no object to be picked up there, there is no object in the briefcase that needs to be
dropped off there, and it is not a goal to move the briefcase to that location.

The control formula given in Table 9 realizes these rules. We give the formula exactly asit is
input to the planner. The planner can take as control input any formulaof £7 . The only differences
are that (1) we use a prefix lisp syntax and (2) all of the logical symbols and modalities are given
text names, e.g., the universal quantifier “V” is specified by forall.

The performance of TLPLAN using this control rule is demonstrated in Table 9. The table
shows the planning time in seconds required by TLPLAN and by I PP to solve a suite of problems
taken from the I PP distribution. (Briefcase world requires ADL actions, so cannot be solved with
the current version of BLACKBOX; UcpPop can handle ADL actions but its performance is far
worse than IPP). The suite of problems includes the standard “getpaid” problem (the briefcase,
adictionary, and a paycheque are at home with the paycheque in the briefcase, and we want the
take the dictionary to the office along with the briefcase, but |eave the paycheque at home), “ti”
problems that involve picking up 7 objects at 7 different locations and taking them home, and “exi”
problems that involve permuting the locations of 7 objects.

TLPLAN is faster on all of these problems. In fact, none of them is difficult for TLPLAN.
However, | PP was unable to solve a number of the larger problems. The entries with values > n
for some n indicate that |PP was aborted after that many seconds of CPU time without having
found a plan.

7.3 LogisticsWorld

A popular test domain is the logistics world. In this domain we have two types of vehicles: trucks
and airplanes. Trucks can be used to transport goods within a city, and airplanes can be used
to transport goods between two airports. The problems in this domain typically start off with
a collection of objects at various locations in various cities, and the goal is to redistribute these
objectsto their new locations. If the object’s new location isin the same city it can be transported
solely by truck. If its new location isin a different city it might have to be transported by truck to
the city’s airport, and then by plane to the new city, and then by truck to its final location within
the new city.



(always
(and
(forall (?1) (at briefcase ?1)
(forall (?x) (at ?x ?1)
(implies (not (= ?x briefcase))
(and
;i1
(implies (goal (at ?x ?1))
(until (at briefcase ?1) (not (in-briefcase ?x))))
;i 1.
(implies (not (goal (at ?x ?1)))
(until (at briefcase ?1) (in-briefcase ?x)))
iio2.
(implies (and (in-briefcase ?x) (not (goal (at ?x ?1))))
(next (in-briefcase ?x)))
i 3.
(implies (and (goal (at ?x ?1)) (not (in-briefcase ?x)))
(next (not (in-briefcase ?x))))))))

(forall (?1) (location ?1)
i 4.
(implies
(and
;;If we are not at location 2?1
(not (at briefcase ?1))
;;and we don’'t need to deliver something in the briefcase to ?1
(not (exists (?x) (in-briefcase ?x) (goal (at ?x ?1))))
;;and we don’t need to pickup something from that location
(not (exists (?x) (at ?x ?1)
(or
(exists (?gl) (goal (at ?x ?gl))
(not (= ?gl ?1)))
(goal (in-briefcase ?x)))))
;;and we don’t need to move briefcase there
(not (goal (at briefcase ?1))))
; iThen don’t go there
(next (not (at briefcase ?1)))))))

Table 8: The BriefCase World Control Strategy.
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Problem Name | TLPLAN time PP time

CPU Seconds | CPU Seconds
getpaid 0.002 0.01
getpaid3 0.004 0.02
ex3a 0.009 0.05
ex3b 0.005 0.01
exda 0.020 0.52
ex4b 0.009 0.04
ex4c 0.009 0.05
ex4d 0.021 0.51
ex4f 0.022 0.36
ex4g 0.022 0.20
ex4h 0.029 0.15
exdi 0.020 0.09
exdj 0.026 0.11
ex5 0.046 0.91
ex5a 0.029 37.50
ex5b 0.030 22.23
ex5bc 0.039 7.85
ex5d 0.043 15.46
exbe 0.042 03.95
exbmax 0.045 0.92
ex10 0.174 > 1669.9
exl2a 0.029 571.52
ex12b 0.030 691.47
exl12c 0.046 21.85
ex12d 0.026 14.85
ex1l3a 0.051 1057.65
ex13b 0.051 1887.27
t1 0.002 0.01
t2 0.004 0.01
t3 0.008 0.04
t4 0.021 0.52
t5 0.029 35.32
t6 0.047 3094.26
t7 0.070 | > 11053.00
t8 0.098 > 7178.20
t9 0.131 > 7639.00
t10 0.186 > 3288.50

Table 9: Performance of TLPLAN and I PP in the Briefcase World
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The operators in this domain are given in Table 10. We have encoded this domain using ADL -
operators, simply because we find them to be easier to write than STRIPS-operators. However,
these operators can written as standard STRIPS operators asthey have simple preconditions, modify
no function values, and have no conditional effects. We have also compressed the 1oad and
unload operators into a single case by using a defined predicate that tells us that an object is
a vehicle when it is either a truck or an airplane. The standard STRIPS encoding would have
four actions 1oad-truck,unload-truck, load-plan,andunload-plane. It should be
apparent that the search spaceisidentical (e.g., whenever an instance of one of our 1ocad operators
isexecutablewith ?vehicle boundtoatruck, an equivaentinstanceof aload-t ruck operator
will be executable). The other planners we ran were supplied with the standard STRIPS encoding.

A control strategy very similar to the briefcase world is applicable in the logistics world (and
in fact in many domains that involve transporting goods the same meta-level principles appear). In
particular, we can write a control strategy that embodies the following ideas:

1. Don’'t move avehicleif thereis an object at the current location that needs to be loaded into
it. Similarly, don’t move a vehicle if there is an object in it that needs to be unloaded at the
current location.

2. Don’'t move a vehicle to alocation unless, (1) the location is a where we want the vehicle to
be in the godl, (2) there is an object at that location that needs to be picked up by this kind
of vehicle, or (3) there isan object in the vehicle that needs to be unloaded at that location.

3. Don't load an object into a vehicle unlessit needs to be moved by that type of vehicle.
4. Don’'t unload an object from a vehicle unless it needs to be unloaded at that location.

There are two types of vehicles, each used for a distinct purpose. So it is helpful to define a
collection of auxiliary predicates.*

(def-defined-predicate (in-wrong-city ?obj ?curr-loc ?goal-loc)
; iTRUE IFF an object in ?curr-loc with goal location ?goal-loc
;71s in right city. (loc-at ?loc ?city) is true if ?loc is located
;i7in city ?city.

(exists (?city) (loc-at ?curr-loc ?city)
(not (loc-at ?goal-loc ?city))))

(def-defined-predicate (need-to-move-by-truck ?obj ?curr-loc)
; iWe need to move an object located at curr-loc by truck iff
; ithe object is in the wrong city and is not at an airport
;;0r the object is in the right city but not at the right location.

;iNote if there is no goal location we don’t need to move by truck.

4“Thelogical connective (1if-then-else £1 £2 £3) issimply short hand for
(and (implies f1 £f2) (implies (not £f1) £3)).
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(def-defined-predicate (vehicle ?vehicle)

(or
(truck ?vehicle)
(airplane ?vehicle)))

(def-adl-operator (load ?obj ?vehicle ?loc)

(pre

(?0bj ?loc) (at ?obj ?loc)
(?vehicle) (at ?vehicle ?loc)

(and

(vehicle ?vehicle) (object ?0bj)))

(add

(in ?obj ?vehicle))

(del

(at ?0bj ?loc)))

(def-adl-operator (unload ?obj ?vehicle ?loc)

(pre

(?0bj ?vehicle) (in ?obj ?vehicle)
(?loc) (at ?vehicle ?loc))

(add
(at ?obj ?loc))

(del

(in ?obj ?vehicle)))

(def-adl-operator (drive-truck ?truck ?from ?to)
;i; We only allow trucks to move around in the same city.
(pre
(?truck) (truck ?truck)
(?from) (at ?truck ?from)
(?city) (loc-at ?from ?city)
(?to) (loc-at ?to ?city)

(not (= ?from ?to)))
(add

(at ?truck ?to))
(del

(at ?truck ?from)))

(def-adl-operator (fly-airplane ?plane ?from ?to)
;i Alrplanes may only fly from airport to airport.
(pre
(?plane) (airplane ?plane)
(?from) (at ?plane ?from)
(?to) (airport ?to)

(not (= ?from ?to)))
(add

(at ?plane ?to))
(del

(at ?plane ?from)))

Table 10: The Logistics World Operators
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(exists (?goal-loc) (goal

(at ?o0obj ?goal-loc))
(if-then-else

(in-wrong-city ?obj ?curr-loc ?goal-loc)

(not (airport ?curr-loc))

;;in right city

(not (= ?curr-loc ?goal-loc)))))
(def-defined-predicate (need-to-unload-from-truck ?obj ?curr-loc)

; iWe need to unload an object from a truck at the current location

;i1ff, ?curr-loc is the goal location of the object, or the object
;;71s in the wrong city and the current-location is an airport.
(exists (?goal-loc) (goal (at ?obj ?goal-loc))

(or

(= ?curr-loc ?goal-loc)

(and (in-wrong-city ?obj ?curr-loc ?goal-loc)
(airport ?curr-loc)))))

(def-defined-predicate (need-to-move-by-airplane ?obj ?curr-loc)
; iWe need to move an object at curr-loc by airplane iff

; ithe object is in the wrong city.
(exists (?goal-loc) (goal (at ?obj ?goal-loc))
(in-wrong-city ?obj ?curr-loc ?goal-loc)))

(def-defined-predicate (need-to-unload-from-airplane ?obj ?curr-loc)
; iWe need to unload an object from an airplane at the current location
;i1ff, ?curr-loc is in the right city.
(exists (?goal-loc)

(not

(goal (at ?obj ?goal-loc))

(in-wrong-city ?obj ?curr-loc ?goal-loc))))

With these predicates we can define the following control strategy that realizes the aboverules.

(always
(and

(forall (?x ?loc) (at ?x ?loc)

(and
(implies (vehicle ?x)
(and
;;; don’t move a vehicle if there is an object that needs to be moved by
;737 1it, or if there is an object that needs to be unloaded from it
;7 at the current location.
(implies
(exists (?0bj) (object ?0bj)
(or
(and

(at ?o0bj ?loc)

(implies (truck ?x) (need-to-move-by-truck ?obj ?loc))
(implies (airplane ?x) (need-to-move-by-airplane ?obj ?loc)))
(and

(in ?o0bj ?x)
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(implies (truck ?x) (need-to-unload-from-truck ?obj ?loc))
(implies (airplane ?x) (need-to-unload-from-airplane ?obj ?loc)))))
(next (at ?x ?loc)))
;;:Similarly when we move a vehicle one of these conditions should be meet.
(next
(exists (?newloc) (at ?x ?newloc)
;;at the next location of the vehicle
(or
; ;either we didn’t move it.
(= ?newloc ?loc)
;ior the location was a goal location for the vehicle
(goal (at ?x ?newloc))
;;0r there is an object such that
(exists (?0bj) (object ?obj)
(or
; ithe object is at the new location and needs a pickup.
(and
(at ?0bj ?newloc)
(implies (truck ?x) (need-to-move-by-truck ?obj ?newloc))
(implies (airplane ?x) (need-to-move-by-airplane ?obj ?newloc)))
;;0r the object is in the vehicle and needs to be unloaded
(and
(in ?o0bj ?x)
(implies (truck ?x) (need-to-unload-from-truck ?obj ?newloc))
(implies (airplane ?x) (need-to-unload-from-airplane ?obj ?newloc)))))

)))))

(implies (object ?x)
(and
;;:;don’t load into a vehicle unless we need to move by that type of vehicle.
(forall (?truck) (truck ?truck)
(implies (not (need-to-move-by-truck ?x ?loc))
(next (not (in ?x ?truck)))))
(forall (?plane) (airplane ?plane)
(implies (not (need-to-move-by-airplane ?x ?loc))
(next (not (in ?x ?plane)))))))))

;;:Finally, don’t unload objects unless we need to.

(forall (?obj ?vehicle) (in ?obj ?vehicle)
(exists (?loc) (at ?vehicle ?loc)
(implies
(or

(and (truck ?vehicle) (not (need-to-unload-from-truck ?obj ?loc)))
(and (airplane ?vehicle) (not (need-to-unload-from-airplane ?obj ?loc))))
(next (in ?obj ?vehicle)))))

))

With thiscontrol rule we obtain the performance shown in Figure 6. The data showsthe planner
solving problems where there are n. objects to be moved (plotted on the xz-axis). In theinitial state
we place 3 objects in each city (and thus we have |n /3| different cities), one truck per city, two
locations per city (a post-office and an airport), and |n/10] airplanes. The fina locations of the
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objects are chosen at random from the 2 x |n/3] different locations. Each data point shows the
average time require to solve 10 random problems of that size.

Figure 6 also shows how well the other planners perform in this domain. It can be seen that the
control strategy gives TLPLAN a multiple order of magnitude improvement in performance over
these planners.

BLACKBOX’s performance was hindered by the fact that our machine only had 256 of RAM,
although it was significantly slower than TLPLAN even on smaller problems prior to the onset of
thrashing. The timing routines do a fairly good job of accounting just for the CPU time taken
(i.e., the time taken by the program while waiting for a page to be swapped in is not counted),
but to check whether or not this was a significant bias we ran a suite of 30 problems that come
with the BLACKBOX distribution. BLACKBOX’s solutions to these problems also come with the
distribution, and were generated on a machine that is dlightly faster than the machines used in our
experiments (judging by the solution timesfor the smaller problems on which BLACKBOX was not
thrashing) and more significantly had 8GB of RAM. Table 11 shows TLPLAN'S performance on
this test suite (run on our 128MB machine). (TLPLAN had no difficulty completing much larger
problems than these while using less than 128MB or RAM.) The results show that the memory
bottleneck was not a significant factor in our experiments. TLPLAN with this control strategy
remains significantly faster than BLACKBOX.

Finally, Figure 7 compares the total number of actions in the plans generated by the three
planners. Again we see that TLPLAN is generating very good plans, as good as the other two
planners. These other planners both search for a plan incrementally, looking for shorter plansfirst.
Hence, we would expect them to be generating relatively short plans. TLPLAN employs no such
strategy. It ssimply does a depth-first search. It is the control strategy that stops “stupid” moves
from being included in the plan. Similar results can be seen in Table 11, where again TLPLAN is
generating shorter plansthan BLACKBox.*

74 TireWorld

The tire world is another standard test domain due originally to Russell [47]. In this domain the
genera task is to change a flat tire with a sequence of actions involving jacking the wheel up,
loosening and tightening nuts, etc. The branching factor in this domain is large in the forward
direction with 14 different operators. We wrote a control strategy for this domain that included the
following ideas:

1. Only fetch an object from a container if you need it. This rule involved defining predicates
that determine, e.g., when one needs the wrench, the jack, the pump, etc.

2. A number of rulesto deal with the wheels and nuts:

e Don't inflate awheel unlessit needs to be inflated.

41BLACKBOX employs a stochastic search for aplan onceit has constructed a GRAPHPLAN graph of k time steps.
Thus, even though a plan of & time steps might exist it could fail to find it if its stochastic search runs out of time.
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Problem | TLPLAN | BLACKBOX | TLPLAN | BLACKBOX

time time length length
log001 0.260 0.575 25 25
log002 0.281 95.977 27 31
log003 0.245 98.998 27 28
log004 1.371 130.748 51 71
log005 1.105 231.938 42 69
log006 1.918 321.272 51 82
log007 5.547 264.046 70 96
log008 6.844 317.422 70 110
log009 3.792 1609.455 70 121
log010 2.427 84.046 41 71
log011 2.245 137.93 46 68
log012 1.936 136.229 38 49
log013 6.543 165.844 66 85
log014 9.348 77.749 73 89
log015 5.364 424.369 63 91
log016 1.146 926.967 39 85
log017 1.242 758.471 43 83
log018 9.270 152.35 46 105
log019 2.660 149.224 45 78
log020 10.180 538.220 89 113
log021 6.838 190.490 59 87
log022 6.406 846.842 75 111
log023 4.693 173.966 62 85
log024 4714 74.832 64 87
log025 4.099 73.995 57 84
log026 3.646 233.406 55 80
log027 5.529 145.164 70 97
log028 14.533 867.349 74 118
log029 5.998 89.515 45 84
log030 3.482 495,373 51 92

Table 11: Performance of TLPLAN and BLACKBOX on Logistics Problems
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Figure 7: Length of Plans generated in the Logisticsworld

e Don't jack up awheel unlessit needsto be jacked up.

e Keep correctly placed wheels on their current hubs, and don’'t place a wheel on an
incorrect hub.

e If awheel needs to be removed from a hub, don’t undo any of the removal steps.
e Keep ahub jacked up until itswheel ison and the nuts are tight.

e Execute the actions for putting wheels on hubs and removing them from hubs in a
particular order.

3. Only open containers that contain something you need.

4. Don't put away any objects until you don’t need them anymore.
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5. Keep containers open until you have removed everything you need and everything that needs
to be stored there has been returned.

Each of these rules is fairly intuitive, and their encoding as formulas of £7 is straightforward
(albeit lengthy).

With this control strategy we obtain the performance shown in Figure 8. We designed a suite of
test problems that involved changing an increasing number of tires using one set of tools. The data
shows the planner solving problems in which the goal has n literals (plotted on the x-axis). Asn
increases we need to increase the number of tiresin order to generate n different goal literals. Each
data point shows the time required to solve the problem of that size. The final problem (n = 74
involved changing 15 tires). The data also shows the performance of the IPP and BLACKBOX
planners on these problems.

Once again since we are generating plans using depth-first search we compare the length of the
generated plansin Figure 9. The datashowsthat TLPLAN once again isableto achieve exceptional
performance onceit is given an appropriate control strategy.

7.5 Schedule World

The schedule world involves scheduling a set of objects on various machines in order to achieve
various effects, e.g., shaping the object, painting it, polishing it, etc. Some of the operations undo
the effects of other operations, and sometimes make other operationsimpossible. This domain has
8 operators, and when the number of objects climbs so does the branching factor in the forward
direction.

It isworth while noting that in thisdomain the actions areinherently concurrent. Every machine
can berunin parallel. Thisisnot aproblem for TLPLAN even though it exploreslinear sequences
of actions. In particular, the sequence of worldswe explore can have whatever structure we choose,
so a linear sequence of worlds need not correspond to a linear sequence of times in the domain
being modeled. In this domain we added a time stamp to the world, the time stamp denotes the
current time in the partial schedule. The actions generate new worlds by scheduling currently
unscheduled objects on currently unscheduled machines (i.e., neither the object nor the machine
can be marked as being scheduled in the current time step). When no further scheduling actions
are possible, or desirable, there is an action that can increment the time stamp. This has the
effect of making all of the objects and machines available for scheduling (in the new current time
step).*? In other words, TLPLAN explores a sequence of worlds in which there are a sequence of
scheduling actions that schedule a concurrent set of operations, followed by atime step, followed
by another sequence of scheduling actions that schedule the next set of concurrent operations.
Other types of concurrent actions can be modeled in this manner, e.g., we have implemented a job-
shop scheduling domain that solves the standard job-shop scheduling problemsusing TLPLAN.

4There are two common versions of this domain, a much simplified one that first appeared in the Ucpop distri-
bution. The UcpPop version discarded all notion of time, it simply computes what operations need to be run on what
objects. The original version that appeared in the PRODIGY distribution involves a non-trivial use of time. We coded
the PRODIGY version for our tests, bothin TLPLAN and | PP, and ran this version in our experiments.
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The performance of TLPLAN is shown in Figure 10. The data shows the planner solving
problemswhere there are n objects and » randomly chosen propertiesinvolving those objectsto be
achieved (a single object might be randomly selected to require more than one property). n forms
the z-axis. Each data point represents the average time required to solve 10 random problems of
that size. The graph aso shows the performance of PP in this domain. The domain requires
ADL-actions so we were unable to run BLACKBOX inthistest.

The control strategy used by TLPLAN included the following ideas:

1. Never schedule an operation twice. Thisisaparticularly simple scheduling domain in which
there is never a need to perform an operation twice: there is always a better plan in which
the operations are sequenced in such a manner that no needed effects are undone.

2. All scheduled operations must achieve at least one unachieved goal.

3. Once agoa condition has been achieved do not allow it to be destroyed. In thisdomain we
never need to undo achieved goals.

4. Some ordering constraints on goal achievements:

e Rolling (to make an object cylindrical) destroys a number of things that can never be
reachieved after rolling (as the object’s temperature goes up). So prohibit rolling if one
of these conditionsisagoal.

¢ Do any shaping operations prior to any surface conditioning operations, asthese destroy
the surface condition.

e Do any grinding or lathing prior to painting, as these destroy the paint.

Figure 11 shows the average number of actions in the plans generated by the two different
planners. Once again we see that the search control allows TLPLAN to construct good plans using
depth-first search. In this case TLPLAN is able to generate sightly shorter plans than IPP. IPP
employs a deterministic search for a plan on each k-step GRAPHPLAN graph, so it will find a
plan that has shortest GRAPHPLAN parallel length.*® However, the plan it finds might still include
redundant actions (aslong asthe redundant actions can be executed in parallel). Inasimilar manner
however the plans found by TLPLAN need not be of shortest parallel length. Plan length is at best
arough estimate of plan quality.

7.6 Bounded Blocks World

Another interesting problem is the bounded blocks world in which the table has a limited amount
of space. It iseasy to specify and plan in the bounded blocksworld using TLPLAN. However, none

43GRAPHPLAN graphs only handle a limited kind of action concurrency, so shortest GRAPHPLAN parallel length
need not be shortest parallel length.
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of the other standard domain-independent planners can deal effectively with resource constraints,
even simple ones like this.*

Inthisdomain, it is easier to use a single operator that simply moves blocks from one location
to another (thus avoiding the intermediate “holding” a block state present in the blocks world
specification used in Section 3). Table 12 gives the domain’s operator. In this case the operator’s

(def-adl-operator (puton ?x ?y)

(pre
(?x) (clear ?2x)
(?y) (clear ?y)
(?z) (on ?x ?z)
(and
(not (= ?z ?vy)) ;Don’t put it back where it came from
(not (= ?x ?y)) ;Can’t put a block on itself
(not (= ?x table)) ;Can’t move the table
(implies (= ?y table) ;can move to table only if
(> (table-space) 0)))) ;table has space.

(add (on ?x ?y))
(del (on ?x 2z))

(implies (= ?y table)

(add (= (table-space) (- (table-space) 1))))
(implies (= ?z table)

(add (= (table-space) (+ (table-space) 1))))
(implies (not (= ?y table))

(del (clear ?y)))
(implies (not (= ?z table))

(add (clear 2z))))

Table 12: The Bounded Blocks World Operators

precondition is quite simple, we must move the object ?x to a new location, we cannot move the
table, and if we move ?x to the table there must be space on the table. For thisdomain, table-
space isa0-ary described function that must be specified in the initial state and must be properly
updated by the operator. The term (table-space) evaluates to the quantity of space on the
table in the current world (table-space = n means that there is space for n more blocks on the
table), and the precondition simply tests to ensure that there is space on the table if that is where
we intend on moving ?x.

This gives an example of TLPLAN ability to handle functions. In particular, by adding the
equality predicate (add (= (table-space) (- (table-space) 1))) we are Speci-
fying that the function (table-space) isto have the new value given by its current value
minusone. All termsinside of the add and deletes are evaluated in the current world prior to being
committed. The evaluator computes the value of theterm (- (table-space) 1) by looking
up the current value of (table-space) and subtracting 1 from it using the standard computed
function*—’.

4“HTN-style planners often have some facilities for dealing with resource constraints, e.g., [62)].
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The conditional updates are specified using “implies’. In particular, since the evaluator short-
circuits the evaluation of formulas, the consequent of the implication (in this case the adds and
deletes) will not be executed if the antecedent evaluates to FAL SE.

Figure 12 illustrates the performance of TLPLAN in this domain. Each data point represents
the average time taken to solve 10 randomly generated bounded blocks problems, were we have
only 3 spaces on the table. The data shows that this domain, like the standard blocks world, isvery
hard without domain-specific search control. There are two different control strategies that can be
easily specified for thisdomain. First, the meta-level notion of a goodtower continuesto be useful
in this modified version of the blocks world. It has, however, a dightly different realization. In
particular, we may now need to dismantle a tower of blocks to free some space on the table. We
can define an appropriately modified version of goodtower as follows:

(def-defined-predicate (goodtower ?x)
;iNote this goodtower takes into account table space. In particular,
; igoodtowers must not occupy needed tablespace.
(and
(clear ?x)
(if-then-else
(= ?x table)
;;then
(> (table-space) 0) ;table is a goodtower if it has space.
;;else
(goodtowerbelow ?x))))

(def-defined-predicate (goodtowerbelow ?x)
(or
(and (on ?x table) (goal (on ?x table)))
(and (on ?x table)
(not (exists (?y) (goal (on ?x ?y))))
(forall (?z) (goal (on ?z table)) (on ?z table)))
(exists (?y) (on ?x ?y)
(and
(not (goal (on ?x table)))
(not (goal (clear ?y)))
(forall (?z) (goal (on ?x ?z)) (= ?z ?y))
(forall (?z) (goal (on 2z ?y)) (= ?z ?x))
(goodtowerbelow ?y)))))

In this version, we classify the table as being a goodtower if it can be stacked on (i.e., if thereis

space). The main difference lies in goodtower bel ow, where ablock on the table isagoodtower if it

needs to be on the table, or thereis nowhere else it need be and all other blocks that must be on the

table are already there. In both of these cases the goal can be achieved without moving that block

from thetable. The recursive case isjust asin the standard goodtower below given in Section 3.
Now we can define the following predicate:

(def-defined-predicate (can-move-to-final ?x)

;;we can move ?x to its final location when it has a final location
;i location and that final location is a goodtower.
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(and
(clear ?x)
(exists (?y) (goal (on ?x ?y))
(and
(not (on ?x ?y))
(goodtower ?y)))))

This predicate istrue of ablock when it can be moved to itsfinal location. With can-move-to-
final we can define the following very simple control strategy:

(define bbw-controll
;isimple trigger control.
(always
(and
; inever destroy goodtowers.
(forall (?x) (clear ?x)
(implies (and (not (= ?x table)) (goodtower ?x))
(next (goodtowerbelow ?x))))
;;1if a block exists that can be moved immediately, move it.
(implies
(exists (?x) (clear ?x)
(can-move-to-final ?x))
(exists (?x) (clear ?x)
(and (can-move-to-final ?x)
(next (goodtower ?x)))))

)))

This control strategy isasimple“trigger” control. If we are at a state where a block can be moved
to itsfinal location do so. Note that if there are multiple blocks that can be moved to their final
location the trigger (the existential condition) will remain active until all have been moved. The
choice of which block to movefirst is*non-deterministic” .# The strategy al so involvesthe obvious
of not dismantling towers that don’t need to be dismantled.

Figure 12 shows that the trigger control is quite effective for small problems, and serves to
illustrate the fact that considerable gain can often be achieved with minor effort. Nevertheless,
although the trigger control knows what to do if it finds certain fortuitous situations, it has no idea
of how to achieve those fortuitous situations. Hence, as we increase the size of the problems it
becomes less and less useful.

A more complete strategy can also be written. This strategy is more complex, but it is able
to solve problems quite effectively without requiring any backtracking. Again the idea is quite
simple. The strategy has four components. The first two are taken from the previous strategy.

1. Never dismantle goodtowers.

2. If there are blocks that can be moved to their final positions we pick one such block and
moveit to itsfinal position.

450f course, the implementation picks the blocksin a particular order.
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3. If locations exists that can be stacked on (i.e., they are goodtowers that are waiting for their
next block) then we pick one such location and clear the block that is intended to go there
while keeping the location clear. Once the next block is clear we are back to a situation
where the previous rule applies. thereis ablock that can be moved into its final location.

4. If there are no clear locations that can be stacked on, we pick one such location and clear it.
Once we have achieved thiswe are in a situation where rule 3 applies.

To facilitate the implementation of this strategy we make the following definitions:

(def-defined-predicate (can-stack-on ?x) ()
;ithis block is ready to be stacked on.
(and

(goodtower ?x)
(exists (?y) (goal (on ?y ?x))
(not (on ?y ?x)))))

(def-defined-function (depth ?x) ()
;ireturn the depth of location ?x

(if-then-else

(clear ?x)

; ;then

(:= depth 0)

;1else

(exists (?y) (on ?y ?x)

(:= depth (+ 1 (depth ?y))))))

;::A function to find a location that would become a can-stack-on
;;:1location if it was clear.
(def-defined-function (find-can-stack-on-if-clear) ()
;ipick the table if that is possible
(or
(if-then-else
(and (= (table-space) 0)
(exists (?x) (goal (on ?x table)) (not (on ?x table))))
;;then return the table
(:= find-can-stack-on-if-clear table)
;;else return the top of a goodtower prefix
(exists (?x) (on ?x table)
(and (goodtowerbelow ?x)
(exists (?y) (= ?y (top-of-goodblocks ?x))
(and
;;such that the tower is incomplete.
(exists (?z) (goal (on ?z ?y))
(not (on ?z ?y)))
(:= find-can-stack-on-if-clear ?y))))))

;;first clause fails, so no stackable location exists.
(:= find-can-stack-on-if-clear *NOSUCHLOCATION%*)))

(def-defined-function (top-of-goodblocks ?x) ()
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;;If we pass this function a block (which should be a block that has
;; a goodtower below it) it will examine the tower above the block
;; looking for the top of the longest good tower above.
(if-then-else
(clear ?x)
;71f ?x is clear then it is the top of the goodtower prefix.
(:= top-of-goodblocks ?x)
;;else there is a block on ?x
(exists (?y) (on ?y ?x)
(if-then-else
(and
(not (goal (on ?y table)))
(not (goal (clear ?x)))
(forall (?z) (goal (on ?y ?z)) (= ?z ?x))
(forall (?z) (goal (on ?z ?x)) (= ?z ?y)))
;i1f the block on top does not violate any
;;goal on-relations, then recurse upwards.
(:= top-of-goodblocks (top-of-goodblocks ?y))
;;else stop at ?x.
(:= top-of-goodblocks ?x)))))

The predicate can-stack-on istrue of alocation ?x if that location is ready to be stacked on;
it is used to implement rule 3 of the strategy. The function depth has already been explained.
Thefunction find-can-stack-on-if-clear isafunction that returns alocation that once
cleared can be stacked on; it is used to implement rule 4 of the strategy. The function checks
to see if the table is such alocation (e.g., when we have a tower of blocks that we have not yet
started to build) and returns that if possible. Otherwise it employs the recursive function top-
of -goodblocks to find the top block of a partly completed goodtower. If we can clear that top
block we will once again have alocation that can be stacked on. One thing to notice in the function
find-can-stack-on-if-clearistheuseof afunctional binding of the existential variable
?y intheline

(exists (?y) (= ?y (top-of-goodblocks ?x))
Thisline specifies that the variable ?y isto range over the set of objectsthat are equal to
(top-of-goodblocks ?x).

There is of course only one such object, and it is computed by evaluating the function (?x has

aready been bound at this point).
With these definitions the second strategy can be specified as follows:

(define bbw-control2
; imore complex control
(always
(and
;1. never destroy goodtowers.
(forall (?x) (clear ?x)
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(implies (and (not (= ?x table)) (goodtower ?x))
(exists (?y) (on ?x ?y)
(next (on ?x ?y)))))

;2. Immediate moves
(implies
;;1f We can make an immediate move.
(exists (?x) (clear ?x)
(can-move-to-final ?x))
;ipick one and do it.
(exists (?x) (clear ?x)
(and (can-move-to-final ?x)
(next (goodtower ?x)))))

;:3. Clear a next block.
(if-then-else
;;1f there is a stackable-location (including the table)
(exists (?x) (clear ?x)
(can-stack-on ?x))
;i then make progress towards uncovering the next block of at
;; least one such location. We do this by asserting that there is
;; one such block, and an unachieved (on ?y ?x) relation
;i such that until we achieve it we decrease the depth of ?y
;; (i.e., we uncover ?y) while keeping ?x clear.
(exists (?x) (clear ?x)
(and
(can-stack-on ?x)
;iNeed also to pick the next block to clear as if ?x is the
; ;table there could be more than one "next block"
(exists (?y) (goal (on ?y ?x))
(and (not (on ?y ?x))

(until
(and
(can-stack-on ?x) ; iKeep ?x clear
(exists (?d) (= ?d (depth ?y)) ;;and decrease ?y’s depth
(next (or (on ?y ?x) (< (depth ?y) 2d)))))
(on ?y ?x)))))) ; ;the constraint is active

;iuntil we achieve (on ?y ?x)

;4. else we are either completed or we should pick a location that once
;;clear will become a can-stack-on location and clear it. (This
;;might include the table).

(exists (?loc) (= ?loc (find-can-stack-on-if-clear))
(or
(= ?loc *NOSUCHLOCATION*)
(exists (?x) (on ?x ?loc)

(and
(implies (= ?loc table) (not (goodtowerbelow ?x)))
(until
(exists (?d) (= ?d (depth ?x))

(next (or (can-stack-on ?loc) (< (depth ?x) ?d))))
(can-stack-on ?loc))))))
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The specification is afairly straightforward tranglation of the four components mentioned above.
There are two similar clauses in the strategy, the second one of whichis

(until
(exists (?d) (= ?d (depth ?x))
(next (or (can-stack-on ?loc) (< (depth ?x) 2d))))

(can-stack-on ?loc))

where ?x ison ?1loc.

This clause asserts a condition that must be true of every state until we reach a state where
(can-stack-on ?loc). Itsintent isto force the planner to uncover ?x so that we reach a
state where we can clear it off ? 1oc in one move. The formulais made a bit cumbersome by the
fact that ? 1oc can be the table, thus we cannot ssimply force a decrease in the depth of ? 1oc—
depth does not apply to the table.

The uncovering of ?x is accomplished by asserting that every state, prior to the state where
(can-stack-on ?loc),thedepth of ?x decreases. Onething to be careful about, however, is
that once we reach a state where ?x is clear, its depth will not decrease in the next state. Instead in
the next state we remove ?x from ? Loc. Hence, we have the disunction as the next condition.

This example shows that our approach can represent a wide range of control strategies. In
the previous examples the control strategies expressed obvious “myopic” information about what
was bad to do in various situations. The control strategy above is migrating towards a domain
specific program, specifying (in aloose manner) an entire sequence of activities. There are couple
of points to be made about such complex strategies. First, our data shows that simple strategies
like the trigger strategy can offer a tremendous improvement. So it could be that simple strategies
are sufficient to solve the size of problems we are faced with. Second, from a pragmatic point of
view there is no reason why a planner should not be able to take advantage of a detailed domain
specific strategy if oneisavailable.

8 Writing the Control Knowledge

The key issue raised in our approach is that of obtaining appropriate control knowledge. The
examples given in the previous section demonstrate that with the appropriate knowledge we can
obtain tremendous performance gains. However, these example domains sometimes require quite
lengthy control formulas. So the question arises as to just how easy and practical it isto write the
required control knowledge.*

We cannot provide any definitive answers to this question, at least not until a wider base of
users and domains have been examined. Nevertheless, we have a number of reasons for believing
that our approach is practical.

4UItimately we will of course like to develop mechanisms for automatically generating the appropriate control
knowledge. Research on various learning mechanisms and techniques for static domain analysisis ongoing. However,

since this research is currently preliminary, the system still requires the user to write good control knowledge and
hence the question of how easy it isto do thisremains.
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The most compelling evidence is anecdotal evidence from student projects. At the University
of Waterloo we have used the TLPLAN system in an undergraduate Al course for a number of
years. This course is taught to 4-th year undergraduates, and is generally their first coursein Al.
Part of the course evaluation involves a project in which the students implement a planning system
for some domain using the TLPLAN system. A quite impressive array of different domains have
been implemented, and the students have been very successful at writing effective search control
knowledge in the formalism presented here.

For example, in one implementation a car pool planner was developed [56]. This domain
alows one to specify a number of locations (providing their (z,y) coordinates), people, cars,
and car capacities. There are operators for driving the car, for loading and unloading passengers,
deadlinesfor people'sarrival times, and the possibility of dropping passengers at near by locations
from which they can walk. The control formulas written by the student included failure detection
rules that terminate a plan prefix if a deadline is already missed; rules to stop the car from being
driven to useless locations; and always performing a pickup or a dropoff at any location driven to.
With this control knowledge the planner was able to generate plans involving 50 steps in about 60
seconds. Most importantly, the control knowledge was effective in pruning away over 80% of the
worlds generated during search.

The second piece of evidence comes from the fact that we have found, both in the domains
we have implemented and also reflected in the student projects, that there is considerable “reuse”
of control knowledge. For example, in almost every transportation style domain (the car pooling
domain is another example of atransportation style domain) control ideas that were developed for
the logistics domain, like not moving vehicles to irrelevant location and doing all of the necessary
actions at a location prior to moving, can be reused. Similarly, the idea of preserving a condition
that it would be wasteful to destroy is quite common in many domains: in the blocksworld good
towers are to be preserved and in the tire domain we want to preserve having various tools until
they are no longer required. In other words various widely applicable meta-control principlesseem
to exist. Categorizing and formalizing such principlesis an interesting topic for future research.

Finally, the last piece of evidence we can supply has to do with the fact that our approach
supports a powerful incremental style of development. In particular, it is very easy modify the
control formula and run the planner to determine the difference in performance. Because the
control formula has a compositional semantics, the changes are quite modular. For example, if
we add a new conjunct that new conjunct will not alter the pruning achieved by the previous
components of the formula. In this manner one can examine the state sequences searched by
the planner, often determine if these sequences are doing something that can be avoided, and
then modify the control formulato eliminate that behavior. Thisincremental improvement can be
stopped at any time if the planner works well enough for the problem sizes being contemplated.
As shown in the previous section, often simple control formulas can yield dramatic improvements.
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9 Other Approaches To Utilizing Domain Information

Our work is by no means the first to suggest the use of domain specific information in planning.
One of the longest traditions in Al planning has been work on HTN planning [48, 62, 55], and
more recently work has been done on formalizing the ideas on which HTN planning is based [21].
HTN planning requires specifying much more information about the planning domain than does
classical planning. In particular, in addition to the primitive operators the planner must be given a
collection of tasks and task decompositions. These tasksidentify common sub-plansin the domain
and their decompositions describe the various ways that these sub-plans can be solved. By working
down from the top level task to the primitive actions, HTN planners can avoid large parts of the
search space. In particular, they will only explore the primitive action sequences that arise from
some sequence of task decompositions. Such a hierarchical arrangement can yield an exponential
speed up in search time.

The specified task decompositions provide the planner with search control knowledge. In par-
ticular, the decompositions eliminate a large number of physically feasible primitive action se-
guences, much like the search control formulas used in this work. This view of HTN planners
was made very clear by Barrett and Weld [8] who showed how the specified task decompositions
could be used to prune partially-ordered plans composed of primitive actions. The pruning was
accomplished with a parsing algorithm.

The language and representation used by HTN planners for their control knowledge is quite
distinct from that suggested here, but both seem to be useful. Some pieces of control knowledge
seem to be most naturally represented as a hierarchical decomposition of tasks, while other pieces
of knowledge seem to be most naturally expressed as information about “bad state sequences’
using our formalism. It would seem that there is scope for both types of information, and an
interesting topic for future research would be to examine mechanisms for combining both types of
information.

Another early planning system to take the issue of control information seriously was the
PRODIGY system [16]. PRODIGY employs search-control rules, which act like an expert system
for guiding search. The PRODIGY approach to specifying control information has two main disad-
vantages. First, the approach is very hard to use. In particular, their control rules required one to
understand the planning algorithm, as many of the rules had to do with algorithmic choices made
by the algorithm. That is, unlike the approach presented here, ssmple knowledge of the domain is
not sufficient to write these control rules. And second, although the control rules give some speed
ups, these speed ups were not that great: even with search control PRODIGY remains a relatively
slow planner.

The blocksworld illustrates these difficulties well. PRoODIGY employed 11 rules for the blocks
world. For example, one of therulesis

(CONTROL-RULE SELECT-BINDINGS-UNSTACK-CLEAR
(if (and (current-goal (clear <y>))
(current-ops (UNSTACK))

70



(true-in-state (on <x> <y>))))
(then select bindings ((<ob> . <x>) (<underob> . <y>))))

Thisrulesaysthat if the planner is currently working on agoal of clearingablock y, z isony inthe
current state, and it is currently considering regressing the goal through an unstack operator, then
it should select a specific binding for the unstack operator. Such “binding” rulesrequire the user to
understand how the planner utilizes bindings during planning search. The notion of a binding has
nothing to do with the domain, rather it has to do with the planning algorithm.

Another exampleistherule

(CONTROL-RULE ARM-EMPTY-FIRST
(if (and (candidate-goal (arm-empty))
(true-in-state (holding <x>))))
(then select goal (arm-empty)))

Thisrule says that if the planner is considering the goal of having the robot have its hand empty,
and it istrue in the current state that it is holding a block z, then it should commit to working on
the goal hand empty. Again this rule requires that the user know about the difference between a
candidate goal and the current goal, and how this difference can affect the planner’s operation.

Even with these 11 rules, PRODIGY was unable to solve any of our random blocksworld prob-
lems that involved more than 9 blocks (and it failed to solve 6 out of the 10 problemsinvolving 9
blocks).

On the other hand, PRODIGY’s rules were designed to be learned automatically, so perhaps
transparency is not such a critical issue. Nevertheless, current learning algorithms have not yet
reached the stage where they can generate truly effective control rules. This often leaves the
user of the system with no choice but to attempt to construct some control rules by hand, and
as indicated above this can be a very difficult task. A lot of innovative work on learning and
reasoning with planning domains has come out of the PRODIGY project, but performance of the
scale demonstrated by our approach has not been achieved.

There has also been some more recent work on utilizing domain dependent control knowledge
by Srivastava and Kambhampati [52] and by Kautz and Selman [34]. Srivastava and Kambhampati
present a scheme for taking domain specific information similar to that used by TLPLAN and
using that information as input to a complex program synthesis system. The end result is an semi-
automatically constructed planning system that is customized for that domain. For example, in the
logistics domain some of the domain specific information they utilize includes:

1. Planes should not make consecutive flights without loading or unloading a package.
2. Once a package reaches its goal location it should not be moved.

The reader will recognize these rules as part of the domain information we encoded in TLPLAN. In
fact, TLPLAN’S representation is more general than that allowed by Srivastava and Kambhampati,
and all of the domain specific information mentioned in their paper can easily be encoded in the
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logic TLPLAN utilizes. Unlike TLPLAN however, their approach requires a complex program
synthesis step to make use of thisinformation (a customized planner must first be synthesized). In
TLPLAN the control information issimply part of the planner’s input. Furthermore, the empirical
results presented in [52] show performance that is orders of magnitude inferior to TLPLAN. For
example, their customized planners took about one minute each to solve the standard tire “fixit”
problem, a 12 package logistics problem, and a 14 block problem. TLPLAN takes 0.06 seconds
to solve the tire fixit problem, about 3 seconds on average to solve 12 package logistics problems,
and about 0.24 seconds on average to solve 14 block problems. Nevertheless, the methods they
developed for synthesizing customized planners demonstrate an interesting alternative approach to
utilizing domain specific information.

Finally, Kautz and Selman [34] have recently investigated the use of domain specific informa-
tion in their SATPLAN paradigm. Like us they have adopted an approach in which the domain
information is logically represented and is independent of the planner’s operation. Specifically,
they represent extra domain knowledge as additional propositional clauses, and like us they have
noticed that a state-based representation seemsto be the most promising for exploiting such knowl-
edge. Their results are still preliminary, but show some promise. In particular, they also show that
speedups are possible, but do not attain a speed up that is competitivewith TLPLAN’S performance.
The mgjor hurdle that their approach faces, if it isto be scaled up to the size of problems TLPLAN
can handle, is the size of the propositional theories it generates. More effective ways need to
be found for dealing with theories of this size or for incrementally simplifying these theories so
that smaller theories can be generated. For example, in our experiments we found that logistics
problems with 16 packages generated theories containing more than 106 clauses and 10° variables.
With theories of this size even polynomial time processing takes a considerable amount of time.

10 Conclusionsand Future Work

In this paper we have presented a rich representation for domain specific control knowledge and
we have shown how such knowledge can be utilized by an Al planning system to make planning
more efficient. Our empirical evidence indicates that (1) such information is available in many,
if not most, domains and that (2) with such information we can reach a new level of planning
performance. We believe that the size of problems TLPLAN can solve has never been approached
before.

Given the success of this approach the natural and most pressing question becomes. where
does the control information come from? In this paper we have taken a pragmatic approach, and
have assumed that it will come from the user just like the other forms of knowledge the user needs
to specify when developing a planning domain. Our empirical studies show that thisis not an un-
reasonable approach, and that some form of control knowledge is usually available. Nevertheless,
it is equally clear that much of this knowledge has a more abstract form—many of the domains
have similar meta-level strategies. Furthermore, it is aso clear that some of this knowledge could
be automatically derived from the operator descriptions (in conjunction, perhaps, with the initial
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state). So an important areafor future research will be to employ learning and reasoning techniques
to automatically generate this domain-specific knowledge. There is a considerable body of work
that can be built onin thisarea, e.g., [42, 36, 22, 45]. The work by McDermott [40] and Bonet et
al. [14] can aso be viewed in this light. In these works search heuristics are computed dynami-
cally during search. These heuristics try to estimate whether or not the search is making progress
towards the goal. Potentially, similar ideas could be used for the off-line construction of search
control formulas that provide the same effect as we obtain with our use of the GoAL modality.

Another area in which work could be done is to develop ways in which the temporal logic
developed here can be utilized to control other kinds of planning algorithms. 1t should be relatively
easy convert the temporal logic expressions into propositional logic (once we have a fixed initial
and goal state), and thus find ways to use our representation in SATPLAN based approaches.

Finally, we are actively working on methods for extending our approach beyond classical plan-
ning. The basic system already handles resources, but we still have empirical work to do to test
how effective it can be in domains that make heavy use of resource reasoning. We have extended
our approach to generate plans that satisfy temporally extended goals [4]. Such goals general-
ize the safety and maintenance goals mentioned in [60]. And most recently we have developed
a STRIPS database approach to planning and sensing under incomplete knowledge [5]. In future,
work we plan to combine this with search control to construct a planner capable of planning and
sensing under incomplete knowledge.

OnLineMaterial

The TLPLAN planning system, all of the test suites, and the raw data collected in our experiments
isavailable at the web site http://www.lpaig.uwaterloo.cal~fbacchus.

References

[1] AIPS98. Artificial Intelligence Planning Systems 1998 planning competition.
http://ftp.cs.yal e.edu/pub/mcdermott/ai pscomp-results.html, 1998.

[2] Fahiem Bacchus and Froduald Kabanza. Planning for temporally extended goals. In Pro-
ceedings of the AAAI National Conference, pages 1215-1222, 1996.

[3] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to control search in aforward
chaining planner. In M. Ghallab and A. Milani, editors, New Directionsin Al Planning, pages
141-153. 1SO Press, Amsterdam, 1996.

[4] Fahiem Bacchus and Froduald Kabanza. Planning for temporally extended goals. Annuals of
Mathematics and Artificial Intelligence, 22:5-27, 1998.

73



[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Fahiem Bacchus and Ron Petrick. Modeling and agent’s incompl ete knowledge during plan-
ning and execution. In Proceedings of the International Conference on Principles of Knowl-
edge Representation and Reasoning, pages 432443, 1998.

M. Barbeau, F. Kabanza, and R. St-Denis. Synthesizing plant controllers using real-time
goals. In Procceedings of the Inter national Joint Conference on Artifical Intelligence (1JCAI),
pages 791-798, 1995.

A. Barrett, K. Golden, J. S. Penberthy, and D. Weld. UCPOP user’s manual, (version 2.0).
Technical Report TR-93-09-06, University of Washington, Department of Computer Science
and Engineering, ftp://cs.washington.edu/pub/ai/, 1993.

A. Barrett and D. Weld. Task-decomposition via plan parsing. In Proceedings of the AAAI
National Conference, pages 1117-1122, 1994.

A. Barrett and D.S. Weld. Partial-order planning: evaluating possible efficiency gains. Arti-
ficial Intelligence, 67(1):71-112, 1994.

M. Bauer, S. Biundo, D. Dengler, M. Hecking, J. Koehler, and Merziger G. Integrated plan
generation and recognition—a logic-based approach. Technical Report RR-91-26, DFKI,
1991.

S. Biundo and W. Stephan. Modeling Planning Domains Systematically. In Proceedings of
the European Conference on Artificial Intelligence, pages 599-603. Wiley & Sons, 1996.

S. Biundo and W. Stephan. System Assistance in Structured Domain Model Development. In
Procceedings of the International Joint Conference on Artifical Intelligence (IJCAI), pages
1240-1245. Morgan Kaufmann, 1997.

Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90:281-300, 1997.

B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mechanism for
planning. In Proceedings of the AAAI National Conference, pages 714—719, 1997.

Craig Boutilier and Richard Dearden. Using abstractionsfor decision-theoretic planning with
time constraints. 1n Proceedings of the AAAI National Conference, pages 1016-1022, 1994.

J.G. Carbonell, J. Blythe, O. Etzioni, Y. Gill, R. Joseph, D. Khan, C. Knoblock, S. Minton,
A. Pérez, S. Reilly, M. Veloso, and X. Wang. Prodigy 4.0: The manual and turorial. Technical
Report CMU-CS-92-150, School of Computer Science, Carnegie Mellon University, 1992,

Ken Currie and Austin Tate. O-plan: the open planning architecture. Artificial Intelligence,
52:49-86, 1991.

74



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

T. Dean, L. P. Kaglbling, J. Kerman, and A. Nicholson. Planning with deadlines in stochastic
domains. In Proceedings of the AAAI National Conference, pages 574-579, 1993.

E. A. Emerson. Tempora and modal logic. In J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science, Volume B, chapter 16, pages 997-1072. MIT, 1990.

K. Eral, D.S. Nau, and V.S. Subrahmanian. On the complexity of domain-independent plan-
ning. In Proceedings of the AAAI National Conference, pages 381-386, 1992.

Kutluhan Erol. Hierarchical Task Network Planning: Formalization, Analysis, and Imple-
mentation. PhD thesis, University of Maryland, 1995.

Oren Etzioni. Acquiring search-control knowledge via static analysis. Artificial Intelligence,
62(2):255-302, 1993.

J. W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner, editors, Hand-
book of Philosophical Logic, Vol. I, pages 249-307. Reidel, Dordrecht, Netherlands, 1977.

A. Gerevini and L. Schubert. Accelerating partia-order planners. Some techniques for ef-
fective search control and pruning. Journal of Artificial Intelligence Research, 5:95-137,
1996.

Cordell Green. Application of theorem proving to problem solving. In Procceedings of the
International Joint Conference on Artifical Intelligence (1JCAI), pages 219-239, 1969.

N. Guptaand D.S. Nau. On the complexity of blocks-world planning. Artificial Intelligence,
56:223-254, 1992.

J. Y. Halpern and M. Y. Vardi. Model checking vs. theorem proving: a manifesto. In J. A.
Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning, pages 325-334. Morgan Kaufmann,
San Mateo, California, San Mateo, CA, 1991.

Matthew Hennessy. The semantics of programming languages. an elementary introduction
using structural operational semantics. Wiley, 1990.

D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume A, chapter 2, pages 69-161. MIT, 1990.

D. Jodlin and M. Pollack. Least-cost flaw repair: a plan refinement strategy for partial-
order planning. In Proceedings of the AAAI National Conference, pages 1004—1009. Morgan
Kaufmann, San Mateo, California, 1994.

Paris C. Kanellakis. Elements of relational database theory. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume |1, pages 1071-1156. Elsevier Science
Publishers B.V., 1990.

75



[32] Henry Kautz and Bart Selman. Pushing the envelope: planning, propositional logic, and
stochastic search. In Proceedings of the AAAI National Conference, pages 1194-1201, 1996.

[33] Henry Kautz and Bart Selman. Blackbox: A new approach to the application of theorem
proving to problem solving. (System available at http://www.research.att.com/"kautz), 1998.

[34] Henry Kautz and Bart Selman. The role of domain-specific knowledge in the planning as
satisfiability framework. In Proceedings of the International Conference on Artificial Intelli-
gence Planning, pages 181189, 1998.

[35] D. Kibler and P. Morris. Don’t be stupid. In Procceedings of the International Joint Confer-
ence on Artifical Intelligence (1JCAI), pages 345-347, 1981.

[36] Craig Knoblock. Automatically generating abstractions for planning. Artificial Intelligence,
68(2):243-302, 1994.

[37] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning graphs to an
ADL subset. In European Conference on Planning, pages 273-285, 1997. (System available
at http://www.informatik.uni-freiburg.de/"koehler/ipp.html).

[38] J. Laird, A. Newell, and P. Rosenbloom. SOAR: An architecture for genera intelligence.
Artificial Intelligence, 33(1):1-67, 1987.

[39] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent systems:
Soecication. Springer-Verlag, New York, 1992.

[40] D. McDermott. A heuristic estimator for means-end analysisin planning. In Proceedings of
the Third International Conference on A.l. Planning Systems, 1996.

[41] S. Minton, J. Bresina, and M. Drummond. Total-order and partial-order planning: A compar-
ative analysis. Journal of Artificial Intelligence Research, 2:227-262, 1994.

[42] Steve Minton. Learning Search Control Knowledge. Kluwer Academic Publishers, 1988.

[43] Sujay Parekh. A study of procedura search control in  simon.
http://www.cs.washington.edu/homes/sparekh/quals.ps, 1996.

[44] E. Pednault. ADL: Exploring the middle ground between STRIPS and the situation calculus.
In Proceedings of the International Conference on Principles of Knowledge Representation
and Reasoning, pages 324—-332, 1989.

[45] M. Poet and D.E. Smith. Threat-removal strategiesfor partial-order planning. In Proceedings
of the AAAI National Conference, pages 492-499, 1993.

[46] Stanley J. Rosenschien. Plan synthesis: A logical perspective. In Procceedings of the Inter-
national Joint Conference on Artifical Intelligence (IJCAI), pages 115-119, 1981.

76



[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

S. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Prentice Hall, 1995.

Earl Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5:115—
135, 1974.

B. Selman. Near-optimal plans, tractability and reactivity. In Proceedings of the Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, pages 521—
529, 1994.

A.P. Sistla. Safety, liveness, and fairness in temporal logic. Formal Aspects of Computing,
6:495-511, 1994.

A.P. Sistlaand E.M. Clarke. The complexity of propositional linear temporal logic. Journal
of the ACM, 32:733-749, 1985.

B. Srivastava and S. Kambhampati. Synthesizing customized planners from specifications.
Journal of Artificial Intelligence Research, 8:93-128, 1998.

W. Stephan and S. Biundo. Deduction-Based Refinement Planning. In Proceedings of the
International Conference on Artificial Intelligence Planning, pages 213-220. AAAI Press,
1996.

Jonathan Tash and Stuart Russell. Control strategies for a stochastic planner. In Proceedings
of the AAAI National Conference, pages 10791085, Seattle, 1994.

Austin Tate. Generating project networks. In Procceedings of the International Joint Con-
ference on Artifical Intelligence (IJCAI), pages 888-893, 1977.

Chris Thompson. Carpoolworld. Undergraduate project in CS486 University of Waterloo,
1998.

M. Y. Vardi. The complexity of relationa query langauges. In Proc. 14th Ann. ACM Symp.
on Theory of Computing, pages 176-185, 1982.

M.Y. Vardi. Computational model theory: Anoverview. Logic Journal of the |IGPL, 6(4):601—
623, 1998.

M. Veloso, J. Carbonell, A. Pérez, D. Borrgjo, E. Fink, and J. Blythe. Integrating planning
and learning: The PRODIGY architecture. Journal of Experimental and Theoretical Artificial
Intelligence, 7(1), 1995.

Daniel Weld and Oren Etzioni. The first law of robotics (a call to arms). In Proceedings of
the AAAI National Conference, pages 1042—-1047, 1994.

Daniel S. Weld. An introduction to least commitment planning. Al Magazine, 15(4):27-61,
1994,

77



[62] David Wilkins. Practical Planning: Extending the Classical Al Planning Paradigm. Morgan
Kaufmann, San Mateo, California, 1988.

78



