
Extending the Knowledge-Based approach to Planning with Incomplete
Information and Sensing∗

Ronald P. A. Petrick
Department of Computer Science

University Of Toronto
Toronto, Ontario

Canada M5S 1A4
rpetrick@cs.utoronto.ca

Fahiem Bacchus
Department of Computer Science

University Of Toronto
Toronto, Ontario

Canada M5S 1A4
fbacchus@cs.utoronto.ca

Abstract

In (Petrick & Bacchus 2002), a “knowledge-level” approach
to planning under incomplete knowledge and sensing was
presented. In comparision with alternate approaches based
on representing sets of possible worlds, this higher level rep-
resentation is richer, but the inferences it supports are weaker.
Nevertheless, because of its richer representation, it is able to
solve problems that cannot be solved by alternate approaches.
In this paper we examine a collection of new techniques for
increasing both the representational and inferential power of
the knowledge-level approach. These techniques have been
fully implemented in the PKS (Planning with Knowledge and
Sensing) planning system. Taken together they allow us to
solve a range of new types of planning problems under in-
complete knowledge and sensing.

Introduction
Constructing conditional plans that can employ sensing and
must operate under conditions of incomplete knowledge is a
challenging problem. Yet it is a problem humans deal with
on a daily basis. Although in general planning in this context
is hard—both theoretically and practically—there are many
situations where “common-sense” plans with fairly simple
structure can solve the problem.

In (Petrick & Bacchus 2002), we presented an
“knowledge-level” approach to planning with sensing and
incomplete knowledge and in this paper we present a col-
lection of new techniques for increasing the representational
and inferential power of this approach. The key idea of the
knowledge-level approach is to represent the agent’s knowl-
edge state using a first-order language, and to represent ac-
tions by their effects on the agent’s knowledge rather than
by their effects on the environment.

General reasoning in such a rich language is impractical.
Instead, we have been exploring the approach of using a re-
stricted subset of the language and a limited amount of in-
ference in that subset. The motivation for this approach is
twofold. First, we want to accomodate non-propositional
features in our representation, e.g., functions and variables.
Second, we are motivated more by the ability to automat-
ically generate “natural” plans, i.e., plans that humans are
able to find and that an intelligent agent should be able to

∗This research was supported by the Canadian Government
through their NSERC program.

generate, than by the ability to generate all possible plans.
The justification being that humans cope quite well with in-
complete knowledge of their environment even with limited
ability to generate plans.

An alternate trend in work on planning under incomplete
knowledge, e.g., (Bertoli et al. 2001; 2001; Anderson, Weld,
& Smith 1998; Brafman & Hoffmann 2003), has concen-
trated on propositional representations over which complete
reasoning is feasible. The common element in these works
has been to represent the set of all possible worlds (the set
of all states compatible with the agent’s incomplete knowl-
edge) using various techniques, e.g., BDDs (Bryant 1992),
graphplan-like structures (Blum & Furst 1997), or clausal
representations. These techniques yield planning systems
that are able to generate plans requiring complex combina-
torial reasoning. However, because the representations are
propositional, many natural situations and plans cannot be
represented.

The difference in these approaches is well illustrated by
Moore’s classic open safe example (Moore 1985). In this
example there is a closed safe and a piece of paper on
which the safe’s combination is written. The goal is to
open the safe. Our planning system, PKS, based on the
knowledge-level approach, is able to generate the obvious
plan 〈readCombo; dial(combo())〉: first read the combina-
tion, then dial it. What is critical here is that the value of
combo() (a 0-ary function) is unspecified by the plan. In
fact, it is only at execution time that this value will become
known. 1 At plan time, all that is known is that the value
will become known at this point in the plan’s execution. The
ability to generate parameterized plans containing run-time
variables is useful in many planning contexts. Propositional
representations are not capable of representing such plans,
and thus approaches based on propositional representations
cannot generate such plans (at least not without additional
techniques that go beyond propositional reasoning).

There are also a number of examples of plans that can be
generated by “propositional possible worlds” planners that
cannot be found by PKS because of its more limited inferen-
tial power. As mentioned above, we would not be so con-
cerned if complex combinatorial reasoning was required to

1The function combo() acts as a run-time variable in the sense
of (Etzioni, Golden, & Weld 1997)).

1

discover these plans. However, some of these plans are quite
natural. In this paper we present a collection of techniques
for extending the inferential and representational power of
PKS so that it can find more of these types of plans. The fea-
tures we have added include extensive support for numbers,
so that PKS can generate plans that deal with resources; a
postdiction procedure so that PKS can extract more knowl-
edge from its plans (Sandewall 1994); and a temporal goal
language, so that PKS can plan for “hands-off”, “restore”,
and other temporal goals (Weld & Etzioni 1994). With these
techniques, all fully implemented in the new version of PKS,
our planner can solve a wider and more interesting range of
planning problems. More importantly, these techniques help
us understand more fully the potential of the “knowledge-
level” approach to planning under incomplete knowledge
and sensing.

The rest of the paper is organized as follows. First, we
present a short recap of the knowledge-based approach to
planning embodied in the PKS system. Then, we discuss the
new techniques we have developed to enhance PKS. A series
of planning examples are then presented to help demonstrate
the effectiveness of these techniques and the system in gen-
eral.

PKS
The PKS (Planning with Knowledge and Sensing) system
is a knowledge-based planner for constructing conditional
plans in the presence of incomplete knowledge (Petrick &
Bacchus 2002). The PKS framework is based on a general-
ization of STRIPS. In STRIPS, the state of the world is repre-
sented by a database and actions are represented as updates
to that database. In PKS, the agent’s knowledge (rather than
the state of the world) is represented by a set of databases
and actions are represented as updates to these databases.
Thus, actions are represented at the knowledge level as mod-
ifications to the agent’s knowledge state rather than at the
physical level as updates to the world state.

Modelling actions as database updates leads naturally to
a simple forward-chaining approach to finding plans that is
both efficient and effective (see (Petrick & Bacchus 2002)
for empirical evidence). The computational efficiency of
the approach, however, results from restricting the types of
knowledge that can be expressed and the power of the in-
ferential mechanism. In particular, only limited the types of
disjunctive knowledge can be represented and the inferential
mechanism is incomplete.

PKS uses four databases to represent an agent’s knowl-
edge. The semantics of which is provided by a transla-
tion to formulas of a first-order modal logic of knowledge
(Bacchus & Petrick 1998). Thus, any configuration of the
databases corresponds to a collection of logical formulas
precisely characterizing the agent’s knowledge state. The
four databases used are as follows.
Kf : The first database is like a standard STRIPS database,
except that both positive and negative facts are allowed and
the closed world assumption is not applied. Kf can include
any ground literal, �; � ∈ Kf means that we know �. Kf can
also contains knowledge of function values.
Kw: The second database is designed to address plan-time

reasoning about sensing actions. If the plan contains an ac-
tion to sense a fluent f , at plan time all that the agent will
know is that after it has executed the action it will either
know f or know ¬f . At plan time the actual value of f
remains unknown. Hence, φ ∈ Kw means that the agent ei-
ther knows φ or knows ¬φ, and that at execution time this
disjunction will be resolved.
Kw plays a particularly important role when generating

conditional plans. In a conditional plan one can only branch
on “know-whether” facts. That way we are guaranteed that
at execution time the agent will have sufficient information,
at that point in the plan’s execution, to determine which plan
branch to follow. This guarantee satisfies one of the impor-
tant conditions for plan correctness in the context of incom-
plete knowledge put forward in (Levesque 1996).
Kv: The third database stores information about function
values that the agent will come to know at execution time.
Kv can contain any unnested function term whose value is
guaranteed to be known to the agent at execution time. Kv

is used for the plan time modelling of sensing actions that
return numeric values. For example, size(paper.tex) ∈ Kv

means the agent knows at plan time that the size of paper.tex
will become known at execution time.
Kx: The fourth database contains a particular type of dis-
junctive knowledge, namely “exclusive or” knowledge of
literals. Entries in Kx are of the form (�1|�2| . . . |�n), where
each �i is a ground literal. Such a formula represents knowl-
edge of the fact that “exactly one of the � i is true.” Hence, if
one of these literals becomes known, we immediately come
to know that the other literals are false. Similarly, if n−1 of
the literals become false we can conclude that the remaining
literal is true. This form of incomplete knowledge is com-
mon many in planning scenarios.

Actions in PKS are represented as updates to the databases
(i.e., updates to the agent’s knowledge state). Applying an
action’s effects simply involves adding or deleting the ap-
propriate formulas from the collection of databases. An in-
ference algorithm examines the database contents and draws
conclusions about what the agent does and does not know or
“know whether” (Bacchus & Petrick 1998). The inference
algorithm is efficient, but incomplete, and is used to deter-
mine if an action’s preconditions hold, what conditional ef-
fects of an action should be activated, and whether or not a
plan achieves the stated goal.

For instance, consider a scenario where we have a bottle
of liquid, a healthy lawn, and three actions: pour-on-lawn,
drink, and sense-lawn,2 specified in Table 1. Intuitively,
pour-on-lawn pours some of the liquid on the lawn with
the effect that if the liquid is poisonous, the lawn becomes
dead. In our action specification, pour-on-lawn has two con-
ditional effects: if it is not known that ¬poisonous holds,
then ¬lawn-dead will be removed from Kf (i.e., the agent
will no longer know that the lawn is not dead); if it is known
that poisonous holds, then lawn-dead will be added to Kf

(i.e., the agent will come to know that the lawn is dead).
Drinking the liquid (drink) affects the agent’s knowledge of
being poisoned in a similar way. Finally, sense-lawn senses

2This example was communicated to us by David Smith.

2

Action Pre Effects
pour-on-lawn ¬K(¬poisonous) ⇒

del (Kf ,¬lawn-dead)
K(poisonous) ⇒

add (Kf , lawn-dead)
drink ¬K(¬poisonous) ⇒

del (Kf ,¬poisoned)
K(poisonous) ⇒

add (Kf , poisoned)
sense-lawn add (Kw, lawn-dead)

pour-on-lawn-2 ¬K(¬poisonous2) ⇒
del (Kf ,¬lawn-dead)

K(poisonous2) ⇒
add (Kf , lawn-dead)

Table 1: Actions in the poisonous liquid domain

whether or not the lawn is dead and is represented as the
update of adding lawn-dead to Kw.

If Kf initially contains ¬lawn-dead, and all of the other
databases are empty, executing pour-on-lawn yields a state
where ¬lawn-dead has been removed from Kf —the agent
no longer knows that the lawn is not dead. If we then execute
sense-lawn we will arrive at a state where Kw now contains
lawn-dead—the agent knows whether the lawn is dead. This
forward application of an action’s effects provides a simple
means of evolving a knowledge state, and it is the approach
that PKS uses to search over the space of conditional plans.

In PKS, a conditional plan is a tree whose nodes are la-
belled by a knowledge state (a set of databases), and whose
edges are labelled by an action or a sensed fluent. If a node
n has a single child c, the edge to that child is labelled by an
action awhose preconditions must be entailed by n’s knowl-
edge state. The label for the child c (c’s knowledge state) is
computed by applying a to n’s label. A node n can also have
two children, in which case each edge is labelled by a flu-
ent F , such that Kw(F) is entailed by n’s knowledge state
(i.e., the agent must know-whether the fluent that the plan
branches on). In this case the label for one child is com-
puted by adding F to n’s Kf database, and the label for the
other child by adding ¬F to n’s Kf database.

An existing plan may be extended by adding a new ac-
tion (i.e., a new child) or a new branch (i.e., a new pair of
children) to a leaf node. The inference algorithm computes
whether or not the addition can be applied, generates the
effects of the action or branch, and tests if the new nodes
satisfy the goal; no leaf is extended it if already achieves the
goal. The search terminates when a conditional plan is found
in which all the leaf nodes achieve the goal. Currently, PKS
performs only undirected search (i.e., no search control), but
it is still able to solve a wide range of interesting problems
(Petrick & Bacchus 2002).

Extensions to the PKS framework
Postdiction: Although PKS’s forward-chaining approach
is able to efficiently generate plans, there are situations
where the resulting knowledge states fail contain some “in-
tuitive” conclusions. For instance, say we execute the se-
quence of actions 〈pour-on-lawn; sense-lawn〉 (Table 1) in
an initial state where the lawn is alive, and then come to

know that the lawn is dead. An obvious additional conclu-
sion is that the liquid is poisonous. Similarly, if the lawn
remained alive, we can conclude that the liquid is not poi-
sonous. By reasoning about these two possible outcomes at
plan time, prior to executing the plan, we should be able to
conclude that the plan not only achieves Kw knowledge of
lawn-dead, it also achieves Kw knowledge of poisonous.

It should be noted that a conclusion such as poisonous
requires a non-trivial inference. Inspecting the states that
result from the action sequence 〈pour-on-lawn; sense-lawn〉
reveals that neither poisonous nor ¬poisonous follows from
the individual actions executed: pour-on-lawn provides no
information about whether or not it changed the state of the
lawn, so we cannot know if poisonous holds after the action
is executed. Similarly, sense-lawn simply returns the status
of the lawn; by itself it says nothing about how the lawn
became dead. Further evidence that a non-trivial inference
process is at work is provided when we consider our knowl-
edge that in the initial state ¬lawn-dead holds. It is not hard
to see that without this knowledge the conclusion poisonous
is not justified.

Postdiction allows us to capture these kinds of additional
inferences at plan time by examining plan’s effects and non-
effects. Consider the two possible outcomes of sense-lawnin
the action sequence 〈pour-on-lawn, sense-lawn〉: either it
senses lawn-dead or it senses ¬lawn-dead. If we treat each
outcome separately we can consider two sequences of ac-
tions, one for each outcome of lawn-dead. Each action se-
quence produces three world states: W0 the initial world,
W1 the world after executing pour-on-lawn, and W2 the
world after executing sense-lawn.

In the first sequence, we know that ¬lawn-dead holds
in W0 and that lawn-dead holds in W2. Reasoning back-
wards we see that sense-lawn does not change the sta-
tus of lawn-dead. Hence, lawn-dead must have held in
W1. But since ¬lawn-dead held in W0 and lawn-dead
held in W1, pour-on-lawn must have produced a change in
lawn-dead. Since lawn-dead is only altered by a conditional
effect of pour-on-lawn, it must be that the antecedent of the
condition, poisonous, was true in W0 when pour-on-lawn
was executed. Furthermore, poisonous is not affected by
pour-on-lawn, nor by sense-lawn. Hence, poisonous must
be true in W1 as well as in W2.

Similarly, in the second sequence ¬lawn-dead holds in
both W0 and W2. At the critical step we conclude that
since ¬lawn-dead holds in W0 as well as W1, pour-on-lawn
did not alter lawn-dead, and hence the antecedent of its
conditional effect must have been false in W0. That is,
¬poisonous must have been true in W0. Since poisonous
is not changed by the two actions, it must also be true in the
final state of the plan.

Hence, irrespective of the actual outcome of executing the
plan, the agent will arrive in a state where it either knows
poisonous or knows ¬poisonous, and so, we can conclude
that the plan allows us to know-whether poisonous.

The inferences employed above are examples of postdic-
tion (Sandewall 1994). Although the individual inferences
are fairly simple, taken together they can add significantly
to the agent’s ability to deal with incompletely known en-

3

vironments. A critical element in these inferences is the
Markov assumption as described in (Golden & Weld 1996):
first, we must assume that we have complete knowledge of
action effects and non-effects (our incomplete knowledge
comes from lack of information about precisely what state
we are in when we apply the action). Second, we must as-
sume that the agent’s actions are the only source of change
in the world. The first assumption is not restrictive, since ac-
tion non-determinism can always be modeled by state non-
determinism. However, the second assumption is. Hence,
this assumption needs to be examined carefully when deal-
ing with other agents (or nature) that could be altering the
world concurrently.

In PKS, reasoning about these kinds of inferences is im-
plemented by manipulating linearizations of the tree struc-
tured conditional plan. Each path to a leaf becomes a linear
sequence of states and actions: the states and actions visited
during that particular execution of the plan. The number of
linearizations is equal to the number of leaves in the condi-
tional plan, so only a linear amount of extra space is required
to convert the condition plan (tree) into a set of linear plans
(the branches of the tree). Each path differs from other paths
in the manner in which the agent’s know-whether knowledge
resolved itself during execution and in the manner in which
that resolution affected the actions the agent subsequently
executed. For each linear sequence, we apply the following
set of backward and forward inferences to draw additional
conclusions along that sequence. When new branches are
added to the conditional plan, new linearizations are incre-
mentally constructed and the process is repeated.

Let W be a knowledge state in a linear sequence, W + be
its successor state, and a be the label of the edge from W to
W+. The inference rules we apply are:
1) If a cannot make φ false (e.g., φ is unrelated to any of
the facts a makes true), then if φ becomes newly known in
W make φ known in W+. Similarly, if a cannot make φ
true, then if φ becomes newly known in W + make φ known
in W . In both cases a cannot have changed the status of φ
between the two worlds W and W +.
2) If φ becomes newly known inW and a has the conditional
effect φ→ ψ, make ψ known inW +. ψ must be true inW+

as either it was already true or a made it true.
3) If a has the conditional effect ψ → φ and it becomes
newly known that φ holds in W + and ¬φ holds in W , make
ψ known in W . It has become known that a’s conditional
effect was activated, so the antecedent of this effect must
have been true.
4) If a has the conditional effect ψ → φ and it becomes
newly known that ¬φ holds in W +, make ¬ψ known in W .
It has become known that a’s conditional effect was not ac-
tivated, so the antecedent of this effect must have been false.

Although these rules are easily shown to be sound un-
der the assumption that we have complete information about
a’s effects, they are too general to implement efficiently. In
particular, PKS achieves its efficiency by restricting disjunc-
tions, hence we cannot use these rules to infer arbitrary new
disjunctions.

To avoid this problem, we restrict φ and ψ to be liter-
als, and further require that our actions cannot add or delete

Linearization of conditional branches:

Kf: lawn−dead

pour−on−lawn sense−lawn
lawn−dead
branch on

Kf: lawn−dead

(a)

(b)
Kw: lawn−dead

Kf: lawn−dead

Conditional plan:

pour−on−lawn sense−lawn

Kf: lawn−dead lawn−deadKf:Kf:
Kf: Kf: Kf:

(a)

pour−on−lawn sense−lawn

Kf: lawn−dead Kf:Kf: lawn−dead
Kf: Kf: Kf:

(b)

lawn−dead (1)
poisonous (1)poisonous (3) poisonous (1)

poisonous (4) poisonous (1) poisonous (1)
lawn−dead (1)

Figure 1: Postdiction in the poisonous liquid domain

a fluent F with more than one conditional effect. For ex-
ample, an action cannot contain the two conditional effects
a→ F and b→ F .3 These restrictions do not prohibit φ and
ψ from being parameterized, provided such parameters are
among the parameters of the action. In certain cases, we can
apply these rules to more complex formulas, without pro-
ducing general disjunctions; implementing these extensions
remains as future work.

A conditional plan is updated by applying these inference
rules to each linearization of the plan. To test whether or not
one of the inference rules should be applied, the standard
PKS inference algorithm is used to test the rule conditions
against a given state in the plan. Thus, testing the inference
rules has the same complexity as evaluating whether or not
an action’s preconditions hold. A successful application of
one of the inference rules might allow other rules to fire.
Nevertheless, even in the worst case we can still run the rules
to closure (i.e., to a state where no rule can be applied) fairly
efficiently.

Proposition 1 On a conditional plan with n leaves and
maximum height d, at most O(nd2) tests of rule applica-
bility need be performed to reach closure.

In practice we have found that the number of effects applied
at each state is often quite small and that the new inference
procedure can be applied to a plan quite efficiently.

We illustrate the operation of our postdiction algorithm on
the conditional plan 〈pour-on-lawn, sense-lawn〉, followed
by a branch on knowing whether lawn-dead. This plan is
shown at the top of Figure 1, along with the contents of
the databases. The two linearizations of the plan are shown
in (a) and (b). Applying the new inference rules produces
the additional conclusions shown in bold; the number fol-
lowing the conclusion indicates the rule that was applied in
each case. The net result is that we have proved that in ev-
ery outcome of the plan the agent either knows poisonous
or knows ¬poisonous, i.e., the plan achieves know-whether
knowledge of poisonous.

3If this was allowed, rule 3 above would be invalid. The correct
inference from knowing ¬F in W and F in W+ would be a ∨ b,
which is a disjunction. This problem was pointed out to us by Tal
Shaked.

4

Temporally extended goals: Consider again the plan il-
lustrated in Figure 1. If we apply the postdiction algorithm
as in branch (a), we can infer not only that poisonous held in
the final state of the execution, but also that it held in the ini-
tial state. In other words, along this execution branch we can
conclude that the liquid must have initially been poisonous.
Similarly, along branch (b), we conclude that ¬poisonous
held in the initial state. Thus, at plan time we could also infer
that the plan achieves know-whether knowledge of whether
poisonous initially held.

Often, these kinds of temporally-indexed conclusions are
needed to achieve certain goals. For instance, restore goals
require that the final state return a condition to the status it
had in the initial state (Weld & Etzioni 1994). We might
not know the initial status of a condition. Hence, it may
be difficult for the planner to infer that a plan does in fact
restore this status. However, with additional reasoning (as
in the above example), we may be able to infer the initial
status of the condition, and thus be in a position to ensure a
plan properly restores it.

Since our postdiction algorithm requires the ability to in-
spect and augment any knowledge state in a conditional
plan’s tree structure, the infrastructure is already in place
to let us solve more complex types of temporal goals that
reference states other than the final state.

In PKS, goals are constructed from a set of primitive
queries (Bacchus & Petrick 1998) that can be evaluated by
the inference algorithm at a given knowledge state. A prim-
itive query Q is in one of the following forms: (i) K(�): is
a ground literal � known to be true? (ii) Kval(t): is term t’s
value known? (iii) Kwhe(�): do we “know whether” a lit-
eral �? Our enhancements to the goal language additionally
allow a query Q to specify one of the following temporal
conditions:

1. QN : the query must hold in the final state of the plan,

2. Q0: the query must hold in the initial state of the plan, or

3. Q∗: the query must hold of every state that could be vis-
ited by the plan.

Conditions of type (1) can be used to express classical goals
of achievement. Type (2) conditions allow, for instance, re-
store goals to be expressed. Conditions of type (3) can be
used to express “hands-off” or safety goals (Weld & Etzioni
1994).

Finally, we can combine queries into arbitrary goal for-
mulas that include disjunction,4 conjunction, negation, and
a limited form of existential quantification. When combined
with the postdiction algorithm of the previous section, a goal
is satisfied in a conditional plan provided it is satisfied in ev-
ery linearization of the plan.

For instance, the plan in Figure 1 satisfies the goal
Kwhe0(poisonous) ∧ KwheN (poisonous), i.e., we know
whether poisonous is true or not in both the initial state
and the final state of each linearization of the plan. The
same plan also satisfies the stronger, disjunctive goal

4As in the approach taken in (Petrick & Levesque 2002), dis-
junctions outside the scope of a knowledge operator do not pose a
problem.

(K0(poisonous) ∧KN(poisonous)) ∨ (K0(¬poisonous) ∧
KN(¬poisonous)). In this case, linearization (a) satisfies
K0(poisonous)∧KN (poisonous), linearization (b) satisfies
K0(¬poisonous)∧KN (¬poisonous), and so the conditional
plan satisfies the disjunctive goal. Finally, the plan also sat-
isfies the goal Kwhe∗(poisonous) since we know whether
poisonous is true or not at every knowledge state of the plan.

Numerical evaluation: Many planning scenarios require
the ability to reason about numbers. For instance, construct-
ing plans to manage limited resources or satisfy certain nu-
meric constraints requires the ability to reason about arith-
metic expressions. To increase our flexibility to generate
plans in such situations, we have introduced numeric expres-
sions into PKS. Currently PKS can only deal with numeric
expressions containing terms that can be evaluate down to
a number at plan time. For example, a plan might involve
filling the fuel tank of a truck t1. If the numeric value of the
amount of fuel subsequently in the tank, fuel(t1), is known
at plan time, PKS can use fuel(t1) in further numeric expres-
sions. However, if the amount of fuel added is known only at
run time, so that PKS only Kv’s fuel(t1) but does not know
how to evaluate it at plan time, then it cannot use fuel(t1) in
other numeric expressions.

Even though PKS can only deal with numeric expressions
containing known terms, these expressions can be very com-
plex: they are a subset of the set of expressions of the C lan-
guage. Specifically, numeric expressions can contain all of
the standard arithmetic operations, logical connective oper-
ators, and limited control structures (e.g., conditional evalu-
ations and simple iterative loops). Temporary variables may
also be introduced into calculations of an expression.

Numeric expressions can be in used queries, and we can
update our databases with a formula containing numeric
terms. The only restriction, as noted above, is that PKS
must be able to evalaute these expressions down to a spe-
cific numeric value before they are used to query or update
the databases. Nevertheless, as we will demonstrate in the
planning problems presented below, even with this restric-
tion, numeric expressions are still very useful in modeling
various planning problems.

Exclusive-or knowledge of function values: PKS has
a Kx database for expressing “exclusive-or” knowledge.
However a particularly useful case of exclusive or knowl-
edge occurs when a function has a finite and known range.
For example, the function f(x) might only be able to take on
one of the values hi, med, or lo. In this case know that for ev-
ery value of x we have (f(x) = hi|f(x) = med|f(x) = lo).
Previously PKS could not represent such a formula in its Kx

database, as the formula contains literals that are not ground.
Because finite valued functions are so common in planning
domains, we have extended PKS’s ability to represent and
reason with this kind of knowledge.

We can take advantage of this additional knowledge in
two ways. First, we can utilize this information to reason
about sets of function values and their inter-relationship.
For example, say that g(x) has range {d1|d2| . . . |dm} while
f(x) has range {d1|a1| . . . |am}. Then from f(c) = g(b) we
can conclude that f(c) = g(b) = d1.

5

Second, we have added the ability to insert multi-way
branches into a plan when we have Kv knowledge of a fi-
nite range function. The planner will then try to construct a
plan for each of the finite possible values of the function.

For instance, in the open safe example it might be that we
know the set of possible combinations. This could be spec-
ified by the formula combo() = (c1|c2| . . . |cn) in our ex-
tended Kx database. In any plan state where combo() ∈ Kv

(we know the value of the combination) we could immedi-
ately complete the plan with a n-way branch on the possible
values of combo followed by the action dial(c i) to achieve
an open safe along the i-th branch.

Planning problems
We now illustrate the extensions made to PKS with a series
of planning problems. Our enhancements have allowed us
to experiment with a wide range of problems; problems PKS
was previously unable to solve. We also note again that even
though our planner employs blind search to find plans it is
still able to solve many of the examples given below in time
that is less than the resolution of our timers (1 or 2 millisec-
onds).
Poisonous liquid: When given the actions specified in Ta-
ble 1, PKS can immediately find the plan 〈pour-on-lawn,
sense-lawn〉 to achieve the goal Kwhe0(poisonous) ∧
KwheN (poisonous) (knowing whether poisonous held in
both the initial and final states). It is also able to find
the same plan when given the goal (K 0(poisonous) ∧
K(poisonous)) ∨ (K0(¬poisonous) ∧K(¬poisonous)), as
well as the goal Kwhe∗(poisonous).

An interesting variation of the poisonous liquid domain
includes the addition of the action pour-on-lawn-2 (see Ta-
ble 1). pour-on-lawn-2 has the effect of pouring a second
unknown liquid onto the lawn; its effects are similar to those
of pour-on-lawn: the second liquid may be poisonous (rep-
resented by poisonous2) and, thus, kill the lawn. When pre-
sented with the conditional plan shown at the top of Figure 2,
PKS is able to constuct the linearizations (a) and (b), and
augment the databases with the conclusions shown in bold
in the figure. This plan is useful for illustrating our postdic-
tion rules. In (a), since pour-on-lawn-2 and pour-on-lawn
both have conditional effects involving lawn-dead, we can-
not make any additional conclusions about lawn-dead across
these actions. As a result, no further reasoning rules are ap-
plied. This reasoning is intuitively sensible: the agent is
unable to determine which liquid killed the lawn and, thus,
cannot conclude which of the liquids is poisonous. (The
disjunctive conclusion that one of the liquids is poisonous
cannot be represented by PKS). In (b), after applying the
inference rules we are able to establish that ¬lawn-dead,
¬poisonous, and ¬poisonous2 must hold in each state of the
plan. Again these conclusions are intuitive: after sensing
the lawn and determining that it is not dead, the agent can
conclude that neither liquid can be poisonous.

It should be noted that planners that represent sets of pos-
sible worlds (and thus deal with disjunction) are also able
to obtain the conclusions obtained from our postdiction al-
gorithm in the examples above (and some further disjunc-
tions as well). In particular, the above examples are all

Kf: lawn−dead

Kf: lawn−dead

pour−on−lawn pour−on−lawn−2 sense−lawn
lawn−dead
branch on

(a)

(b)
Kw: lawn−dead

Kf: lawn−dead

Kf: lawn−dead

Conditional plan:

Linearization of conditional branches:

pour−on−lawn
(a)

pour−on−lawn−2

pour−on−lawn
(b)

pour−on−lawn−2 sense−lawn

Kf: lawn−dead
Kf: Kf:
Kf: Kf:

Kf:

Kf:
Kf:

sense−lawn

lawn−deadKf:Kf: lawn−dead (1)

poisonous2 (1)
lawn−dead (1)

poisonous (1) poisonous (1)
poisonous2 (1)

Kf: lawn−dead

Kf:
Kf: poisonous2 (1)

poisonous (1)

Kf: lawn−dead (1)

poisonous (4)
poisonous2 (4)

Figure 2: Poisonous liquid domain with two liquids

Action Pre Effects
paint(x) K(colour(x)) add (Kf , door-colour() = x)
sense-colour add (Kv , door-colour())

Table 2: Painted door action specification

propositional, and do not utilize PKS’s ability to deal with
non-propositional features. What does pose a problem for
many of these planners, however, is their inability to infer
the temporally-indexed conclusions necessary to verify the
temporal goal conditions; planners that only maintain and
test the final states of a plan will be unable to establish the
required conclusions.
Painted door: In the painted door domain we have the two
actions given in Table 2. paint changes the colour of the
door door-colour()) to an available colour x, while sense-
colour senses the value of door-colour(). Our goal is a
“hands-off” goal of coming to know the colour of the door
while ensuring that the colour is never changed by the plan.
This can be expressed by the temporally-extended formula
(∃x)K∗(door-colour() = x).

Initially, the agent knows that the door is one of two
possible colours, c1 or c2, represented by the formula
door-colour() = {c1|c2} in the Kx database.5 During
its search PKS finds the single-step plan 〈sense-colour〉.
This action has the effect of adding door-colour() to the
Kv database, indicating that the value of door-colour() is
known. Using this information, combined with its Kx

knowledge of the possible values for door-colour(), PKS
can construct a two-way branch on the possible values of
door-colour(). Along one branch the planner asserts that
door-colour() = c1; along the other branch it asserts that
door-colour() = c2. Since sense-colour does not change
door-colour(), after applying the postdiction algorithm we
are able to conclude along each linearization that the value
of door-colour() is the same in every state. In each lineariza-
tion door-colour() has a different value in the initial state,
but its value agrees with its value in the final state. Thus, we
can conclude that the plan achieves the goal.

Note that if PKS examines a plan like 〈paint(c1)〉 it will
not know the value of (door-colour) in the initial state. Since

5Any finite set of known colours will also work.

6

Action Pre Effects
cd(d) K(dir(d)) add(Kf , pwd() = d)

K(indir(d, pwd())
cd-up(d) K(dir(d)) add(Kf , pwd() = d)

K(indir(pwd(), d)
ls(f, d) K(pwd() = d) add(Kw, indir(f, d))

K(file(f))
¬Kw(indir(f, d))

Domain specific update rules
¬K(processed(f, d)) ∧ K(indir(f, d)) ∧ Kval(size(f, d)) ⇒

t = [(size-max) > (size(f, d))]? (size-max) : (size(f, d)),
add (Kf , (size-max) = t),
add (Kf , (count) = (count) + 1),
add (Kf , processed(f, d))

¬K(processed(f, d)) ∧ K(indir(f, d)) ∧ ¬Kval(size(f, d)) ⇒
add (Kf , (size-unk) = (size-unk) + 1),
add (Kf , processed(f, d))

¬K(processed(f, d)) ∧ K(¬indir(f, d)) ⇒
add (Kf , processed(f, d))

Table 3: UNIX domain action specification

paint changes the value of (door-colour), our postdiction
algorithm will not allow facts about (door-colour) to be
passed back through paint. Thus, PKS cannot conclude that
(door-colour) remains the same throughout the plan, and
plans involving paint are rejected as not achieving the goal.
UNIX domain: Our final examples are taken from the UNIX
domain. The actions for the first example are given in
Table 3. A directory hierarchy is defined by the relation
indir(x, y) (x is in directory y), the current working di-
rectory is specified by the 0-ary function pwd(), and there
are two actions for moving around in the directory tree:
cd(x) moves down to a sub-directory of pwd() and cd-up(x)
moves to the parent directory of pwd(). Finally, the third ac-
tion, ls, can sense the presence of a file in pwd().

Initially, the planner has knowledge of the cur-
rent directory, pwd() = root, and of the directory
tree’s structure: indir(icaps, root), indir(kr, root), and
indir(planning, icaps). The planner also has the initial
knowledge file(paper.tex) (a precondition of ls).

In this example we consider the situation where multi-
ple copies of the file paper.tex may exist, located in differ-
ent directories with possibly different sizes. We would like
to determine the number of instances of paper.tex that are
in the directory tree, as well as the size of the largest copy
(whose size is known). To do this, we introduces some ad-
ditional functions. size(f, d) specifies the size of file f in
directory d, size-max() keeps track of the largest file size
that has been found, count() simply counts the number of
instances of paper.tex whose size is known, while size-unk()
counts the number of copies whose size is not known. Ini-
tially, we have that count(), size-max(), and size-unk() are
all known to be equal to zero.

Our domain encoding includes three “update rules,” rules
that are conditionally fired in the initial state, or after ac-
tions or branches have been added to the plan. 6 These

6Update rules are simply a convenient way of specifying addi-
tional action effects that might apply to many different actions.

rules handle the different cases when we have not yet “pro-
cessed” a directory d, i.e., checked it for the presence of a
paper.tex. The first rule fires when paper.tex is in a direc-
tory d and its size is known. In this case, we can compare
the size, size(paper.tex, d) against the current the maximum
size, size-max(), and update size-max() if necessary. count()
is also incremented. The second rule fires when paper.tex is
in a directory d but we don’t know its size. In this case
we simple increment size-unk(). Finally, the third rule fires
when paper.tex is not in a directory d. In this case, none
of our functions is changed. After any of the update rules
is fired, we mark directory d as being checked for paper.tex
(i.e., processed(paper.tex, d) becomes known).

Our goal is to know that we have processed each direc-
tory in the directory tree. In the first example, we consider
the case when we know the location and size of some copies
of paper.tex: indir(paper.tex, kr), indir(paper.tex, icaps),
size(paper.tex, kr) = 1024, and size(paper.tex, icaps) =
4096. Running PKS on this problem immediately pro-
duces the plan: 〈ls(paper.tex, root),cd(icaps),cd(planning),
ls(paper.tex, planning〉, following by a branch on knowing-
whether indir(paper.tex, planning): in each branch we
branch again on knowing-whether indir(paper.tex, root).
The final plan has four leaf nodes. In each of these
terminal states, size-max() = 4096 and count() = 2.
The four branches of the plan track the planner’s in-
complete knowledge of paper.tex being in the directories
root and planning: each final state represents one possi-
ble combination of knowing-whether indir(paper.tex, root)
and knowing-whether indir(paper.tex, planning). Moreover,
the value of the function size-unk() is appropriately up-
dated in each of these states (by the second update rule).
For instance, along the branch where indir(paper.tex, root)
and indir(paper.tex, planning) holds, we would also know
size-unk() = 2. When ¬indir(paper.tex, planning) and
¬indir(paper.tex, root) is known, size-unk() = 0. The re-
maining two branches would each have size-unk() = 1.

PKS is also able to generate a plan if we don’t have any
information about the sizes or locations of paper.tex. In
this case, the plan performs an ls action in each directory
and produces a plan branch for each possibility of knowing-
whether paper.tex is in that directory. With 4 directories to
check, PKS produces a plan with 24 = 16 branches. Our
blind depth-first version of the planner is able to find this
plan in 0.01 seconds; our breath-first version of PKS which
ensures the smallest plan is generated, is able to do so in
30.1 seconds.

One final extension to this example is the addition of a
goal that requires us to not only determine the size of the
largest instance of paper.tex, but also to move to the di-
rectory containing this file (provided we have found a file
whose size is known). To do this, we need simply add the
additional “guarded” goal formula (∃d).K((count) > 0) ⇒
K(pwd() = d)∧ K((size(paper.tex, d) = size-max()) to
our goal list. If PKS has processed a file whose size is
known (i.e., count() > 0) then it also needs to ensure pwd()
matches the directory containing a file size of size-max() for
paper.tex. Otherwise, the goal is trivially satisfied.

Our second UNIX domain example uses the actions given

7

Action Pre Effects
ls(d) K(dir(d)) add (Kw, exec(d))
chmod+x(d) K(dir(d)) add (Kf , exec(d))
chmod-x(d) K(dir(d)) add (Kf ,¬exec(d))
cp(f, d) K(file(f)) add (Kf , indir(f, d))

K(dir(d))
K(exec(d))

cp+(f, d) K(file(f)) K(exec(d)) ⇒
K(dir(d)) add (Kf , indir(f, d))

add (Kw, indir(f, d))

Table 4: UNIX domain action specification

in Table 4. Initially, we know about the existence of certain
files and directories, specified by the file(f) and dir(d) pred-
icates, some of their locations, specified by the indir(f, d)
predicate, and that some directories are executable, speci-
fied by the exec(d) predicate. The action ls(d) senses the
executability of a directory d; chmod+x(d) and chmod-x(d)
respectively set and delete the executability of a directory;
and cp(f, d) copies a file f into directory d, provided the
directory is executable. The goal in this domain is to copy
files into certain directories, while restoring the executability
conditions of these directories.

Let the planner have the initial knowledge dir(icaps),
file(paper.tex), and ¬indir(paper.tex, icaps). The planner
has no initial knowledge of the executability of the di-
rectory icaps. Let the goal be that we come to know
indir(paper.tex, icaps) and that we restore the executabil-
ity status of icaps (i.e., that exec(icaps) has the same value
at the end and the beginning of the plan). The value of
exec(icaps) may change during the plan, provided it is re-
stored to its original value by the end of the plan.

PKS finds the conditional plan: ls(icaps); branch on
exec(icaps): if K(exec(icaps)) then cp(paper.tex, icaps),
otherwise chmod+x(icaps); cp(paper.tex, icaps);
chmod-x(icaps).

Since the executability of icaps is not known initially, the
ls action is necessary to sense the value of exec(icaps). The
postdiction establishes that this sensed value must also hold
in the initial state, since ls does not change the value of
exec. The second goal can then be established by testing
the initial value of exec(icaps) against its value in the final
state(s) of the plan. By reasoning about the possible val-
ues of exec(icaps), appropriate plan branches can be built to
ensure the first goal is achieved (the file is copied) and the
executability permissions of the directory are restored along
the branch where we had to modify these permissions.

We also consider a related example with a new ver-
sion of the cp action, cp+ (also given in Table 4).
Unlike cp, cp+ does not require that the directory be
known to be executable, but returns whether or not
the copy was successful. In this case PKS finds
the conditional plan: cp+(paper.tex, icaps); branch on
indir(paper.tex, icaps): if K(indir(paper.tex, icaps)) do
nothing, otherwise chmod+x(icaps); cp(paper.tex, icaps);
chmod-x(icaps). In other words PKS is able to reason from
cp+ failing to achieve indir(paper.tex, icaps) that icaps was
not initially executable.

Conclusions
Our extensions have made the PKS planner more power-
ful, and have served to push knowledge based approach to
planning under incomplete knowledge forward. There are a
number of further extensions that we are working on. The
most important of these is to improve our ability to deal
with unknown numeric quantities. For example, we were
unable to treat unknown file sizes in a completely general
way in our UNIX example. We think that this problem can
be solved, and believe that the knowledge based approach
continues to have great potential for building powerful plan-
ners that can work under incomplete knowledge.

References
Anderson, C. R.; Weld, D. S.; and Smith, D. E. 1998. Extending
graphplan to handle uncertainty & sensing actions. In Proceed-
ings of the AAAI National Conference, 897–904.

Bacchus, F., and Petrick, R. 1998. Modeling and agent’s incom-
plete knowledge during planning and execution. In Proceedings
of the International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR), 432–443.

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001. Plan-
ning in nondeterministic domains under partial observability via
symbolic model checking. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 473–478.

Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90:281–300.

Brafman, R., and Hoffmann, J. 2003. Conformant planning via
heuristic forward search. In Workshop on Planning Under Uncer-
tainty and Incomplete Information.

Bryant, R. E. 1992. Symbolic boolean manipulation with ordered
binary decision diagrams. ACM Computing Surveys 24(3):293–
318.

Etzioni, O.; Golden, K.; and Weld, D. 1997. Sound and efficient
closed-world reasoning for planning. Artificial Intelligence 89(1–
2):113–148.

Golden, K., and Weld, D. 1996. Representing sensing actions:
The middle ground revisited. In Proceedings of the International
Conference on Principles of Knowledge Representation and Rea-
soning (KR), 174–185.

Levesque, H. J. 1996. What is planning in the presence of sens-
ing? In Proceedings of the AAAI National Conference, 1139–
1146. AAAI Press / MIT Press.

Moore, R. C. 1985. A formal theory of knowledge and action. In
Hobbs, J., and Moore, R. C., eds., Formal Theories of the Com-
monsense World. Norwood, NJ: Ablex Publishing Corp. 319–358.

Petrick, R., and Bacchus, F. 2002. A knowledge-based approach
to planning with incomplete information and sensing. In Pro-
ceedings of the International Conference on Artificial Intelligence
Planning (AIPS), 212–222.

Petrick, R. P. A., and Levesque, H. J. 2002. Knowledge equiv-
alence in combined action theories. In Proceedings of the Inter-
national Conference on Principles of Knowledge Representation
and Reasoning (KR).

Sandewall, E. 1994. Features and Fluents, volume 1. Oxford
University Press.

Weld, D., and Etzioni, O. 1994. The first law of robotics (a call to
arms). In Proceedings of the AAAI National Conference, 1042–
1047.

8

