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Abstract

A temporal logic is presented for reasoning about propositions whose truth values might
change as a function of time� The temporal propositions consist of formulae in a sorted �rst

order logic� with each atomic predicate taking some set of temporal arguments as well as a set of
non
temporal arguments� The temporal arguments serve to specify the predicate�s dependence
on time� By partitioning the terms of the language into two sorts� temporal and non
temporal�
time is given a special syntactic and semantic status without having to resort to rei�cation� The
bene�ts of this logic are that it has a clear semantics and a well studied proof
theory� Unlike
the �rst
order logic presented by Shoham� propositions can be expressed and interpreted with
respect to any number of temporal arguments� not just with respect to a pair of time points �an
interval�� We demonstrate the advantages of this �exibility� In addition� nothing is lost by this
added �exibility and more standard and useable syntax� To prove this assertion we show that
the logic completely subsumes Shoham�s temporal logic ����

� Introduction

Many problems in arti�cial intelligence require reasoning about events or states of the world that
have temporal extent� Standard �rst�order logics have proven useful for reasoning about static
propositions and their consequences� but have not been readily adaptable to the greater demands
of temporal reasoning� For instance� �block A is on block B� can be represented as on�a� b	� but
�block A is on block B from 
pm to ��pm� is less obviously represented� One approach is to
add to the predicates additional arguments denoting the temporal elements associated with the
assertion
 on�
� ���a� b	� This approach has received little attention� being typically abandoned
in favor of rei�ed logics ��� �� containing truth predicates relating atemporal proposition terms
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�e�g�� on�a� b		 to temporal points or intervals �e�g�� HOLDS�
� ���on�a� b	�	� In contrast to the
recent trends� we demonstrate a logic obtained by including the additional temporal arguments�
showing that this preserves the �rst�order structure of the propositions� has a clear semantics� and
a standard proof�theory�� In addition� we make no ontological commitment toward interpreting
the temporal objects as either points or intervals� leaving this choice instead to the axiom writer�
These advantages are obtained by keeping within a classical �rst�order framework� We present
�rst the syntax and semantics of our logic and discussing its salient features� We then compare
our system to another recent non�rei�ed temporal logic� developed by Shoham ���� Shoham�s
logic deals with preserving the �rst�order structure of temporally scoped propositions� but uses
a complex� non�standard semantics for which no proof theory has been provided� We show that
this logic is subsumed by our approach� demonstrating that these non�standard features are not
required� Finally� we make some comparisons between the non�rei�ed approach that we use here
and the rei�ed logics that have been used previously�

� A Non�Rei�ed Temporal Logic

In the logic that we present� propositions are associated with time objects by including temporal
arguments to the functions and predicates� For example� one can represent the assertion �the
President of the USA in ���� died in ����� as died������ president������usa		� Temporal objects
are distinguished from non�temporal objects by partitioning both the universe of discourse and the
symbols of the language used to denote the universe� One can thus specify� for each function and
predicate symbol� some number� n� of temporal arguments and some number� m� of non�temporal
arguments� and for each function symbol� whether it evaluates to a temporal or non�temporal
object�

Representing temporal assertions by the �method of temporal arguments� �a phrase due to
Haugh ���	� has long been used in database applications �e�g�� Ahn ���	� but has typically been
ignored in AI� One notable exception is a logic presented by Haugh ���� Although many of the ideas
�rst presented by Haugh are echoed here� there are several points of departure� Syntactically� we
allow considerably more �exibility� by not limiting the number of temporal arguments of functions
or predicates as Haugh does� Further� we permit the presence of functions that take a combination
of temporal and non�temporal objects� However� the primary di�erence is Haugh�s position that a
non�standard semantics is required in order to su�ciently constrain the structure of the temporal
domain� As we demonstrate in Section �� the model theory need not provide this structure� In
this way� the axiom writer is free to choose the particular axiomatic theory that represents the set
of intended models� unconstrained by any a priori choice of structure inherent in the logic itself�
Further� as with Shoham� Haugh does not provide a proof theory for his semantics�

�Our logic can be viewed as being in the same spirit as Green�s original work on logic based planning ���� Green
used additional state arguments in his predicates� adding the states as extra individuals to the object language� The
rei
ed logics on the other hand take the approach of separating the language of states from the language which
describes the domain� To express the dependence of the domain statements on the current state� the formulae of the
domain language are rei
ed� i�e�� added as extra individuals in the state language� Viewing the time arguments as
being state arguments gives the parallel between Green�s approach and ours�
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��� Syntax

Our logic� which we will refer to as �BTK�� is a standard many�sorted logic having two disjoint
sorts� for temporal and non�temporal objects� It is therefore an element of Wang�s ��sorted logical
system T� �
�� We brie�y review the syntax of a two�sorted logic�

The variables� V� are of two di�erent sorts� Vt� and Vu� and for every pair of natural numbers
n and m there is a set �possibly empty	 of �n�m	�ary function symbols� F�n�m�� and a set �possibly
empty	 of �n�m	�ary predicate symbols�P�n�m�� For both function and predicate symbols the �rst n
arguments are temporal while the last m are non�temporal� We restrict the functions to range over
the temporal sub�domain� calling these temporal functions� or over the non�temporal sub�domain�
calling these non�temporal functions� Therefore the sort of a function will be uniquely determined
by its range� We take the constants� C� to be ��ary function symbols� Hence� the constants are
sorted as well�

Terms and w�s are de�ned in the standard fashion� with the only restriction being that ar�
guments of the correct sort must be given for each function and predicate� We will use �t� to
denote temporal terms� and �c� to denote non�temporal terms� sometimes with subscripts� The
sort of a term is determined by the sort of its outermost symbol� In addition� we will call predicates
that take only temporal arguments temporal predicates� and predicates that take only non�temporal
arguments non�temporal predicates�

A set of inference rules is provided by Wang in �
�� For our present purposes we need not include
them here� A BTK language along with the inference rules and proper axioms is a BTK system�

��� Semantics

A model is de�ned to be the tuple M � hhT� Ui� �i� T and U are non�empty universes� and � is
an interpretation function that maps each �n�m	�ary temporal function to an �n�m	�ary function
from Tn�Um to T � each �n�m	�ary non�temporal function to an �n�m	�ary function from Tn�Um

to U � and each �n�m	�ary predicate to an �n�m	�ary predicate on Tn � Um� Meaning is assigned
to the formulae by standard �rst�order rules for interpreting the atomic formulas� truth�functional
connectives� and quanti�ers� except that each quanti�ed variable ranges only over the appropriate
universe� We denote the interpretation of � under � by ���

� Relativization and Proof Theory

Rather than using a ��sorted logic for BTK� we could instead have used a standard �one�sorted	
logic� Thus� for every BTK system we could have a corresponding BTK� system� where there is
only a single universe� and thus only a single sort for the variables and functions� In addition�
the one�place predicates Temporal and Non�Temporal are part of every BTK� language� The BTK�

system is then de�ned analogously to that of BTK� with the addition of the following theorems


�� �x� y�Temporal �x	� Non�Temporal �y	

�� �x� Temporal �x	� Non�Temporal �x	�
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where � is exclusive�or� A statement � in BTK can be �relativized� to a statement �� in BTK��
by substituting simultaneously in �� for each expression of the form �x��� where x is a temporal
variable� an expression of the form

�x� Temporal �x	� ��

and for each expression of the form �z��� where z is a non�temporal variable� an expression of the
form

�z�Non�Temporal �z	� ���

We then get the following result trivially from Wang� �attributed to Herbrand ���	


A statement of any system BTK is provable in BTK if and only if its relativization
in the corresponding system BTK� is provable in BTK��

BTK� is a standard �rst�order system and as such its proof theory� and automated use of this proof
theory� has been well studied� The theorem implies that any �rst�order proof theory can be trivially
used as a proof theory for BTK
 one only has to relativize every statement of a given BTK system
and do deduction in the �rst order BTK�� In addition� by relativizing a BTK system in this fashion�
one can automate deduction by using standard automated theorem proving techniques�

It should be noted� however� that one need not relativize the logic in order to obtain either a
proof theory or an automated theorem prover for a sorted logic� This is because sorted proof theories
and their automation have been well studied� For example� Walther ��� has developed an automated
theorem prover for a sorted clause form logic� based upon resolution and paramodulation� In fact�
he gives some strong arguments to indicate that reasoning directly with the sorted logic would be
far more e�cient� It is a trivial exercise to cast BTK as a variant of Walther�s clause form sorted
logic and to use his automated reasoner�

The major di�culty involved in reasoning in a BTK system lies in reasoning with the temporal
terms� Halpern and Shoham ���� have demonstrated that for modal temporal logics the complexity
of reasoning is highly dependent on the nature of the temporal domain� A similar situation holds
for BTK�

Many di�erent complete proof theories exist for �rst�order logic �e�g�� the ones given by Barwise
in ����	� These proof theories give mechanical procedures for generating all valid �rst�order formu�
lae� As long as we can completely axiomatize the special properties of the de�ned relations� we can
use one of these complete proof theories to generate all formulas valid for these relations� First�
order domains� however� have no special structure� they consist simply of a collection of relations
de�ned over an unstructured domain of discourse� The temporal sub�domain� on the other hand�
does possess special structure� and it may not be possible to provide a complete axiomatization
of this structure� For example� if one requires that the temporal domain T be the set of integers�
then it is well known that there is no complete axiomatization of the integers in languages which
include multiplication and addition�� In other words� if one places no restrictions on the set of
legal BTK models� in particular� if one places no requirements on the structure of the temporal
domain� then complete proof theories can be provided for BTK� by the above relativization result

�We are taking existentially quanti
ed variables as de
ned from universally quanti
ed variables
�This follows directly from G�odel�s incompleteness result� see� e�g�� Barwise �����
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and the existence of complete proof theories for �rst�order logic� or by the use of complete proof
theories for sorted �rst�order logic� like Walther�s� On the other hand if one restricts the set of legal
BTK models to be models where the temporal domain T has some special structure one cannot
necessarily guarantee a proof theory complete for these models
 even the relativized �rst�order
BTK� will not have a complete proof theory�

Although temporal structures like the integers cannot be characterized by a set of �rst�order
axioms� there are many other temporal structures that can be� These include temporal domains
that are linearly ordered� models of Peano arithmetic� and totally ordered �elds� This last is
particularly useful� The reals are an instance of a totally ordered �eld� Hence� if we choose such
a temporal structure we will be able to axiomatize its behavior and be assured that all deductions
carried out with this axiomatization will be sound with respect to the reals� Furthermore� it is well
known that every totally ordered �eld has a sub�eld which is isomorphic to the rationals� This
means that we can include in our language temporal constants representing any rational time point�
When one considers the fact that our computers can only represent rationals �and only a �nite set
of rationals at that	� it should be clear that one can capture a great deal of useful reasoning about
real time points by restricting oneself to the rationals�

Another interesting type of temporal domain which has a complete axiomatization occurs when
the primitive temporal objects are intervals� For example� Ladkin ���� demonstrates that the
axiomatic theory of the Interval Calculus provided by Allen and Hayes ���� precisely characterizes
the unbounded linear orders�

If the temporal domain of BTK� T � is de�ned to be any one of these temporal structures� or
any other structure which we can characterize by a set of axioms� a complete proof theory can be
easily generated� One just adds the axiomatization of the temporal domain to the axiomatization
of �rst�order logic� The �rst�order rules of inference will provide a complete proof theory when
they operate on the union of the temporal and �rst�order axioms� This can be done in either the
sorted context or� via relativization of the temporal axioms� in the unsorted context�

To make this more precise we make the following de�nitions��

De�nition � A class of temporal structure T is said to be characterized by an axiomatizationAX
�i�e�� a recursive set of axioms	 if we have that T j� AX i� T � T � That is� the models of AX are
exactly the class of temporal structures�

Clearly� the class of linearly ordered temporal structures is characterized by the �rst�order axioms of
a linear order� i�e�� the axioms ��	 �x�x	x� ��	 �xy�x	y�y	x� y�x� ��	 �xyz�x	y�y	z � x	z�

�We need to be precise as it is not necessarily the case that we can combine two complete axiomatizations and
retain completeness� Completeness is closely tied to the expressiveness of the language� For example� although the
reals cannot be characterized in 
rst�order logic �i�e�� we cannot write a set of 
rst�order axioms that has only the
reals as a model�� Tarski ���� has shown that the 
rst�order theory of real closed 
elds �RCF� is complete for the reals�
That is� a formula written in the language of RCF is valid if and only if it is true of the reals� This result rests on the
limited expressiveness of the language of RCF� RCF is capable of expressing only a limited set of assertions about the
reals� and a complete proof theory exists for this limited set� but not for larger sets� When we combine our temporal
and atemporal languages into a BTK system we are increasing the expressiveness of our temporal language� through
the mixed functions and predicates� Hence� we may have an axiomatization that� for our original temporal language�
is complete with respect to a particular temporal domain� but when we combine that temporal language with an
atemporal language� to form a BTK system� we may lose completeness� We have now increased the expressiveness of
our temporal language and may have exceeded the capabilities of the original axiomatization�
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and ��	 �xy�x	y 
 y	x� Similarly� the class of temporal structures that are totally ordered �elds
are characterized by the �rst�order axioms of a totally ordered �eld �see� e�g�� Shoen�eld ����	�
However� there does not exist any axiomatization that characterizes the integer or the real temporal
structures�

Let BTKT be a BTK system in which any member of T is admissible as the temporal do�
main T � and let AXT be an axiomatization which characterizes T � Let AXFO be any complete
axiomatization of �rst�order logic� Then we have


Theorem � The axiom system consisting of AXT �AXFO is a complete axiomatization of BTKT �
Proof� The axiom system is simply a collection of �rst�order axioms� hence� for any satis�able
formula � we can construct a Henkin model� This model will satisfy � and all of the axioms� In
particular� it will satisfy AXT � Since AXT characterizes T � the temporal domain will be a member
of T � and therefore a legitimate model for BTKT � Thus� a model exists for every satis�able formula�
and as a standard consequence the axiom system is complete�

An argument made by Shoham ��� is that a logic based on the method of temporal arguments�
such as BTK� is insu�cient for the demands of temporal reasoning


This option is not acceptable from our standpoint� although there is nothing tech�
nically wrong with it� The problem is that if time is represented as an argument �or
several arguments	 to predicates� there is nothing general you can say about the tem�
poral aspect of assertions� For example� you cannot say that �e�ects cannot precede
their causes�� at most you can say that about speci�c causes and e�ects� Indeed� this
�rst option accords no special status to time�neither conceptual nor notational�which
goes against the very spirit of our enterprise�

Haugh ��� has given some counter arguments to this claim� but with BTK we can give a more
precise refutation� We will show that BTK subsumes the logic developed by Shoham �to be referred
to as �STL�	� Given this result� it is the case that STL can represent the sentence �e�ects cannot
precede their causes� only if BTK can
 STL is no more expressive than a logic obtained by adding
additional time arguments to the predicates�� In addition� time is given a special status in BTK by
using a sorted logic that distinguishes temporal objects from all other objects� both semantically
�conceptual	� and syntactically �notational	�

� Shoham�s Logic

In this section we brie�y describe STL and discuss the main di�erences between it and our temporal
logic� Shoham�s logic is presented in ����

STL is sorted in much the same way as BTK� There are a set of temporal constants and
variables as well as non�temporal constants and variables� However the treatment of function
and relation symbols is di�erent� STL has temporal functions� but these functions can only take
temporal arguments�they are a special case of BTK temporal functions� i�e�� temporal functions
with m � �� Furthermore� STL allows no user de�ned temporal relations� just the prede�ned ones

�Later we will return to the question of whether or not a non�rei
ed logic like BTK� or STL� can in fact express
this sentence�
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�	� and ���� Non�temporal functions and relations are also treated di�erently� Syntactically they
do not take any temporal arguments� although semantically they are always evaluated with respect
to a pair of time points �an interval	�

The atomic formulae of STL are of two types�formulae formed from the two temporal relations
� and 	� e�g�� t� � t� or t� 	 t�� where t�� t� are both temporal terms�

� and formulae formed via
the TRUE construct� Using Shoham�s de�nition�

If ta and tb are temporal terms� c�� � � � � cm are non�temporal terms� and R is a m�ary
relation symbol� then

TRUE�ta� tb� R�c�� � � � � cm		

is an atomic formula�

For example� the sentence �block A is on block B between 
 and ��� would be expressed in STL as

TRUE�
� ���on�a� b		�

TRUE is not a relation in STL� nor is it a modal operator� rather� it is a reifying context� It asserts
that the proposition R�c�� � � � � cm	 is true over the interval speci�ed by ta and tb� The time points
ta and tb do not appear as direct arguments to the relation symbol R� nor to any functions which
may appear in the ci�s� but they a�ect the semantic interpretation of these symbols�

The rest of the formulae of STL are built up in the standard manner� by closing o� under
negation� conjunction and universal quanti�cation� As in BTK� quanti�cation can occur over the
time points or over the ordinary individuals� dependent on the sort of variable used�

Semantically STL has� like BTK� a universe of temporal objects and a universe of individuals�
Unlike BTK� STL requires that the temporal objects be time points � and requires that all of the
atomic formulae include exactly two temporal arguments �denoting the starting and ending points
of the temporal interval over which the proposition holds	� The interpretation function maps the
temporal function symbols to functions over the universe of time points� The mapping of the non�
temporal function and relation symbols is� however� determined not only by the symbol itself but
also by the two time points which occur in the TRUE construct�	 In particular� there is a mapping
from non�temporal function symbols and a pair of time points to functions over the universe of
individuals� Similarly� there is a mapping from non�temporal relation symbols and a pair of time
points to relations over the individuals� Each non�temporal function symbol denotes many di�erent
functions over the non�temporal individuals� The particular function that it denotes is determined
by the time points in its TRUE context� and likewise for non�temporal relation symbols�
 Once
the particular non�temporal function or relation is identi�ed by the time points the rest of the
interpretation proceeds in a standard manner� A fuller description of Shoham�s logic is provided
in the Appendix�

Given the use of what resembles a truth predicate� STL bears a syntactic similarity to rei�ed
logics� and in fact� Shoham argues that it is �a new rei�ed temporal logic� ��� p� ����� However�

�Terms in STL are formed in the standard manner� i�e�� constants and variables� or functions applied to the
proper number of terms� Note� however� that in STL there are no mixed functions� i�e�� functions of temporal and
non�temporal terms�

�This is the only place that a non�temporal relation or function can appear�
�In this sense� the non�temporal functions can be viewed as �uents �����






since formulae are not treated as object denoting terms� and TRUE� despite its resemblance� is
not formally a predicate� we view STL as being closer to the spirit of an intensional logic� The
semantics that Shoham provides bears a striking resemblance to Dowty�s temporal models for his
tensed logic ��
� p� ����� the primary di�erence being that in STL� the time objects are represented
explicitly in the formulae� while Dowty provides them implicitly in the model�

��� Comparison of Shoham�s Temporal Logic to BTK

There are several implications of Shoham�s approach� One is that every non�temporal function
and relation is always dependent on exactly two time points� Thus� for example� it is clumsy to
specifying that a function is dependent on only one time point� location�space�shuttle� t�	� or
that a relation is �eternal�� i�e�� not dependent on time� block�A	� Since the time dependency
is speci�ed semantically the syntax is completely rigid on this matter� In BTK� there is neither
a syntactic commitment to the number of temporal objects that any function or predicate may
depend on� nor is there any commitment to interpreting the temporal objects as either intervals or
points� It is our position that these choices should not be constrained by the logic� but should be
left to the axiom writer to decide�

An major problem with STL is that there is no simple way of referring to one temporally refer�
enced object within the context of another temporal interval� such as the example �the President
of ���� died in ������ This is because Shoham requires all non�temporal terms to be evaluated
with respect to the same temporal terms� i�e�� those speci�ed in the TRUE context� To express
such a statement in Shoham�s logic one has to resort to the more cumbersome use of equality and
quanti�cation


�x�TRUE������ ����� president�usa	 � x	� TRUE������ �����died�x		�

This can be compared with the expression of this statement in BTK given in section �� We will
have more to say about reasoning with Shoham�s logic below�

A further problem is that Shoham does not allow for temporal predicates� except for the pre�
de�ned ones 	 and ��� Thus one would have to extend his formalism to� for instance� embed the
meets predicate and axioms of ���� within STL�

A major di�culty with Shoham�s approach is that� since he has chosen to move away from
standard �or sorted	 �rst order syntax� �rst order proof theory� which is purely syntactic� no longer
applies� Hence� Shoham�s logic requires a new proof theory� This means that one cannot justify the
use of Shoham�s logic for reasoning about temporal propositions � There is no reasoning procedure
speci�ed that provides any formal guarantees of soundness or completeness�

It may not be very di�cult to provide a proof theory for Shoham�s logic� but this in itself would
not su�ce to provide a useful tool for reasoning� One would also have to develop some understanding
of the properties of such a proof theory� especially if one wishes to construct automated theorem
provers based on it� This may not be an easy task since� as indicated above� there are some examples
which force the use of equality which is known add complexity� especially for automation� The fact
that our temporal logic has a standard syntax means that we can take advantage of �� years

	What we mean here is that the semantic model Shoham de
nes does not allow for �user de
ned� temporal
relations� He does allow an arbitrary set of temporal functions�
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of research in automated reasoning� and many more years of theoretical work on understanding
�rst�order proof theory�

Our temporal logic is a simple sorted �rst order logic� It is simple because the sorts do not
intersect� Proof theories for sorted �rst order logics already exist� and are applicable as is to
our logic� In addition� considerable work has been done on automating such proof theories� ����
Furthermore� if one chooses to interpret our logic as non�sorted� then standard FOL proof theory
applies� as do automated theorem provers for �rst order logic�

One would hope that there are compensations in using STL in exchange for abandoning standard
proof theory� This is� however� not the case� The next section will show that nothing is lost in
moving from Shoham�s temporal logic to the logic proposed in this paper� It shows that STL is
subsumed by our logic in the precise sense that any STL model can be transformed to a BTK
model in such a way that there is a one to one correspondence between the sentences satis�ed by
the STL model and the sentences satis�ed by the BTK model� These results also show that there
is one way of doing reasoning in STL
 translate it into BTK�

� Subsumption of Shoham�s Logic

We show that Shoham�s logic �STL	 is subsumed by the logic proposed in this paper �BTK	
by de�ning two transformations� a syntactic transformation� �syn� and a semantic transformation�
�sem�

�� �syn maps sentences of STL to sentences of BTK� while �sem maps models of STL to models
of BTK� Using these two transformations we will show that any STL model can be transformed
into a BTK model in such a way that the set of sentences satis�ed by the BTK model�� includes
the transformed set of STL sentences satis�ed by the STL model� In other words� any set of STL
sentences can be rewritten as a set of BTK sentences without eliminating any models which satisfy
those sentences�

The syntactic transformation is based on a simple idea� In Shoham�s logic all predicate symbols
and non�temporal function symbols are interpreted with respect to the two time terms which appear
as the �rst two arguments of the �TRUE� construct� In transforming STL to BTK we take these
two time terms and add them as explicit temporal arguments to the predicate symbol� and similarly
we add them as extra arguments to the non�temporal functions� Temporal functions are una�ected
by the transformation� and none of the symbols are altered�they are just rearranged�

The only technical point is that non�temporal terms can be built up from nested application
of non�temporal functions� In this case it is necessary to propagate the two temporal arguments
recursively to all embedded function terms� For example� the non�temporal term f�g�h�c			 in
STL� where f � g� and h are non�temporal functions and c is a non�temporal constant� must be
converted to a term of the form f�t�� t�� g�t�� t�� h�t�� t�� c			� where t� and t� are the propagated
temporal terms� Here each of the functions f � g� and h has been converted to functions with two
extra temporal arguments�

�
Ladkin ���� uses a similar approach to map Allen�s interval calculus ���� to the language of rational numbers� In
doing this he is able to give decision procedures for the interval calculus�

��A model� M� satis
es a sentence� �� written M j� �� if �� � �� i�e�� if � is true under the interpretation of the
model� ��
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The following examples should give a good idea of the nature of the syntactic transformation�
The STL expressions

�� TRUE�t�� t��colour�house���red		�

�� TRUE�t�� t��gender�president�usa	�male		�

�� TRUE�t�� ft�t�	� P �h�g�B			��

will be transformed to the BTK expressions


�� colour�t�� t��house���red	�

�� gender�t�� t�� president�t�� t��usa	�male	�

�� P �t�� ft�t�	� h�t�� ft�t�	� g�t�� f��t�	� B		��

The semantic transformation is similar� In STL each non�temporal function or relation symbol
actually denotes a set of di�erent functions or relations over the non�temporal individuals� The
time points in the �TRUE� context determine which element of the set is picked out for this
particular instance� In converting from an STL model to a BTK model we gather up all of the
di�erent functions associated with each function symbol and construct a single function which has
two extra temporal arguments� The new BTK function has the property that when it is evaluated
at a �xed pair of time points it is the same function as the function denoted by the STL symbol
when that symbol is interpreted with respect to those time points� The non�temporal relations are
transformed in a similar manner�

These transforms are de�ned formally in the appendix� where we prove the following theorem�

Theorem � Given an STL sentence � and an STL model M then

M j� � i� �sem�M	 j� �syn��	�

Proof The proof is straight forward� but requires the development of a fair amount of notation�
See the appendix for details�

This theorem is a formal speci�cation of the manner in which STL is subsumed by BTK� and
it has an interesting corollary regarding proof theories�

Corollary � A sound proof theory in BTK can be used to produce sound inferences in STL�

Proof Let � and � be sentences of STL� We claim that if �syn��	 � �syn��	 is a sound deduction
in BTK� then � j� � in STL� That is� if the syntactic transformation of � can be used to deduce
�soundly	 the syntactic transformation of � then � entails � in STL���

If �syn��	 � �syn��	 then� by the assumption of soundness� for all BTK models�M
�� we have

that M� j� �syn��	 implies that M
� j� �syn��	� Thus� this also holds for all models which have

the special form �sem�MS	 for all STL modelsMS � Hence� by theorem � we have that for all STL
modelsMS�MS j� � impliesMS j� �� In other words � j� � in STL�

��� j� � if any model which satis
es � �i�e�� assigns truth to �� also satis
es �� A proof theory is said to be sound
if � � � implies � j� �� It is said to be complete if � j� � implies � � ��
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It is natural to ask a similar question about completeness� That is� can a complete proof theory
in BTK produce a complete set of inferences in STL� Here� however� the answer is more di�cult
to determine� If we have that � j� � in STL� then we know from theorem � that �syn��	 entails
�syn��	 in every BTK model which is of the form �sem�MS	� for some STL model�MS � However
these are not the only BTK models� and it is quite possible that in some BTK model which is not
a transformed STL model �syn��	 is true while �syn��	 is false� Hence in BTK �syn��	 � �syn��	
would not be sound� even though � j� � in STL� Although it is clear that these extra BTK models
exist� it might still be possible to �factor� out their e�ect� extending the result to yield completeness�
This remains an open question�

	 Translating Shoham�s Ontology to BTK

One of the bene�ts of Shoham�s logic is that it does not require the axiom writer to use a �xed
ontology of temporally scoped propositions� as� for example� Allen does ��� with his introduction of
properties� events� and processes� Rather� Shoham�s logic allows the axiom writer to build her own
ontology axiomatically �

We argue that Shoham�s ontology extends naturally to our logic by virtue of the demonstrated
translation� and that� in fact� our ontology is richer� since our logic allows intervals to be the
primitive temporal objects rather than being de�ned by the two endpoints� as in STL� An example
showing the translation of the ontology axioms should su�ce to demonstrate our claim�

Shoham de�nes a proposition type x �where proposition types are simply relation symbols with
the requisite arguments	 to be downward hereditary �if whenever it holds over an interval it holds
over all of its subintervals�� Shoham�s axiom schema for this is

�t�� t�� t�� t���t� 	 t� 	 t� 	 t� � t� 
� t� � t� 
� t� � TRUE�t�� t�� x	�� TRUE�t�� t�� x	�

for all x�s of the appropriate type� This translates in BTK to the following schema� for each
��� m	�ary predicate of the appropriate type


�t�� t�� t�� t�� y�� � � � � ym�

�t� 	 t� 	 t� 	 t� � t� 
� t� � t� 
� t� � p�t�� t�� y�� � � � � ym	�� p�t�� t�� y�� � � � � ym	�

In addition� the predicate �	� must be de�ned axiomatically in BTK� since it is not implicitly
de�ned as it is in STL��� In BTK� however� one is not forced to use time points so one might alter�
natively de�ne downward hereditary for a system in which intervals are taken as the interpretation
of time objects� as in


�i�� i�� y�� � � � � ym�During �i�� i�	 � p�i�� y�� � � � � ym	� p�i�� y�� � � � � ym	�

where it is assumed that During has been de�ned axiomatically�
This same style of translation� then� can be used for any of the other elements of Shoham�s

ontology
 upward�hereditary� point�downward�hereditary� liquid� gestalt� etc�

��This is because an ordering relation on the entire domain does not make sense for certain temporal structures�
e�g�� intervals�
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 Comparing Rei�ed and Non�Rei�ed Logics

In BTK� propositions are related to times by adding time�denoting argument terms to each of the
predicates� Semantically� a relation�s time dependence is modeled by adding a set of temporal
objects to each tuple in the relation� For example� if on is a binary predicate dependent on a single
temporal argument �say an interval	� then in BTK it will denote a set of triples in the semantics�
each triple consisting of the pair of objects that are in the on relation and the interval during
which they are in this relation� So� for example� on�I� A�B	 will be interpreted as asserting that
the triple denoted by I � A� and B is a member of the set of triples denoted by on�

By contrast� in �rst�order rei�ed logics such as those of ��� ��� propositions are treated as object
denoting terms and related to times through a �truth� predicate� as in HOLDS�I�on�A�B		� In
this case on�A�B	 is a term� instead of a formula� That is� it denotes an object in the domain� a
special �formula� object� The temporal terms� like I � continue to denote temporal objects� The
relation de�ned on the domain is a binary relation that relates formula objects to temporal objects�
The symbol on� that in BTK was treated as a predicate symbol� is now treated as a function
symbol� The object denoting terms remain unchanged �in this example� A and B	� Hence� with
rei�ed logics there is a change in the denotation of the atemporal predicate symbols� and we have
an expanded domain of discourse which includes formula objects�

One does need to make these changes carefully� however� Since on�A�B	 is now a term and
on is a function� we could� if we used the standard unsorted term formation rules of �rst�order
logic� generate new terms like on�on�A�B	� B	� Clearly� such terms do not correspond to legal
�rst�order formulas� To avoid such di�culties we must add a precise sort structure to the language�
to distinguish those terms which denote the �real� objects of the domain� from those which denote
the formula objects� Under such a sortal structure we are prohibited from applying a �real� object
function� like on� to a formula object� like on�A�B	� Lifschitz ��� provides an example of such a
carefully constructed sorted� rei�ed logic�

Things can get very complicated if we allow the rei�cation of non�atomic formulae� e�g�� terms
like AND�on�A�B	�on�C�D		 as does Allen ���� It is fairly straightforward to extend the sortal
structure to insure that� e�g� the logical function ��� only takes formula objects as arguments� But
we also need axioms which specify the equality of certain obviously equal formulas� e�g�� axioms
like �x� y�AND�x� y	 � AND�y� x	� and this is what becomes complex� and probably needlessly
so� Most applications do not require the rei�cation of more than the atomic propositions
 the
logical connectives can be applied outside of the HOLDS predicate� For example� instead of writing
HOLDS�I�AND�on�A�B	�on�C�D		 we can write HOLDS�I�on�A�B		�HOLDS�I�on�C�D		�

One advantage that is possessed by rei�ed logics is that they allow quanti�cation over proposi�
tions� For example� one can express the assertion �e�ects cannot precede their causes� in a rei�ed
logic� We could have a predicate causes�x� y	 that takes two formula terms as arguments and
asserts that x causes y� With this predicate our assertion could be expressed with the following
formula


�y� t����x�causes�x� y		� HOLDS�t�� y	� ��z� t��causes�z� y	� HOLDS�t�� z	� t� 	 t�	�

where x� y and z are formula variables� t� and t� are temporal variables� and quanti�cation occurs
only over the correct subset of the domain� That is� if y has some cause� x� �i�e�� it is not sponta�
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neous	 and it holds during t� there must be some previous time point t� where one of its causes� z�
�not necessarily the same as x	 occurred�

Such a statement cannot be expressed in a non�rei�ed logic like BTK �nor� by our results� in
Shoham�s logic	� In BTK we can only use axiom schema like those we used to de�ne di�erent
temporal ontologies� For example� we could write the above as an axiom schema� where the
propositional variables x� y and z are no longer quanti�ed� Instead they would have to be treated
as meta�variables� Each instantiation of the schema would give the proper assertion for a particular
triple of propositions� But this does not quite duplicate the above assertion� In particular� the above
assertion holds for all propositions� even if we don�t currently have them in our language�

In summary� rei�ed logics have the disadvantage of being more complex� and on a practical side
we have less experience with automated reasoning in such logics� But they have the corresponding
advantage of being more expressive ����� The relative merits of rei�ed vs� non�rei�ed logics will
depend on the particular application� BTK is a very standard and easily understood formalism
that is capable of a wide range of temporal reasoning� and it is likely to be su�cient in any practical
temporal reasoning system� If one needs quanti�cation over propositions that cannot be reduced to
a collection of instances� however� one must resort to rei�ed logics� or� perhaps� to some combination
of the two �e�g�� Allen et al� ����	�

� Conclusion

A temporal logic has been presented for reasoning about propositions whose truth values might
change as a function of time� The temporal propositions consist of formulae in a sorted �rst�
order logic with each atomic predicate taking some set of temporal arguments which denote time
objects� as well as a set of non�temporal arguments� The temporal arguments serve to specify
the proposition�s dependence on time� By partitioning the terms of the language into two sorts�
temporal and non�temporal� time is given a special syntactic and semantic status in the logic
without having to resort to rei�cation or non�standard syntax and semantics� The bene�ts of this
logic are that it has a clear semantics and a well understood proof�theory for which considerable
experience in constructing automated reasoners already exists� Unlike the �rst�order logic presented
by Shoham� propositions can be expressed and interpreted with respect to any number of temporal
arguments� not just with respect to a pair of time objects �an interval	� In addition� the axiom
writer is free to consider the time objects as either points or intervals� By proving that the logic
completely subsumes Shoham�s� we have demonstrated that nothing is lost by this added �exibility
and more standard and useable syntax�
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A Transformation of STL to BTK

De�nition � The syntactic transform� �syn� which maps STL sentences to BTK sentences� is
de�ned recursively as follows� It depends on a syntactic transformation of the non�temporal terms
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which is de�ned next�

�� �syn�ta	tb	 �� ta	tb� and �syn�ta�tb	 �� ta�tb �i�e�� temporal terms and formulae are left
intact	�

�� �syn
�
TRUE�ta� tb� p�c�� � � � � cn		

�
�� p�ta� tb� �


ta�tb�
syn �c�	� � � � � �


ta�tb�
syn �cn		

�� �syn���	 �� ��syn��	

�� �syn�� � �	 �� �syn��	� �syn��	

�� �syn��x��		 �� �x��syn��		� where x can be a variable of either sort�

De�nition 	 The syntactic transform� �

ti�tj�
syn � which maps non�temporal terms of STL to terms of

BTK is de�ned as follows�

�� If c is a non�temporal constant or variable of STL then

�

ti�tj�
syn �c	 �� c�

�� �

ti�tj�
syn �f�c�� � � � � cn		 �� f�ti� tj � �


ti�tj�
syn �c�	� � � � � �


ti�tj�
syn �cn		

The symbols of the corresponding BTK and STL languages are identical� but as is seen from the
de�nition of �syn � non�temporal functions and predicates have two extra temporal arguments�

Next we de�ne the semantic transformation �sem� but in order to do this we �rst need to provide
more detail about the models of STL�

A model of STL is de�ned to be the tuple

M �
D
TW���W� TFN� FN�RL�M

E

Where


�� TW is a universe of time points�

�� � is an ordering relation on TW �

�� W is a universe of individuals�

�� TFN is a set of temporal functions� TWn �� TW �

�� FN is a set of non�temporal functions� Wn �� W �

�� RL is a set of non�temporal relations in Wn�


� M is the tuple of interpretation functions
hM��M��M��M��M�i� where


�a	 M� is a mapping from the time constants to TW �

�b	 M� is a mapping from the non�temporal constants to W �
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�c	 M� is a mapping from the temporal functions to TFN �

�d	 M� is a mapping from TW�TW�f �� FN � where f is the set of non�temporal function
symbols�

�e	 M� is a mapping from TW �TW � r �� RL� where r is the set of non�temporal relation
symbols�

In the following we denote temporal terms by ti �for various subscripts i	 and non�temporal terms
by ci �note� terms are syntactic entities	� We use hatted �t �usually with subscripts	 to denote
time points� These are semantic entities which are members of TW � the universe of time points�
In addition� we use hatted �c or �a �again usually with subscripts	 to denote individuals from the
semantic domain W �

The meaning of an expression �� M��	� is de�ned as follows


�� If � is a temporal variable� then M��	 � VAt��	 where VAt is a variable assignment function
over TW �

�� If � is a temporal constant� then M��	 �M���	�

�� If � is a temporal term of the form f�t�� � � � � tn	� then

M��	 �M��f	�M�t�	� � � � �M�tn		�

�� If � is a non�temporal term� then meaning is assigned to � with respect to two time points
as follows


�a	 If � is a non�temporal constant� then for all time points �t�� �t��

M� �t�� �t�� �	 �M���	�

�b	 If � is a non�temporal variable� then for all time points �t�� �t��

M� �t�� �t�� �	 � VAw��	�

where VAw is a variable assignment function over W �

�c	 If � is a non�temporal function term of the form f�c�� � � � � cn	� then for all time points
�t�� �t��

M� �t�� �t�� �	 �M�� �t�� �t�� f	�M� �t�� �t�� c�	� � � � �M� �t�� �t�� cn	��

And �nally� a w� � is satis�ed under interpretation M and variable assignment VA� �written
M j�VA �	 as follows


�� M j�VA t� � t� i� M�t�	 �M�t�	�

�� M j�VA t� 	 t� i� M�t�	 �M�t�	�

�� M j�VA TRUE�t�� t�� p�c�� � � � � cn		 i�

hM �M�t�	�M�t�	� c��� � � � �M �M�t�	�M�t�	� cn�i �M��M�t�	�M�t�	� p��
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Truth is assigned to non�atomic formulae in the standard fashion� Note that predicates are inter�
preted with respect to two time points� just as were the non�temporal functions�

We now de�ne the semantic transformation of an STL model�

De�nition 
 The semantic transformation of M�
�sem�M	� is a BTK model constructed as follows�

�� T � TW � the universe of time points is the same�

�� U � W � the universe of individuals is the same�

�� If f is a temporal function symbol of STL� then f� �M��f	�

�� If f is an n�ary non�temporal function symbol of STL� then the following set of n � ordered
tuples is the interpretation of f under �sem�M	


f� � fh �t�� �t�� �c�� � � � � �cn� �aij �t�� �t� � TW and �M�� �t�� �t�� f		��c�� � � � � �cn	 � �ag�

Note that this set does in fact de�ne a function� Given any tuple h �t�� �t�� �c�� � � � � �cni� M� maps
f � �t�� and �t� to a unique function over W

n �� Un	� Hence� the �ci�s will then map to a unique
element �a of W �� U	�

�� If P is a predicate symbol of STL� then

a	 if P is 	� then P � ��� i�e�� the semantic ordering relation on TW �

b	 if P is �� then P � � fh�t� �tij�t � Tg�

c	 if P is an n�ary non�temporal predicate symbol of STL then the following set of n ��ary
tuples is the interpretation of P under �sem�M	


P � � fh �t�� �t�� �c�� � � � � �cnij �t�� �t� � TW and h�c�� � � � � �cni �M�� �t�� �t�� P 	�g

�� To complete the de�nition of �� we choose an arbitrary mapping of the temporal variables
to T and an arbitrary mapping of the non�temporal variables to U � Finally� we maintain
the STK denotations of all constants� i�e�� t� � M��t	 for all time constant symbols t� and
c� �M��c	 for all non�temporal constant symbols c�

Now we can prove the main technical result�

Theorem � Given an STL sentence � and an STL model M then

M j� � i� �sem�M	 j� �syn��	�

Proof The cases where � is of the form t� � t� or t� 	 t� are trivial� The non�trivial case is � of
the form

TRUE�t�� t�� p�c�� � � � � cn		�

��



We need only consider this case where all of the terms are ground� i�e�� variable free� since the
formulae of STL and BTK are built up in an identical manner and the universes over which the
quanti�ed variables can range are identical� �� is a sentence so all variables are quanti�ed�	 �syn��	
is of the form

p�t�� t�� �

t��t��
syn �c�	� � � � � �


t��t��
syn �cn		�

�sem�M	 will be a model for this sentence i�

ht�� � t
�
� � �


t��t��
syn �c�	

�� � � � � �
t��t��
syn �cn	

�i � p��

where � is the interpretation function of �sem�M	� By de�nition�M is a model of � i�

hM �M�t�	�M�t�	� c��� � � � �M �M�t�	�M�t�	� cn�i �M��M�t�	�M�t�	� p��

Clearly from the construction of �sem�M	 all temporal terms are given the same denotation in
BTK as in STL� i�e�� t� � M�t	 for all temporal terms t� We also claim that all non�temporal
terms� in a given TRUE context� are given the same denotation in BTK as in STL� If the term is a
constant this follows directly from the de�nition of �sem� i�e�� c� �M��c	� If the term is of the form
f�c�� � � � � cn	 and is within the temporal context determined by temporal terms t� and t�� then if
we take �ci	� �M�M�t�	�M�t�	� ci	 for all i by induction� then

�syn �f�c�� � � � � cn	�
�

� �f�t�� t�� �

t��t��
syn �c�	� � � � � �


t��t��
syn �cn		�

�

� f���t�	
�� �t�	

�� �
t��t��
syn �c�	

�� � � � � �
t��t��
syn �cn	

�	

� �M��M�t�	�M�t�	� f	��M�M�t�	�M�t�	� c�	� � � � �

M�M�t�	�M�t�	� cn	�

� M�f�c�� � � � � cn		�

Hence all of the terms are given an identical denotation� But using the de�nition of p� we have
that

ht�� � t
�
� � �


t��t��
syn �c�	� � � � � � �


t��t��
syn �cn	�i � p� i�

hM�t�	�M�t�	�M �M�t�	�M�t�	� c��� � � � �M �M�t�	�M�t�	� cn�i � p� i�
hM �M�t�	�M�t�	� c��� � � � �M �M�t�	� �t�	� cn�i �M��M�t�	�M�t�	� p�

Q�E�D�
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