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Abstract

In previous work we developed a method of
learning Bayesian Network models from raw
data� This method relies on the well known
minimal description length �MDL� principle�
The MDL principle is particularly well suited
to this task as it allows us to tradeo	� in a
principled way� the accuracy of the learned
network against its practical usefulness� In
this paper we present some new results that
have arisen from our work� In particular� we
present a new local way of computing the
description length� This allows us to make
signi
cant improvements in our search algo�
rithm� In addition� we modify our algorithm
so that it can take into account partial do�
main information that might be provided by
a domain expert� The local computation of
description length also opens the door for lo�
cal re
nement of an existent network� The
feasibility of our approach is demonstrated
by experiments involving networks of a prac�
tical size�
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� Introduction

Bayesian networks� advanced by Pearl �Pea���� have
become an important paradigm for representing and
reasoning under uncertainty� Systems based on
Bayesian networks have been constructed in a num�
ber of di	erent application areas� ranging from medi�
cal diagnosis �BBS���� to oil price reasoning �Abr����
Despite these successes� a major obstacle to using
Bayesian networks lies in the di�culty of constructing
them in complex domains� there is a knowledge engi�
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neering bottleneck� Clearly� it would be extremely use�
ful if the construction process could be fully or partly
automated� A useful approach� that has recently be�
ing pursued by a number of authors� is to attempt to
build� or learn� a network model from raw data� In
practice� raw data is often available from databases of
records�

We have developed a new approach to learning
Bayesian network models �LB��b�� Our approach
is based on Rissanen�s Minimal Description Length
�MDL� �Ris��� principle� The MDL principle o	ers a
means for trading o	 model complexity and accuracy�
and our experiments have demonstrated its suitabil�
ity for this task� In this paper we present some sig�
ni
cant improvements to our original system �LB��b�
which ��� make it more e�cient� ��� allow it to take
into consideration domain information about causa�
tion and ordering� and ��� allow local re
nement of an
existing network�

These improvements are mainly based on a new anal�
ysis of the description length parameter that shows
how we can evaluate the description length of a pro�
posed network via local computations involving only
a node and its parents� This localized evaluation of
description length allows us to develop an improved
searching mechanism that performs well even in fairly
large domains� In addition� it allows us to modify our
search procedure so that it can take into consideration
domain knowledge of direct causes as well as partial or�
derings among the variables� Such partial information
about the structure of the domain is quite common
and in many cases it can reduce the complexity of the
searching process during learning�

The localized evaluation of description length also al�
lows us to modify an existing Bayesian network by
re
ning a local part of it� By re
ning the network we
obtain a more accurate model� or adapt an existing
model to an environment that has changed over time�

In the sequel we will 
rst describe� brie�y� the key fea�
tures of our previous work� concentrating in particular
on the advantages of the MDL approach� Then we de�
rive a new localized version of the description length
computation� Using this we develop an algorithm that



searches for a good network model� taking into consid�
eration causal and ordering information about the do�
main� Finally� we discuss the results of various exper�
iments we have run that demonstrate the e	ectiveness
of our approach� The experimental results of our work
on local re
nement of an existing network are not yet
complete� but we will close with a brief discussion of
the method� The experiment results will be reported
in our full report �LB��a��

� Learning Bayesian Networks

Much early work on learning Bayesian networks shares
the common disadvantage of relying on assumptions
about the underlying distribution being learned� For
example� Chow and Liu �CL��� developed methods
that construct tree structured networks� hence their
method provides no guarantees about the accuracy
of the learned structure if the underlying distribution
cannot be expressed by a tree structure� The ap�
proach of Rebane and Pearl �RP���� as well as that
of Geiger et� al� �GPP���� su	ers from the same criti�
cism� except that they are able to construct singly con�
nected networks� Sprites et al��SS��� as well as Verma
and Pearl �VP��� PV��� develop approaches that are
able to construct multiply connected networks� but
they require the underlying distribution to be dag�
isomorphic��

The problem with making an assumption about the
underlying distribution is that generally we do not
have su�cient information to test our assumption�
The underlying distribution is unknown� all we have is
a collection of records in the form of variable instantia�
tions� Hence� in practice these methods o	er no guar�
antees about the accuracy of the learned model except
in the rare circumstances where we know something
about the underlying distribution�

Our approach can construct an accurate model from
an unrestricted range of underlying distributions� and
it is capable of constructing networks of arbitrary
topology� i�e�� it can construct multiply connected net�
works� The ability to construct a multiply connected
networks is sometimes essential if the network is to be
a su�ciently accurate model of the underlying distri�
bution�

Although multiply connected networks allow us to
more accurately model the underlying distribution
they have computational as well as conceptual dis�
advantages� Exact belief updating procedures are� in
the worst case� computationally intractable over mul�
tiply connected networks �Coo���� Moreover� even if
an approximation algorithm is used� e�g�� the stochas�
tic simulation methods of �CC��� Pea��� SP���� highly
connected networks still require the storage and esti�
mation of an exponential number of conditional prob�

�A distribution is dag�isomorphic if there is some dag
that displays all of its dependencies and independencies
�Pea����

ability parameters�� Hence� even if a highly connected
network is more accurate� in practice it might not be
as useful a model as a simpler albeit slightly less ac�
curate model� In addition to the computational dis�
advantages the causal relationships between the vari�
ables are conceptually more di�cult to understand in
a complex network�

Hence� we are faced with a tradeo	� More complex
networks allow for more accurate models� but at the
same time such models may be of less practical use
than simpler models� The MDL principle allows us
to balance this tradeo	� our method will learn a less
complex network if that network is su�ciently accu�
rate� and at the same time it is still capable of learning
a complex network if no simpler one is su�ciently ac�
curate� This seems to be a particularly appropriate
approach to take in light of the fact that we only have
a sample of data points from the underlying distribu�
tion� That is� it seems inappropriate to try to learn
the �most accurate� model of the underlying distribu�
tion given that the raw data only provides us with an
approximate picture of it�

Among other works on learning Bayesian networks� the
most closely related is that of Cooper and Herskovits
�CH���� They use a Bayesian approach that� like ours�
is capable of learning multiply connected networks�
However� as with all Bayesian approaches they must
choose some prior distribution over the space of possi�
ble networks� One way of viewing the MDL principle is
as a mechanism for choosing a reasonable prior that is
biased towards simpler models� Cooper and Herskovits
�CH��� investigate a number of di	erent priors� but it
is unclear how any particular choice will in�uence the
end result� The MDL principle� on the other hand�
allows the system designer �who can choose di	erent
ways of encoding the network� to choose a prior based
on principles of computational e�ciency� For exam�
ple� if we prefer to learn networks in which no node
has more than � parents� we can choose an encoding
scheme that imposes a high penalty on networks that
violate this constraint�

��� Applying the MDL Principle

The MDL principle is based on the idea that the best
model representing a collection of data items is the
model that minimizes the sum of

�� the length of the encoding of the model� and

�� the length of the encoding of the data given the
model�

both of which can be measured in bits� A detailed
description of the MDL principle with numerous ex�
amples of its application can be found in �Ris����

�The number of parameters required is exponential in
the maximum number of parents of node�



To apply the MDL principle to the task of learning
Bayesian networks we need to specify how we can per�
form the two encodings� the network itself �item �� and
the raw data given a network �item ���

Encoding the Network Our encoding scheme for
the networks has the property that the higher the
topological complexity of the network the longer will
be its encoding� To represent the structure of a
Bayesian network we need for each node a list of its
parents and a list of its conditional probability param�
eters�

Suppose there are n nodes in the problem domain� For
a node with k parents� we need k log��n� bits to list
its parents� To represent the conditional probabilities�
the encoding length will be the product of the number
of bits required to store the numerical value of each
conditional probability and the total number of con�
ditional probabilities that are required� In a Bayesian
network� a conditional probability is needed for every
distinct instantiation of the parent nodes and node it�
self �except that one of these conditional probabilities
can be computed from the others due to the fact that
they all sum to ��� For example� if a node that can
take on � distinct values has � parents each of which
can take on � distinct values� we will need ��� ��� ��
conditional probabilities�

Hence� the total description length for a particular net�
work will be�

nX

i��

�ki log��n� � d�si � ��
Y

j�Fi

sj �� ���

where there are n nodes� for node i� ki is the number
of its parent nodes� si is the number of values it can
take on� and Fi is the set of its parents� and d repre�
sents the number of bits required to store a numerical
value� For a particular problem domain� n and d will
be constants� This is not the only encoding scheme
possible� but it is simple and it performs well in our
experiments�

By looking at this equation� we see that highly con�
nected networks require longer encodings� First� for
many nodes the list of parents will become larger� and
second the list of conditional probabilities we need to
store for that node will also increase� In addition� net�
works in which nodes that have a larger number of
values have parents with a large number of values will
require longer encodings� Hence� the MDL principle�
which is trying to minimize the sum of the encoding
lengths� will tend to favor networks in which the nodes
have a smaller number of parents �i�e�� networks that
are less connected� and also networks in which nodes
taking on a large number of values are not parents of
nodes that also take on a large number of values�

In Bayesian networks the degree of connectivity is
closely related to the computational complexity of
using the network� both space and time complexity�
Hence� our encoding scheme generates a preference for

more e�cient networks� That is� since the encoding
length of the model is included in our evaluation of
description length� we are enforcing a preference for
networks that require the storage of fewer probability
parameters and on which exact algorithms are more
e�cient�

Encoding the Data Using the Model The task is
to learn the joint distribution of a collection of random
variables �X � fX�� � � � � Xng� Each variable Xi has
an associated collection of values fx�i � � � � � x

si
i g that it

can take on� where the number of values si depends on
i� Every distinct choice of values for all the variables

in �X de
nes an atomic event in the underlying joint
distribution and is assigned a particular probability by
that distribution�

We assume that the data points in the raw data are
all atomic events� That is� each data point speci
es a
value for every random variable in �X � Furthermore�
we assume that the data points are the result of in�
dependent random trials� Hence� we would expect�
via the central limit theorem� that each particular in�
stantiation of the variables would eventually appear in
the database with a relative frequency approximately
equal to its probability� These are standard assump�
tions�

Given a collection of N data points we want to encode�
or store� the data as a binary string� There are various
ways in which this encoding can be done� but here we
are only interested in using the length of the encod�
ing as a metric� via item � in the MDL principle� for
comparing the merit of candidate Bayesian Networks�
Hence� we can limit our attention to character codes
�CLR��� pp� ����� With character codes each atomic
event is assigned a unique binary string� Each of the
data points� which are all atomic events� is converted
to its character code� and the N points are represented
by the string formed by concatenating these character
codes together� To minimize the total length of the
encoding we assign shorter codes to events that oc�
cur more frequently� This is the basis for Hu	man�s
encoding scheme� It is well known that Hu	man�s al�
gorithm yields the shortest encoding of the N data
points �LH����

Say that in the underlying distribution each atomic
event ei has probability pi and we construct� via some
learning scheme� a particular Bayesian network from
the raw data� This Bayesian network acts as a model of
the underlying distribution and it also assigns a prob�
ability� say qi� to every atomic event ei� Of course�
in general qi will not be equal to pi� as the learning
scheme cannot guarantee that it will construct a per�
fectly accurate network� Nevertheless� the aim is for qi
to be close to pi� and the closer it is the more accurate
is our model�

The constructed Bayesian network is intended as our
best �guess� representation of the underlying distribu�
tion� Hence� given that the probabilities qi determined



by the network are our best guess of the true values pi�
it makes sense to design our Hu	man code using these
probabilities� Using the qi probabilities the Hu	man
algorithm will assign event ei a codeword of length ap�
proximately �log��qi�� If we had the true probabilities
pi� the algorithm would have assigned ei and optimal
codeword of length �log��pi� instead� Despite our use
of the values qi in assigning codewords� the raw data
will continue to be determined by the true probabil�
ities pi� That is� we still expect that for large N we
will have Npi occurrences of event ei� as pi is the true
probability of ei occurring� Therefore� when we use
the learned Bayesian network to encode the data the
length of the string encoding the database will be ap�
proximately

� N
X

i

pi log��qi�� ���

where we are summing over all atomic events� How
does this encoding length compare to the encoding
length if we had access to the true probabilities pi�
An old theorem due originally to Gibbs gives us the
answer�

Theorem ��� �Gibbs� Let pi and qi� i � �� � � � � t� be
non�negative real numbers that sum to �� Then

�
tX

i��

pi log��pi� � �
tX

i��

pi log��qi��

with equality holding if and only if �i�pi � qi� In the
summation we take � log���� to be ��

In other words� this theorem shows that the encoding
using the estimated probabilities qi will be longer than
the encoding using the true probabilities pi� It also
says that the true probabilities achieve the minimal
encoding length possible�

The MDL principle says that we must choose a net�
work that minimizes the sum of its own encoding
length� which depends on the complexity of the net�
work� and the encoding length of the data given the
model� which depends on the closeness of the proba�
bilities qi determined by the network to the true prob�
abilities pi� i�e�� on the accuracy of the model�

We could use Equation � directly to evaluate the the
encoding length of the data given the model� How�
ever� the equation involves a summation over all the
atomic events� and the number of atomic events is ex�
ponential in the number of variables� Instead of trying
to use Equation � directly we investigate the relation�
ship between encoding length and network topology�
Let the underlying joint distribution over the vari�
ables �X � fX�� � � � � Xng be P � Any Bayesian network
model will also de
ne a joint distribution Q over these
variables� We can express Q as �Pea����

Q� �X� � P �X� j FX�
�P �X� j FX�

� � � �P �Xn j FXn
��
���

where FXi
is the� possibly empty� set of parents of Xi

in the network� Note that P appears on the right hand
side instead of Q� We obtain the conditional proba�
bility parameters on the right from frequency counts
taken over the data points� By the law of large num�
bers we would expect that these frequency counts will
be close to the true probabilities over P ��

We can now prove the following new result that is the
basis for our new localized description length compu�
tations�

Theorem ��� The encoding length of the data 	Equa�
tion 
� can be expressed as�

�N

nX

i��

W �Xi� FXi
��N

nX

i��

��
X

Xi

P �Xi�log��P �Xi���

���

where the second sum is taken over all possible instan�
tiations of Xi� The term W �Xi� FXi

� given by

W �Xi� FXi
� �
X

Xi�FXi

P �Xi� FXi
� log�

P �Xi� FXi
�

P �Xi�P �FXi
�

���
where the sum is taken over all possible instantiations
ofXi and its parents FXi

� and we takeW �Xi� FXi
� � �

if FXi
� �� The proof of this� and all other theorems�

is presented in our full report �LB��a��

Given some collection of raw data� the last term in
Equation � is independent of the structure of the net�
work� Furthermore� the weight measure� the 
rst term
in Equation �� can be calculated locally�

� Localization of the Description
Length

To make use of the MDL principle� we need to evaluate
the total description length �item � � item �� given a
Bayesian network� Adding Equation � and �� the total
description length is�

nX

i��

�kilog��n	 
 �si � �	�
Y

j�FXi

sj	d��N

nX

i��

W �Xi� FXi	


N

nX

i��

��
X

Xi

P �Xi	log��P �Xi		�

�

nX

i��

��kilog��n	 
 �si � �	�
Y

j�FXi

sj	d��NW �Xi� FXi	�


N

nX

i��

��
X

Xi

P �Xi	log��P �Xi		� �
	

�It might not be the case that P is equal to this decom�
position� The approximation introduced by our network
model is precisely the assumption of such a decomposition�



The last term in Equation � remains constant for a

xed collection of raw data� Therefore� the 
rst term
is su�cient to compare the total description lengths of
alternative candidate Bayesian networks�

De�nition ��� The node description length DLi for
the node Xi� with respect to its parents FXi

� is de
ned
as�

DLi � kilog��n� � �si � ���
Y

j�FXi

sj�d�NW �Xi� FXi
�

���

De�nition ��� The relative total description length
for a Bayesian network� de
ned as the summation of
the node description length of every node in the net�
work� is given by�

nX

i��

DLi ���

As a result� the relative total description length is ex�
actly equivalent to the 
rst term in Equation �� and
thus is su�cient for comparing candidate networks�
Moreover� it can be calculated locally since each DLi

depends only on the set of parent nodes for a given
node Xi�

De�nition ��� Given a collection of raw data� an
optimal Bayesian network is a Bayesian network for
which the total description length is minimum�

Clearly� one or more optimal Bayesian networks must
exist for any collection of raw data� Furthermore� we
have the following result�

Theorem ��	 Given a collection of raw data� the rel�
ative total description length of an optimal Bayesian
network is minimum� Also� for a given node Xi in an
optimal Bayesian network� DLi is minimum among
those parent sets creating no cycle and not making the
network disconnected� That is� we cannot reduce DLi

by modifying the network to change Xi
s parents�

This theorem says that in an optimal network no sin�
gle node can be locally improved� It is possible� how�
ever� that a non�optimal network could also possess
this property� In such a case the parent sets of a num�
ber of nodes would have to be altered simultaneously
in order to reduce its description length�

� Incorporating Partial Domain
Knowledge

Although we might not know the underlying joint dis�
tribution governing the behavior of the domain vari�
ables� we could possibly have other� partial� informa�
tion about the domain� In particular� our new system
can consider two types of domain knowledge� direct
causation speci�cations and partial ordering speci�ca�
tions�

By direct causation information we mean information
of the form �Xi is a direct cause of Xj�� That is� we
might know of a direct causal link between two vari�
ables� even if we do not know the causal relationships
between the other variables� This kind of information
might be provided by� e�g�� domain experts� and we can
use it when generating the network model� In particu�
lar� we can require that in the learned model Xi be one
ofXj �s parents� thus ensuring that the model validates
the direct causation� More generally� the domain ex�
perts might be able to construct a skeleton of the net�
work� involving some� but not all� of the variables� The
arcs in the skeleton can be speci
ed as direct causation
speci
cations to our system� which will then proceed
to 
ll in the skeleton placing the remaining variables
in appropriate positions�

Partial ordering information� on the other hand� spec�
i
es ordering relationships between two nodes� Such
information might� for example� come from knowledge
about the temporal evolution of events in our domain�
For instance� if we know that Xi occurs before Xj � the
network model should not contain a path from Xj to
Xi as no causal in�uence should exist in that direc�
tion� Note that a total ordering among the variables�
as required by Cooper and Herskovits �CH���� is just
a special case of our partial ordering speci
cations�

Subject to the condition that the direct causation and
partial ordering speci
cations not entail any transitiv�
ity violations �e�g�� we cannot have a circular sequence
of direct causations as input to the system�� our sys�
tem can ensure that the constructed network validates
these speci
cations� Furthermore� information of this
sort can in fact lead to increased e�ciency� it will con�
strain our search for an appropriate network model�

To incorporate this information� we de
ne a con�
strained Bayesian network as follows�

De�nition 	�� A constrained Bayesian network is an
ordinary Bayesian network whose topology includes all
the arcs speci
ed by the direct causation speci
cations
and does not violate any partial ordering speci
ca�
tions�

It can be shown that Theorem ��� still holds� with
the obvious modi
cations� if we consider constrained
Bayesian networks instead of ordinary networks�

� Searching for the Best Constrained
Network

Although our expression for the relative total descrip�
tion length allows us to evaluate the relative merit of
candidate network models� we cannot consider all pos�
sible networks� there are simply too many of them
�an exponential number in fact�� Hence� to apply the
MDL principle we must engage in a heuristic search
that tries to 
nd a good �i�e�� low description length��
but not necessarily optimal� network model�



In this section we describe our search algorithm which
attempts to 
nd a good network by building one up
arc by arc� The 
rst step is to rank the possible arcs
so that �better� arcs can be added into the candidate
networks before others� The arcs are ranked by cal�
culating the node description length for Xj given the
arc Xi � Xj � i �� j� using Equation � and treating Xi

as the single parent� This node description length is
assigned as the �description length� of arc Xi � Xj�
A list of arcs Pairs is created sorted so that the 
rst
arc on Pairs has lowest description length� Pairs will
contain all arcs except for those violating the direct
causation or partial ordering speci
cations� Looking
at Equation � we can see that if Xi and Xj are highly
correlated �as measured by W �Xj � Xi�� Equation ��
the description length will be lower� and an arc be�
tween them will be one of the 
rst that we will try to
add to the candidate networks�

Search is performed by a best�
rst algorithm that
maintains Open and Closed lists each containing
search elements� The individual search elements have
two components hG�Li� a candidate network G� and
an arc L which could be added to the candidate net�
work without causing a cycle or violating the partial
ordering and direct causation speci
cations� Open is
ordered by heuristic value� which is calculated as the
relative total description length �Equation �� of the
element�s network� plus the description length of the
element�s arc �calculated during the construction of
Pairs�� Therefore� the lower the heuristic value� the
shorter the encoding length� Initially� we construct a
network Ginit containing only those arcs included in
the direct causation speci
cations� Then� the initial
Open list is generated by generating all of the search
elements hGinit� Li for all arcs L � Paris� Best�
rst
search is then executed with the search element at the
front of Open expanded as follows�

�� Remove the 
rst element from Open and copy it
onto Closed� Let the element�s network be Gold

and the element�s arc be L�

�� Invoke the Arc�Absorption procedure on Gold

and L to obtain a new network Gnew with the
arc L added� The Arc�Absorption procedure�
described below� might also reverse the direction
of some other arcs in Gold�

�� Next we make a new search element consisting of
Gnew and the 
rst arc from Pairs that appears
after the old arc L which could be added to Gnew

without generating a cycle or violating a partial
ordering speci
cation� This new element is placed
on Open in the correct order according to the
heuristic function�

�� Finally� we make another new search element con�
sisting of Gold and the 
rst arc from Pairs that
appears after L which could be added to Gold

without generating a cycle or violating a par�
tial ordering speci
cation� Again� this element
is placed on Open in the correct order�

Now we describe the Arc�Absorption procedure
which 
nds a locally optimal way to insert a new arc
into an existing network� To minimize the description
length of the resulting network� the procedure might
also decide to reverse the direction of some of the old
arcs�

Input � A network Gold�
� An arc �Xi 	 Xj� to be added�

Output � A new network Gnew with the arc added
and some other arcs possibly reversed�

�� Create a new network by adding the arc �Xi 	
Xj� to Gold� In the new network we then search
locally to determine if we can decrease the relative
total description length by reversing the direction
of some of the arcs� This is accomplished via the
following steps�

�� Determine the optimal directionality of the arcs
attached directly to Xj by examining which di�
rections minimize the relative total description
length� Some of these arcs may be reversed by
this process�� Furthermore� we do not consider
the reversal of any arcs that would result in the
violation of the direct causation or partial order�
ing speci
cations�

�� If the direction of an existing arc is reversed then
perform the above directionality determination
step on the other node a	ected�

The search procedure is mainly composed of the Arc�
Absorption procedure� a cycle checking routine� and
a partial order checking routine� The complexity of
cycle checking and partial order checking are O�n� and
O�n�� respectively� where n is the number of nodes�
We have found that the search can arrive at a very
reasonable network model if provided with a resource
bound of O�n�� search elements expansions� Under
this resource bound� we have found that in practice the
overall complexity of the search mechanism remains
polynomial in the number of nodes n�

We can further observe that when the amount of do�
main information increases� the search time to 
nd a
good network model decreases� This arises from the
fact that such information places constraints on the
space of allowable models making search easier� For
example� if a total ordering among the nodes in the
domain is given� the search time will be reduced by a
factor of O�n��� there is no need to perform the cycle
or partial order checking� and the arc reversal step in
Arc�Absorption is no longer needed�

�Note that it is su�cient to compute the node descrip�
tion length �Equation �	 of those nodes whose parents have
been changed� The relative total description length �Equa�
tion �	 of the whole network need not be computed�
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Figure �� The Quality of Learned Networks

� Experiments

Following �CH��� we test our approach by constructing
an original network and using Henrion�s logical sam�
pling technique �Hen��� to generate a collection of raw
data� We then apply our learning mechanism to the
raw data to obtain a learned network� By comparing
this network with the original we can determine the
performance of our system�

In the 
rst set of experiments� the original Bayesian
network G consisted of � nodes and � arcs� We varied
the conditional probability parameters during the pro�
cess of generating the raw data obtaining four di	erent
sets of data� Exhaustive searching� instead of heuris�
tic searching� was then carried out to 
nd the net�
work with minimum total description length for each
of these sets of raw data resulting in di	erent learned
structures in each case� The experiment demonstrates
that our algorithm does in fact yield a tradeo	 between
accuracy and complexity of the learned structures� in
all cases where the original network was not recovered
a simpler network was learned� The type of structure
learned depends on the parameters� as each set of pa�
rameters� in conjunction with the structure� de
nes a
di	erent probability distribution� Some of these distri�
butions can be accurately modeled with simpler struc�
tures� In the 
rst case� the distribution de
ned by the
parameters did not have a simpler model of su�cient
accuracy� but in the other cases it did� We have also
developed measures of the absolute accuracy of the
learned structures �see �LB��b� for a full description�
that indicate in all cases that the learned structure was
very accurate even though it might possess a di	erent
topology�

The second experiment consisted of learning a
Bayesian network with a fairly large number of vari�

ables ��� nodes and �� arcs�� This network was de�
rived from a real�world application in medical diagno�
sis �BSCC��� and is known as the ALARM network
�see �LB��b� for a diagram of this network�� After ap�
plying our heuristic search algorithm� we found that
the learned network is almost identical to the original
structure with the exception of one di	erent arc and
one missing arc� One characteristic of our heuristic
search algorithm is that we did not require a user sup�
plied ordering of variables �cf� Cooper and Herskovits
�CH����� This experiment demonstrates the feasibility
of our approach for recovering networks of practical
size�

Besides being able to use extra domain information
our new search mechanism is faster and more accurate
than the mechanism 
rst reported in �LB��b� which
was developed without the local measure of descrip�
tion length� To investigate how our search mechanism
behaves when domain information is supplied� we con�
ducted some further experiments� Using the same set
of raw data derived from the ALARM model in con�
junction with varying amounts of domain information�
we applied our learning algorithm and recorded the
search time required to obtain an accurate network
model� The following two tables depict the relative
time required by the search algorithm when varying
amounts of direct causation and partial orderings spec�
i
cations are made available� In general� the search
time decreases as the amount of causal information
increases�

no partial �� partial �� partial total
ordering orderings orderings ordering

time ���� ��� 
�� ���



no direct �� direct �� direct
causal causal causal

speci�cation speci�cations speci�cations
time ���� ��� ���

� Re	nement of Existent Networks

Besides the advantages outlined above our new local com�
putation of description length also allows for the possibil�
ity of re�ning an existing network by modifying some local
part of it� Re�nement is based on the following theorem�

Theorem ��� Let �X � fX��X�� � � � �Xng be the nodes in

an existent Bayesian network� X � be a subset of �X� and
DLX� be the total node description lengths of all the nodes
in X � �i�e�� DLX� �

P
Xi�X

�
DLi�� Suppose we �nd a new

set of parents for every node in X � that does not create any
cycles or make the network disconnected� Let the new total
node description lengths of all the nodes in X � beDLnewX� �
Then we can construct a new network in which the parents
of the nodes in X � are replaced by their new parent sets�
such that the new network will have lower total description
length if DLnewX� � DLX� �

This theorem provides a means to improve a Bayesian net�
work without evaluating the total description length of the
whole Bayesian network� a potentially expensive task if the
network is large� We can isolate a subset of nodes and try to
improve that collection locally� ignoring the rest of the net�
work� Algorithms for performing such a re�nement� based
on this theorem� have been developed and experiments are
being performed� We hope to report on this work in the
near future �LB��a��
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