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Abstract A new approach for learning Bayesian be�
lief networks from raw data is presented� The approach
is based on Rissanen�s Minimal Description Length
�MDL� principle� which is particularly well suited for
this task� Our approach does not require any prior
assumptions about the distribution being learned� In
particular� our method can learn unrestricted multiply�

connected belief networks� Furthermore� unlike other
approaches our method allows us to tradeo� accuracy
against complexity in the learned model� This is impor�
tant since if the learned model is very complex �highly
connected�� it can be computationally intractable to
use� In such a case it would be preferable to use a sim�
pler model even if it is less accurate� MDL o�ers a prin�
cipled method for making this tradeo�� We also show
that our method generalizes previous approaches based
on Kullback cross�entropy� Experiments have been con�
ducted to demonstrate the feasibility of the approach�
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� Introduction Bayesian belief networks� advanced
by Pearl ���� have become an important paradigm for
representing and reasoning with uncertainty� Systems
based on Bayesian networks have been constructed in
a number of di�erent application areas� ranging from
medical diagnosis� e�g�� �
�� to reasoning about the oil
market� e�g�� �	�� Despite these successes� a major ob�
stacle to using Bayesian networks lies in the di�culty
of constructing them in complex domains� It can be
a very time�consuming and error�prone task to specify
a network that can serve as an accurate probabilistic
model of the problem domain� there is a knowledge en�
gineering bottleneck� Clearly� any mechanism that can
help automate this task would be bene�cial� A promis�
ing approach to this problem is to try to construct� or
learn� such network representations �from raw data� In
many areas raw data can be obtained from databases
of records� If techniques can be developed for automat�

lem� but it will also facilitate the automatic re�neme
of the representation as new data is accumulated�

In this paper we present a new approach to learni
Bayesian networks� Our method can discover arbitra
network structures from raw data without relying
any assumptions about the underlying probability d
tribution that generated the data� In particular� t
method can learn unrestricted multiply�connected n

works� Multiply�connected networks are more expr
sive than tree or polytree networks� and that extra
pressiveness is sometimes essential if the network is
be a su�ciently accurate model of the underlying dist
bution� Our approach is theoretically founded on R
sanen�s Minimum Description Length �MDL� Princi
�	���

It is well known that multiply�connected Bayes
networks are in the worst case computationally
tractable to reason with� to be precise the reasoni
algorithms are NP�Hard ���� The complexity of reaso
ing with a particular network is a function of its co
nectivity� the more connected it is the more di�c
is reasoning� Hence� there is limited utility in lea
ing a multiply�connected network that is too comp
to support e�cient reasoning� We feel that the m
advantage of our approach is that it o�ers a princip
method� the MDL principle� of trading o� the compl
ity and accuracy of the learned model� It will learn a l
complex network if that network is su�ciently accura
and at the same time� unlike some previous methods
is still capable of learning complex networks if no sim
network is su�ciently accurate�

This is particularly important when learning from r
data as we do not have direct access to the underlyi
distribution� Instead we can only approximate that d
tribution through the data that it has generated� Sin
our information is only approximate it seems inapp
priate to try to recover the �true� structure Rather t



more complex and more accurate one��

The MDL principle says that the best model of a set
of data is that model which minimizes the sum of the
encoding lengths of the data and the model itself� That
is� with the aid of the model we can represent� or en�
code� the data more compactly� by exploiting probabilis�
tic regularities described by the model� However� the
model itself will require some representation� The MDL
principle speci�es that both these components should be
taken into consideration� More accurate models mini�
mize the encoding length of the data� but the more com�
plex a model is� the longer will be its encoding� Hence�
by minimizing the sum of these two factors the MDL
principle o�ers a tradeo� between complexity and accu�
racy�
Finding the network �model� that minimizes the

sum of these two components is a computationally in�
tractable task however� there are simply too many net�
works to search� Hence� our realization of the MDL
principle is based on a heuristic search algorithm that
tries to �nd a network that has low� but not necessar�
ily minimum� description length� We have conducted
a number of experiments that successfully demonstrate
the feasibility of our method�
In the sequel we will �rst discuss related work on

learning Bayesian Networks� Then we will discuss in
more detail the MDL principle and the manner in which
it can be applied to the task at hand� A discussion of
our heuristic algorithm follows along with a presenta�
tion of our empirical results� We conclude with some
discussion of future work�

� Related Work The earliest work that can be
viewed as learning network models was that of Chow
and Liu ���� Their approach was able to recover sim�
ple tree�structured belief networks from a database of
records� If the database was generated by a distribution
that had a tree�structure� it could be exactly recovered�
Otherwise their method guaranteed that the probability
distribution of the learned tree network was the clos�
est of all tree networks to the underlying distribution of
the raw data� The criterion of �closeness� they used was
based on the well�known Kullback�Leibler cross�entropy
measure ���� The main restriction of this work was that
it could only learn tree structures� Hence� if the raw
data was the result of a non�tree structured distribu�
tion� the learned structure could be very inaccurate�
Rebane and Pearl �	
� extended Chow and Liu�s meth�
ods to the recovery of networks of singly connected trees
�polytrees�� If the underlying distribution had a poly�
tree structure� its topological structure could be exactly
recovered �modulo the orientation of some of the arcs��
But again if the raw data came from a non�polytree
distribution� the learned structure could be very inac�

discover a minimal�edge I�map�	��� However� their a
proach is again limited to polytrees� it is only guara
teed to work in the case where the underlying distrib
tion has an exact polytree structure�

All of the above approaches fail to recover the rich
and more realistic class of multiply�connected networ
which topologically are directed acyclic graphs �dag
Recently� Spirtes et al� �	�� have developed an alg
rithm that can construct multiply�connected networ
And Verma and Pearl �	�� 		� have developed wh
they call an IC�Algorithm that can also recover th
kinds of structures� However� both approaches requ
that the underlying distribution being learned be d

isomorphic�� But� not all distributions are� As a resu
both of these methods have the common drawback th
they are not guaranteed to work when the underlyi
distribution fails to be dag�isomorphic� In such ca
no conclusions can be drawn about the closeness of
between the learned structure and the underlying d
tribution�

All of these methods share the common disadvanta
that they make assumptions about the underlying d
tribution� Unfortunately� we are hardly ever in a po
tion to know the underlying distribution� This is wh
we are trying to learn� Hence� we have no assuran
that these methods will work well in practice� Th
methods might produce very inaccurate models if t
underlying distribution fails to fall into the category
distributions they can deal with� Nevertheless� th
works have provided a great deal of information per
nent to learning Bayesian networks�

An interesting alternate approach which can deal w
multiply�connected networks is that of Cooper and H
skovits ���� Their approach tries to �nd the most pro
able network using a Bayesian approach� As with
Bayesian approaches� they must assume a prior dist
bution over the space of all possible network structur
They have taken this prior to be uniform�� Unfor
nately� it seems to us that this is the wrong choi
By choosing this prior their method will always p
fer a more accurate network� even if that network
much more complex and only slightly more accura
Given that we must perform learning with only a li
ited amount of data� this insistence on accuracy is qu
tionable�

One way of viewing the MDL principle is as a Bayes
approach in which the prior distribution over the mod
is inversely related to their encoding length� i�e�� th
complexity� Hence� the MDL principle has a bias
wards learning models that are as simple as possib
This seems to us to be a far more reasonable approa
given that the data is only approximately represen
tive of the underlying distribution� Another advanta
i th t th MDL i i l b li d t ll



ponents of the model� including� e�g�� the conditional
probabilities that parameterize the network� although
we have not done this yet� In Cooper and Herskovits�s
approach they must also place a prior distribution on
these parameters� and again it is not clear that their
choice of a uniform distribution is the appropriate one�
Cooper and Herskovits face the same problem as we

do� the space of possible network structures is simply
too large to explore� Hence� they also develop a heuris�
tic method that searches a constrained set of structures
looking� in their case� for the one with highest posterior
probability� and in our case for the one with minimal
description length� The heuristic method they choose
depends on an inputted ordering of the variables� and
the network that they learn respects this ordering �i�e��
parents of a node are always lower in the ordering�� The
heuristic method we develop� however� does not require
such an ordering� which is an advantage in situations
where there is insu�cient causal information to gener�
ate a total ordering�

� The MDL Principle The MDL principle is
based on the idea that the best model of a collection
of data items is the model that minimizes the sum of
�	� the length of the encoding of the model� and �
� the
length of the encoding of the data given the model� both
of which are measured in bits�
To apply the MDL principle to Bayesian networks we

need to specify how we can perform the two encodings�
the network itself �	� and the raw data given a network
�
��

��� Encoding the Network To represent a partic�
ular Bayesian network� the following information is nec�
essary and su�cient� �a� A list of the parents of each
node� and �b� the set of conditional probabilities asso�
ciated with each node that are required to parameterize
the network�
Suppose there are n nodes in the problem domain�

For a node with k parents� we need k log
�
�n� bits to list

its parents� To represent the conditional probabilities�
the encoding length will be the product of the number
of bits required to store the numerical value of each con�
ditional probability and the total number of conditional
probabilities that are required� In a Bayesian network�
a conditional probability is needed for every distinct in�
stantiation of the parent nodes and node itself �except
that one of these conditional probabilities can be com�
puted �from the others due to the fact that they all
sum to 	�� For example� if a node that can take on �
distinct values has � parents each of which can take on
� distinct values� we will need �� � �� � 	� conditional
probabilities� Hence� under this simple scheme the total
description length for a particular network will be�

n

domain� n and d will be constants� This is not t
only encoding scheme possible� but it is simple and
performs well in our experiments�
By looking at this equation� we see that highly co

nected networks require longer encodings� First�
many nodes the list of parents will get larger� and s
ond the list of conditional probabilities we need to st
for that node will also increase� In addition� netwo
in which nodes that have a larger number of values ha
parents with a large number of values will require long
encodings� Hence� the MDL principle will tend to fav
networks in which the nodes have a smaller number
parents �i�e�� networks that are less connected� and a
networks in which nodes taking on a large number
values are not parents of nodes that also take on a lar
number of values�

It also happens that for Bayesian networks the
gree of connectivity is closely related to the compu
tional complexity of using the network� For example�
tremely e�cient algorithms exist for trees� and tracta
�polynomial� algorithms exist for singly connected n
works �	���� Hence� our encoding scheme generate
preference for more e�cient networks� The encodi
length of the model is� however� not the only factor
determining the description length� we also have to co
sider the encoding length of the data�

��� Encoding the Data Using the Model L
us �rst be more precise about the form of the raw da
The task is to learn the joint distribution of a collecti
of random variables X � fX�� � � � �Xng� Each varia
Xi has an associated collection of values fx�i � � � � � x
that it can take on� where the number of values k w
in general depend on i� Every distinct choice of valu
for the variables in X de�nes an atomic event in t
underlying joint distribution and is assigned a particu
probability by that distribution�

For example� we might have three random variab
X�� X�� and X�� with X� having f	� 
g� X� havi
f	� 
� �g� and X� having f	� 
g as possible values� Th
are 
 � � � 
 di�erent complete instantiations of t
variables� Each of these is an atomic event in the u
derlying joint distribution� and has a particular pro
ability of occurring� For example� the event in wh
fX� � 	�X� � ��X� � 	g is one of these atomic even
We assume that the data points in the raw data are

atomic events� That is� each data point speci�es a va
for every random variable in X� Furthermore� we
sume that the data points are the result of independe
random trials� Hence� we would expect� via the cent
limit theorem� that each particular instantiation of t
variables would appear in the database with a relat
frequency approximately equal to its probability� Th
assumptions are standard ones in work in this area�



and an unbiased estimator for node Xi taking on the
value v when its parents in the network take on values
represented by u is Nv�u�Nu� where Nv�u is the number
of data points in which Xi and its parents take on the
values v and u� and Nu is the number of data points in
which Xi�s parents take on the values u�
Given our Bayesian network model we can calculate

the probability qi �according to our model� of every
atomic event ei� Given that we are using the model
as a best �guess� representation of the underlying prob�
abilities� the optimal encoding of the data using the
probabilities qi will use approximately � log

�
�qi� bits to

encode each occurrence of the event ei� i�e�� each data
point representing event ei will require that many bits
in the encoding�
For example� given the set of variables X�� X� and X�

as above� our model might assign probability 	�
 to the
event e� � fX� � 	�X� � ��X� � 	g and probability
	�� to the event e� � fX� � 
�X� � 
�X� � 	g� We
could then use the binary code 	 to represent e� and
the code �	 to represent e� reserving the longer codes
��	� ���	� etc�� for the other less probable events� If the
database consists of the sequence of events e�� e�� e�� we
could encode it as the � bit sequence 		�	�� Here the
database has twice as many occurrences of e� as e�� the
probabilities predicted by our model are corroborated
by the database� However� if the database consisted
of the event sequence e�� e�� e�� the encoding dictated
by our model would require a � bit sequence �	�		 to
encode the database� In this case a model that reversed
the probability assignments to e� and e� would have
yielded a shorter encoding of the database� such a model
would represent e� with the shorter code rather than e��
If the true probability of event ei was pi and the

database consisted of N data points� we would expect
that on average there would be Npi occurrences of ei in
the database� Hence� given a model that assigns prob�
ability qi to event ei� it would require

�N
X

i

pi log��qi� �
�

bits to encode the database� The following theorem� due
to Gibbs �	��� provides important information about the
properties of this encoding�

Theorem ��� �Gibbs� Let pi and qi� i � 	� � � � � n� be

non�negative real numbers that sum to �� Then

�
nX

i��

pi log��pi� � �
nX

i��

pi log��qi��

with equality holding if and only if pi � qi� where we

take � log
�
��� to be ��

This theorem implies that on average the encoding of
the data is minimized only by an absolutely accurate
model� i�e�� a model that assigns probabilities qi that
are equal to the true underlying probabilities pi

De�nition ��� �Kullback�Leibler Cross�Entropy� L
P and Q be distributions de�ned over the same ev
space� The Kullback�Leibler cross�entropy between
and Q� C�P�Q�� is a measure of how close Q is to
and is de�ned by the equation

C�P�Q� �
X

i

pi�log��pi�� log
�
�qi���

It follows from Gibbs�s theorem that this quantity
always non�negative and that it is zero if and only
P � Q� i�e�� �i�qi � pi�
�From Equation 
 if follows that the minimal possi

encoding length of the data will be �N
P

i pi log��p
Hence� when using a model that assigns probabilities
the encoding length will increase by N�

P
i pi�log��pi�

log
�
�qi���� That is� we have the following theorem�

Theorem ��� The encoding length of the data is

monotonically increasing function of the cross�entro

between the distribution de�ned by the model and

true distribution�

In previous work Chow and Liu ��� developed
method for �nding a tree structure that minimized t
cross�entropy� and their method was extended by R
bane and Pearl �	
� to �nding polytrees with minim
cross�entropy� This theorem shows that in a cert
sense the MDL principle can be viewed as a gener
ization of these approaches� If we were to ignore t
complexity �encoding length� of the model and were
restrict the class of models being examined� the MD
principle would duplicate their results� The advanta
of considering both the data and the model �i�e�� the su
of Equations 	 and 
� is that we can learn a more co
plex model if no simpler model is su�ciently accura
i�e�� if every simpler model has very high cross�entro

	 Applying the MDL Principle In theory t
MDL principle can be applied by simply examining
ery possible Bayesian network that can be construct
over our set of random variables X� For each of th
networks we could evaluate the encoding length of t
data and of the network searching for the network th
minimized the sum of these encodings�
However� this approach is impractical as there

an exponential number of networks over n variable
Hence� we must resort to a heuristic search through t
space of possible networks trying to �nd one that yie
a low� albeit not necessarily minimal� sum of Equ
tions 	 and 
�
We accomplish this search by dividing the probl

into two� There can be between � and n�n � 	��
 a
in a dag� For each possible number of di�erent arcs
search heuristically for a network with that many a
and low cross�entropy� By Theorem ��� we know th
this network will yield a relatively low encoding leng
for the data� We then examine these di�erent networ



To perform the �rst part of the search� i�e�� to �nd a
network with low cross�entropy� we develop some addi�
tional results that are based on the work of Chow and
Liu ����

	�� Evaluating Cross
Entropy The underlying
distribution P is a joint distribution over the variables
X � fX�� � � � �Xng� and any Bayesian network model
will also de�ne a joint distribution Q over these vari�
ables� Using this notation the equation for the cross�
entropy between P and Q becomes

C�P�Q� �
X

X

P �X� log
�

P �X�

Q�X�
�

where the sum extends over all distinct vectors of values
of the variables in X� i�e�� all atomic events�
In an arbitrary Bayesian network Q�X� will take the

form �	���

Q�X� � Q�X� j FX�
�Q�X� j FX�

� � � �Q�Xn j FXn�

� P �X� j FX�
�P �X� j FX�

� � � �P �Xn j FXn�� ���

where FXi
is the� possibly empty� set of parents of Xi�

We can replace the terms Q�XijFXi
� by P �XijFXi

� since
we are estimating these conditional probability terms�
i�e�� the parameters of the Bayesian network� through
frequency counts taken over the raw data �as described
above�� This equality assumes that these estimates
are approximately equal to the true underlying values
P �XijFXi

�� By the central limit theorem they will be
close� with high probability� if we have a su�cient num�
ber of data points�
We can extend Chow and Liu�s work by de�ning a

weight measure for a node� Xi� with respect to its par�
ents as follows�

W �Xi� FXi
� �

X

Xi�FXi

P �Xi� FXi
� log

�

P �Xi� FXi
�

P �Xi�P �FXi
�

���

where we are summing over all possible values that Xi

and its parents FXi
can take� And we can prove the

following theorem�

Theorem 	�� C�P�Q� is a monotonically decreasing

function of
Pn

i���FXi ���
W �Xi� FXi

�� Hence� it will be

minimized if and only if the sum is maximized�

The proof of this and the other theorems is given in our
full report � �� The summation term is the total weight
of the directed acyclic graph according to the weight
measure de�ned in Equation ��
In conclusion� given probabilities computed from the

raw data� we can calculate the weight of any proposed
network structure� Our theorem shows that structures
with greater weight are closer to the underlying distri�
bution� If we can �nd a directed acyclic graph with
maximum total weight� then the probability distribu�
tion of this structure will be closest to the underlying
distribution of the raw data� and thus it will yield the
shortest encoding of the data

then Q � P � In other words� if we construct t
multiply�connected network corresponding to the str
ture on the right side of the above expression� the pro
ability distribution de�ned by this structure will ab
lutely coincide with the underlying distribution of t
raw data� and hence it will have lowest possible cro
entropy and highest possible weight� However� t
structure is a complete graph� and worse still� it do
not convey any meaning since it can represent any d
tribution� This indicates that if we allow structures
arbitrarily complex topology� we can obtain a triv
match with the underlying distribution�
To further understand the problem� consider the f

lowing theorem�

Theorem 	�� Let Mi be the maximum weight of

networks that have i arcs� then

i � j �Mi �Mj �

That is� we can always increase the quality of t
learned network� i�e�� decrease the error in the sen
of decreasing the cross�entropy� by increasing the top
logical complexity� i�e�� by learning networks with m
arcs� It is by considering in addition the encoding leng
of the network that we resolve this di�culty�

	�� Searching for Low Cross
Entropy Networ
Given our ability to evaluate the cross�entropy of a n
work through an evaluation of its weight� we have dev
oped a heuristic search algorithm that uses local sear
to �nd networks with low cross�entropy� We sear
for low cross�entropy networks with varying numb
of arcs� and then we choose among the networks fou
that one which minimizes the total description leng
i�e�� that is best by the MDL principle�
A complete description of the heuristic search alg

rithm is given in our full report � �� In empirical tests
this algorithm we have found that when provided w
time polynomial in the number of data points and t
number of variables �nodes in the net�� the search pro
dure can successfully �nd good networks models of t
raw data� Furthermore� it can �nd such models wi
out being provided with a prior �causality� ordering
the variables� as is required by Cooper and Herskovit
procedure ����

� Experimental Results A common approach
evaluating various learning algorithms has been to g
erate raw data from a predetermined network and th
to compare the network learned from that data w
the original� the aim being to recapture the origin
For example� this is the technique used by Cooper a
Herskovits ���� An implicit assumption of this approa
is that the aim of learning is to reconstruct the true d
tribution� However� if one takes the aim of learning
be the construction of a useful model i e one that i



with the original� Our approach involves a measure of
the closeness between two networks� This measure is
actualized in two di�erent ways� one using Kullback�
Leibler cross�entropy and the other using an average of
the di�erence between the distributions speci�ed by the
two networks evaluated a various points� The details of
our closeness measure are given in the full report � ��

We have performed three sets of experiments to
demonstrate the feasibility of our approach� The �rst
set of experiments consisted of a number of Bayesian
networks that were composed of small number of vari�
ables ��� as shown in Figure 	� Some of these structures
are multiply�connected networks�

The second experiment consisted of learning a
Bayesian network with a fairly large number of variables
��� nodes and �� arcs�� This network was derived from
a real�world application in medical diagnosis �
� and is
known as the ALARM network �see � � for a diagram of
this network��

The third experiment consisted of learning a small
Bayesian network� as shown in in Figure 
� We experi�
mented by varying the conditional probability parame�
ters of this network� Here the aim was to demonstrate
that our procedure could often learn a simpler network
that was very close to the original�

During the �rst set of experiments after calculating
the description lengths of the networks� the network
with the minimum description length was selected� In
all these cases we found that the learned network was
exactly the same as the one used to generate the raw
data�

In the second experiment the Bayesian network re�
covered by the algorithm was found to be close to the
original network structure� Two di�erent arcs and three
missing arcs were found� out of �� arcs� Furthermore�
our evaluated closeness between the original network
and this learned structure was very small� under both of
our measures� One additional feature of our approach�
in particular a feature of our heuristic search algorithm�
is that we did not require a user supplied ordering of
variables �cf� Cooper and Herskovits ����� We feel that
this experiment demonstrates that our approach is fea�
sible for recovering Bayesian networks of practical size�

In the third set of experiments� the original Bayesian
network G� consisted of � nodes and � arcs� We var�
ied the conditional probability parameters during the
process of generating the raw data obtaining four dif�
ferent sets of raw data� Exhaustive searching was then
carried out and the MDL learning algorithm was ap�
plied to each of these sets of raw data� Di�erent learned

C
�� �H H �G�G	 A G
 BA A B

structures were obtained� all of which were extrem
close to the original network as measured by both
our distance formulas� In one case the original netwo
was recovered�

This experiment demonstrates that our algorith
yields a tradeo� between accuracy and complexity
the learned structures� in all cases where the ori
nal network was not recovered a simpler network w
learned� The type of structure learned depends on t
parameters� as each set of parameters� in conjuncti
with the structure� de�nes a di�erent probability dist
bution� Some of these distributions can be accurat
modeled with simpler structures� In the �rst case� t
distribution de�ned by the parameters did not have
simpler model of su�cient accuracy� but in the oth
cases it did�
� Conclusions We have argued in this paper th
the purpose of learning a Bayesian network from r
data is not to recover the underlying distribution� as t
distribution might be too complex to use� Rather�
should attempt to learn a useful model of the underlyi
phenomena� Hence� there should be some tradeo� b
tween accuracy and complexity� The MDL principle h
as its rational this same tradeo�� and it can be natura
applied to this particular problem� We have discussed
detail how the MDL principle can be applied and ha
pointed out its relationship to the method of minimizi
cross�entropy� Using this relationship we have extend
the results of Chow and Liu relating cross�entropy t
weighing function on the nodes� This has allowed us
develop a heuristic search algorithm for networks th
minimize cross�entropy� These networks minimize t
encoding length of the data� and when we also consid
the complexity of the network we can obtain mod
that are good under the MDL metric� Our experim
tal results demonstrate that our algorithm does in f
perform this tradeo�� and further that it can be appl
to networks of reasonable size�

There are a number of issues that arise which requ
future research� One issue is the search mechanism� W
are currently dividing the task into �rst searching fo
network that minimizes the encoding length of the da
and then searching through the resulting networks
one that minimizes the total description length� T
method has been successful in practice� but we are a
investigating other mechanisms� In particular� it see
reasonable to combine both phases into one search� A
other important component that has not yet been a
dressed is the accuracy of the raw data� In general� th
will be a limited quantity of raw data� and certain p
rameters can only be estimated with limited accura
We are investigating methods for taking into accou
the accuracy of the data in the construction For exa
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Figure 
� The Quality of Learned Networks

we might know of causal relationships in the domain
that bias us towards making certain nodes parents of
other nodes� The issue that arises is how can this infor�
mation be used during learning� We are investigating
some approaches to this problem�
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