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Abstract

Analysis and experiments have shown that hierarchical problem�solving is most ef�
fective when the hierarchy satis�es the downward re�nement property �DRP�� whereby
every abstract solution can be re�ned to a concrete�level solution without backtracking
across abstraction levels� However� the DRP is a strong requirement that is not often
met in practice� In this paper we examine the case when the DRP fails� and provide an
analytical model of search complexity parameterized by the probability of an abstract
solution being re�nable� Our model provides a more accurate picture of the e�ective�
ness of hierarchical problem�solving� We then formalize the DRP in Abstrips�style
hierarchies� providing a syntactic test that can be applied to determine if a hierarchy
satis�es the DRP� Finally� we describe an algorithm called Highpoint that we have
developed� This algorithm builds on the Alpine algorithm of Knoblock in that it au�
tomatically generates abstraction hierarchies� However� it uses the theoretical tools we
have developed to generate hierarchies superior to those generated by Alpine� This
superiority is demonstrated empirically���
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� Introduction

In this paper we examine the bene�ts of hierarchical problem�solving under a new� and more
accurate� model of search costs� and we demonstrate how a more e�cient problem�solver can
be constructed using the information provided by our model� Hierarchical problem�solving is
accomplished by �rst searching for an abstract solution to the problem� that ignores certain
details� and then using the intermediate states of the abstract solution as intermediate goals
to decompose the search for the non�abstract solution� This technique has been used in a
number of problem�solvers in AI 	�
� ��� ��� �� ��� 
�� 

� 
�� ����

It has long been known that the identi�cation of intermediate states that decompose a
problem can signi�cantly reduce search 	��� ���� Hence� once we have an abstract solution
providing a decomposition of the problem� we can re�ne it to a concrete solution with much
less e�ort than if we had searched directly for a concrete solution� However� we also have to
take into account the cost of �nding the abstract solution� This is accomplished by searching
in an abstract version of the problem�space� Since the abstract space is smaller and the
abstract solution shorter� an abstract solution can generally be found with much less e�ort
than a concrete solution� When the cost of �nding an abstract solution and then re�ning
it to a concrete solution is less than the cost of searching directly for a concrete solution�
hierarchical problem�solving will be e�ective� The intuition behind using this technique�
then� is that this will usually be the case�

However� there are two major di�culties with this naive analysis�

�� Not every abstract solution need be re�nable� That is� the skeleton provided by the
abstract solution might be inappropriate for building a concrete solution� In this case
the problem�solver will have to examine alternate abstract solutions in an attempt to
�nd one that can be re�ned� That is� backtracking across abstraction levels might be
required� If multiple abstract solutions must be found and re�nements attempted for
them all� then the bene�t of the hierarchical approach is no longer obvious�

�� Even if we can re�ne it� the abstract solution might fail to provide an e�ective decompo�
sition of the problem� First� the intermediate goals provided by the intermediate states
of the abstract solution might not be independent� If there is signi�cant interaction
between these intermediate goals the complexity of re�ning the abstract solution might
approach the complexity of direct search for a concrete solution� Secondly� �nding so�
lutions to these intermediate goals might be as di�cult as solving the original goal�
That is� the abstract solution might fail to break the problem into easier subproblems�

Nevertheless� when it works� hierarchical problem�solving is one of the most e�ective
techniques in practice� as demonstrated� e�g�� in the work of Sacerdoti 	��� and also Newell
and Simon 	�
�� Analytical models that have been presented in the literature 	��� ��� predict
that an exponential speed�up is possible from this technique� However� these models ignore
both of the problems presented above� In particular� they assume that every abstract solution






can be re�ned to a concrete solution without backtracking across abstraction levels� and they
also assume that the intermediate goals generated by the abstract solution are easy and can
be solved independently�

The work presented here originated with our observation that hierarchies don�t always
yield more e�ciency� contrary to the predictions of these models� In fact� experiments
with Abstrips and AbTweak 	
� demonstrated that abstraction only increases search
e�ciency in hierarchies where most abstract solutions are re�nable �i�e�� where we do not
have to do much backtracking in the abstraction hierarchy�� In hierarchies where this is
not the case� using abstraction sometimes decreased the e�ciency of the planner� Since�
hierarchical problem�solving is so important in practice� and its potential bene�ts so great�
we were motivated to understand this phenomenon more thoroughly�

To achieve this goal we construct an analytical model of the complexity of hierarchical
problem�solving that takes into account the possibility of backtracking across abstraction
levels� Our analytical model is a probabilistic one which yields an expected� or average�
complexity� and it is parameterized by the probability that an abstract solution can be
re�ned� When this probability is �� we recapture the assumption of no backtracking �in this
case every abstract solution can be re�ned�� Hence� our model is a strict generalization of
previous models� Using the model we are able to provide a lot of new information about the
bene�ts of hierarchical problem solving�

Our model applies to a range of di�erent types of hierarchies� but we were mainly inter�
ested in Abstrips�style hierarchies� as these are the type most commonly found in planning
systems� In Abstrips�hierarchies the assumption of no backtracking across abstraction lev�
els yields to further analysis� We say that a hierarchy possesses the downward re�nement
property� or DRP 	
�� if every abstract solution can be re�ned to a concrete solution� given
that a concrete solution exists� For Abstrips hierarchies we provide a formal semantic char�
acterization of hierarchies that possess the DRP� This characterization is used to provide a
useful syntactic condition that is su�cient to guarantee the DRP� Hence� in certain cases
we can detect if a hierarchy is �good� in the sense that� under the assumption of easy and
independent intermediate goals� we know� via the analytical models� that such hierarchies
yield a signi�cant speed�up over non�hierarchical planning�

Finally� we put all of these pieces together in the design of a new hierarchy generator
called Highpoint� This system builds on the Alpine system of Knoblock 	���� which is
an automatic hierarchy generator for Abstrips�hierarchies� Highpoint takes the hierarchy
suggested by Alpine and improves it using information gathered during a testing phase�
These improvements are based on the results of our analysis as well as the syntactic condition
we develop� Our empirical results demonstrate thatHighpoint can generate hierarchies that
o�er a signi�cant improvement in performance over those hierarchies generated by Alpine�

In the sequel we follow the ordering used above� In Section �� we present an analytical
model of the complexity of the hierarchical approach and use that model to analyze in more
depth the bene�ts of this technique� In Section 
� we turn our attention to the downward
re�nement property in Abstrips�style hierarchies� presenting a semantic characterization



�

�

�

�

��

�

�

�

����

	

��

	

��

	

��

	

��

	

��

	

��

��������

�����

�
�

�
�

�
�

A
A
A
A
A
A

J
J
J
J
J
JJ

��

����

abstract ��abstract ��

Ground
Space

Space
Abstract

Abstract goal stateAbstract initial state

Goal StateInitial State

Figure �� An abstract solution and its re�nement�

of the property along with a syntactic condition su�cient to guarantee it� In Section �� we
present the hierarchy generation algorithm Highpoint� along with a collection of empirical
results demonstrating its e�ectiveness� Finally� we close with some conclusions and discussion
of future work�

� An Analytical Model

First� we present in more detail the basic problem�solving technique used by the hierarchical
approach�

The problem�space consists of a collection of states along with a set of operators that
map between the states� A problem consists of an initial state and a goal state� and it
is solved by searching for a sequence of operators whose composition will map the initial
state to the goal state� In hierarchical problem�solving an abstract version of the original�
or concrete� problem�space is used� The abstract version is generated via some reduction� or
generalization� of the operators or states in the ground space� For example� in Abstrips�
style hierarchies the operators are generalized by dropping some of their preconditions� this
has the e�ect of increasing the domain of the partial function they de�ne on the states�

A hierarchical problem�solver �rst searches the abstract space for a solution �see Figure ���
However� this solution cannot be used at the concrete level� For example� in Abstrips�style
hierarchies the abstract solution will have unful�lled preconditions at the concrete level�
Instead it can only serve as a skeletal plan for the concrete level� A correct solution at
the lower level is generated by re�ning the abstract solution� and this is accomplished by
inserting additional operators between the operators in the abstract solution� If we have m
operators in the abstract solution� re�nement to the next lower level can be viewed as solving
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m �gap� subproblems� Solving the gaps amounts to �nding new sequences of operators which
when placed between the operators of the abstract solution generate a correct solution at
the lower level�

This approach easily generalizes to a hierarchy with multiple levels of abstraction� When
using such a hierarchy we plan at the most abstract level �rst and then successively re�ne
our solution down the hierarchy� taking care of more and more details as we move down�
until we generate a solution at the lowest� ground or concrete� level that takes care of all
the details speci�ed in the original problem� As we move down the hierarchy our solution
becomes longer� and thus the number of �gap� subproblems we have to solve increases��

��� The Space of Abstract Solutions

The total search space explored by a hierarchical problem�solver can be viewed as a tree
generated by the abstraction hierarchy �see Figure ��� In this tree each node at level i
represents a complete i�th level abstract solution� The children of a node represent all of the
di�erent re�nements of that solution at the next �lower� level of abstraction� The leaf nodes
are complete concrete�level solutions� The task in searching through the space of abstract
solutions is to �nd a path from the root down to a leaf node representing a correct concrete�
level solution� Each node on the path must be a legal i�th level abstract solution to the
problem at hand and must be a re�nement of the i���level abstract solution represented by
its parent� That is� we are searching for an abstract solution that can be successfully re�ned
through the levels of abstraction down to the concrete level�

The work in searching this tree comes from the work required to �nd the solution at
each node� This solution is a re�nement of the solution that has already been found at the
node�s parent� Hence� �nding it simply involves solving all of the gap subproblems that arise
when the parent�s solution is moved down to this next lowest level� Since the number of gap
subproblems increase as we move down the tree� the total amount of work will depend both
on the number and depth of the nodes examined during search�

The root represents a special length one solution to every problem� a universal solution�
Its presence is simply a technical convenience� The levels of the tree are numbered fn� � � � � �g
with the root being at level n and the leaves at level �� Hence� discounting the universal
solution at level n� our abstraction hierarchy has n levels�

The tree of abstract plans will have a branching factor that� in general� will vary from
node to node� This branching factor is the number of i�� level re�nements possible for a
given i level solution� i�e�� the number of children a node at level i has� Let the maximum
of these branching factor be B� For simplicity we will use B as the branching factor for all
nodes in the tree� Note� B has no straightforward relationship with the branching factor

�Our model does not apply to hierarchies of macro�operators 	��� In this type of hierarchy lower�level
operators are not inserted between the operators in the abstract solution� Instead� operators are inserted
only at the head and the tail of the abstract solution� This means that there are a �xed number of gap
subproblems �two� involved in every re�nement�
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Figure �� Our analytical model� a tree of abstract solutions� with a branching factor B and
a depth n � ��

generated by the operators when searching for a speci�c solution� which we will denote by
lower case b�

Under the assumption that the gap subproblems are independent� the number of re�ne�
ments of a given i�th level solution� B� will be the product of the number of di�erent solutions
to each of the gap subproblems� Hence� it might be thought that B would grow exponen�
tially as we move down the tree� as the number of gap subproblems is growing exponentially�
However� as we move down the levels of abstraction the gap subproblems become more and
more constrainted� at each level the gap solutions must preserve more and more conditions
achieved at the higher levels of abstraction� Hence� the number of di�erent solutions to
the gap subproblems drops as we move down the tree� The exact balance between these
two e�ects is di�cult to determine� but we have found that our assumption of a constant
branching factor B yields a model that is supported by our empirical results�

��� Initial Assumptions

At this stage for simplicity and ease of presentation we carry through our analysis under
some initial assumptions�

�� We assume that the abstraction hierarchy is regular� In particular� we assume that it
takes approximately k new operators to solve every gap subproblem where k is constant
across abstraction levels� Re�ning a solution to the next level amounts to solving a
gap subproblem between every pair of operators� hence the re�ned solution will be k
times longer �see Figure 
�� Since the root is a solution of length �� this means that the
solutions at level i are of length kn�i� and that the concrete�level solution is of length
kn� which we also denote by ��
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Figure 
� Re�ning an abstract solution�

As this assumption degenerates the value of abstraction degenerates� If we end up
having gap subproblems which require solutions of length O��� instead of O�k� �
O����n�� then solving them will require search of O�b�� where b is the branching factor
generated by the operators� This is no better than search without abstraction�

�� We assume that the individual gap subproblems can be solved without signi�cant inter�
action� If� say� r gap subproblems interact we will have to search for a plan that solves
all of them simultaneously� Such a plan would be of length O�rk� and would require
O�brk� search� As rk approaches � we once again degenerate to search complexity of
O�b�� and abstraction yields no bene�ts�

These two assumptions correspond to ignoring� for now� the second problem mentioned
in the introduction� i�e�� that the abstract solution might fail to provide an e�ective
decomposition of the problem� The brief discussion above indicates� however� that
when these assumptions fail� hierarchical problem�solving can quickly degenerate to
being worse than non�hierarchical problem�solving� Hence� these two assumptions are
required before we can obtain any interesting behavior from the abstraction hierarchy�
We will return to discuss in greater detail the e�ect of lifting these assumptions after
we carry through our analysis�


� We assume that a concrete level solution exists� This assumption is only to simplify
our initial presentation� Actually� the analytical model we develop will also cover the
case where this assumption fails� as will be discussed in the sequel�
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�� We assume that the upward�solution property holds of the hierarchy� This property
simply says that if a concrete level solution �� exists then there exists a sequence of
abstract solutions ending with ��� f�n� � � � ���g� such that each �i is an i�th level
abstract solution� and �i�� is a re�nement of �i� That is� there is a sequence of
re�nements that yield the concrete level plan� Tenenberg 	
�� has shown that this
property always holds in any Abstrips�style abstraction hierarchy� In general� it will
be true of any hierarchy in which abstract solutions ignore details� In this case we
can generate the required sequence of abstract solutions by starting with the concrete
solution and successively simplifying it as we move up the levels of abstraction� ignoring
more and more details as we move up� In the sequel we will expand our model to handle
the case where this assumption fails�

��� The Probability of Re�nement

If a hierarchy has the DRP then every solution at abstraction level i can be re�ned to a
solution at abstraction level i��� This means that once we have found a path down to level
i� whose terminal node represents a correct i�th level solution� we are assured that this node
has a child representing a valid i���th level solution� That is� we are assured that the node
can be re�ned to the next lower level� Hence� we need never reconsider the initial part of
the path� we just need to extend it until we reach a leaf� there is no backtracking across
abstraction levels�

A reasonable way to examine the behavior of hierarchies in which the DRP fails is to
assign a probability� p� to the event that a given i�th level solution can be re�ned to level
i��� The DRP now corresponds to the case p � �� When p � �� however� we might build
a path of correct solutions from the root down to a node at level i� and then �nd that this
node is not re�nable to the next level� This will force a backtrack to the penultimate node
at level i�� to �nd an alternate level i solution� one which is re�nable� This may cause
further backtrack to level i��� or search may progress to lower levels before backtracking
occurs again�

Since we are assuming that a concrete�level solution exists� and that the upward solution
property holds� we know that there is at least one path of correct solutions in the tree from
the root to a leaf node� Hence� although the worst case will require an exhaustive search of
the tree� search will eventually succeed in �nding a good path�

What we wish to accomplish� then� is to determine the average case complexity of search
in abstraction hierarchies in which ��� the probability that a given node in the abstraction
search tree can be re�ned is p� and ��� there is at least one good path� i�e�� a path of good
nodes� from the root to a leaf in the tree�

If a node is re�nable to the next level� it will have B children� under our assumption that
the number of re�nements be treated as a constant� Each of these children is itself re�nable
with probability p� During search if we encounter a node that is re�nable we would have
to examine all of the subtrees headed up by its B children before we can conclude that it



�

is a deadend� On the other hand� if the node is not re�nable we can backtrack right away�
Hence� as far as search is concerned� a node that is re�nable has B children� while a node
that is not re�nable has no children�

Analytically� however� we can �nd the average case complexity of searching such trees by
considering randomly labeled complete trees� A complete abstraction tree is simply a tree in
which every node� re�nable or not� has B children and which has height n��� Hence� it has
N � Bn����

B�� nodes� We randomly label each node in this tree as being re�nable �good� with

probability p� or not re�nable �bad� with probability ��p� Each of the �N distinct trees that
can be generated by this process has probability p g���p�N�g� where g is the number of good
nodes in that tree� Now the average case complexity for searching this collection of trees is
simply the sum of the search e�ort required for each tree times the probability of that tree�
The average case complexity for searching all of these trees is the same as the average case
complexity of searching the original set of trees in which a bad node has no children� Each
original tree in which bad nodes have no children represents a set of complete trees� each
one generated by a di�erent labeling of the subtrees under the bad nodes� The probability
of the original tree is exactly the same as the sum of the probabilities of the complete trees
in this set�

For now� we wish to restrict our attention to the case where each tree contains at least
one good path� When we generate the set of di�erently labeled complete trees� some of them
will not contain a good path from the root to a leaf� We remove these trees� and renormalize
the probabilities of the remaining trees so that they sum to �� That is� we take conditional
probabilities�

This means that if we select a random node from a random tree that contains a good
path� then the probability that the node is re�nable will be a bit higher than p� There
is some positive probability that the node selected is on the good path� in which case it
will de�nitely be re�nable� otherwise if it is not on the good path it will be re�nable with
probability p� These exclusive events sum� and the probability the node is re�nable becomes
somewhat larger than p�

One other piece of notation we will use is b�K�N�P � to denote the binomial distribution�
i�e�� the probability of K successes in N independent Bernoulli trials each with probability
P of success�

��� Analytic Forms

Now we present the analytic forms that arise from the framework and assumptions presented
above� It should also be pointed out that our analysis assumes that search of the abstraction
tree is performed in a depth��rst manner as this is the standard way in which abstraction
planners like Abstrips 	��� and AbTweak 	
� work�
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����� NodeWork�i�

First� we examine the amount of work required to re�ne a node �see Figure 
� at level
i� NodeWork�i�� At level n we have one �gap� subproblem to solve which requires O�bk�
computation� by our �rst assumption each gap subproblem requires k operators for its
solution� and search for k operators in a space with branching factor b requires O�bk�� At
level n�� the nodes are abstract solutions of length k� resulting in k subproblems each
requiring O�bk� computation� Hence� under our second assumption of independent �gap�
subproblems� we require O�kbk� computation to re�ne a node at this level� This trend
continues so that at level i the abstract solutions generate kn�i subproblems each requiring
O�bk� computation� However� at level � the solutions are concrete� hence� they do not need
to be re�ned� Hence� we have

NodeWork�i� � kn�ibk �� � i � n� ���

NodeWork��� � ��

����� Failure Probability�F �i�

Now we develop an expression for F �i�� the probability that a random subtree with root at
level i fails to contain good path from its root to a leaf� A subtree can fail to contain a good
path in two exclusive ways� �a� the root could be a bad node or �b� the root could be good
but somewhere among its descendants all the good paths terminate before reaching level ��

Case �b� can be analyzed using the theory of branching processes 	�� ��� A branching
process is a probabilistic model with wide ranging applications� In its basic form we start
with a single parent who produces some number of o�spring� There is a �xed probability
that n o�spring will be generated� for every n � �� Each child has in turn its own children�
and the number of its children is again governed by the same distribution� The theory of
branching processes analyses the number of o�spring after i generations� the probability of
eventual extinction� and other questions�

In case �b� if the root is good it initiates a branching process where it might have some
number of good children and they in turn might have some number of good children and so
on� We can consider the production of bad children as points where the process terminates� If
the root is good it always produces B children �the branching factor in the space of abstract
solutions�� and each of those children is labeled good or bad by an independent random
process� with probability of a good label being p� Hence� the number of good children of
the root will be binomially distributed� b�m�B� p� is the probability of it having m good
children� The generating function of the binomial distribution is

G�s� � ��� p� ps�B�� ���

�When this generating function is expanded as a power series in s the coe�cient of sm is equal to the
probability of m good �re�neable� children among the B o�spring� i�e�� b�m�B� p��
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Let G��s� � G�s� and Gj � Gj���G�s��� i�e�� the j�th iterate of G�s��
From the theory of branching processes it is known that the probability that there is

no path of i good nodes from the root is Gi���� This corresponds to the probability of the
branching process being extinct after i generations� For example� the probability of there
being no paths of � good nodes from the root �i�e�� the probability of no good child having
a good child� is G���� � G�G���� � G��� � p�B� � ��� � p� � p�� � p�B�B�

Hence� for a random subtree with root at level i to fail to contain a good path from its
root to a leaf� it must either have a bad root with probability � � p� or it must fail to have
a path of good nodes of length i� � from its good root� If we get to a good node at level �
we know that there is a successful concrete solution in the subtree� This yields

F �i� � �� p� p	Gi������ �i � ��� �
�

F ��� � �� p

and we can compute F �i� directly for any value of i and p�
Also of use is the fact that asymptotically Gi��� approaches a particular value Q called

the extinction probability as i � ��� When p � ��B� Q � �� and when p � ��B� Q is the
least positive root of the equation G�s� � s� So� for example� when B � � and p � 
�� we
have that G����� � ���
 � 
������� � ���� and this is the least positive number for which
this is true� i�e�� p � 
�� �B � �� Q � ����

Hence we obtain

lim
i��

F �i� �

�
� if p � ��B
� � p� p	Q� otherwise� where G�Q� � Q�

���

From this we can identify three regions of importance�

limi�� F �i� � � �p � ��B��
limi�� F �i� � ��� �� ���B � p � ���
	i�F �i� � � �p � ���

���

Intuitively� when p � ��B the expected number of good children a node has �i�e�� Bp� will
be less that �� So as we move down the tree extending any particular path the chances are
that eventually we will hit a node with no good children� That is� eventually all paths will
terminate� and the failure probability will be one� Asymptotically the case p � ��B turns
out to be the same� When p � ��B the expected number of good children rises above �� and
since the number of paths is increasing exponentially� there will be a non�zero probability
that at least one of them is a good path� even as i���

As p increases in the region ���B� �� the expected number of good children of the nodes
continues to climb� hence the failure probability� i�e�� the limiting value of F �i�� decreases�
In fact� F �i� decreases monotonically as p increases in this region� Eventually� when p � �

�Convergence is quite rapid� see 	�� for theorems about rate of convergence�
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every child must be good and all paths are good paths� hence� the failure probability becomes
zero�

When we develop our complexity results for searching the tree� the failure probability
will �gure prominently� And we will see that these transitions in the failure probability will
show up as changes in the expected complexity of search�

����� BadTreeWork�i�

Let BadTreeWork�i� be the expected amount of computation required to search a subtree with
root at level i that does not contain a good path� To ensure that such a tree is a dead end we
have to search until we have exhausted all candidate good paths� We always have to expand
the root which is at level i and hence requires NodeWork�i� � kn�ibk computation� With
probability p the root is re�nable and we will then have to examine all of the B subtrees under
the root� all of which must be bad �otherwise the initial tree would not be bad�� This process
must stop by level �� as if a node at level � is good this means that it can be re�ned to a good
ground�level solution and the initial tree would not be bad� Hence� BadTreeWork��� � �� and
we obtain the recurrence� BadTreeWork�i� � kn�ibk�pB�BadTreeWork�i����� By expanding
the �rst few terms of this recurrence we can �nd a general expression�

BadTreeWork�i� � bkkn�i
�pBk�i � �

pBk � �
� ��

����� GoodTreeWork�i�

Let GoodTreeWork�i� be the expected amount of computation required to search a good
subtree with root at level i� i�e�� a subtree which contains at least one good path from its
root to a leaf� To examine a good tree we have to expand its root node� Then we must search
the subtrees under the root� looking for a good subtree rooted at the next level� Once we
�nd such a subtree we never need backtrack out of it� �There may however� be any amount
of backtracking involved while searching the bad subtrees encountered before we �nd a good
subtree��

The root has B children� and hence between � and B good subtrees under it� Let m be
the number of good subtrees under the root� The probability of m taking any particular
value is b�m�B� ��F �i����� each subtree can be viewed to be the result of a single Bernoulli
trial where the probability of failure �a bad subtree� is F �i���� However� we also know that
the case m � � is impossible� therefore� we must condition on the impossibility of this
case� This amounts to taking conditional probabilities which can be computed by dividing
the probabilities b�m�B� � � F �i����� for m � �� by � � b��� B� � � F �i���� which is the
probability that m 
� �� If there are in fact m good subtrees� then Lemma ���� below� tells us
that on average we will have to search �B �m���m� �� bad subtrees before �nding a good
subtree� The expected number of bad subtrees that must be searched can then be computed



�


by summing the average number of trees for each value of m times the probability of that
value of m holding�

These observations can be put together to yield the recurrence�

GoodTreeWork�i� � NodeWork�i�

�
BX

m��

b�m�B� �� F �i� ���

� � b��� B� �� F �i� ���

��B �m

m� �

�
BadTreeWork�i� ��

�

� GoodTreeWork�i� ���

This expression can be simpli�ed to the following form� Let

��i� �
F �i�

�
� �B��� F �i��F �i�B��� F �i�B

�
�� � F �i����� F �i�B�

� ���

Then we can express GoodTreeWork�i� in the following form�

GoodTreeWork�i� � kn�ibk
�ki � �

k � �

�
�

i��X
j��

BadTreeWork�j���j�� ���

For the derivation of this simpli�cation see the appendix� One can see from this equation
that ��i� represents the average number of bad subtrees we need to examine at level i� It
can also be seen� through elementary calculus� that ��i� increases monotonically with F �i��
Intuitively� as F �i� climbs the probability of a subtree rooted at level i being bad increases�
Hence� the average number of subtrees that need to be searched at that level� i�e�� ��i�� will
also climb�

Finally� we close our presentation of the analytic forms with the probability lemma used
in the derivation of GoodTreeWork�i��

Lemma ��� Say we have a urn with B balls of which m are labeled �good�� If we sample
balls from this urn� at random and without replacement we will have to select B�m

m�� bad balls
on average until we obtain a �good� ball�

Proof� Let X be a random variable that takes on the value k if the k � � selection is the
�rst to yield a good ball� i�e�� if we �rst have to select k bad balls� The lemma claims that
E	X� � B�m

m�� � We have

prob	X � k� �
�B �m

B

��B �m� �

B � �

�
� � �
�B �m� k � �

B � k � �

�� m

B � k

�
�

As the event X � k consists of the events of k failed trials� each of which has the e�ect
of reducing the number of bad balls by one� and a successful trial at k � � at which point
there are still the original m good balls but only B � k balls in total� Clearly� we can have



��

at most B � m failed trials� as by that point we have exhausted the bad balls� Hence�
prob	X � B �m� � �� and

E	X� �
B�mX
k��

k
m�B �m�k

�B�k��
�

where �x�k � x�x��� � � � �x�k���� We can now derive the required result through standard
techniques for the manipulation of sums involving binomial coe�cients �see 	�����

��� Predictions of the Model

We can now examine what these expressions tell us about the complexity of hierarchical
problem�solving� First� we consider the case where our initial assumptions hold� That is� we
assume that there is no interaction between the gap subproblems� and that a concrete level
solution exists� Since we are assuming the upward solution property �which always holds for
Abstrips�style hierarchies�� we know that there is a good path from the root to a leaf in
the tree of abstract solutions� We wish to examine how much work is required to �nd that
path�

��	�� A concrete solution exists

Since the root of the tree of abstract solutions is at level n� and we know that there is a path
of good nodes down to a leaf� the complexity of search is given by GoodTreeWork�n�� There
are three qualitatively di�erent regions�

p � �� In this region we have the DRP� and the assumptions of previous analyses hold�
When p � �� 	i�F �i� � �� Hence� 	i���i� � �� That is� at every level no bad subtrees need
be searched as the probability of a bad subtree is zero� Our expression for GoodTreeWork�n��
Eq� �� thus simpli�es to GoodTreeWork�n� � bk k

n��
k�� � Hence� we have

GoodTreeWork�n� � O�bkkn��� p � �� ���

This result agrees with Knoblock�s previous analysis which assumed the DRP 	����
This result also shows that at p � � the work required to search a good tree is simplyPn

i�� NodeWork�i�� This is to be expected� With p � � we never have to backtrack� and we
simply need to do the work required to re�ne a single abstract solution down through the
levels of abstraction� i�e�� one unit of NodeWork�i� at each level i�

p � �
���B�� For this region and the next it is useful to know

n��X
j��

BadTreeWork�j� �

���
�	

O�bkkn��� p � ��B
O�bkkn��n� p � ��B
O�bkkn���pB�n��� p � ��B�

����



��

This result is derived in the appendix�
We cannot allow p � �� since we are conditioning on the existence of a good path� When

p � � the probability of a good path existing will be �� Nevertheless� we can take the limit
as p � �� Analytically� this corresponds to taking the limit of ��i� as F �i� � �� since
F �i�� � monotonically as p� �� Both the numerator and the denominator of ��i�� Eq� ��
tend to �� but we can �nd its limit by a double application of l�H�opital�s rule� This yields
��i�� �B � ����� When p� � and we are conditioning on the existence of a good path� it
is easy to see that all subtrees under a good node will become bad except a single one that
must be good� ��i� is the average number of bad subtrees we need to examine until we �nd
a good subtree� Hence� on average we will have to examine half the subtrees until we �nd
the good one�

It turns out that the region p � ��B is asymptotically identical to the case p � ��
as in this region limi�� F �i� � �� Hence� throughout the region � � p � ��B we have
that ��i� � �B � ����� Applying Eq� �� and the fact that ��i� approaches a value that is
independent of n to Eq� � we obtain�

GoodTreeWork�n� �

�
O�bkkn��� p � ��B
O�bkkn��n� p � ��B�

����

��B � p � �� In this region for any �xed value of p� limi�� F �i� lies between � and �� and
the limiting value decreases monotonically as p increases� Therefore� for any �xed value of p�
��i� tends to a value independent of i� This value lies between the extreme values of �� when
p � �� and �B � ����� when p � �� From Equation � we can further see that this limiting
value for � also decreases monotonically as p increases �as it increases monotonically with
F �i���

Again applying Eq� �� and the independence of ��i� on i to Eq� � we obtain�

GoodTreeWork�n� � O�bkkn��� �O�bkkn���pB�n����p�� ��B � p � �� ����

where ��p� is the limiting value of ��i�� it is a monotonically decreasing function of p�
For any �xed value of p� ��p� is a constant� and we can combine the two O terms to

obtain
GoodTreeWork�n� � O�bkkn���pB�n����

But as p approaches �� ��p� drops to �� the second O term vanishes� and we obtain our
previous expression for GoodTreeWork at p � �� Equation ��

Discussion� There are two cases to consider� hierarchies with a constant number of levels
and those with a variable number� In certain domains we can make n� the number of
abstraction levels� vary with �� the length of the concrete solution� For example� in the
Towers of Hanoi domain we can place each disk at a separate level of abstraction 	����
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p ��� ��B� ��B ���B� �� �

Variable n O��� O�� log���� O���pB�logk��	� O���

Constant n O��b
np
�� O��b

np
�� O��b

np
�� O��b

np
��

Table �� Asymptotic Search Complexity for Di�erent Regions when a solution exists�

In other domains� e�g�� blocks world� it is not so easy to construct a variable number of
abstraction levels� and n is generally �xed over di�erent problem instances�


Since each re�nement multiplies the length of the abstract solution by k� we have that
the concrete solution will be of size kn� i�e�� kn � �� We want to express our results in terms
of �� If we can vary n with � then we can ensure that k remains constant and we have that
n � logk���� In this case� bk will become a constant� Otherwise� if n is constant� k � n

p
�

will grow slowly with �� In this case� bk � b
n
p
� grows exponentially with �� albeit much more

slowly than b� �c�f�� 	����� This essential di�erence results in di�erent asymptotic behavior
for the two cases� n variable and n constant� Table � gives the results of our analysis for
these two cases expressed in terms of the length of solution ��

Non�hierarchical search requires O�b��� hence� it is evident from the table that when
� � p � ��B and when p � � abstraction has a signi�cant bene�t� If we can vary n we can
obtain an exponential speed�up� and even if n is not variable� we still obtain a signi�cant
speed up by reducing the exponent � to its n�th root� Our result for p � � agrees with
that of Knoblock 	���� here we have the DRP and all of his assumptions hold� Our results
for the region � � p � ��B� however� extend his analysis� and indicate that abstraction is
theoretically useful when the probability of re�nement is very low�

As we have pointed out above� ��i� � �B � ���� in this region� That is� the average
number of bad subtrees we have to examine at each abstraction level tends to its maximum
value� However� the overall complexity of search remain low as it does not require much
e�ort to search these bad subtrees� This can be seen from Equation ��� We see that the
work required to search a bad subtree at each level does not depend on the size of the search
tree in this region� That is� the factor Bn�� is missing� Since p is small we only have to
search an essentially constant number of nodes in each bad subtree before realizing that
all paths in that subtree terminate� Intuitively� this arises because the expected number of
re�nable children of every node is less that � when p � ��B� When p � ��B� on the other
hand� searching a bad subtree becomes hard as the expected number of re�nable children of
each node becomes greater than one� This means that some proportion of all of the nodes

�Our asymptotic results are functions which become more and more accurate as n gets larger� i�e�� they
are limiting results as n � �� Hence� in the case where n is constant it is neccessary that n be relatively
large for these results to be reasonably accurate� If n is small� and the other parameters can be estimated�
Equation � can be applied directly to give exact answers�
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in the subtree �an exponential number� must be examined� which gives rise to the �pB�n��

factor�
Our experiments have shown� however� that this region of low re�nement probability is

not of much practical use� The problem is that typically B is quite large� as most abstract
solutions admit a large number of alternate possible re�nements� Hence� this region of low
complexity is very small and close to zero� Although the probability of re�nement in a
hierarchy can be low� it is exceptional for it to be lower than ��B� That is� hierarchies
with low re�nement probability will typically have re�nement probabilities that fall into the
worst region ��B � p � �� rather than in the better region p � ��B� Another factor that
makes hierarchies with low re�nement probability bad in practice is that the constant time
overhead of using a hierarchy is quite high� Hence� one would have to be solving quite large
problems before the asymptotic bene�ts come into play�

The asymptotics given for the case of constant n are somewhat misleading� The asymp�
totic order of search complexity is independent of p for constant n simply because �b

n
p
�

dominates all of the other terms as � grows� However� Equations �� ��� and ��� indicate
that the constant factors can be signi�cantly di�erent� In the worst region ��B � p � �� for
example� we have a constant factor� �pB�n��� that is exponential in the number of levels in
the hierarchy� For the case of variable n� on the other hand� there is a quantitative di�erence
in the asymptotic complexity of the di�erent regions�

As p approaches ��B we see that the search complexity increases by a factor of n� and as
we move to the region ��B � p � � things are worse� we increase by a factor� O��pB�n�� that
is exponential in n� In these regions it is not always advantageous to increase the number
of abstraction levels n� especially in the region ��B � p � �� As p increases in this region
search �rst becomes harder and then easier� This can be seen from Equation ��� The �rst
O term O�bkkn��� is una�ected by p� but the second term O�bkkn���pB�n����p��� contains
two competing factors� As p increases the factor �pB�n�� grows and the factor ��p� shrinks�
By running a number of numerical examples� using the exact equations� we have found that
search e�ort �rst grows as the �pB�n�� factor dominates� and then starts to shrink as the
��p� factor dominates� As p approaches �� ��p� approaches �� and the second term drops
out and leaves us with the lower complexity of the �rst O term� i�e�� the p � ��

Intuitively� what is occuring in this region is that the bad subtrees are becoming increas�
ingly di�cult to search� We have to search a larger and larger proportion of a bad subtree
before we can recognize that it is bad� analytically� the �pB�n�� factor in Equation �� is
growing� However� the chance that a given subtree is bad is also diminishing as p grows� So
the number of bad subtrees� ��p�� we have to search is decreasing� These two trends �ght
each other� with the total work required �rst growing and then shrinking� until we reach
p � � where the number of bad subtrees we have to search� ��p�� falls to ��

Our analysis also tells us that if the number of possible re�nements for an abstract
solution� B� is large� then searching the abstraction tree is more expensive in the worst
region ��B � p � �� This is to be expected� the abstraction tree is bushier and in this
region we have to search a signi�cant proportion of it� Also of interest is that B does not
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play much of a role outside of this region� except� of course� that it determines the size of the
region� Hence� if we know that the DRP holds or if the probability of re�nement is very low�
we do not have to worry much about the shape of the abstraction tree� However� without
such assurances it is advantageous to choose abstraction hierarchies where abstract solutions
generate fewer re�nements� For example� this might determine the choice of one criticality
ordering over an alternate one in Abstrips�style abstraction�

Another interesting result of our analysis is that search is most complex in the middle
region� When the probability is low that an abstract solution can be re�ned more abstract
solutions need to be examined before a re�nable one is found� However� not much work is
required to detect unre�nability� On the other hand when the probability of re�nability is
high not too many abstract solutions need be checked before a good one is found� The worst
case is in the middle� There a signi�cant fraction of the abstract solutions are unre�nable�
and it can take a great deal of work to discover that they are unre�nable� The existence
of such a phase boundary agrees with recent empirical studies of Cheeseman et al� 	��� who
found that the hard cases of many problems tend to cluster in the phase boundary between
very many solutions and very few solutions�

��	�� A concrete solution does not exist

We derived an expression for GoodTreeWork�i� under the assumption that a concrete solution�
and hence a good path from the root to a leaf� exists� However� in doing so we also obtained
an expression for BadTreeWork�i�� When no concrete solution exists neither does a good
path from the root to a leaf� and hence the entire tree of abstract solutions is a bad tree�
Therefore� to eliminate our third assumption and examine what occurs when no solution
exists we simply have to evaluate BadTreeWork�n�� Eq�  evaluated at i � n yields�

BadTreeWork�n� � bk
�pBk�n � �

pBk � �
�

This yields the following asymptotic behavior�

BadTreeWork�n� �

���
�	

O�bk� p � ��Bk
O�bkn� p � ��Bk
O�bkkn���pB�n��� p � ��Bk�

��
�

Again we can consider the cases where the number of levels in the hierarchy is constant� in
which case k � n

p
� and bk � b

n
p
�� and when the number of levels is variable� in which case

k remains constant and n � logk���� Table � gives the results of our analysis for these two
cases expressed in terms of the length of solution ���

These results tell us that under the assumption of non�interacting �gap� problems� hier�
archical planning can often detect the lack of a solution quickly� This is particularly the case

�Of course� no solution exists� What is meant here is that � is the length of plans that would have to be
examined when looking for a solution�
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p 	�� ��Bk� ��Bk ���Bk� ��

Variable n O��� O�log���� O���pB�logk��	�

Constant n O�b
np
�� O�b

np
�� O��b

np
��

Table �� Search Complexity for when no solution exists�

when we can construct a variable number of levels� In the optimal case when the re�nement
probability is very low� detection of unsolveability can occur in constant time� or in time
logarithmic in the length of the plans that would have been examined during the search for
a solution� When the re�nement probability is high� however� to detect the lack of a solution
may take as much time as �nding a solution in the worst region ���B � p � ��� Nevertheless�
this is still a signi�cant speed up over the O�b�� complexity of non�hierarchical search�

In the case of a constant number of hierarchical levels the complexity is asymptotically
only slightly a�ected by p� there is an additional linear factor of � in the worst region
���Bk� ��� However� as in the case where a solution exists� the constant factors can be
signi�cantly di�erent� Eq� �
 shows that when the probability of re�nement is high� detection
of unsolveability is much harder� In this case search of the bad tree will progress a long ways
down the tree before �nding that there is no good path� There are Bn�� nodes in the tree
of abstract solutions not counting level �� and the worst case nodes are at level � requiring
O�bkkn��� computation to examine� Hence� our analysis indicates that essentially all abstract
solutions will be searched� i�e�� O�bkkn��Bn���� when p is high and no solution exists�

��	�� Variable Re�nement Probabilities

One limitation of our model is that the re�nement probability p is constant� It is not
unreasonable to suppose that this probability might vary from level to level� As we re�ne a
solution down each level we must resolve a di�erent set of details� It is quite possible that
di�erent sets of details might vary in their ease of resolution� In this section we examine
how our model can be manipulated to make some predictions about the variable probability
case�

Let pi denote the probability that an abstract solution at level i is re�nable to level i���
Our previous assumption of a constant re�nement probability p now corresponds to the case
where 	i�pi � p�

Our equation for GoodTreeWork�i�� Eq� �� tells us that the only changes we need to
consider when we have variable re�nement probabilities are those that occur to the term

i��X
j��

BadTreeWork�j���j�� ����
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First� let us examine what happens to BadTreeWork�i�� Our original equation for BadTreeWork�i�
was derived from the recurrence BadTreeWork�i� � kn�ibk � pB�BadTreeWork�i����� That
is� to search a bad tree we need to search the root �at level i� and then with probability p
the root will be good forcing a search of all B bad subtrees at the next level� When the
probability of re�nement varies at each level we obtain a sightly altered form of this recur�
rence� BadTreeWork�i� � kn�ibk � piB�BadTreeWork�i���� That is� now the probability the
level i solution is re�nable� forcing a search of all B bad subtrees under it� is pi not p� As
before� we can expand this recurrence by simply unwinding a few of its terms� The pattern
is clear and we obtain

BadTreeWork�i� � kn�ibk�� � piBk � pipi���Bk�� � � � � � pi � � � p��Bk�
i���� ����

From this equation we can observe that� typically� hierarchies where i � j � pi � pj
perform better than hierarchies where i � j � pi � pj � That is� hierarchies where the
probability of re�nement increases as we move down to lower levels are usually to be preferred
to those where the probability decreases� We say typically because this characterization is
too strong to hold in general� Consider� for example� a hierarchy where the probabilities are
all very close to � but are decreasing as we move to lower levels� Such a hierarchy will still
be more e�cient than a hierarchy where the probabilities are increasing but are all in the
middle of the worst region� ���B� ��� That is� the performance of a hierarchy will depend
on the actual values of the pi� Nevertheless� if we �x the set of possible values for the pi we
demonstrate that it is generally better to have lower re�nement probabilities higher up in
the tree�

Say we have a hierarchy H� with re�nement probabilities p�n� � � �� p
�
�� Say that we can

locate two adjacent re�nement probabilities� pj�� and pj � such that pj�� � pj � violating
our desire that the re�nement probabilities increase as we move down the hierarchy� Then
if we can de�ne a new hierarchy H� with these two re�nement probabilities switched we
can diminish the work required to search the bad subtrees� To be precise� let H� be a new
hierarchy with re�nement probabilities p�i � such that p�i � p�i for all i except that p�j � p�j��
and p�j�� � p�j � i�e�� pj and pj�� have been switched� Then the following proposition can be
proved�

Proposition ��� BadTreeWork�i� is smaller in H� for all levels i � j�

Proof� Eq� �� evaluated at i � j on H� yields

kn�ibk�� � piBk � � � �� pi � � � pj���Bk�
i�j � pi � � � pj��pj�Bk�

i�j�� � � � �
On the other hand� for H� we obtain

kn�ibk�� � piBk � � � �� pi � � � pj�Bk�
i�j � pi � � � pjpj���Bk�

i�j�� � � � �
All of the terms are identical except that H� contains the term pi � � � pj���Bk�i�j while

H� contains the term pi � � � pj�Bk�i�j� Since pj � pj��� the work required to search a bad
subtree at the top levels is less in H� than in H��
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A similar examination of BadTreeWork�i� for i � j demonstrates that the work to a bad
subtree at these levels is una�ected by the switch� The only other case is i � j� Examining
BadTreeWork�j� we �nd that this is the only level at which the switch will cause more work�
Hence� the switch trades o� more work at level j for less work at all of the levels above j�
Generally� this will be a good trade o�� By repeated application of this result we can see
that it is generally a good idea to always switch unordered re�nement probabilities� Such
switching halts only when the re�nement probabilities are in increasing order as we move
down the hierarchy�

Of course this proposition is not su�cient to prove that a hierarchy with increasing
re�nement probabilities is always better� First� there may be cases where the increase in
BadTreeWork�j� is greater than the sum of the decreases in BadTreeWork�i� for i � j� Fur�
thermore� Equation �� indicates that we must also consider the changes in ��i� that arise as
a result of switching the re�nement probabilities�

It is much more di�cult to obtain analytical results about the e�ects of changes in the
re�nement probabilities on ��i�� However� in various numerical computations� using our
closed form for ��i�� Eq� �� we have found that ��i� does not change much under di�erent
orderings of the re�nement probabilities�

This rough analytical analysis has been backed up by numerical studies using di�erent
values for B� k� and pj � We have found that typically hierarchies with increasing re�nement
probabilities do display better performance� Intuitively� such hierarchies have the property
that as a particular path becomes longer the chance of successfully completing that path
becomes greater� Hence� there is less of a chance of wasting a lot of e�ort by growing a
path almost to completion only to fail at the last moment� In hierarchies with decreasing
probabilities� on the other hand� the chances of this occurring are much greater�

��	�� No Upwards Solution Property

The third assumption we made was that the hierarchy satis�es the upwards solution property�
As we noted this assumption is always satis�ed by hierarchies in which the abstract levels
ignore successively more details� as in Abstrips hierarchies� Nevertheless� since it is not
di�cult to extend our model to remove this assumption� it is worthwhile to examine what
happens in this case�

If the upwards solution property fails then a concrete solution might exist without there
being a good path in the tree of abstract solutions� That is� when we fail to �nd an abstract
solution that can be re�ned down to a concrete solution� we can no longer conclude that
a concrete solution does not exist� To preserve the completeness of our search strategy we
would then have to resort to a non�hierarchical search for a solution in the concrete space�

To derive an expression for search complexity in this situation we note that the probability
that the space of abstract solutions fails to have a good path from its root to a leaf is given
by F �n�� Hence� with probability � � F �n� the tree does have a good path� in which case
we must do GoodTreeWork�n� search� otherwise with probability F �n� we must search a bad
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tree� BadTreeWork�n� work� and then do a search of the concrete space� which takes O�b��
search� where � is the length of the concrete solution� Hence� we obtain the expression

�� � F �n���GoodTreeWork�n�� � F �n��BadTreeWork�n� � b��� ���

for the amount of work required when the upwards solution property fails�
As discussed in Section ������ F �n� approaches di�erent limits as p varies� In the region

p � ��B� F �n� is large� with limit �� In this region� we will almost always fail to �nd a
re�nable abstract solution� Hence� we will perform BadTreeWork�n� amount of search and
then have to search the concrete space anyway� In this case the hierarchical approach is not
advantageous� As p increases beyond ��B� F �n� decreases� and the hierarchical approach
will succeed more often� resulting in signi�cant savings� Since b� grows much faster than
GoodTreeWork�n�� which at worst grows as �b

n
p
�� we have that for any F �n� � � we will gain

by �rst using a hierarchical search�
This can be seen as follows� Both GoodTreeWork�n� and BadTreeWork�n� are O��b

np
�� in

the region p � ��B� So Eq� � becomes

�b
np
� � F �n�b��

In comparison with always doing concrete search which requires b� we will gain when

�b
n
p
� � F �n�b� � b� � ��

or equivalently when

�b
n
p
� � ��� F �n��b��

For F �n� � � this will always hold when � becomes large�
Of course� this is an asymptotic result that is true only as � becomes large� In practice

the advantage of �rst doing a hierarchical search will depend on the particular value of F �n��
Nevertheless� if F �n� is signi�cantly below � it won�t require very large � before the advantage
manifests itself�

��	�	 The Length and Interaction of Gap Subproblems

One of the most interesting part of our analysis is what it tells us about the assumptions
we have made� Our strongest assumptions were the �rst� that the gap subproblems required
approximately the same number of operators in their solutions� and the econd� that they
could be solved independently�

It is from the �rst assumption that we obtain the bk factor that is pervasive throughout
our analysis� By assuming that the gap subproblems each require O�k� operators in their
solution �or add O�k� operators to the �nal solution� we see that these subproblems require
O�bk� search to solve� If any of these gap subproblems required a longer solution� say jk�
we would need O�bjk� search to solve it� Similarly� by assuming that they could be solved



�


independently we get that solving j of them only requires j times the work required to solve
one� If j of them interact then we might have to do O�bk� search to solve the �rst� then the
second might generate O�bk� backtracks to �nd new solutions to the �rst before a solution
could be found to the second� and so on� Hence� we might require O�bjk� instead of O�jbk�
search to solve them�

It is not di�cult to see that if either of these things occur our �nal expressions for search
complexity would have their bk factors replaced by bjk factors� This means that in the case
of a variable number of hierarchical levels all of the constant bk factors would be replaced
by O�Cj�� i�e�� some constant to the power j� In the case of a constant number of levels� all

of the b
np
� factors would be replaced by �b

np
��j factors� So we see that in both cases when j

grows� i�e�� when the number of gap subproblems that interact grows or when the length of
the solutions for these subproblems grows �by a multiple of j�� the complexity of search will
grow exponentially with j�

This is one more reason why in practice using a hierarchy will sometimes yields worse
performance� In these situations the abstraction hierarchy may be failing in its basic re�
sponsibility to break the problem down into smaller problems� For example� if the hierarchy
generates gap subproblems that require solutions as long as the concrete solution� i�e�� j
becomes O�l�� then there will be no bene�t to abstraction� When the abstraction hierarchy
does succeed in breaking the problem into independent smaller problems then we see that
we still gain asymptotically even if we have to search the entire space of abstract solutions�
In the case of a constant number of levels this space has a �xed size O�Bn�� hence even if
we only break the original problem into half we will still bene�t� That is� as � grows Bn

independent searches of O�b
p
�� will require much less work than a single search of O�b���

��� Related Work

Korf 	��� provided one of the �rst analyses of the bene�ts of using a hierarchy of abstractions
in problem�solving� He investigated the use of macro operators as an abstraction device� and
was able to demonstrate that an exponential speed�up was possible through the use of a
logarithmic number of levels in the hierarchy� However� with a solution involving macro op�
erators we never need to insert low�level operators in between the macro operators� Instead�
we only have to map the initial state to a state where the �rst macro operator can be applied�
and map the outcome of the last macro operator to the goal state� That is� the number of
gap subproblems remains constant� unlike the situation we are modeling� Furthermore� Korf
assumed that once a solution with macro operators was found it need never be reconsidered�
That is� he assumed that one could always solve the initial and �nal gap subproblems with�
out having to search for a new abstract plan� thus implicitly assuming that the DRP holds�
In this case his results agree with ours� with the DRP an exponential speed�up is possible
when we have a variable number of levels in the hierarchy�

More recently Knoblock 	��� provided an analysis that inspired much of our work� He
developed a framework in which the abstract solutions generate gap subproblems that must
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be solved to re�ne the solution to the next level� and showed that this is a good model of
Abstrips hierarchies and the hierarchies used originally by Newell and Simon in their GPS
system 	�
�� We have adopted this framework here� Furthermore� he also makes our �rst
and second assumptions� i�e�� that the solutions of the gap subproblems are of approximately
the same length k� and that the gap subproblems are independent� However� his analysis
depends on one more assumption� that there is no backtracking across abstraction levels�
That is� he assumes that the DRP holds� and obtains the same results as we do for this case�
i�e�� the case where p � ��� Our analysis is a signi�cant extension of his as it provides a
model parameterized by the re�nement probability p�

Even more recently Williams 	
�� examined the case of imperfect abstraction� Since he
is not primarily interested in Abstrips�style hierarchies as we are� he did not assume that
the upwards solution property holds� In his analysis he uses a weighted sum of complexities�
with a certain probability searching the abstract solutions will succeed� otherwise it will fail
and concrete level search is performed� His analysis inspired us to treat this case with our
model and resulted in Section ������ His analysis does not consider an increasing number
of gap subproblems as one re�nes the abstract solution� so it is both quite di�erent from
our model and not applicable to Abstrips hierarchies� The main weakness of his analysis�
however� is that he only consider hierarchies with � levels� there is only a single abstract
level and a concrete level� This makes his model of limited practical use as most work using
hierarchical problem�solving utilizes multiple levels�

Also worth mentioning� although not as directly relevant as the works mentioned above�
is the work of Karp and Pearl 	�
� and its subsequent generalization by McDiarmid and
Provan 	���� These works address the general problem of searching a tree with branches of
positive cost � �� They provide average case search complexity results for three di�erent
search algorithms all of which attempt to �nd a path of minimal cost to a node at level n�
Initially� it might be thought that this model could be applied to our problem by letting a
good path be one consisting only of zero cost branches and letting all non�re�nable nodes
have non�zero cost branches to their children� In this case a minimal cost path will always
be a good path� Unfortunately� this will not work� The major problem is that we must
consider the amount of work required to expand each node� and this varies as we move down
the tree of abstract solutions� Their analysis only considers the number of nodes searched�
not the cost of expanding these nodes� Since this cost varies with the depth of the node�
one cannot compute it from the number of nodes expanded� Another� more minor problem
is that our model considers the case where a good path is known to exist� In their model
this would correspond to conditioning all of the probabilities on the existence of a zero�cost
path to level n� This alters the probabilities signi�cantly� especially when p is close to zero�
and hence even their results about the number of nodes searched would be quite di�erent in
our case�

�A minor di�erence is that Knoblock ends up with a O�kn� factor instead of our O�kn���� This is simply
due to our use of the technical device of a �universal� solution at level n� In Knoblock�s numbering scheme
our hierarchies would have n�  levels�
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� Characterizing the DRP in Abstrips Hierarchies

One of the most important uses of abstraction in AI is its application to planning� where
it is one of the most e�ective techniques for dealing with the large search spaces involved�
One of the most important forms of abstraction in planning is a mechanism due to Sacerdoti
	���� called Abstrips�style abstraction� In this type of abstraction one abstracts away from
certain details of the concrete solution by eliminating preconditions of the planning operators�
Although quite an old technique� Abstrips�style abstraction remains important to current
research� it is used in modern large scale planners 	

�� has been adapted to non�linear
planning 	
�� and has been the subject of recent theoretical studies 	
�� ���

Due to its importance it is useful to examine the special case of Abstrips hierarchies in
more detail� As we will demonstrate in this section it is possible to derive more information
about the downward re�nement property in this case� Our analysis has demonstrated that
an abstraction hierarchy can be very e�ective if it satis�es the DRP� Hence� it is useful
to characterize those Abstrips hierarchies that satisfy the DRP� Such a characterization
can be used to check whether a given abstraction hierarchy has the DRP� and� as we will
demonstrate in Section �� it can also be used in the construction of an algorithm that
automatically constructs good abstraction hierarchies�

If the hierarchy does possess the DRP we not only have theoretical predictions of its
e�ectiveness� but we can also use a modi�ed� simpler� search strategy that ignores backtrack
points between levels of the hierarchy� By the DRP� every abstract solution is re�nable to
the next level� hence we will never have to use those backtrack points�

In this section� we will provide a semantics for Abstrips�style abstraction� We will
then use this semantics to give a semantic de�nition of the DRP� suitable for this type of
abstraction� Our semantic formulation of the DRP yields both a better understanding of
its nature and a syntactic condition su�cient for guaranteeing its presence� To be useful�
we have focused on a syntactic condition that can be tested in polynomial time� allowing a
hierarchy to be checked quickly for the DRP�

��� A Semantics for Abstrips

The Language� We restrict ourselves to planning problems that can be described with
a �nite quanti�er�free language� L� consisting of a collection of predicates� constants� and
variables� Since the language is quanti�er�free� the only use of its variables is to describe
parameterized operators� Such a language can be given a semantics by a traditional �rst�
order model� with a domain of discourse� relations over the domain� and an interpretation
function mapping the symbols of the language to semantic entities� The result of such a
model will be the assignment of a truth�value to every formula of the language� Abstracting
away from the models we can focus on their end product� the truth�value assignments�
Treating these assignments as functions from the formulas to true false� we can view
distinct truth�value functions as alternate realities or possible worlds as described by L� We
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will use W to denote the set of all possible worlds� We say that a possible world w satis�es
a formula 	 � L �set of formulas !�� denoted by w j� 	 �w j� !�� if it assigns the truth�value
true to 	 �to every member of !��

Now consider a collection of formulas of L� !� If this collection is consistent �i�e�� if there
is at least one world w � W such that w satis�es !�� then usually there will be many possible
worlds which satisfy !� Let " denote the set of all worlds in W that satisfy !�� If we add
new formulas to !� " will shrink in size� and if we remove formulas from !� " will grow
in size�� Furthermore� if we allow arbitrary collections of formulas� it can be the case that
for two distinct sets of formulas ! and # we have " � "� �in the case where ! is logically�
but not syntactically� equivalent to #��

State Descriptions� In planning� L is used to write state descriptions� collections of
formulas that are partial descriptions of the state of the world� We restrict our attention
to planning problems where the state descriptions are �nite collections of ground literals
�a typical situation for Strips�style planners�� Under this restriction two state descritions
will be logically equivalent if and only if they are syntactically equivalent� That is� we have
that for two state descriptions S� and S�� "S� � "S� if and only if S� � S�� This follows
from the fact that for every consistent collection of literals there exists a possible world that
satist�es only those literals�

In addition to the literals in the state description we typically have some collection
of domain�dependent integrity� or consistency� constraints that the state must satisfy� For
example� in a blocks world domain a state description cannot specify that the robot is holding
a block and at the same time specify that the robot�s hand is empty� Such constraints are
often expressed as state invariant domain axioms� However� since it is complex to reason
directly with these axioms� planning systems often deal with these constraints by simply
requiring that the operators preserve consistency� Hence� if the planner starts in a consistent
initial state its plans �operator sequences� will never generate an inconsistency� For example�
an operator that causes the robot to pick up an object will always remove hand�empty from
the state description� Let CW denote the set of possible worlds in W that satisfy all of the
domain constraints�

Now consider a set of ground literals of L� S� This set will be a legal state description if
it is satis�ed by at least one world in CW � i�e�� if "S � CW 
� � This insures both that S is
logically consistent and that it does not violate any of the consistency constraints�

For example� consider a simple robot domain where a robot can travel between rooms
�see Figure ��� The rooms are separated by doors that can be opened or closed by the
robot� The predicates in our language for this domain would include type predicates� e�g��
IsDoor�Door���� predicates indicating the status of the robot� e�g�� Inroom�Room��� and

�Hence� �	 satis�es �All I know is �� in the sense of Levesque 	���

This corresponds to the possible worlds notion of knowledge� where more knowledge corresponds to a

smaller set of accessible worlds 	���
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Room � Room�

Door��

Robot

Figure �� Part of a simple robot planning domain�

predicates indicating the status of the doors� e�g�� Open�Door���� If S � fInroom�Room��g�
then the set of possible worlds "S would include many worlds� All of these worlds will
satisfy Inroom�Room��� but some worlds will satisfy Open�Door��� while others will satisfy
�Open�Door���� Included in "S are a number of worlds that also satisfy the consistency
constraints� i�e�� that are in CW���

Operators� In addition to state descriptions� planning systems contain operators that�
in the case of Strips�style planners� are partial functions between state descriptions� A
Strips�style operator � is de�ned by three sets of literals� its preconditions� Pre���� its add
list� Add���� and its delete list� Del���� Applying an operator � to a state description S
results in a new state description ��S� that is obtained by removing from S all the literals in
Del���� and then adding to S the literals in Add���� That is� ��S� � �S �Del�����Add����
where $�� used here as the set di�erence operator�

Semantically� operators correspond to partial functions between sets of possible worlds�
More precisely� consider the power set of W� the set of possible worlds� A proper subset
of this power set is the set of describable situations DS � This collection of sets of worlds
satis�es the condition that for each " � DS there exists a legal state description S such that
" � "S ��� Furthermore� as noted above� the corresponding state description S is unique�
Hence� an operator � corresponds semantically to a partial function �� from DS to DS� such
that�

�� " � DS is in the domain of �� if and only if " � "Pre��	�

���S will also contain worlds violating the consistency constraints� However� these worlds will not a�ect
the correctness of plans initiated from state S� That is� as long as the operators preserve the consistency
constraints we will have that for any state S� such that S� is the result of some operator application to S�
�S� will contain at least one world in CW � i�e�� S� will also be a legal state description�

��Not every member of the power set of W can be described by a legal state description� some sets of
possible worlds might require disjunctions of literals in their description� while others might contradict the
consistency constraints�
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Figure �� Semantic representation of the robot planning domain�

�� ���"� � "��S	� where S is the state description corresponding to "�

That is� the semantics of an operator is determined by mapping its syntactic e�ects into the
semantic domain�

In general� a planning system will contain operator templates instead of operators� These
templates contain variables which specify parameterized versions of the actual operators� The
operators themselves are generated by instantiating the variables in the template� We will
often refer to these operator templates as if they were actual operators� In these cases we
are implicitly referring to all of the template�s instantiations�

Consider again our simple robot domain� The operator templates for this domain are
described in Table 
� Semantically� the instantiations of these operators map between col�
lections of possible worlds� These collections of worlds are speci�ed by their corresponding
state description� In Figure �� we represent these sets of possible worlds as nodes in a graph�
and the operators become arcs connecting these nodes�

Planning Problems and Plans� A plan � is a sequence of operators ��� � � � � �n� A
planning problem is a pair of state descriptions hI�Gi� where I is the initial state� and G is
the goal state� If we apply the plan � to the initial state I the operators in � will de�ne
a sequence of state descriptions S�� � � � � Sn resulting from the application of the operators�
S�

���� S�
���� � � �

�n�� Sn� where S� � I� A plan � is a solution to a planning problem hI�Gi� or
is correct with respect to hI�Gi� if the sequence of state descriptions generated by applying
� to I satis�es two conditions�
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Preconditions Adds Deletes

go�between�rooms�z�x�y�

IsDoor�z��

Connects�z�x�y��

Inroom�x�� Open�z�

Inroom�y� Inroom�x�

open�z�

IsDoor�z�� �Open�z� Open�z� �Open�z�
close�z�

IsDoor�z�� Open�z� �Open�z� Open�z�

Table 
� Operator templates in the simple robot domain�

�� Pre��i� � Si���

�� G � Sn�

That is� the plan is correct if the preconditions of each operator are satis�ed in the state to
which it is applied� and the �nal state satis�es the goal G�

Semantically� a planning problem corresponds to a pair of sets from DS � h"I �"Gi� A
correct plan � for hI�Gi corresponds to a semantic solution �� consisting of a sequence of
functions ���� � � � � ��n that traverse through DS such that "I is in the domain of ���� each
intermediate set of possible worlds� "Si��� is in the domain of the function next applied� ��i�
and the �nal set of possible worlds "Sn is a subset of "G� It is not di�cult to see that every
syntactic solution has a corresponding semantic solution and vice versa�

For example� in our simple robot domain if the planning problem is

hfInroom�Room����Open�Door���g�fInroom�Room����Open�Door���gi�
then a possible solution is the sequence

open�Door��� �� go�between�rooms�Door��� Room��Room��� �� close�Door����

Semantically this solution corresponds to a path leading from the upper left node in Figure �
to the upper right node�

��� Abstraction

In Abstrips�style abstraction abstract operators are generated by eliminating preconditions
using the following scheme��� Every predicate symbol P in the language L is assigned one of a

��More elaborate schemes are possible� but we will not consider them here�
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Criticality Predicates

� IsDoor� Connects

� Inroom

� Open

Table �� A criticality assignment�

�nite number of integer criticality values crit�P �� The number of levels of abstraction is equal
to the number of distinct criticality values� In particular� let there be n�� di�erent criticality
values corresponding to the integers f�� �� � � � � ng� where the highest level of abstraction is n
and level � corresponds to the concrete level where no abstraction occurs�

Abstract Operators and Plans� Given these abstraction levels we can de�ne a syntactic
abstraction operator Abs which maps a set of literals S to a new set of literals Abs�i� S�� its
i�th level abstraction� where � � i � n� Abs�i� S� is de�ned by removing from S all literals
with criticality value less than i� where every literal has the criticality value of its predicate
symbol� We can extend Abs so that it can be applied to an operator � to yield an abstract
operator Abs�i� ��� The abstract operator has the same add and delete lists as � but it has a
abstracted precondition list� That is� Add�Abs�i� ��� � Add��� and Del�Abs�i� ��� � Del����
but Pre�Abs�i� ��� � Abs�i�Pre����� Extending Abs further we can apply it to plans� If �
is a plan� then Abs�i��� is an i�th level abstract plan where every operator � � � has been
replaced by its i�th level abstraction Abs�i� ��� Note that the ordering of the operators has
not been disturbed�

Finally� we say that an i�th level abstract plan Abs�i��� is a i�th level abstract solution
to the planning problem hI�Gi if it is correct with respect to the problem with an abstracted
goal� That is� if Abs�i��� is a solution to hI�Abs�i�G�i� As before� a ��th level solution is
called a concrete solution���

For example� in our simple robot domain one possible criticality assignment is shown in
Table �� The templates for the level � abstract operators are shown in Table �� A solution
to the planning problem

hfInroom�Room����Open�Door���g�fInroom�Room����Open�Door���gi

at abstraction level one is simply Abs��� go�between�rooms�Door��� Room�� Room����

��This method of abstraction contains some arbitrary choices� For example� only the precondition list of
the operators is abstracted� not their Add or Del lists� Similarly� only the goal is abstracted� not the initial
state� Other choices are possible� but the choices we have made are the traditional ones� following Sacerdoti
	���� and they allow our results to be more readily related to previous work� It is an interesting open question
whether or not other choices have a signi�cant impact on the e�ciency of abstraction�
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Preconditions Adds Deletes

Abs���go�between�rooms�z�x�y�

IsDoor�z��

Connects�z�x�y��

Inroom�x�

Inroom�y� Inroom�x�

Abs���open�z��

IsDoor�z� Open�z� �Open�z�
Abs���close�z��

IsDoor�z� �Open�z� Open�z�

Table �� Sample abstract operator templates in the simple robot domain�

It should be noted that as a consequence of our notation Abs��� S� � S� Abs�i� S� �
Abs�i� �� S�� and Abs�i�Abs�j� S�� � Abs�j� S� if j � i� Further� if � is a solution for hI�Gi
then Abs�i��� will be a solution to hI�Abs�i�G�i� i�e�� an i�level abstract solution� However�
if Abs�i��� is an abstract solution� � will probably not be a solution as some of its operators
might have unsatis�ed lower level preconditions�

Semantically� this style of abstraction has an easy description� The abstraction of a
state description will correspond to a larger set of possible worlds� i�e�� "S � "Abs�i�S	� The
semantic function corresponding to the abstract operator has the same de�nition as the
concrete level function� it simply has a �potentially� larger domain� In particular� its domain
now includes all " � DS such that " � "Abs�i�Pre��		 which is a superset of "Pre��	�

We can extend our abstraction operator Abs so that it can be applied to semantic entities�
In particular� we de�ne Abs�i� ���� the i�th level abstraction of a semantic operator ��� to be
the semantic counterpart of the i�th level abstraction of the corresponding syntactic operator
�� That is� let 
 � Abs�i� ��� then Abs�i� ��� � �
� Similarly� the i�th level abstraction of a
collection of possible worlds " � DS � i�e�� Abs�i�"�� is simply "Abs�i�S	� where S is the set
of literals that de�nes "� In other words� we de�ne abstraction on the semantic entities by
�rst performing abstraction on their syntactic counterparts and then mapping the abstract
syntactic entities to semantics ones� Since abstraction preserves the property that the state
descriptions are collections of literals� we continue to have a one�to�one correspondence be�
tween abstract solutions �plans� and sequences of semantic function applications� where the
semantic functions now correspond to abstract versions of the operators�

��� The Downward Re�nement Property in Abstrips

Let us �x an arbitrary planning problem hI�Gi� In this section our discussion will be
about plans� at various levels of abstraction� that are intended as solutions to this �xed
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problem� For simplicity� we will augment every such plan with special initial and terminal
operators� The initial operator ��� has no preconditions and has I as its add list� The
terminal operator �k�� has G as its preconditions and an empty add list� Both have empty
delete lists� Semantically� ��� is a function whose domain is all of DS and whose range is
"I � ��k�� is an identity function whose domain is f"j" � DS �" � "Gg� Hence� a plan will

have the form
���� S�

���� � � � �k�� Sk
�k���� Sk��� where S� � I and Sk � Sk��� The advantage of

this convention is that all of the states in the sequence of states de�ned by a non�augmented
plan are sandwiched by a pair of operators in the augmented plan� Note also that �� is
una�ected by abstraction� as it has no preconditions� but �k�� is a�ected� as it has the goal
as its precondition and the goal is altered by abstraction�

Semantically� a plan will correspond to a semantic solution �� to the planning problem
h"I �"Gi� Using the convention of augmented plans� this solution is a sequence of function

applications with a corresponding sequence of semantic states�
����� "S�

����� � � �
��k�� "Sk

��k����
"Sk�� � where "S� � "I � "Sk � "G� "Sk � "Sk�� � and each "Si � Domain���i����

����� Re�nement in Abstrips

We already know what the DRP is� every abstract solution can be re�ned� Hence� to o�er
a formal de�nition of the DRP we need only pin down the notion of what is to count as
a re�nement in an Abstrips hierarchy� This turns out to be a fairly subtle notion� To
understand the problem� consider the re�nement strategy that at each level simply ignores
the abstract plan produced at the previous level and plans completely from scratch at that
level� Such a strategy will produce a sequence of abstract plans� one at each level� �nally
planning from scratch at the concrete level producing a concrete plan� However� there is
clearly no bene�t in using abstraction in this case� as the planning at the concrete level
could have been done immediately�

We want our notion of re�nement to be a process in which the abstract solution is used
as a skeleton around which the lower level solution is constructed� As our discussion in
Section ����� indicates� it is only when we can utilize the intermediate states provided by
the abstract solution that the hierarchical approach is e�ective�

The problem of �nding a reasonable de�nition of re�nement has been studied by Knoblock
et al� 	��� and we adopt their approach� but adapt it to our semantics�

Monotonic Re�nement� Knoblock et at� 	�� developed the notion of a monotonic re�
�nement � A monotonic re�nement is a re�nement of an abstract solution that is a �good�
re�nement in the sense that it uses as much of the work done at the previous level as possible�

When we re�ne an abstract solution to the next level we want to use that solution as a
skeleton for the solution at the next level� This implies that the new� re�ned� solution should
contain as a subsequence all of the operators of the abstract plan� Of course� since we are
at a lower level of abstraction we do have to replace the operators in the abstract plan by
their lower level� less abstract� versions� but other than this change all of the operators and







their sequencing should be preserved in the re�ned solution� In moving to the lower level�
the operators will have additional preconditions� Hence� the re�ned solution must contain
additional operators whose purpose is to achieve these preconditions� However� to insure
that the re�nement is using as much of the work done at the previous level as possible� these
new operators should be added for the sole purpose of achieving the lower level preconditions�
This condition can be ensured if we require that higher level conditions� i�e�� literals with
higher criticality� achieved by the abstract plan are not violated by the added operators�

These intutions lead to the following de�nition given in terms of semantic entities�

De�nition ��� 	Monotonic Re�nement� Let ��� and ��� be abstract semantic solutions� with
��� being an i�th level solution and ��� an i���th level solution� ��� is a monotonic re�nement
of ��� if the following two conditions hold�

�� ��� is a subsequence of Abs�i� �����

�� Let Abs�i� ��j� and Abs�i� ��j��� be any pair of adjacent operators in ������ and let " be

the semantic state between these two operators in ���� i�e��
Abs�i���j	�� "

Abs�i���j��	�� is part
of the sequence of operator applications in ����

Now by condition ��� there are two corresponding operators Abs�i��� ��j� and Abs�i��� ��j���
in ��� such that the �rst preceeds the second� Let "� be any semantic state in ��� lying
between these two operators� The second condition is then stated as the requirement
that "� � Abs�i�"��

The �rst condition is simply the requirement that a monotonic re�nement contain the
abstract solution� modulo the fact that in the re�nement all of the operators are at a lower
level of abstraction�

The second condition ensures that the operators added to the re�nement� ���� do not
interfere with higher level conditions already achieved by the abstract plan� ���� Consider
"� the semantic state between two operators in the abstract plan� The state description
corresponding to " contains all of the literals achieved by ��� up to this point� Since we are
not abstracting the add lists nor the initial state this state description might contain low
level literals �i�e�� literals with criticality less than i�� Although� we do not want a monotonic
re�nement to violate the high level achievements of the abstract plan� we do not object to
changes in the low level achievements� Hence� we use Abs�i�"� in our condition instead of
"� The state description corresponding to Abs�i�"� contains only the literals of criticality
greater than or equal to i that have been achieved by the abstract plan up to this point�
Consider now "� a state in ��� that lies between the operators inherited from the abstract
solution� By requiring that "� � Abs�i�"�� we are requiring that all of the literals in the state
description corresponding to Abs�i�"� be contained in the state description corresponding

����� being an i�th level solution contains i�th level abstract operators� i�e�� operators of the form Abs�i� ����
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to "���
 That is� we are requiring that all of the high level achievements of the abstract plan
be perserved by the re�nement�

Knoblock et al� 	�� gave a syntactic de�nition of monotonic re�nement� It is based on
the idea that a monotonic re�nement has the property that if it is moved back to the higher
level of abstraction and then redundant operators are removed one recovers the abstract
plan� This requires a careful de�nition of operator redundancy� Our semantic de�nition of
a monotonic re�nement is at least as strong as Knoblock et al��s de�nition� In particular� it
can be shown that if ��� is a monotonic re�nement of ��� in our sense� and if neither contains
redundant operators in Knoblock et al��s sense� then the syntactic versions of ��� and ���

satisfy Knoblock et al��s de�nition of monotonic re�nement�

The Downward Re�nement Property�

De�nition ��� 	DRP� AnAbstrips hierarchy has the downward re�nement property if and
only if for every i�th level abstract solution ��� there is a monotonic re�nement of �� at level
i��� for � � i � n�

In other words� given our de�nition of a re�nement� the DRP has a straightforward
de�nition� Now we can provide a su�cient condition for the DRP�

Theorem ��� Let ��� be any i�th level abstract solution to any planning problem that has
a concrete solution� Let Abs�i� ��j� and Abs�i� ��j��� be any pair of adjacent operators in ����

and let " be the semantic state between these two operators in ����
Suppose that for every semantic state "� such that "� � Range�Abs�i��� ��j�� and "� �

Abs�i�"�� there exists a state "�� such that

	� "� � Abs�i�"�� "� � Domain�Abs�i��� ��j����� and

� a solution ��� consisting of i�� level operators exists for the problem h"��"�i� such

that for every state "� in ���� "� � Abs�i�"��

Then the DRP is satis�ed by the hierarchy�

A proof of this theorem is provided in the appendix� Intuitively� when we re�ne an
abstract solution we see that the semantic state that is the result of an operator application
may no longer be in the domain of the subsequent operator� due to as yet unsatis�ed low level
preconditions� The theorem states that the hierarchy has the property that a sequence of new
operators can be found that will reconnect the two operators �see Figure �� Furthermore�
this sequence has the property that it does not a�ect any higher level conditions� i�e�� at the
i�th level nothing is changed�

��Note that more literals in the state description means less worlds in the set of world corresponding to
that state description� That is� the set inclusions for the semantic entities go the opposite direction of the
set inclusions for the syntactic entities�
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From this semantic condition we can derive a number of syntactic tests that are su�cient
to detect if a hierarchy possesses the DRP� A number of di�erent tests are described in our
previous work 	
�� Here� however� we will just present one of the more general ones� It is a
test used by our hierarchy generation algorithm Highpoint� described in Section ��

The syntactic test basically checks condition � of the above semantic condition for each
pair of operators that could possibly appear in sequence in a plan� Note that� as pointed out
above� we are actually referring to every pair of instantiated operators� di�erent instantiations
generate distinct operators� There is a di�cult in testing Condition � syntactically� however�
the condition simply speci�es that a solution ��� exists for the problem h"��"�i� it does not
specify how long this solution is� Clearly� it is not computationally tractable to check for
the existence of any solution� Instead� we realize our test for this condition by testing for
solutions of length k� This means that we only need O���k work to perform this test for
each pair of operators� We keep k �xed and small so that the test can be run e�ciently� An
alternate way of realizing the test is to simply search for a solution under a �xed time bound�
Both of these approaches mean that the syntactic test is only a su�cient� not necessary test
for the DRP�

De�nition ��� 	k�ary Necessary Connectivity� Let O�i be the set of operators whose add
and delete lists contain at least one literal with criticality value greater than or equal to i� If
every pair of operators ��� �� from O�i passes the k�ary connectivity test � then levels i and
i � � are k�ary connected� If every pair of levels i� i�� in the hierarchy is k�ary connected






then we say that the hierarchy satis�es the condition of k�ary necessary connectivity�

De�nition ��	 	k�ary Connectivity Test� This test is run on a pair of operators �� and ��

and is also dependent on the level of abstraction i� The test is in the form of an implication�
Hence� a pair of operators will pass the test if they fails to satisfy the �rst condition� i�e��
the antecedent� For the antecedent the conditions are

�� Abs�i� ���Pre������ � Abs�i�Pre����� does not contain both a literal and its negation�
where ���Pre����� is the application of �� to the state consisting solely of its own
preconditions� and

�� Abs�i���Pre����� 
� Abs�i�Pre������

By these restrictions �� and �� are operators that could appear in sequence in an i�th level
plan� i�e�� the weakest postcondition state of �� does not contradict the preconditions of ��

at level i� and �� depends on preconditions at level i�� so that there is the possibility of a
problem when re�ning to this level�

If the �� and �� fail this condition� the test returns success� this pair of operators will
not cause a problem during re�nement� If the antecedent test is satis�ed the operator pair
must then satisfy the consequent test� which is as follows� There must exist an sequence of
k� i�� abstract operators 
�� � � � � 
k such that�

�� None of the 
i add or delete literals with criticality higher than i��� and
�� The sequence of operators 
i is a solution to the problem

hAbs�i��� ���Pre�������Abs�i���Pre�����i�

If the consequent test succeeds� then we return success� otherwise failure�

Intuitively� k�ary necessary connectivity is saying the following� for every pair of opera�
tors� if they might be sequenced in a plan at level i �the antecedent test�� there must exist
a sequence of i�� abstract operators 
i that can correctly solve any gap subproblem that
might result from the re�nement of �� and �� to the next lower level� i�� �the consequent
test�� Any gap subproblem at abstraction level i�� would have to start from a state that
must include all the conditions established in the weakest post�condition state of ��� This
weakest state is speci�ed by the application of �� to its own preconditions� i�e�� ���Pre������
and we simply have to take its i�� abstraction� Similarly� the gap subproblem would have to
end in a state that achieves the i�� preconditions of operators ��� Condition � ensures� fur�
thermore� that none of these added operators alter anything at higher levels of abstraction�
so that we satisfy all of the criteria of Theorem 
�
� This argument can easily be formalized
to yield�

Theorem ��� k�ary Necessary connectivity is su�cient to guarantee the DRP�
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As we increase the parameter k we increase the complexity of performing this test �the
complexity increases exponentially with k as we are searching through the space of operator
sequences of length k��

Although we can keep each individual run of the k�ary connectivity test at a reasonable
level of complexity� by keeping k small� we still have to test every pair of instantiated
operators to determine necessary connectivity� This might be quite a large number� although
various techniques can be applied to minimize the number of tests we need� For example�
the operator variables are subject to type constraints so not all instantiations are legal�
similarly� if two constants have exactly the same properties we do not have to use both
in our instantiations� However� we will not delve into such details here� Our main use of
necessary connectivity will be to estimate re�nement probabilities by subjecting random
pairs of operators to the connectivity test� Section ����

��� Related Work

With the syntactic condition developed in the previous section� we are in a position to de�
sign an algorithm for automatically generating abstraction hierarchies that come close to
satisfying the DRP� Such an algorithm� taking as input a description of a domain along
with a set of operators� generates a set of criticality assignments that de�nes an abstraction
hierarchy� But before we discuss this algorithm we review some existing theories and algo�
rithms that have been proposed for this purpose� We also discuss the general characteristics
that we would like our system to have in order to guarantee the quality of the hierarchies it
generates�

����� Abstrips

In the past� many abstract planning systems have relied on the user to provide an abstraction
hierarchy 	
�� 
�� 
�� One of the �rst systems that semi�automatically generated its own
abstraction hierarchies was Abstrips	���� In addition to the domain speci�cation Abstrips
also requires a user�de�ned partial order on the literals in the domain� It then tries to assign
criticality values to the literals that are consistent with the given partial order� For each
literal l� Abstrips searches for a short plan that achieves l from a state where all literals
before l in the partial order hold� If such a plan is found� then l is considered a detail� and
is assigned a low criticality value� Otherwise� l will be assigned a high criticality value� This
algorithm can be considered as a method for judging the quality of an abstraction hierarchy�
a hierarchy is �good� according to Abstrips� if for every low level literal l� there is a short
plan to achieve it from a state where all high level literals are true� Pablo 	�� a successor
of Abstrips� can also be viewed in this way�

At a �rst glance� our syntactic necessary connectivity condition is similar to Abstrips
since they both depend on �nding short plans to achieve low level literals� However� there
are some signi�cant di�erences�




�

First� our condition speci�es that all low�level precondition literals of an operator must
be simultaneously achievable� whereas Abstrips only requires that each literal be achievable
individually� As pointed out by Knoblock 	���� in domains where interactions often occur�
the existence of an individual plan for each literal does not ensure the existence of a plan for
the simultaneous achievement of all of the literals�

Second� our necessary connectivity condition speci�es that the low�level plan for achieving
the preconditions of an operator should not violate any abstract conditions achieved at higher
levels� This is in accordance with our notion of monotonic re�nement� In contrast� Abstrips
does not specify any restriction on the plan that achieves the low level literals� This means
that when Abstrips searches for a re�nement of an abstract plan it does not restrict itself
to searching for monotonic re�nements� This can signi�cantly increase the length of the
re�nement� and can increase the cost of �nding it� Also� during re�nement the plan to
achieve a low level literal might undo work accomplished at the higher level�

In general� although Abstrips attempts to order the literals in such a way as to make
its abstract plans easily re�nable� it does not take into account all of the factors that a�ect
re�nability� Its techniques are mainly heuristic� and were developed without a formal analysis
of the problem�

It can also be noted that Abstrips only partially automates the abstraction process� the
quality of its hierarchies depends heavily on the user supplied partial ordered of the literals�
The system we have developed� described in the next section� is based on the results of our
theoretical analysis� and is completely automatic�

����� Alpine

Another successor of Abstrips is Knoblock�s Alpine system 	���� which is related to the
earlier system Lawaly 	���� Alpine automatically generates an abstraction hierarchy that
has the ordered monotonicity property �OM�� The OM property is designed to separate a
problem into parts that can be solved �rst and then held invariant while the rest of the
problem is solved� Conditions de�ning the parts that can be solved �rst are then placed at a
higher level of abstraction than the rest� More precisely� the Ordered Monotonicity Property
states that 	��� ��

every re�nement of an abstract plan leaves all high�level literals unchanged�

This property can be guaranteed by a set of syntactic conditions that relate the operator
schemas to the literals in the domain language� These syntactic conditions can then be
used in the design of an algorithm that generates abstraction hierarchies possessing the OM
property 	��� Experiments reported in 	��� demonstrate that in several domains� planning
with the abstraction hierarchy generated by Alpine clearly improves planning e�ciency�

Comparing the OM property with the DRP� we note that OM is stronger in some aspects�
but weaker in others� In particular� the OM property is stronger than the DRP in that it
requires that a re�nement leave intact all higher�level literals� even those that are not part of
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the abstract plan being re�ned� Furthermore� this restriction must hold for every re�nement�
In many cases� the OM property is so strong that it can only be satis�ed by trivial hierarchies�
i�e�� the hierarchy often collapses to a single level� In contrast� the DRP only requires that
for each abstract plan� there exists at least one monotonic re�nement� other re�nements need
not be monotonic� Furthermore� the monotonic re�nement can a�ect higher�level literals�
just as long as it does not a�ect the higher�level literals appearing in the particular abstract
plan being re�ned�

The OM property is also weaker than the DRP� in that it does not guarantee that an
abstract plan can be re�ned� Therefore� the OM property does not eliminate the need to
backtrack across abstraction levels� In fact� an OM hierarchy may have very low re�nement
probabilities� Excessive backtracking causes a signi�cant degradation in performance� since
in such cases the hierarchy typically has re�nement probabilities that fall in the worst region�
This observation is con�rmed by our experimental results presented in Section �� This
problem of excessive backtracking in OM hierarchies has also been independently observed
by Smith and Peot 	����

In conclusion� the DRP and the OM property address orthogonal issues in the design of
good hierarchies� Our theoretical analysis in Section � indicates that there are three major
criteria relevant to the design of good abstraction hierarchies�

�� Regularity�

�� A lack of subproblem interactions�


� Minimal backtracking across abstraction levels���

These three criteria can be considered as dimensions along which we can measure the quality
of an abstraction hierarchy� While the DRP guarantees the third condition� the OM property
contributes to the satisfaction of the �rst criterion���

Speci�cally� the regularity property requires that the hierarchy divide the problem into
approximately equally sized and relatively short subproblems� If the OM property is not
satis�ed� then a low�level operator might clobber higher�level conditions� To repair these
high�level conditions� more operators may need to be inserted at the current level� This
process can cause the lengths of the solutions to the subproblems to increase� which defeats

��Our analysis also indicated that if deadend detection is very cheap� then the hierarchy will demonstrate
good behavior� This occurs when the re�nement probabilities are very low� � �B� However� as we have
pointed out� the re�nement probabilities are hardly ever this low in practice� Hence� in practice� a good
hierarchy will have very high re�nement probabilities� in which case there will be minimal backtracking�

��Our claim that these two properties are complementary is further justi�ed by the experimental results
presented by Knoblock 	
�� Knoblock showed that for the Tower of Hanoi domain� an extended Strips

domain� and a machine�shop scheduling domain� hierarchies that satisfy the OM property enable a dramatic
improvement in search e�ciency� Our analysis has shown that all three hierarchies tested also satisfy the
k�ary necessary connectivity condition �De�nition ��
�� thus they all have the DRP as well� This contributes
signi�cantly to the e�ciency of these hierarchies�
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the regularity condition� Although the OM property does not guarantee regularity� it does
aid in its achievement�

����� Near DRP Hierarchies

Since the DRP and the OM property contribute in a complementary manner to the e�ec�
tiveness of a hierarchy� we would like our hierarchy to possess both properties� However�
in practice it may be too strong to require that every abstract plan have a monotonic re�
�nement� In that case� we can relax this requirement and consider instead hierarchies that
are close to having the DRP� In particular� we can say that a hierarchy is near�DRP if it
satis�es the following conditions�

�� Let the re�nement probability for level i be pi� i � �� �� � � � � n� Let � be a user�de�ned
threshold� where ��� � � � �� We require that pi � �� That is� the re�nement
probabilities must be no less than a given threshold�

�� pj � pi for all j � i� That is� the re�nement probabilities must be monotonically
increasing as we move down the levels of abstraction�

Both of these conditions are motivated by our analysis� As discussed in Section � su�cently
high re�nement probabilities will result in less search� and typically increasing re�nement
probabilities are more e�ective� Section ����
�

� Highpoint

A good hierarchy should have the ability to avoid interactions with higher level achieve�
ments� and it should ensure that for every abstract plan a low level re�nement exists with
high probability� In this section we present an algorithm� Highpoint� that automatically
constructs abstraction hierarchies possessing both of these properties�

The algorithm Highpoint is presented in Table �� Informally� Highpoint functions as
follows� It takes as input the set of operators� initial states� and goal states of the domain�
First it invokesAlpine 	��� to generate a partially ordered graph that represents a set of OM
hierarchies for the given domain� Each node ni in the graph represents a set of predicates that
should be assigned the same criticality in an abstraction hierarchy� An arc from a node ni to
nj denotes that plans for achieving subgoals whose predicates are in the set nj will not a�ect
any predicates in the set ni� That is� if we have an abstract plan involving the achievement
of literals whose predicates are in ni� then we can re�ne that plan to achieve literals in nj
without a�ecting any of the ni literals� The graph has the property that every total order of
the nodes that extends the partial order� represents a hierarchy with the Ordered Monotonic
Property� Next� steps ��� of the algorithm assigns a estimated re�nement probability to
every pair of nodes ni and nj such that ni � nj is allowed by the partial order de�ned by
the graph� Finally� step  processes the nodes in the graph using the additional information
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Input� A set of operators O� initial states Inits and goal states Goals�
Output� A criticality assignment to the predicates� such that the abstraction hierarchy
satis�es the OM property and is close to being near�DRP�

Algorithm HighpointO�Inits�Goals�
�� graph �� ALPINE�O� Inits� Goals��
�� for every pair of nodes ni and nj in graph� such that

� there is no path from nj to ni in graph� do
�� prob�ni� nj� �� Find�Probability�ni� nj � O�
�� endfor
� graph �� Collapse�Nodes�graph� prob��
�� hierarchy �� Augmented�Top�Sort�graph� prob��
�� return�hierarchy��

Table � The Highpoint algorithm for creating a hierarchy�

provided by the estimated re�nement probabilities� The procedure Augmented�Top�Sort

returns a criticality assignment to each predicate� such that the resultant hierarchy has
the OM proprety and is close to being near�DRP� We cannot guarantee near�DRP for two
reasons� First� we are only able to obtain estimates of the re�nement probabilities� so the
true re�nement probabilities might fail to satisfy the near�DRP property� Second� the OM
property forces the placement of some literals above others� Since it does not consider
re�nement probabilities� the placement of literals forced by OM might result in the violation
of near�DRP� Highpoint attempts to �nd the best hierarchy� with respect to being near�
DRP� among those hierarchies that satisfy the OM property� The hierarchy is then returned
as the output of the algorithm�

Below� we explain in detail each of the major components of Highpoint� with the help
of an extension of the simple robot domain used in Section 
� As before there is a robot and
a number of connected rooms between which the robot can move� Between any two rooms
there may be a door� which can be open or closed� In addition� there are also a number of
boxes� which the robot can either pull or carry from one location to another� Figure � shows
one con�guration of the domain� The operators in this domain are presented in Table ��
There is one additional operator not shown in the table� carry�thru�door�b�d�r��r���
this operator is identical to pull�thru�door except that the box� b� must be Loaded instead
of Attached�

Our representation for this domain includes the following predicates� BoxInroom�b�r�

representing that box b is in room r� Attached�b� representing that box b is attached
to the robot� Loaded�b� representing that box b is loaded onto the robot� Open�d� repre�
senting that door d is open� In addition� there are also a number of type predicates �e�g��
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Figure �� Robot�Box Planning Domain�

IsDoor�Door���� Openable�Door���� Connects�Door��� Room�� Room����

��� Alpine

Alpine is an abstraction hierarchy generation algorithm designed and implemented by
Knoblock 	���� Given the operator de�nitions for a given domain� Alpine constructs a
partially ordered graph of the literals� Each node in the graph denotes a set of literals that
are to be assigned the same criticality value in the �nal hierarchy� If a node nj precedes ni
in the graph� i�e�� if there is a path from nj to ni in the graph� then we cannot place ni above
nj in the �nal hierarchy� the criticality value of nj must be greater than or equal to the
criticality value of ni� The algorithm ensures that every total order supported by the graph
will yield a hierarchy that has the ordered�monotonic property� whereby every re�nement of
an abstract plan leaves all the higher level literals unchanged�

The core of the Alpine algorithm is the following restriction�

De�nition ��� 	Ordered Restriction �Knoblock�� Let O be the set of operators in a domain�
Let P� be the preconditions of � that can be either added or deleted by some operator�
Then a criticality assignment satis�es the ordered restriction if 	� � O� 	p � P�� and
	e�� e� � Add����

��� crit�e�� � crit�e��� and
��� crit�e�� � crit�p��

That is� all the adds of an operator are required to have the same criticality� and that
criticality must be at least as great as the operator�s changeable preconditions� Knoblock has
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Preconditions Adds Deletes

pull�thru�door�b�d�r��r��

IsDoor�d�� IsBox�b��

IsRoom�r��� IsRoom�r��

Connects�d�r��r��

Attached�b�

BoxInroom�b�r�� Open�d�

BoxInroom�b�r�� BoxInroom�b�r��

attach�box�b�

IsBox�b�� �Attached�b� Attached�b� �Attached�b�
load�box�b�

IsBox�b�� �Loaded�b� Loaded�b� �Loaded�b�
open�d�

IsDoor�d�� Openable�d��

�Open�d�
Open�d� �Open�d�

Table �� Operators for the robot�box domain�

PPPPPq
������

� Attached

Open

Loaded

Box�inroom

Figure �� Robot�box domain graph generated by Alpine�

shown that if the assignment of criticality values satis�es this restriction then the hierarchy
will satisfy the OM property�

The Alpine algorithm implements this restriction� generating a graph representing par�
tially ordered collections of literals� The Alpine system then uses this graph to compute
a particular total order and resulting hierarchy� using a collection of heuristics to pick the
total ordering� The algorithm depends only on the operator de�nitions� not on the goals
and initial situations� However� Knoblock has shown how to modify this algorithm so that it
can generate problem speci�c hierarchies that take into account a particular goal and initial
state� This often results in a �ner grained hierarchy 	����

We illustrate the algorithm via the robot�box example� When applied to the operators
in this domain� Alpine generates the graph shown in Figure �� It is clear that there are
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six possible total orders that could result from this graph� corresponding to the predicate
BoxInroom followed by permutations of Open� Attached� Loaded��� Each total order cor�
responds to a di�erent hierarchy� For example� for the total order�

BoxInroom� Attached� Loaded� Open�

the corresponding hierarchy is shown in Table ��

Criticality Predicates

� IsDoor� Openable� Connects� IsBox� IsRoom


 BoxInroom

� Attached

� Loaded

� Open

Table �� Robot�box domain hierarchy generated by Alpine�

��� Re�nement Probabilities

If there is a path from nj to ni in the Alpine graph� we cannot place the literals in ni
at a higher level of abstraction than the literals in nj� without violating the OM property�
However� for all pairs ni and nj that do not have this constraint we have a choice� we can� if
we wish� place ni above nj in the �nal hierarchy� The next step of the Highpoint algorithm
is to determine the merit of such a placement� It does this by estimating the re�nement
probability that would exist between the levels ni and nj if ni was in fact placed above nj�
If node ni was placed before nj � then all of the predicates in ni would be placed at a higher
level of abstraction than the predicates in nj �

For all pairs of nodes ni and nj such that it is possible to place ni above nj � Highpoint
calls Find�Probability�ni� nj� to estimate the probability of re�nement going from predi�
cates in ni to predicates in nj� Since we do not know the �nal total ordering of the nodes�
Find�Probability generates its estimate using two simpli�cations� First� it assumes that
ni is directly above nj in the abstraction ordering� i�e�� that the predicates in ni are at level
i and the predicates in nj are at level i� �� for some i� Second� it ignores the e�ect of any
level that might lie above ni� In the �nal hierarchy the true re�nement probability of moving
a solution from the level of ni to the level of nj will depend on both of these factors� i�e��
the intervening levels between ni and nj as well as the levels above ni� We use these simpli�
�cations to keep Highpoint computationally tractable� In particular� as a result of these

��The type predicates� like Openable� are not shown on this graph� Since these predicates are not a�ected
by any of the operators they are always placed at the highest level by Alpine�
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simpli�cations Find�Probability only has to examine O�n�� pairs of nodes in a graph con�
taining n nodes� Of course� these simpli�cations also mean that Find�Probability provides
only a rough estimate of the true re�nement probabilities� Nevertheless� we have found that
in practice �see Section �� the estimates provided by Find�Probability are quite e�ective
in guiding the construction of a good hierarchy� probably because the �nal performance of
the hierarchy shows some degree of tolerance to minor variations in the node ordering�

In its operation Find�Probability �rst locates the sets of operators Oi and Oj that
achieve literals in ni and nj respectively� It generates its estimate of the re�nement proba�
bility from ni to nj by determining how often pairs of operators in Oi pass the connectivity
test� De�nition 
��� where we consider the predicates in ni to be at level i and the predicates
in nj to be at level i� ��

Consider a plan at level ni� Such a plan will typically have to achieve literals in ni�
hence it will contain operators from Oi� To re�ne this plan to the level of nj � which we
are assuming is right below� we will have to solve the gaps generated by pairs of operators
from Oi using operators from Oj� To estimate how often these gaps can be solved we check
to see how often pairs of operators in Oi pass the connectivity test� as if they do their gap
problems can always be solved� In particular� according to De�nition 
�� this means testing
how often the planning problem hAbs�i� �� ���Pre�������Abs�i� ��Pre�����i can be solved
using operators that a�ect only literals at level i�� and below� where �� and �� are members
of Oi� Since we are ignoring all other nodes� we ignore all preconditions of �� and �� that
are outside of ni and nj� except for type preconditions which are always at the top of the
hierarchy� Furthermore� since we are considering level i to be the predicates in ni and level
i� � to be the predicates in nj we can compute the i�� abstractions� i�e�� Abs�i� �� � � ��� by
simply adding any predicates from nj back into the sets being abstracted� Finally� we can
try to solve these problems using any operators in Oj which do not a�ect predicates in ni�
e�ectively ignoring the other predicates �nodes� a�ected by these operators�

For operators inOi� Generate�Random�Problems chooses at random a pair of instantiated
operators that passes the antecedent condition of the connectivity test� this condition weeds
out the operator pairs that cannot appear in sequence in an ni level abstract plan and it also
eliminates those operator pairs that have no nj level preconditions� It then computes the
problem shown above which is speci�ed by the consequent condition of the connectivity test�
A whole collection of such pairs of operators are generated and their resulting problems are
returned as the set �random�probs�� Find�Probability then calls a planner AbTweak�
	
�� which tries to solve these problems� In line � of the Find�Probability algorithm� the
AbTweak parameter Oj�Oi speci�es the operators that can be used to solve the problem�
This is the set of operators Oj with those operators that a�ect literals contained in ni
removed� i�e�� all operators also in Oi have been removed using a set di�erence operation�
Each problem is solved under a �xed solution length bound� this implements the �k�ary�
limit part of the connectivity test� Find�Probability accumulates a count of the number
of times a solution is found�

The frequency of success serves as an estimate of the re�nement probability� as we know
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Input� Operators O� predicate sets ni� nj �
Output� A re�nement probability value�

Procedure Find�Probability�ni � nj� O�
�� Oi �� Find�Operators�O�ni��
�� Oj �� Find�Operators�O�nj��

� random�probs �� Generate�Random�Problems�Oi� ni� nj��
�� for every random problem hinitial� goali in random�probs do
�� if AbTweak�initial� goal�Oj�Oi� solution�length�bound� � Success then
� success�count �� success�count � �
�� endif
�� endfor
�� if jrandom�probsj � � then
��� prob �� �
��� else prob �� success�count�jrandom�probsj
��� endif
�
� return�prob��

Table �� Algorithm Find�Probability�

that if two operators pass the test then the gap subproblem they generate during re�nement
can be solved� If Generate�Random�Problems fails to �nd any random problems� then it has
failed to �nd any operators with level nj preconditions among the set of operators that can be
sequenced� Hence� it is unlikely that any di�culties will be encountered during re�nement�
and we estimate the re�nement probabilities as being ��

We now illustrate the procedure using our robot domain� Let ni be fBoxInroomg� and
nj be fOpeng� The operator sets corresponding to the nodes are Oi � fpull�thru�door�
carry�thru�doorg� and Oj � fopeng� Both of the operators in Oi can be sequenced in
any manner as long as the room the �rst operator takes us into is identical to the room
the second operator moves us out of� this constraint is enforced at the ni level via the
BoxInroom precondition of these operators� Additionally� we ignore the precondition of
Attached �Loaded in the case of carry�thru�door� as this precondition is in node other
than ni or nj and it is not a type predicate�

So of those operators that can be sequenced� i�e�� that pass the antecedent test� we will
generate random problems that are instantiations of the following template arising from the



��

connectivity test�


 IsDoor�d��� IsBox�b�
IsRoom�r��� IsRoom�r��
Connects�d�� r�� r��
BoxInroom�b� r��
Open�d��

�

IsDoor�d��� IsBox�b�
IsRoom�r��� IsRoom�r��
Connects�d��r��r��
BoxInroom�b�r��
Open�d��

�
�

That is� the problem is to achieve the preconditions of the second operator in the state that
results from applying the �rst operator to its precondition set� as speci�ed by the connectivity
test� for various instantiations of the operators� It is easy to see that this problem reduces
to achieving Open�d�� for di�erent instantiations of d�� A door can be opened with the
operator open�d� without a�ecting any higher level literals� as long as it is Openable� So
we see that the number of solvable random problems will correspond approximately to the
proportion of doors that are Openable in the domain� Hence� the re�nement probability
returned by Find�Probability will depend on the probability of a door being openable�
This agrees with intuition� If we place Open at a lower level of abstraction the abstract level
will be free to develop a plan ignoring the status of the connecting doors� If most doors can
be opened this will generally not be a problem� but if most doors cannot be opened� most
of the routes chosen at the abstract level will fail� That is� most of the abstract plans will
not be re�nable�

The result of running Find�Probability on all eligible pairs of nodes is a matrix of
estimated re�nement probabilities� In one of our tests in which half of the doors were
openable we obtained the matrix of values shown in Table ���

Predicates BoxInroom Open Attached Loaded

BoxInroom � ��� � �
Open � � � �

Attached � � � �
Loaded � � � �

Table ��� A matrix of re�nement probabilities�

��� Collapsing Nodes with Low Re�nement Probabilities

Using the re�nement probabilities the procedure Collapsing�Nodes processes the Alpine�
graph� In particular� based on the threshold � used in the near�DRP condition� Section 
���
�
it decides if two nodes should be collapsed into one���

�
Given our analytic results which indicate that asymptotically more levels are better� it may seem strange
that we would wish to collapse levels� However� the collapsing of levels is supported by our exact results� as
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If the re�nement probability for both orderings of these nodes is below �� then no hier�
archy in which these nodes are on separate levels will be close to being near�DRP� That is�
if prob�ni� nj� � � and prob�nj� ni� � �� as found by the Find�Probability routine� then we
collapse these two nodes into one nij � �ni�nj�� This means that when we assign criticalities
using a total order produced from this graph the literals in ni and nj will be given identical
criticalities� Therefore� to ensure we satisfy the constraints imposed by the original partial
order we must also collapse all nodes that lie on any path between ni and nj into the new
node nij� To collapse the nodes the graph is modi�ed by substituting all collapsed nodes
by the new node nij and then all in�edges of the collapsed nodes become in�edges of the
new node and similarly for the out�edges� The re�nement probabilities to and from all the
remaining nodes must be recomputed for the new node� To avoid doing this computation�
we choose instead to use the average of the original probabilities as estimates for the new
ones� so that for every other node n� we let

prob�n� nij� � Averagefprob�n� ni� j ni has been collapsed into nijg�

and similarly for prob�nij� n� for nodes n connected via out�edges� The collapsing process
continues until no more nodes can be further collapsed�

In robot and box domain the two nodes containing BoxInroom and Open will be collapsed
to one level whenever the threshold � is greater than the proportion of openable doors� In
this case the re�nement probability from BoxInroom to Open falls below �� and the opposite
ordering of these nodes is impossible�

��� Augmented Topological Sort of Abstraction Graph

After collapsing nodes with low re�nement probabilities� the procedure Augmented�Top�Sort
computes a total order of the nodes in the resulting graph� using both the partial order
relation and re�nement probabilities as guides to compute the order� The procedure is a
simple modi�cation of a standard topological sort algorithm �see� e�g�� 	���� The standard
topological sort works by �rst placing all nodes with no in�edges in a queue� Nodes are
removed from this queue� and when a node is removed from the queue all of its out�edges are
removed from the graph� If any of its successors now have no in�edges they are added to the
end of the queue� The topological order is the order in which the nodes are removed from
the queue� Our augmented version simply orders the collection of nodes that are placed on
the queue during any one step� That is� at each stage we add those nodes with no in�edges
to the queue� but we add them to the queue so that the sequence of Find�Probability
estimates between these nodes is ascending� For example� if at some state we are to add
the nodes n�� n�� and n� to the queue we would choose� e�g�� the ordering n�� n�� n� if
prob�n�� n�� � prob�n�� n���

we will discuss in Section ��
�
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To illustrate the procedure� consider again the simple robot example� The graph gen�
erated by Alpine now has associated re�nement probabilities� shown in Table ��� The
augmented topological sort algorithm will place Open right below the BoxInroom level� re�
sulting in the hierarchy shown in Table ���

Criticality Predicates

� IsDoor� Openable


 BoxInroom

� Open

� Attached

� Loaded

Table ��� Robot box domain hierarchy generated by Highpoint�

� Experimental Results

In the last section� we have described the Highpoint algorithm for generating abstraction
hierarchies which augments the Alpine algorithm by taking into account the re�nement
probabilities between abstraction levels� To compare their performance� we have conducted
a set of experiments in three di�erent experimental domains� with a time bound of 
� CPU
minutes� For the re�nement probability estimate computation� AbTweak is called with
a solution length limit of �ve steps� The common features of the domains are that we
are able to change the re�nement probability at each level individually� by changing the
mixture of objects with di�erent properties� For example� in the robot box domain we can
change the re�nement probability between BoxInroom and Open by changing the proportion
of openable doors� All systems and domains were implemented in Allegro Common LISP on
a Sun� Sparc Station� Below� we describe our test results�

��� Box Domain

Our �rst test was run on the robot�box domain used in our previous examples� In our
realization of this domain we place two doors between every pair of adjacent rooms� Each
door may or may not be openable� The robot�s task is to move boxes between the room� by
either carrying or pulling them�

For domain instances where every door is openable� both Alpine and Highpoint gener�
ate the same abstraction hierarchy� shown in Table �� Therefore the costs of actual problem�
solving using the Alpine and Highpoint hierarchies are the same� The only di�erence
is that Highpoint requires extra time to determine the re�nement probabilities� For the
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Solution Length Highpoint�seconds� Alpine �seconds�
� ����
 ����


 ���� �����
 ���� ���
� ����� ����
�
�� ������ �������
�� ����
 ��
���

Table ��� CPU time comparison between Highpoint and Alpine in the box domain�

domain where every door is openable� Highpoint takes �� CPU seconds to generate the
hierarchy� while Alpine took only ���� CPU seconds� However� to solve each problem� both
systems take ��� seconds on average� Thus� as the number of problems grows� Highpoint�s
initial cost is amortized away�

We then changed the domain so that not all the doors were openable� In this case not
every plan that ignores the status of the doors will be re�nable� and Highpoint will place
Open higher up in the hierarchy� so that this condition can be tested earlier on� before more
resources are allocated to solving the Loaded and Attached preconditions� In our test we
set more than ��% of the doors to be openable� so Highpoint did not collapse any levels�
The hierarchy it generated is shown in Table ��� Highpoint takes �� seconds to generate
this hierarchy� after checking �� randomly generated problems� In contrast� Alpine is not
able to alter its hierarchy in response to a change in the number of openable doors� so it
generates the same hierarchy as before�

To compare the qualities of the hierarchies generated by Highpoint and Alpine� we
�rst ran AbTweak on six problems of varying sizes� AbTweak solves each problem by
�rst using the hierarchy generated by Highpoint� and then by using the one by Alpine�
The CPU time costs for both hierarchies� which do not include the time for generating the
hierarchies� are shown in table ��� The table demonstrates that as the planning problems get
more complex�Highpoint is increasingly more e�cient thanAlpine� When the initial costs
for generating the hierarchies is taken into account� Highpoint might require a number of
problems of small size before it can recover the cost of its more expensive hierarchy generation
algorithm� However� for problems of large size� Highpoint outperforms Alpine by such a
large margin that it can recover its intial cost of hierarchy generation in a single problem�
yielding an immediate improvement in net problem solving costs�

As a further test we ran �� test problems of equal length using the hierarchies generated
by Highpoint and Alpine� respectively� Figure � compares the accumulated CPU time of
both systems over the same �� problems� The time required by the algorithms to generate
their abstraction hierarchies is also included in the values plotted� It is clear from the
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Figure �� Robot box domain tests�

�gure that the Highpoint hierarchy is soon able to recover from its initial cost� and after �
problems of this size the net cost was lower than problem solving with the Alpine hierarchy�
In this domain theHighpoint hierarchy is able to solve problems of this size almost twice as
fast as the Alpine hierarchy� and as the previous table has shown� as the problems become
longer so does Highpoint�s factor of improvement�

��� Computer Hardware Domain

In the second domain we have a simple computer con�guration� The task is to print a �le�
The �le can be transferred to any of a number of di�erent computers and then sent to a
printer� where each computer can send the �le to any printer� The computers and printers
may or may not be turned on� and they must both be turned on for the �le to be printed�
If the power for one of the devices is not on it can be plugged in and then turned on� Once
it is plugged in� the device must be functional for it to be powered up� Similarly� for it to
be plugged in the device must be located with the reach of a power outlet� Table �
 shows
the operators for this domain�

For this domain� Alpine generates the graph shown in Figure ��� If every computer is
functional and can be connected to an electric outlet� then every total order of the graph
results in an abstraction hierarchy with the DRP� In this caseAlpine generates the hierarchy
shown in Table ��� This takes ���� seconds� Highpoint takes ���� seconds to check that
no changes need to be made as all the re�nement probabilities are estimated to be ��
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Preconditions Adds Deletes

print�f�c�p�

IsComputer�c��

IsPrinter�p��

PowerOn�c�� PowerOn�p��

Loaded�f�c�

Printed�f�

turn�on�d�

PluggedIn�d��

Functional�d�

PowerOn�d�

plug�in�d�o�

is�outlet�o�

CableCanReach�d�o�

plugged�in�d�

transfer�file�f�c�

IsComputer�c�

PowerOn�c�

Loaded�f�c�

Table �
� The operators of the computer domain�

�

��	

�

PPPPPq

Connected

Power�on

LoadedPrinted

Figure ��� Computer domain graph generated by Alpine�
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Criticality Predicates

� IsComputer� IsPrinter� Functional�

CableCanReach


 Printed

� Loaded

� PowerOn

� PluggedIn

Table ��� Computer domain hierarchy generated by Alpine�

However� suppose that not all of the cable runs have been completed� so that most of the
devices cannot yet be connected to an power outlet� Then the re�nement probability will
be very low between levels � and � in the hierarchy of Table ��� Of course Alpine cannot
alter the hierarchy it generates� but Highpoint recognizes the problem and collapses these
two levels� The resultant hierarchy� generated by Highpoint using a threshold value of ����
is shown in Table ��� To generate this hierarchy� it took Highpoint ��� CPU seconds�

Criticality Predicates


 IsComputer� IsPrinter� Functional�

CableCanReach

� Printed

� Loaded

� PowerOn� PluggedIn

Table ��� Computer domain hierarchy generated by Highpoint�

We �rst compared the two hierarchies on �ve planning problems of increasing solution
lengths� All test problems involve printing several �les by choosing a functional computer
and printer� The result of the comparison is shown in table �� where each datum represents
the amount of CPU time required to solve the problem using each hierarchy� The time
required for generating the hierarchy is not included in the table� A CPU time limit of 
�
minutes was imposed on both sets of tests� and as can be seen from the table� Highpoint is
able to solve longer problems within the time limit� Also� the data again demonstrates that
Highpoint�s advantage over Alpine increases as the problem becomes more complex�

Figure �� further compares the performance of the two hierarchies� A total of �� sample
problems� all requiring solutions of length six� were tested in a domain where only a small
percentage of the computers could be connected to a power outlet� Alpine and Highpoint
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Solution Length Highpoint �seconds� Alpine �seconds�
 �� 
��
� ��� ���
�� �� ������
�� 
��
�� ������

Table �� CPU time comparison betweenHighpoint andAlpine in the computer hardware
domain�
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Preconditions Adds Deletes

shape�x�

Object�x� Shaped�x� Drilled�x�

Painted�x�

drill�x�

Object�x� Drilled�x� Painted�x�

paint�x�

Object�x�� Steel�x� Painted�x�

Table ��� The operators of the manufacturing domain�

were applied to generate their hierarchies� and then AbTweak was used to solve the ��
sample problems using the di�erent hierarchies� The graph shows accumulated CPU time
as a performance measure� including the initial time for hierarchy generation� Again� the
initial cost of Highpoint is quickly recovered as its hierarchy solved problems of this size
more than 
 times faster than the Alpine hierarchy�

��� A Manufacturing Domain

In our last test we used a domain suggested by Smith and Peot 	���� The task is to transform
a piece of stock into a desired form� by drilling� shaping and painting� The operators of the
domain are listed in Table ��� The goal of the domain is to solve the planning problem



Object�s� �

Shaped�x�
Drilled�x�
Painted�x�

�
�

for some object x in the domain�

Criticality Predicates


 Object� Steel

� Shaped

� Drilled

� Painted

Table ��� Transportation domain hierarchy generated by Alpine�



�

Criticality Predicates

� Object� Steel

� Shaped� Drilled� Painted

Table ��� Manufacturing domain hierarchy generated by Highpoint�

Stocks Highpoint �seconds� Alpine �seconds�
��� ���� 
��

��� ���� 
��

��� 

�� ����
�
� 
��� ���
��� ���� ����
��� ��� ���
�� ��
 ��
��� ���� ����
��� ��
 ���
��� ��� ����

Table ��� CPU time comparison between Highpoint and Alpine in the manufacturing
domain�

Smith and Peot used this example to illustrate a shortcoming ofAlpine� Suppose that in
the initial state there are ��� pieces of stock and only one of them is made of steel� Alpine
would not recognize this speci�c situation and generate a hierarchy as shown in Table ���
With this hierarchy an abstract planner will �rst satisfy the goals involving predicates Shaped
and Drilled� and during this process an object will be arbitrarily selected to substitute for
the variable x� However� when we try to achieve the Painted goal� the Steel�x�precondition
of operator Paint�x� will most likely be unsatis�ed� because only one out of ��� pieces of
stocks is made of steel� Hence� backtracking will occur up through the hierarchy for the
selection of another object� and many partial solutions will have to be abandoned�

In contrast� Highpoint�s hierarchy does not su�er from this problem because in the
situation where steel objects are rare the re�nement probabilities from any higher level to
the Painted level will be low� The Highpoint algorithm� will collapse the three predicates
Shaped� Drilled and Painted to a single level� as this is the only way the OM property
can be maintained� In the case where there are ��� pieces of stock with only a single steel
one� it took Highpoint ��� seconds to generate the hierarchy shown in Table ���

The empirical comparison in CPU time of Highpoint and Alpine is shown in Table ���
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where the CPU times do not include the initialization costs of generating the hierarchies�
Each row in the table corresponds to di�erent quantities of stock in the initial state� where
in each case there is only piece made of steel� It can be seen from the table that Highpoint
outperforms Alpine as the quantity of stock grows larger�

Here we would also note that the solution o�ered by Highpoint is di�erent from that
suggested by Smith and Peot� Instead of collapsing the part of the hierarchy where the
re�nement probability is low� they suggested that the abstraction level corresponding to
Painted should be placed at the highest level� The reason for doing this is that there are far
fewer solutions for the Painted condition than the others� While ordering the predicates in
this manner makes sense for this speci�c example� in general it is di�cult to obtain a count
for the number of solutions required to implement this strategy� In addition� by violating
the order suggested by Alpine� one runs a risk of having the abstract plans interfered with
by their low level re�nements� The result could be additional planning required during
re�nement to repair violated higher level achievements�

��� Discussion of the Experimental Results

We have shown that Highpoint is able to o�er a signi�cant improvement over Alpine�
which serves to demonstrate the validity of our approach� and the importance of the DRP
property� In particular� Highpoint has the following advantages over Alpine�

�� As demonstrated by tests in the robot�box domain� when Alpine generates a partially
ordered graph of predicate sets� for hierarchy generation� its selection of a total order
does not depend on re�nement probabilities� Thus� it is possible that it may generate a
hierarchy in which the re�nement probabilities are poorly con�gured� e�g�� where they
are not increasing as we move down the hierarchy� In contrast� Highpoint is able to
select a more intelligent total order by examining these probabilities�

�� When the re�nement probability is low� Highpoint recognizes the need to collapse
two or more levels� This property is displayed in both the computer hardware domain
and in the transportation domain�


� Although Highpoint requires more time to generate its hierarchy it is clear that over
a number of problem solving instances� and for problems with lengthy solutions� this
cost is quickly paid o��

The �rst criteria that Highpoint uses� that of high and non�decreasing re�nement proba�
bilities is directly supported by our analysis� However� its behavior of collapsing levels seems
on the surface to contradict our results�

Our analysis predicts that asymptotically we are better o� with more levels� as complexity
is reduced as the number of levels increases� However� the asymptotic results ignore the
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constant factors� One important feature of our analysis is that we are able to give exact
results� In particular� our results provide the more accurate expression

GoodTreeWork�n� � O�bkkn��� �O�bkkn���pB�n����p�� ��B � p � �� ����

�Equation ���� Hence� we see that there is a constant overhead factor O��pB�n��� once
the DRP fails� This constant factor is exponential in the number of levels� For practical
problems B can be quite large� as the number of alternate re�nements of an abstract solution
will often be large� This means that in reducing the number of levels we can often improve
performance for the size of problems that we are dealing with� That is� in practice we are
still not able to solve problems so large that the full force of the asymptotic results come
into play �where the factor O��pB�n��� fades in signi�cance�� This is why exact complexity
results� as we have given� are much more useful than asymptotic results� However� analysis
is not su�cient� It was our experimental results which indicated that the constant factors
were still dominant for the size of problems we were dealing with�

Highpoint can easily be improved� but since this was not the focus of our work we were
content with a simple implementation� Two obvious ways Highpoint can be improved is
if it used our analytic forms directly to estimate the amount of work to solve a problem on
candidate hierarchies� This would involve a more through search through the space of can�
didate hierarchies� for the searched candidates the analytical forms predicting their behavior
could be evaluated using the information gathered by Find�Probability� This would give
a more accurate evaluation of the hierarchy�s worth than the approximations we used� An�
other improvement would be to extend Highpoint to handle individual planning problems
rather than try to construct a single hierarchy for all problems in the domain� Knoblock has
demonstrated that problem�speci�c hierarchies can often display superior performance 	����

Another source of improvement is to obtain a better understanding of the threshold value
�� In this work� the value is set to ��� for near�DRP hierarchies� However� there might be
other better values depending on the domain of planning� It might be worthwhile to examine
the impact of the threshold values on the quality of the hierarchies�

� Conclusions

In this paper we have presented an analytic study of the bene�ts of abstraction with and
without the DRP� and have used the analysis in a practical manner to design an improved
hierarchy generation algorithm� Our experimental tests have demonstrated the validity of
the approach�

Our analytical results indicate that the main bene�t in abstraction is the ability of
the hierarchy to break up the problem into smaller and independent subproblems� If the
hierarchy is successful in doing this then asymptotically abstraction will always be a gain�
even if we have to search through many alternate abstract plans�
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However� except in the unusual case where we can generate a variable number of levels
in the hierarchy� hierarchical problem solving is not a magic solution� It decreases the size of
the exponent� but the complexity of problem solving remains exponential� This is why our
practical experiments do not always show the e�ects of the asymptotics� Since the underlying
complexity is exponential it is not always possible to solve large enough problems for the
asymptotic bene�ts to manifest themselves� This is why abstraction does not always work
in practice� and this is why collapsing levels of the hierarchy� as done by Highpoint� is
of practical bene�t� Furthermore� this phenomia underscores the importance of providing
exact complexity results whenever possible� In particular� the exact complexity results we
have provided are able to explain the bene�t of collapsing levels of the hierarchy� there is a
constant factor that is exponential in the number of abstract levels� and this constant factor
can often dominate in problems of practical size�

In conclusion� the main contributions of this work are as follows�

�� A model of abstraction has been developed� and based on that model we have provided
an analysis of a number of di�erent features of hierarchical problem�solving under
di�erent conditions of re�nability�

�� A syntactic condition has been provided for testing if an Abstrips�hierarchy possesses
the DRP� The condition can also be used to estimate re�nement probabilities�


� An algorithm has been provided that automatically constructs an abstraction hierarchy
for a given domain� The hierarchies constructed have both the ordered monotonicity
property and the near�DRP�

�� Empirical tests have been presented that support our analytical results� and con�rm
the utility of our algorithm�
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A GoodTreeWork�i�	The simpli
cation

In section ����� we presented a simpli�ed form for GoodTreeWork�i� which we derive here�
Starting with the form�

GoodTreeWork�i� � NodeWork�i�

�
BX

m��

b�m�B� �� F �i� ���

� � b��� B� �� F �i� ���

��B �m

m� �

�
BadTreeWork�i� ��

�

� GoodTreeWork�i� ���



�

We can take BadTreeWork�i� �� outside of the summation to obtain

GoodTreeWork�i� � BadTreeWork�i� ��
BX

m��

b�m�B� �� F �i� ���

� � b��� B� �� F �i� ���

�B �m

m� �

�

� NodeWork�i� � GoodTreeWork�i� ���

Since b�m�B� ��F �i���� �
�
B
m

�
	��F �i����mF �i���B�m� we can simplify the remaining

sum�

BX
m��

b�m�B� �� F �i� ���

�� b��� B� �� F �i� ���

�B �m

m� �

�

�
�

� � b��� B� �� F �i� ���

BX
m��

B&

m&�B �m�&

�B �m

m� �

�
��� F �i� ���mF �i� ��B�m

�
F �i� ��

�� � b��� B� �� F �i� ������ � F �i� ���
BX

m��

B&

�m� ��&�B �m� ��&
��� F �i� ���m��F �i� ��B�m��

�
F �i� ��

�� � b��� B� �� F �i� ������ � F �i� ���

BX
m��

b�m� �� B� �� F �i� ���

�
F �i� ��

�� � F �i� ����� � b��� B� �� F �i� ����

BX
m��

b�m�B� �� F �i� ����

where the last is obtained by noting that b�B � �� B� � � F �i� ��� � � and then changing
the index of summation� Let

��i� �� �
F �i� ��

��� F �i� ����� � b��� B� �� F �i� ����

BX
m��

b�m�B� �� F �i� ����

We can write ��i� in the closed form

��i� �
F �i�

�� � F �i����� F �i�B�

�
��B��� F �i��F �i�B��� F �i�B

�
�

by expanding the binomials and noting that they sum to ��
No work needs to be done re�ning a concrete solution� so GoodTreeWork��� � �� There�

fore� the recurrence for GoodTreeWork�i� becomes

GoodTreeWork�i� �
iX

j��

NodeWork�j� �
i��X
j��

BadTreeWork�j���j�



�

Using our expression for NodeWork�i�� Eq� �� the �rst term becomes

iX
j��

kn�jbk � knbk
iX

j��

���k�j

Since the last is a geometric sum with closed form� we obtain� after some simpli�cation

iX
j��

NodeWork�j� � kn�ibk
�ki � �

k � �

�
�

Thus�

GoodTreeWork�i� � kn�ibk
�ki � �

k � �

�
�

i��X
j��

BadTreeWork�j���j�� ����

as claimed�

B Asymptotics for BadTreeWork�i�

n��X
j��

BadTreeWork�j� �

���
�	

O�bkkn��� p � ��B
O�bkkn��n� p � ��B
O�bkkn���pB�n��� p � ��B�

Proof� Eq�  gives the following expression for BadTreeWork�i��

BadTreeWork�i� � bkkn�i
�pBk�i � �

pBk � �
�

This can be rewritten as

BadTreeWork�i� � bkkn�i
i��X
m��

�pBk�m

Hence�

n��X
i��

BadTreeWork�i�

� bk
n��X
i��

kn�i�
i��X
m��

�pBk�m�

� bk�kn�� � kn���� � pBk� � � � �� k�� � pBk � � � �� �pBk�n����

� bk�kn���� � pB � � � � � �pB�n���� � lower order terms�



�

When pB � �� the sum �� � pB � � � � � �pB�n��� is bounded above by the constant
���� � pB�� Hence� we get

n��X
i��

BadTreeWork�i� � O�bkkn��� pB � ��

When pB � �� this sum becomes O�n�� Hence� we get

n��X
i��

BadTreeWork�i� � O�bkkn��n� pB � ��

When pB � �� this sum becomes O�pBn���� Hence� we get

n��X
i��

BadTreeWork�i� � O�bkkn���pB�n��� pB � ��

C Semantic Conditions for the DRP

Theorem ���� Let ��� be any i�th level abstract solution to any planning problem that has
a concrete solution� Let Abs�i� ��j� and Abs�i� ��j��� be any pair of adjacent operators in ����

and let " be the semantic state between these two operators in ����
Suppose that for every semantic state "� such that "� � Range�Abs�i��� ��j�� and "� �

Abs�i�"�� there exists a state "�� such that

�� "� � Abs�i�"�� "� � Domain�Abs�i��� ��j����� and

�� a solution ��� consisting of i�� level operators exists for the problem h"��"�i� such
that for every state "� in ���� "� � Abs�i�"��

Then the DRP is satis�ed by the hierarchy�
Proof� Let ��� be any i�th level solution� and let ��� be a i���th level plan� formed from
��� by inserting a i���th level subplan ��j between every pair of operators Abs�i� ��j� and

Abs�i� ��j���� j � �� � � � � k��� in ���� where ��j is the subplan whose existence is speci�ed in

the condition �� Then the resultant plan ��� is correct� since from this condition� ��j does not

violate the correctness of the i�th level conditions� Furthermore� from De�nition 
��� ��� is
also a monotonic re�nement of plan ���� Therefore� for every abstract solution� there exists
a monotonic re�nement of that solution� and the DRP is satis�ed�
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