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Abstract A new approach for learning Bayesian be-
lief networks from raw data is presented. The approach
1s based on Rissanen’s Minimal Description Length
(MDL) principle, which is particularly well suited for
this task. Our approach does not require any prior
assumptions about the distribution being learned. In
particular, our method can learn unrestricted multiply-
connected belief networks. Furthermore, unlike other
approaches our method allows us to tradeoft accuracy
against complexity in the learned model. This is impor-
tant since if the learned model is very complex (highly
connected), it can be computationally intractable to
use. In such a case it would be preferable to use a sim-
pler model even if it is less accurate. MDL offers a prin-
cipled method for making this tradeoff. We also show
that our method generalizes previous approaches based
on Kullback cross-entropy. Experiments have been con-
ducted to demonstrate the feasibility of the approach.

1 Introduction Bayesian belief networks, advanced
by Pearl [9], have become an important paradigm for
representing and reasoning with uncertainty. Systems
based on Bayesian networks have been constructed in
a number of different application areas, ranging from
medical diagnosis, e.g., [2], to reasoning about the oil
market, e.g., [1]. Despite these successes, a major ob-
stacle to using Bayesian networks lies in the difficulty
of constructing them in complex domains. It can be
a very time-consuming and error-prone task to specify
a network that can serve as an accurate probabilistic
model of the problem domain; there is a knowledge en-
gineering bottleneck. Clearly, any mechanism that can
help automate this task would be beneficial. A promis-
ing approach to this problem is to try to construct, or
learn, such network representations ;from raw data. In
many arcas raw data can be obtained from databases
of records. If techniques can be developed for automat-

lem, but it will also facilitate the automatic refinem
of the representation as new data is accumulated.

In this paper we present a new approach to learn
Bayesian networks. Our method can discover arbitr:
network structures from raw data without relying
any assumptions about the underlying probability «
tribution that generated the data. In particular,
method can learn unrestricted multiply-connected 1
works. Multiply-connected networks are more expi
sive than tree or polytree networks, and that extra
pressiveness is sometimes essential if the network is
be a sufficiently accurate model of the underlying dis
bution. Our approach is theoretically founded on F
sanen’s Minimum Description Length (MDL) Princi
[13].

It is well known that multiply-connected Bayes
networks are in the worst case computationally
tractable to reason with; to be precise the reason
algorithms are NP-Hard [4]. The complexity of reas
ing with a particular network is a function of its ¢
nectivity; the more connected it is the more diffic
is reasoning. Hence, there is limited utility in lea
ing a multiply-connected network that is too comp
to support efficient reasoning. We feel that the m
advantage of our approach is that it offers a princip
method, the MDL principle, of trading off the compl
ity and accuracy of the learned model. It will learn a |
complex network if that network is sufficiently accur:
and at the same time, unlike some previous methods
1s still capable of learning complex networks if no sim
network is sufficiently accurate.

This is particularly important when learning from 1
data as we do not have direct access to the underly
distribution. Instead we can only approximate that
tribution through the data that it has generated. Si:

our information is only approximate it seems inapp
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more complex and more accurate one.l

The MDL principle says that the best model of a set
of data is that model which minimizes the sum of the
encoding lengths of the data and the model itself. That
is, with the aid of the model we can represent, or en-
code, the data more compactly, by exploiting probabilis-
tic regularities described by the model. However, the
model itself will require some representation. The MDL
principle specifies that both these components should be
taken into consideration. More accurate models mini-
mize the encoding length of the data, but the more com-
plex a model is, the longer will be its encoding. Hence,
by minimizing the sum of these two factors the MDL
principle offers a tradeoff between complexity and accu-
racy.

Finding the network (model) that minimizes the
sum of these two components is a computationally in-
tractable task however: there are simply too many net-
works to search. Hence, our realization of the MDL
principle is based on a heuristic search algorithm that
tries to find a network that has low, but not necessar-
ily minimum, description length. We have conducted
a number of experiments that successfully demonstrate
the feasibility of our method.

In the sequel we will first discuss related work on
learning Bayesian Networks. Then we will discuss in
more detail the MDL principle and the manner in which
it can be applied to the task at hand. A discussion of
our heuristic algorithm follows along with a presenta-
tion of our empirical results. We conclude with some
discussion of future work.

2 Related Work The earliest work that can be
viewed as learning network models was that of Chow
and Liu [3]. Their approach was able to recover sim-
ple tree-structured belief networks from a database of
records. If the database was generated by a distribution
that had a tree-structure, it could be exactly recovered.
Otherwise their method guaranteed that the probability
distribution of the learned tree network was the clos-
est of all tree networks to the underlying distribution of
the raw data. The criterion of “closeness” they used was
based on the well-known Kullback-Leibler cross-entropy
measure [7]. The main restriction of this work was that
it could only learn tree structures. Hence, if the raw
data was the result of a non-tree structured distribu-
tion, the learned structure could be very inaccurate.
Rebane and Pearl [12] extended Chow and Liu’s meth-
ods to the recovery of networks of singly connected trees
(polytrees). If the underlying distribution had a poly-
tree structure, its topological structure could be exactly
recovered (modulo the orientation of some of the arcs).
But again if the raw data came from a non-polytree
distribution, the learned structure could be very inac-

discover a minimal-edge I-map[10]. However, their
proach is again limited to polytrees; it is only guar
teed to work in the case where the underlying distril
tion has an exact polytree structure.

All of the above approaches fail to recover the ric
and more realistic class of multiply-connected networ
which topologically are directed acyclic graphs (dag
Recently, Spirtes et al. [16] have developed an al
rithm that can construct multiply-connected networ
And Verma and Pearl [17, 11] have developed w.
they call an IC-Algorithm that can also recover th
kinds of structures. However, both approaches requ
that the underlying distribution being learned be d
isomorphic.? But, not all distributions are. As a res
both of these methods have the common drawback t:
they are not guaranteed to work when the underly
distribution fails to be dag-isomorphic. In such ca
no conclusions can be drawn about the closeness of
between the learned structure and the underlying «
tribution.

All of these methods share the common disadvant:
that they make assumptions about the underlying «
tribution. Unfortunately, we are hardly ever in a pc
tion to know the underlying distribution. This is w’
we are trying to learn! Hence, we have no assura
that these methods will work well in practice. Th
methods might produce very inaccurate models if
underlying distribution fails to fall into the category
distributions they can deal with. Nevertheless, th
works have provided a great deal of information pe
nent to learning Bayesian networks.

An interesting alternate approach which can deal w
multiply-connected networks is that of Cooper and H
skovits [5]. Their approach tries to find the most pr:
able network using a Bayesian approach. As with
Bayesian approaches, they must assume a prior dis
bution over the space of all possible network structw
They have taken this prior to be uniform.®> Unfor
nately, it seems to us that this is the wrong cho
By choosing this prior their method will always
fer a more accurate network, even if that network
much more complex and only slightly more accur:
Given that we must perform learning with only a I
ited amount of data, this insistence on accuracy is qu
tionable.

One way of viewing the MDL principle is as a Bayes
approach in which the prior distribution over the moc
1s inversely related to their encoding length, i.e., tl
complexity. Hence, the MDL principle has a bias
wards learning models that are as simple as possil
This seems to us to be a far more reasonable approa
given that the data is only approximately represen
tive of the underlying distribution. Another advant:
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ponents of the model, including, e.g., the conditional
probabilities that parameterize the network; although
we have not done this yet. In Cooper and Herskovits’s
approach they must also place a prior distribution on
these parameters, and again it is not clear that their
choice of a uniform distribution is the appropriate one.

Cooper and Herskovits face the same problem as we
do: the space of possible network structures is simply
too large to explore. Hence, they also develop a heuris-
tic method that searches a constrained set of structures
looking, in their case, for the one with highest posterior
probability, and in our case for the one with minimal
description length. The heuristic method they choose
depends on an inputted ordering of the variables, and
the network that they learn respects this ordering (i.e.,
parents of a node are always lower in the ordering). The
heuristic method we develop, however, does not require
such an ordering, which is an advantage in situations
where there is insufficient causal information to gener-
ate a total ordering.

3 The MDL Principle The MDL principle is
based on the idea that the best model of a collection
of data items is the model that minimizes the sum of
(1) the length of the encoding of the model, and (2) the
length of the encoding of the data given the model, both
of which are measured in bits.

To apply the MDL principle to Bayesian networks we

need to specify how we can perform the two encodings,
the network itself (1) and the raw data given a network
(2).
3.1 Encoding the Network To represent a partic-
ular Bayesian network, the following information is nec-
essary and sufficient: (a) A list of the parents of each
node, and (b) the set of conditional probabilities asso-
ciated with each node that are required to parameterize
the network.

Suppose there are n nodes in the problem domain.
For a node with k parents, we need klog,(n) bits to list
its parents. To represent the conditional probabilities,
the encoding length will be the product of the number
of bits required to store the numerical value of each con-
ditional probability and the total number of conditional
probabilities that are required. In a Bayesian network,
a conditional probability is needed for every distinct in-
stantiation of the parent nodes and node itself (except
that one of these conditional probabilities can be com-
puted jfrom the others due to the fact that they all
sum to 1). For example, if a node that can take on 5
distinct values has 4 parents each of which can take on
3 distinct values, we will need 3* x (5 — 1) conditional
probabilities. Hence, under this simple scheme the total
description length for a particular network will be:

n

domain, n and d will be constants. This is not
only encoding scheme possible, but it is simple anc
performs well in our experiments.

By looking at this equation, we see that highly ¢
nected networks require longer encodings. First,
many nodes the list of parents will get larger, and s
ond the list of conditional probabilities we need to st
for that node will also increase. In addition, netwo
in which nodes that have a larger number of values h
parents with a large number of values will require lon
encodings. Hence, the MDL principle will tend to fa
networks in which the nodes have a smaller number
parents (i.e., networks that are less connected) and @
networks in which nodes taking on a large number
values are not parents of nodes that also take on a la
number of values.

It also happens that for Bayesian networks the
gree of connectivity is closely related to the compu
tional complexity of using the network. For example,
tremely efficient algorithms exist for trees, and tracta
(polynomial) algorithms exist for singly connected 1
works [10].* Hence, our encoding scheme generate
preference for more efficient networks. The encod
length of the model is, however, not the only factor
determining the description length; we also have to ¢
sider the encoding length of the data.

3.2 Encoding the Data Using the Model
us first be more precise about the form of the raw ds
The task is to learn the joint distribution of a collect
of random variables X = {X;,...,X,,}. Each varia
X; has an associated collection of values {zj,...,:
that it can take on, where the number of values % 1
in general depend on ¢. Every distinct choice of val
for the variables in X defines an atomic event in
underlying joint distribution and is assigned a particu
probability by that distribution.

For example, we might have three random varial
X1, X,, and X3, with X; having {1,2}, X, hav
{1,2,3}, and X3 having {1,2} as possible values. Th
are 2 X 3 x 2 different complete instantiations of
variables. Each of these is an atomic event in the -
derlying joint distribution, and has a particular pr
ability of occurring. For example, the event in wh
{X; =1, X, =3, X5 =1} is one of these atomic ever

We assume that the data points in the raw data are
atomic events. That is, each data point specifies a va
for every random variable in X. Furthermore, we
sume that the data points are the result of independ
random trials. Hence, we would expect, via the cent
limit theorem, that each particular instantiation of
variables would appear in the database with a relat
frequency approximately equal to its probability. Th
assumptions are standard ones in work in this area.



and an unbiased estimator for node X; taking on the
value v when its parents in the network take on values
represented by w is N, ,/N,, where N, is the number
of data points in which X; and its parents take on the
values v and w, and N, is the number of data points in
which X;’s parents take on the values .

Given our Bayesian network model we can calculate
the probability ¢; (according to our model) of every
atomic event e;. Given that we are using the model
as a best “guess” representation of the underlying prob-
abilities, the optimal encoding of the data using the
probabilities ¢; will use approximately —log,(g;) bits to
encode each occurrence of the event ¢;, i.e., each data
point representing event e; will require that many bits
in the encoding.

For example, given the set of variables X, X5 and X3
as above, our model might assign probability 1/2 to the
event e; = {X; =1,X, =3, X3 =1} and probability
1/4 to the event e = {X; =2,X, =2, X3 =1}. We
could then use the binary code 1 to represent e; and
the code 01 to represent e, reserving the longer codes
001, 0001, etc., for the other less probable events. If the
database consists of the sequence of events ey, e, €5, we
could encode it as the 4 bit sequence 1101.> Here the
database has twice as many occurrences of e; as es; the
probabilities predicted by our model are corroborated
by the database. However, if the database consisted
of the event sequence es, ey, €1, the encoding dictated
by our model would require a 5 bit sequence 01011 to
encode the database. In this case a model that reversed
the probability assignments to e; and e; would have
yielded a shorter encoding of the database; such a model
would represent e; with the shorter code rather than e;.

If the true probability of event e; was p; and the
database consisted of N data points, we would expect
that on average there would be Np; occurrences of e; in
the database. Hence, given a model that assigns prob-
ability ¢; to event ¢;, it would require

- NZPi log,(gi) (2)

bits to encode the database. The following theorem, due
to Gibbs [13], provides important information about the
properties of this encoding.

Theorem 3.1 (Gibbs) Let p; and ¢;, i = 1,....n, be
non-negative real numbers that sum to 1. Then

— Y pilogy(pi) < = pilogs(a),

with equality holding if and only if p; = q;, where we
take 0log,(0) to be 0.

This theorem implies that on average the encoding of
the data is minimized only by an absolutely accurate

model, 1.e., a model that assigns probabilities ¢; that
IR I D TR AR U I T

Definition 3.2 [Kullback-Leibler Cross-Entropy]
P and @) be distributions defined over the same ev
space. The Kullback-Leibler cross-entropy betweern
and @, C(P,Q), is a measure of how close Q) is tc
and is defined by the equation

C(P.Q) = >_pi(log,(p:) — log,(a:)).

It follows from Gibbs’s theorem that this quantity
always non-negative and that it is zero if and onl;
P=Q,1e., Yi.gi=p;.

iFrom Equation 2 if follows that the minimal possi
encoding length of the data will be —N Y, p; log,(;
Hence, when using a model that assigns probabilities
the encoding length will increase by N (3, pi(log,(pi
log,(gi))). That is, we have the following theorem.

Theorem 3.3 The encoding length of the data 1.
monotonically increasing function of the cross-entr
between the distribution defined by the model and
true distribution.

In previous work Chow and Liu [3] developec
method for finding a tree structure that minimized
cross-entropy, and their method was extended by |
bane and Pearl [12] to finding polytrees with mini
cross-entropy. This theorem shows that in a cert
sense the MDL principle can be viewed as a gener
ization of these approaches. If we were to ignore
complexity (encoding length) of the model and were
restrict the class of models being examined, the M
principle would duplicate their results. The advant:
of considering both the data and the model (i.e., the s
of Equations 1 and 2) is that we can learn a more cc
plex model if no simpler model is sufficiently accure
1.e., if every simpler model has very high cross-entro

4 Applying the MDL Principle In theory
MDL principle can be applied by simply examining
ery possible Bayesian network that can be construc
over our set of random variables X. For each of th
networks we could evaluate the encoding length of
data and of the network searching for the network t.
minimized the sum of these encodings.

However, this approach is impractical as there
an exponential number of networks over n variable
Hence, we must resort to a heuristic search through
space of possible networks trying to find one that yie
a low, albeit not necessarily minimal, sum of Eq
tions 1 and 2.

We accomplish this search by dividing the probl
into two. There can be between 0 and n(n —1)/2 a
in a dag. For each possible number of different arcs
search heuristically for a network with that many a
and low cross-entropy. By Theorem 3.3 we know t
this network will yield a relatively low encoding len;
for the data We then examine these different networ



To perform the first part of the search, i.e., to find a
network with low cross-entropy, we develop some addi-
tional results that are based on the work of Chow and

Liu [3].

4.1 Evaluating Cross-Entropy The underlying
distribution P is a joint distribution over the variables
X = {Xi1,...,X,}, and any Bayesian network model
will also define a joint distribution () over these vari-
ables. Using this notation the equation for the cross-
entropy between P and () becomes
P(X)

C(P.Q) = ¥ P(X) ok
where the sum extends over all distinct vectors of values
of the variables in X, i.e., all atomic events.

In an arbitrary Bayesian network Q(X) will take the
form [10]:

Q(X) = QXi| Fx,)Q(X:| Fx,)...Q(X, | Fx,)

= P(X,|Fx,)P(X;| Fx,)...P(X, | Fx,), (4)
where Fx, is the, possibly empty, set of parents of X;.
We can replace the terms Q(X;|Fx,) by P(X;|Fx,) since
we are estimating these conditional probability terms,
i.e., the parameters of the Bayesian network, through
frequency counts taken over the raw data (as described
above). This equality assumes that these estimates
are approximately equal to the true underlying values
P(X;|Fx,;). By the central limit theorem they will be
close, with high probability, if we have a sufficient num-
ber of data points.

We can extend Chow and Liu’s work by defining a
weight measure for a node, X;, with respect to its par-
ents as follows:

P(le FXz)
W(X;, Fx,) = P(X;, Fx,)logy ——+—F7— (0

( X) X%*;X,' ( X) b2 P(Xi)P(FXi) ( )
where we are summing over all possible values that X
and its parents Fx, can take. And we can prove the
following theorem.

Theorem 4.1 C(P,Q) is a monotonically decreasing
function of 37, g 49 W(Xi, Fx;). Hence, it will be
minimized if and only if the sum is mazimized.

The proof of this and the other theorems is given in our
full report [8]. The summation term is the total weight
of the directed acyclic graph according to the weight
measure defined in Equation 5.

In conclusion, given probabilities computed from the
raw data, we can calculate the weight of any proposed
network structure. Our theorem shows that structures
with greater weight are closer to the underlying distri-
bution. If we can find a directed acyclic graph with
maximum total weight, then the probability distribu-
tion of this structure will be closest to the underlying
distribution of the raw data, and thus it will yield the
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then () = P. In other words, if we construct
multiply-connected network corresponding to the str
ture on the right side of the above expression, the pr
ability distribution defined by this structure will ab
lutely coincide with the underlying distribution of
raw data, and hence it will have lowest possible crc
entropy and highest possible weight. However, t
structure is a complete graph, and worse still, it d
not convey any meaning since it can represent any ¢
tribution. This indicates that if we allow structures
arbitrarily complex topology, we can obtain a trix
match with the underlying distribution.

To further understand the problem, consider the :
lowing theorem.

Theorem 4.2 Let M; be the mazimum weight of
networks that have i arcs, then

1> = M; > M;.

That is, we can always increase the quality of
learned network, i.e., decrease the error in the se
of decreasing the cross-entropy, by increasing the to
logical complexity, i.e., by learning networks with m
arcs. It is by considering in addition the encoding len;
of the network that we resolve this difficulty.

4.2 Searching for Low Cross-Entropy Netwo:
Given our ability to evaluate the cross-entropy of a n
work through an evaluation of its weight, we have des
oped a heuristic search algorithm that uses local sea
to find networks with low cross-entropy. We sea
for low cross-entropy networks with varying numb
of arcs, and then we choose among the networks fot
that one which minimizes the total description leng
i.e., that is best by the MDL principle.

A complete description of the heuristic search al
rithm is given in our full report [8]. In empirical test:
this algorithm we have found that when provided w
time polynomial in the number of data points and
number of variables (nodes in the net), the search pro
dure can successfully find good networks models of
raw data. Furthermore, it can find such models wi
out being provided with a prior “causality” ordering
the variables, as i1s required by Cooper and Herskovi
procedure [5].

5 Experimental Results A common approach
evaluating various learning algorithms has been to g
erate raw data from a predetermined network and tl
to compare the network learned from that data w
the original, the aim being to recapture the origit
For example, this is the technique used by Cooper ¢
Herskovits [5]. An implicit assumption of this appro:
1s that the aim of learning is to reconstruct the true «
tribution. However, if one takes the aim of learning
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with the original. Our approach involves a measure of
the closeness between two networks. This measure is
actualized in two different ways, one using Kullback-
Leibler cross-entropy and the other using an average of
the difference between the distributions specified by the
two networks evaluated a various points. The details of
our closeness measure are given in the full report [8].

We have performed three sets of experiments to
demonstrate the feasibility of our approach. The first
set of experiments consisted of a number of Bayesian
networks that were composed of small number of vari-
ables (5) as shown in Figure 1. Some of these structures
are multiply-connected networks.

The second experiment consisted of learning a
Bayesian network with a fairly large number of variables
(37 nodes and 46 arcs). This network was derived from
a real-world application in medical diagnosis [2] and is
known as the ALARM network (see [8] for a diagram of
this network).

The third experiment consisted of learning a small
Bayesian network, as shown in in Figure 2. We experi-
mented by varying the conditional probability parame-
ters of this network. Here the aim was to demonstrate
that our procedure could often learn a simpler network
that was very close to the original.

During the first set of experiments after calculating
the description lengths of the networks, the network
with the minimum description length was selected. In
all these cases we found that the learned network was
exactly the same as the one used to generate the raw
data.

In the second experiment the Bayesian network re-
covered by the algorithm was found to be close to the
original network structure. Two different arcs and three
missing arcs were found, out of 46 arcs. Furthermore,
our evaluated closeness between the original network
and this learned structure was very small, under both of
our measures. One additional feature of our approach,
in particular a feature of our heuristic search algorithm,
i1s that we did not require a user supplied ordering of
variables (cf. Cooper and Herskovits [5]). We feel that
this experiment demonstrates that our approach is fea-
sible for recovering Bayesian networks of practical size.

In the third set of experiments, the original Bayesian
network G4 consisted of 5 nodes and 5 arcs. We var-
ied the conditional probability parameters during the
process of generating the raw data obtaining four dif-
ferent sets of raw data. Exhaustive searching was then
carried out and the MDL learning algorithm was ap-
plied to each of these sets of raw data. Different learned

G2 B A a3 B

Gl A A

structures were obtained, all of which were extrem
close to the original network as measured by both
our distance formulas. In one case the original netw
was recovered.

This experiment demonstrates that our algorit.
yields a tradeoftf between accuracy and complexity
the learned structures: in all cases where the or
nal network was not recovered a simpler network +
learned. The type of structure learned depends on
parameters, as each set of parameters, in conjunct
with the structure, defines a different probability dis
bution. Some of these distributions can be accurat
modeled with simpler structures. In the first case,
distribution defined by the parameters did not hav
simpler model of sufficient accuracy, but in the ot

cases it did.
6 Conclusions We have argued in this paper t

the purpose of learning a Bayesian network from 1
data is not to recover the underlying distribution, as t
distribution might be too complex to use. Rather,
should attempt to learn a useful model of the underly
phenomena. Hence, there should be some tradeoff
tween accuracy and complexity. The MDL principle
as its rational this same tradeoff, and it can be natur:
applied to this particular problem. We have discussec
detail how the MDL principle can be applied and h
pointed out its relationship to the method of minimiz
cross-entropy. Using this relationship we have extenc
the results of Chow and Liu relating cross-entropy t
weighing function on the nodes. This has allowed us
develop a heuristic search algorithm for networks t.
minimize cross-entropy. These networks minimize

encoding length of the data, and when we also consi
the complexity of the network we can obtain moc
that are good under the MDL metric. Our experim
tal results demonstrate that our algorithm does in f
perform this tradeoff, and further that it can be appl
to networks of reasonable size.

There are a number of issues that arise which requ
future research. One issue is the search mechanism.
are currently dividing the task into first searching fc
network that minimizes the encoding length of the d
and then searching through the resulting networks
one that minimizes the total description length. T
method has been successful in practice, but we are a
investigating other mechanisms. In particular, it see
reasonable to combine both phases into one search. ¢
other important component that has not yet been
dressed is the accuracy of the raw data. In general, th
will be a limited quantity of raw data, and certain
rameters can only be estimated with limited accure
We are investigating methods for taking into acco

+he acctiracy of the dAata 11 the canctriicetion BAar ove
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Figure 2: The Quality of Learned Networks

we might know of causal relationships in the domain
that bias us towards making certain nodes parents of
other nodes. The issue that arises is how can this infor-
mation be used during learning. We are investigating
some approaches to this problem.
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