
Modeling an Agent�s Incomplete Knowledge during Planning and
Execution

Fahiem Bacchus
Department of Computer Science

University of Waterloo
Waterloo� Canada N�L �G�
fbacchus�logos�uwaterloo�ca

Ron Petrick
Department of Computer Science

University of Waterloo
Waterloo� Canada N�L �G�
rpapetrick�logos�uwaterloo�ca

Abstract

In many domains agents must be able to gen�
erate plans even when faced with incomplete
knowledge of their environment� We pro�
vide a model to capture the evolution of the
agent	s knowledge as it engages in the activ�
ities of planning 
where the agent must at�
tempt to infer the e�ects of hypothesized ac�
tions� and execution 
where the agent must
update its knowledge to reect the actual ef�
fects of actions�� The e�ects 
on the agent	s
knowledge� of a planned sequence of actions
are very di�erent from the e�ects of an exe�
cuted sequence of actions� and one of the aims
of this work is to clarify this distinction� The
work is also aimed at providing a model that
is not only rigorous but can also be of use in
developing planning systems�

� Introduction

In this paper we address the problem of how agents
who must operate in incompletely known environ�
ments can generate and execute plans� In particular�
we examine the case where an agent has correct but
incomplete knowledge of its environment� A represen�
tation scheme for incomplete knowledge is developed
that is speci�cally oriented towards the development
of actual planning systems� In particular� we focus
on representing and updating the kinds of incomplete
knowledge that would be useful to a planning agent
capable of sensing and manipulating its environment�
and we ensure that the representation can be used in a
straightforward manner in an actual planning system�

When planning� the agent must reason about the ef�
fects of actions� When the agent has complete knowl�
edge of its environment� there is no need to distin�

guish between what the agent knows and what is true
in its environment� Hence� in classical planning sys�
tems there is no explicit separation between the agent	s
knowledge and facts about the world� For example�
when a Strips database is employed to model the
world state it is only implicit that the agent knows
the contents of the database�

When faced with incomplete knowledge� however� we
do require an explicit model of the agent	s knowledge
and the manner in which this knowledge is a�ected
by the actions executed by the agent� In fact� for the
purposes of planning it is the action	s e�ects on the
agent	s knowledge that are most important� at plan
time the agent must know that the plan will achieve its
desired e�ects� and at execution time the agent must
have su�cient knowledge at every step of the plan to
execute it �Lev����

A major complication� when having to reason about
how actions a�ect the agent	s knowledge� arises from
the fact that the plan time e�ects of such actions are
quite di�erent from their execution time e�ects� For
example� say that the agent is operating in the UNIX
domain and that it is considering the action of listing
a directory� At plan time all that it will know is that
after the action it will know all of the �les in the direc�
tory� the actual identity of those �les will not become
known until the action is actually executed�

In many domains generating plans that operate cor�
rectly no matter how the world is con�gured is
impossible�such conditional plans �PS��� PG��� end
up being too large� Instead� the agent must often
commit by actually executing some actions so as to
avoid having to plan for contingencies that never oc�
cur� However� execution also has its pitfalls� as exe�
cuting an action might change the world in such a way
that the agent	s ultimate goal becomes impossible to
achieve�

Understanding how to manage these tradeo�s so that



we can e�ectively interleave planning and execution
remains an important open problem in the area� We
believe that our work makes a contribution to this
problem� In particular� our representation of ac�
tions provides a clear separation between their plan
time and execution time e�ects� We can project the
agent	s knowledge state through both planned actions
sequences and executed action sequences� This pro�
vides useful information about the di�erences between
plan time and execution time and leads to a deeper
understanding of both plan time and execution time
e�ects� It also opens up a wider range of possibilities
for interleaving planning and execution�

The general approach we adopt is much like the tradi�
tional Strips representation� In particular� we use a
collection of databases to represent the agent	s knowl�
edge� However� we provide a formal semantics for the
items in each database� We do this by translating
each of these items into formulas of a modal logic of
knowledge� Actions operate much like Strips actions
do� they modify the contents of the various databases�
Through examples we show that a useful range of ac�
tions can be represented as update operations to these
databases�

Our approach allows us to project the agent	s knowl�
edge through a sequence of planned actions� we sim�
ply apply the actions	 plan time e�ects to the agent	s
initial knowledge state to produce a sequence of inter�
mediate knowledge states� This means that a straight�
forward forward chaining search could in principle be
used to generate plans� We can also project the agent	s
knowledge state through sequences of action execu�
tions� and this means that an plan execution module
can also be supported by our formalism���

In the rest of the paper we will present the method
we use for representing the agent	s knowledge� discuss
how inferences can be made from this knowledge� and
briey discuss how actions are represented and how
they update the agent	s knowledge� Finally� we will
close with some simple examples that show how our
approach models the plan time and execution time ef�
fects of various actions and plans� But �rst we discuss
some related work�

�Some work would have to be done to modify our ap�
proach to support partial order planning or backwards
chaining planning� This should be possible as such plan�
ning technologies were initially developed from �projec�
tive� action semantics like ours� However� such approaches
are not a major interest of ours� as we are pessimistic about
their ultimate future� We are much more optimistic about
the future of forward chaining planners �BK�	� McD�	


��� Related work

The general issue of planning with correct but incom�
plete knowledge has received a great deal of attention
recently� There are many domains that can be usefully
modeled under this paradigm� For example� Etzioni�
Golden and Weld have been engaged in ongoing re�
search into software agents that operate in the UNIX
and Internet environments �EGW��� GW��� EGW���
GEW���� As they point out� these domains are rea�
sonably approximated by the assumption of correct
but incomplete knowledge� The main feature of their
work has been to develop methods for providing such
agents with planning capabilities� exactly the issue we
address here� Their work� particularly their work on
locally closed worlds �EGW��� has been very inuen�
tial in our work�

There are two main di�erences between their work and
that presented here� First� much of their approach is
tied to the technology of partial order planning� We
feel that this often has the detrimental e�ect of making
the semantics of their representations and algorithms
much more di�cult to understand� The projective se�
mantics we use here gives a clearer separation between
the issues that involve the semantics of actions and
the agent	s knowledge and the issues that involve the
implementation and semantics of partial order plan�
ning� The second di�erence is that their work is in�
timately tied to execution time e�ects� For example�
the algorithms they develop for reasoning about locally
closed world conditions �EGW��� assume that the ac�
tions achieving such conditions have been executed�
This means that the planning system they construct
is forced to interleave planning and execution in an
inexible manner� There is limited scope for alterna�
tive ways of interleaving planning and execution� to
deal� e�g�� with domains where executing actions can
produce irreversible changes�

As pointed out by Levesque� there are a number of
subtle issues involved in planning in the face of in�
complete knowledge� In �Lev��� Levesque provides a
formal speci�cation of plan correctness in the face of
incomplete knowledge� He points out that plans have
knowledge preconditions� and that it must be known
at plan time that these conditions will be achieved at
execution time� Although Levesque	s work provides
vital insights into the problem� his work does not di�
rectly address the issue of generating plans� In partic�
ular� his model of actions and knowledge is speci�ed
in the situation calculus� Hence� to reason about the
e�ects of actions one would� in general� have to em�
ploy full �rst�order inference� In our work we have
used some of Levesque	s ideas about plan correctness�



but have focused on more limited representations that
can be implemented more e�ectively in real planning
systems�

� Representing the Agent�s
Knowledge

The �rst issue we address is that of representing the
agent	s knowledge� As mentioned in the introduction
we are assuming that the agent has correct� albeit in�
complete� information about its environment� This
kind of information is conveniently formalized using
a standard modal logic of knowledge 
see �FHMV���
for an introduction��

One of our aims� however� is to develop an approach
that can facilitate the development of e�ective plan�
ning systems� and we do not know� at this time� how
to deal with a fully general logic of knowledge� Instead
we adopt a Strips like approach where by the agent	s
knowledge is represented as a collection of databases
each of which maintains a particular type of knowl�
edge� We formally characterize the agent	s knowl�
edge by providing a translation from the database con�
tents to a set of logical formulas� Thus we utilize the
logic	s semantics as the underlying semantics of our
representation�� We use DB to represent the agent	s
databases� and KB to represent the set of logical for�
mulas that characterize the agent	s knowledge�

In brief� the standard modal logic of knowledge adds a
modal operator K to an ordinary �rst�order language�
extending the language	s syntax by adding the rule�
if � is a formula then so is K
��� Semantically� the
language is interpreted over a collection of worlds W �
each of which is an ordinary �rst�order model� These
worlds are related to each other by an accessibility re�
lation� In this case every world is accessible from every
other world� Any non�modal formula � is interpreted
to be true at a particular world w 
written w j� �� i�
it is true according to the standard rules for interpret�
ing �rst�order formulas� A formula of the formK
�� is
interpreted to be true at w i� � is true at every world
accessible from w� which means that � must be true
at every world in W 
since at every world all worlds
are accessible��

Intuitively� the agent	s knowledge is being modeled by
the set W � The agent does not know which of the
worlds inW is the real world� and considers all of these
worlds to be possible versions of the way the real world
is con�gured� If it does not know whether or not � is
true� then there will be worlds inW where � is true and

�In essence we are simply restricting ourselves to a par�
ticular subset of the logic�

worlds where � is false� Knowing � to be true means
that � is true in every world in W � Our assumption
that the agent	s knowledge is correct is modeled by the
fact that the real world is a member of W � Thus� if
the agent knows �� � is in fact true in the real world�
For convenience� we use the notation w� to represent
the real world� Furthermore� when we write a logical
formula we always interpret it at w�� Thus� a formula
likeK
readable
kr�tex���writable
kr�tex� means that
the agent knows that �le kr�tex is readable 
and by the
semantics of K� kr�tex is in fact readable� and that it
is in fact writable 
but this is not necessarily known
by the agent�� A useful notation is Kwhe
�� which is
de�ned to be the formula K
�� �K
���� either � or
its negation is known to hold�

��� Rigid Terms and Constant Domains of

Discourse

The agent	s knowledge will include atomic facts about
various terms� For example� knowing that the �le
kr�tex is readable might be represented by the atomic
formula K
readable
kr�tex��� where kr�tex is a term
of the language� We also allow functions� For exam�
ple� the agent might know various function values like
K
size
kr�tex� � ������ i�e�� kr�tex is ���� bytes in
length�

Terms composed from functions and constants� like
kr�tex� ����� and size
kr�tex�� pose potential problems
when dealing with knowledge� In particular� the terms
they generate may be rigid or non�rigid� Non�Rigid
terms are terms whose denotation varies from world
to world� while rigid terms have a �xed denotation
across worlds� For example� the agent might not know
the size of the �le kr�tex� so the term size
kr�tex� may
have a di�erent denotation 
i�e�� a di�erent value� in
the di�erent worlds the agent considers possible� On
the other hand a number like ���� would have the same
denotation 
i�e�� the same meaning� in every world�

When terms can be of either type reasoning about facts
like readable
kr�tex� becomes more complex�� For ex�
ample� it is not immediately obvious what it would
mean for the agent to know this fact if the term kr�tex

had potentially a di�erent denotation in every world�
Since there does not seem to be a good reason to have
this level of generality� we impose the restriction that
all constants must be rigid� Thus� a term like kr�tex

will always denote the same object in every world�� On

�See Garson �Gar��
 for a good discussion of these is�
sues�

�There may be many �les in the agents environment
called kr�tex� In practice� we would have to use a distinct
constant for each �le� For example� we could use a unique



the other hand� we allow functions to generate non�
rigid terms� Thus� a term like size
kr�tex� can denote
a di�erent value in di�erent worlds�

Formally� this means that for every constant c in the
language describing any particular planning domain�
the agent	s knowledge 
the set KB� includes the for�
mula�

�x�K
x � c�� 
��

This says that there is a particular object in the real
world such that in every possible world the constant c
denotes that object�

We assume that numeric functions� like ���� or nu�
meric predicates like ��� have their standard inter�
pretation in every world 
hence they also are rigid��

Another complication that we wish to avoid are those
that arise when di�erent worlds w can have di�erent
domains of discourse�� So we restrict our semantics
to only consider models in which all worlds have an
identical domain of discourse��

��� The Databases

We represent the agent	s knowledge by a collection of
four databases� each of which is discussed below�

Kf � The �rst database is much like a standard
Strips database� except that both positive and nega�
tive facts are allowed and we do not apply the closed
world assumption� In particular� Kf can include any
ground literal 
atomic formula or negation of an atomic
formula�� Kf is further restricted so that all the terms
that appear in any literal must be constants� So�
for example� an atomic formula like readable
��
dir���
where the function ���� speci�es the parent directory
of a direction �le� cannot appear in Kf � To include
such information we would have to know the name of
dir	s parent directory�

In addition to literals Kf can also contain speci�ca�
tions of function values� In particular� formulas of the
form f
c�� � � � � cn� � cn��� where f is an n�ary func�
tion and the ci are all constants� This formula speci�
�es that f 	s value on this particular set of arguments
is the constant cn��� In e�ect� our restriction means

identi�er for each �le and have a function name that maps
this identi�er to the �les �common� name� The function
name may thus map many di�erent �les to the same com�
mon name� However� for readability we will continue to use
common names in our examples� leaving it to the reader to
remember that all such names are intended to be unique�

�Again see �Gar��
 for a discussion�
�We have not found that this poses any practical prob�

lems� In particular� this assumption does not mean that
we know the identity of all the objects in the real world�

that function values in Kf are considered to be known
by the agent only if they can be �grounded� out as
constant values�

We specify what the contents of Kf means in terms
of the agent	s knowledge by specifying that for every
formula � � Kf � KB includes the formula�

K
��� 
��

Kw� The second database contains a collection of for�
mulas every instance of which the agent either knows
or knows the negation� In particular� Kw can contain
any formula that is a conjunction of atomic formu�
las� By adding simple ground atomic facts to Kw we
can model the e�ects of sensing actions at plan time�
In particular� at plan time if the agent hypothesizes
executing a sensing action that senses some fact like
readable
kr�tex�� all the agent will know is that after
sensing it will know whether or not this fact is true�
Only at execution time will there be a resolution of
this disjunction�

In a similar manner by adding formulas containing
variables to Kw we can model the plan time e�ects of
actions that generate universal e�ects like local closed
world information �EGW���� For example� the UNIX
�ls dir� command yields local closed world informa�
tion about the contents of directory dir� Yet at plan
time the agent will not know the actual contents of the
directory� The contents will only become known after
the ls action is executed�

We specify what the contents of Kw means in terms
of the agent	s knowledge by specifying that for every
formula �
�x� � Kw 
a conjunction of atomic formulas
in which the variables in �x appear free�� KB includes
the formula

��x�K
�
�x�� �K
��
�x��� 
��

Note that in the case where �x is the empty set 
i�e�� � is
a conjunction of ground atomic formulas�� this reduces
to the formula Kwhe
���

Some predicates� e�g� numeric predicates like � and
equality �� have the same denotation in every world
in W � Such �rigid� predicates are considered to be
implicitly in Kw� For example� x � y and x � y
are implicit members of Kw� The inference algorithm
presented below has access to these implicit members
of Kw�

Kv� The third database is simply a specialized ver�
sion ofKw designed to store information about various
function values the agent will come to know� In par�
ticular� Kv can contain any unnested function term�



For example� f
x� a� would be a legal entry in Kv but
f
g
a�� c� would not be� LikeKw� the entries inKv can
be used to model sensing actions� except in this case
the sensors are returning constants 
e�g�� numbers� not
truth values� The value returned by the sensor will not
be known until execution time� but at plan time the
agent will know that such a value will become known�

For every formula f
�x� � Kv� where �x is the set of
variables appearing in the term� KB includes the for�
mula

��x��v�K
f
�x� � v�� 
��

Formulas of this type are a standard way of specifying
that the agent knows a function value� see� e�g�� �SL����

More general information about knowing function val�
ues can be speci�ed by entries in Kw� For exam�
ple� if we will come to know the sizes of all the
�les in a particular directory dir� we could place
in�dir
x� dir� � size
x� � y in Kw � where in�dir
x� y�
means that x is in directory y� This formula says that
for every �le x that is in directory dir we know all val�
ues of y such that size
x� � y� Of course since size is
a function there is only one such y�

LCW � The fourth database is a database of local
closed world information� The innovative concept of
locally closed worlds comes from the work of Etzioni
et al� �EGW���� LCW represents the execution time
analog ofKw� and basically asserts that the agent	sKf

database contains a complete list of all items satisfying
a particular conjunction of atomic formulas� In most
cases such a list can only be added to the Kf database
by actually executing an action�

LCW can contain formulas of exactly the same form
as Kw� conjunctions of atomic formulas� We spec�
ify the semantics of the LCW database as follows�
Let �
�x� � 	�
�x� � � � � � 	k
�x� be a conjunction
of atomic formulas in which the vector of variables
�x � hx�� � � � � xni appear free� Say that � � LCW ��

Let C � f�c � 	i
�x
�c � � Kf � � � i � kg� C is the set of
tuples of constants explicitly listed in Kf as satisfying
�� For every such formula � � LCW � KB includes the
formula

��x�
�
�c�C

�
x� � c� � � � �� xn � cn� 	 K
��
�x
�c ���


��

For example� if P 
x� � Q
x� y� � LCW � and P 
a��
P 
c�� Q
a� b� and Q
a� c� are all in Kf � 
which means
that the pairs 
a� b�� and 
a� c� are explicitly listed as

�Note that not every variable in �x need appear free in
every literal�

satisfying P 
x� �Q
x� y� in Kf �� then the formula

�x� y��
x � a � y � b� � �
x � a � y � c�

	 K
�
�
P 
x��Q
x� y�

�
�

is in KB� This formula says that the pairs 
a� b� and

a� c� are in fact the only pairs satisfying P 
x��Q
x� y��
Thus it entails� e�g�� that K
�
P 
b� �Q
b� c����

This formula makes explicit the notion utilized by Et�
zioni et al� that if we have local closed world informa�
tion and we don	t have an instance explicitly listed in
the database then we can conclude that the property
does not hold�

��� The semantics of LCW and Kw

We have provided a semantics for the LCW and Kw

databases by translating their contents to modal logic
formulas� In doing this we are using the well under�
stood semantics of the modal logic to provide a �nal
grounding for the entries in these databases� It is use�
ful to point out that when we convert entries in Kw

to formulas of the form ��x�K
�
�x�� � K
��
�x�� this
corresponds to the agent knowing that the set of satis�
fying instances of �
�x� is invariant across worlds� That
is� a tuple of constants �c satis�es �
�x
�c � in the real
world if and only if it satis�es the formula in every
world the agent considers possible�

The presence of such a formula in Kw does not mean�
however� that the agent knows the truth value of
�
�x
�c �� since the action that will resolve this has not
yet been executed� When the formula is in LCW the
action has already been executed and all of the satisfy�
ing instances of � have been added to the agent	s Kf

database by the action� Hence� the agent will know
the truth value of �
�x
�c � for every �c � Thus a typical
action speci�cation will include a plan time addition
to Kw and an execution time addition to LCW �

The concept of locally closed worlds as a generalization
of the closed world assumption is due to Etzioni et al�
who develop the concept in detail in �EGW���� In
our approach� however� we have carefully separated
local closed world information into plan time e�ects
and execution time e�ects� The inference algorithm
developed in �EGW��� is an execution time algorithm
that requires the actions executed to actually add all
of the satisfying instances to the Kf database� At plan
time the satisfying instances are not yet known� yet we
still want to perform �local closed world� reasoning at
plan time� Our approach gives us that ability�



��� The Knowledge State

Given a particular set of these four databases� i�e�� a
particular DB� the agent	s knowledge state is de�ned
by the set of formulas in KB as speci�ed by the for�
mulas ��� above� In particular� the agent	s knowledge
state is characterized by the set of models 
in which
every possible world has the same domain of discourse�
that satisfy all of the formulas in KB�

It can be shown that subject to obvious consistency
requirements any DB speci�es a consistent KB�

Theorem ��� Let DB be any set of these four

databases subject to the two conditions

�� there is no atomic formula 	 with both 	 and �	
in Kf and

�� no function f
c�� � � � � cn� is speci�ed to have two

distinct values in Kf �

Then theKB corresponding toDB is consistent� That

is� KB has a model�

Proof� In general KB will have many models� We
show how an arbitrary model can be constructed�
First� we let the domain of discourse be the set of
all constants appearing in DB� Then we construct a
single �rst�order model w by starting with the set of
ground literals 
and function values� contained in Kf �
Then we add to Kf a set of negative facts su�cient
to satisfy all of the formulas arising from LCW � Let
��x�

V
�c�C �
x� � c� � � � � � xn � cn� 	 K
��
�x
�c ��

be a formula in KB arising from a formula � � LCW �
For every �c 
� C we pick a conjunct of �
�x
�c �� 	i
�x
�c ��
that is not in Kf � one such conjunct must exist by the
de�nition of C� In fact� more than one such conjunct
may exist� in which case we make an arbitrary choice�
We add �	i
�x
�c � to Kf � thus satisfying that negative
instance of �� We do this for every negative instance
of every � � LCW �

Note that since no positive facts are added to Kf � our
additions do not a�ect what we can infer from LCW �

The sets C of satisfying instances do not change��
Hence� the addition of negative facts to Kf in order to
satisfy a formula � � LCW will not a�ect the addi�
tions required to satisfy any other formula �� � LCW �

Clearly� the resulting set of facts in Kf continues to
satisfy the above two conditions� and thus this set of
facts has at least one �rst�order model� We pick an
arbitrary model� w� Finally� we build a model for the
modal logic by setting the collection of models W to
be simply the set fwg� It is not di�cult to see that

this set of worlds W satis�es any formula of the form
��x�K
�
�x�� �K
��
�x�� that could arise from entries
in Kw and Kv�

Corollary ��� If actions are speci�ed as additions

and deletions to these databases and these updates

maintain the obvious consistency conditions� then no

sequence of actions can give rise to an inconsistent

KB�

Intuitively� this theorem says that our representational
formalism remains much like the classical Strips rep�
resentation� In Strips any database is logically consis�
tent and any sequence of actions maintains this con�
sistency� This is true for our representation as well

except we must outlaw obvious inconsistencies�� Like
Strips this has both positive and negative features�
On the positive side� a user of our representation need
not worry about �breaking� the representation by gen�
erating an inconsistent state� On the negative side� the
onus is on the user to build an accurate domain model�
As with Strips the user must ensure that theKB rep�
resented by the databases makes sense in the domain
being modeled� and that the actions update KB in an
sensible manner� For example� as with Strips� if there
are state constraints 
e�g�� the agent can	t be carrying
an object and have its hands empty at the same time��
then the user must ensure that the databases repre�
senting the initial world satis�es those constraints and
that the actions properly update the databases so as
to maintain those constraints�

� Inference from DB

From its collection of databases the agent can infer
various things� An inference procedure is sound if
whenever it infers a formula � from DB we have that
KB j� �� the procedure is complete if KB j� � im�
plies that � can be inferred by the procedure from
DB� Unfortunately� complete inference is impractical�
as the set of things that follow from KB includes all
logical truths 
this is the famous problem of logical
omniscience �Hin�����

Fortunately planning applications typically do not re�
quire particularly complex reasoning� The major re�
quirement is usually to decide whether or not an
atomic formula is true or false at a particular point
in a plan� When dealing with incomplete knowledge
the requirements become more complex� e�g�� we may
need to determine whether or not the agent will Kwhe

some fact at a particular point in a plan� In Table �
we present a simple procedure for answering queries
about atomic formulas from the databases�



Procedure IA
��
Inputs� Either a ground atomic formula containing the terms 
t�� � � � � tk�� or a single term� The terms in � can
contain functions but no variables�
Output� T� F� W� or U subject to the conditions� 
�� T implies KB j� K
��� 
�� F impliesKB j� K
���� 
��
W implies KB j� Kwhe
�� 
know whether� when � is a formula and KB j� �x�K
x � �� when � is a term� and

�� U implies the algorithm is unable to conclude anything about ��

�� Simplify all terms by replacing each ti in � by EvalT
ti��

�� If � is the term t and either 
�� t is a constant or 
�� there exists a t� � Kv and a substitution � such that
t�� � t� then return
W�� Else return
U��

�� If � is of the form t� � t�� then if these two terms are syntactically identical return
T�� Else if t� and t�
are both constants then return
F�� Else return
U��

�� If � � Kf � then return
T��

�� If �� � Kf � then return
F��

�� If there exists a �
�x� � 	�
�x� � � � � � 	k
�x� � LCW and a ground instance of �� �
�x
�a�� such that 
�� �a
are constants appearing in Kf � 
�� 	i
�x
�a� � � for some i� and 
�� IA
	j
�x
�a�� � T for all j 
� i� then
return
F��

�� If there exists a �
�x� � 	�
�x� � � � �� 	k
�x� � Kw and a ground instance of �� �
�x
�a�� such that 
�� �a are
either constants appearing in Kf or terms ti appearing in � for which IA
ti� � W � 
�� 	i
�x
�a� � � for
some i� and 
�� IA
	j
�x
�a�� � T for all j 
� i� then return
W��

 � Else return U�

Procedure EvalT
t�
Inputs� A variable free term�
Output� t� the simplest term known to be equal to t�

�� If t is a constant then return
t��

�� If t � f
t�� � � � � tk� and f
EvalT
ti�� � � � �EvalT
tk�� � c � Kf or we can compute that f
on these arguments is equal to c 
e�g�� when f is an arithmetic function� then return
c�� else
return
f
EvalT
ti�� � � � �EvalT
tk����

Table �� Inference Algorithm

This algorithm can be shown to be sound� Its complex�
ity is dominated by the search for ground instances
of �
�x� in steps � and �� Potentially the number of
ground instances of �
�x� can be exponential in the
number of variables in �x� However� we do not feel that
this will be an issue in practice�

As an example of the operation of IA consider the
query IA
size
kr�tex� � ����� when size
kr�tex� � Kv

is the only entry in any of the databases� In this
case IA will return W� Intuitively� since the agent
will come to know the value of size
kr�tex� it will
also come to know whether or not that size is larger
than ����� First IA tries to reduce the function
term size
kr�tex�� but no reduction is known as this
term is not in Kf � There are no entries in LCW

so the algorithm progresses to step �� The predi�
cate � is rigid and thus � � x � y is an implicit
entry in Kw 
see discussion of Kw above�� Since
size
kr�tex� � Kv� IA
size
kr�tex�� � W and the
ground substitution fx � size
kr�tex�� y � ����g sat�
is�es condition 
��� Under this substitution condition

�� is satis�ed and 
�� is trivially satis�ed as � has no
other conjunctions�

� Representing Actions

The previous sections have provided a mechanism for
representing an agent	s knowledge state in a Strips

like manner as a collection of databases� We have
also provided a mechanism for answering some simple



queries from these databases� In this section we show
how we can model actions in a very Strips like man�
ner as well� In particular� the preconditions of actions
involve testing the contents of the various databases�
and the action e�ects bottom out on a set of adds and
deletes to the databases� This means that starting
at some initial con�guration of the agent	s knowledge
state we can decide what actions can be applied and
we can compute what the agent	s new knowledge state
will be after the action has been applied�

A major theme throughout the paper has been the
separation between plan time and run time� This sep�
aration is maintained in our action descriptions� Every
action has a speci�ed set of plan time e�ects and a set
of run time e�ects� Both plan time and run time ef�
fects are encoded as database updates� This means
that we can compute the plan time e�ects of a se�
quence of actions or track their execution time e�ects
in the same formalism� This will be illustrated by the
examples presented in Section �� but �rst we specify
more formally the representation of actions�

Actions are speci�ed by four components� the param�
eters� the preconditions� the plan time e�ects� and the
run time e�ects�

The action�s parameters� This is simply a set of
variables that can be bound to produce a particular
instance of the action�

The action�s precondition� Since it is the agent
that is executing or planning the actions a decision
on whether or not an action can be executed must
be based on the agent	s knowledge state� the agent
has no direct access to the state of its environment�
To this end it is possible to develop a query language
for querying the status of its databases� However� to
keep things simple we will specify preconditions to be a
conjunctive set of primitive queries� All queries in the
set must evaluate to true to satisfy the precondition�
The primitive queries all utilize the above inference
algorithm and they are listed below� In this listing 	
is any ground atomic formula� and t is any variable
free term�

�� K
	�� true i� IA
	� returns T�

�� K
�	�� true i� IA
	� returns F�

�� Kw
	�� true i� IA
	� returns W� T� or F�

�� Kv
t�� true i� IA
t� returns W�

�� The negation of any of the above four queries�

The action�s plan time e	ects� These are speci�ed
by a list of condition e�ect statements of the form

C 	 E� Each condition C is a conjunctive set of
primitive queries� and each e�ect E is a set of additions
or deletions to the four databases�

The action�s run time e	ects� We assume a sim�
ple interface between the planner and the execution
module� In particular� when an action instance is ex�
ecuted the name of that action is passed to the execu�
tion module along with a list of �run�time� variables
�GW���� The execution module binds the run�time
variables with information it obtains while executing
the action�	 The execution module may generate a
sequence of bindings for the run�time variables� The
e�ects of the action are speci�ed using a list of condi�
tion e�ect statements� C 	 E� as before� For run�time
e�ects� however� C and E may contain any of the run�
time variables� Furthermore� C may contain tests on
the run�time variables� If C 	 E contains a run�time
variable then this condition e�ect statement will be
evaluated once for every distinct binding of the run�
time variables generated by the execution module� On
the other hand� when C 	 E has no runtime variables
it is only executed once�

Additions and deletions to the four databases are spec�
i�ed by formulas like add
Kf �size
kr�tex� � �������
which adds this function value to the Kf database�
We assume that add and delete have been con�gured
so as to maintain the obvious consistency conditions
mentioned in Theorem ���� For example� when we add
the function value to Kf we delete any previous func�
tion values�

� Examples

Our �rst example is that of opening a safe� due orig�
inally 
we believe� to Moore �Moo ��� There are two
actions available� readComb and dialComb� Formal
descriptions of these actions are given in Table �� We
consider two di�erent plans to see if they achieve the
goal of opening the safe�

Consider the situation where the agent	s initial knowl�
edge state I is described by Kf � fhaveComb
safe�g�
i�e�� the object �safe� has a combination lock�
The agent might try dialing a random combina�
tion on the safe� for instance� taking the ac�
tion dialComb
safe� ��������� In I it is easy to
see that IA
haveComb
safe�� � T� Furthermore�
IA
�������� � W since ��������� is a constant 
step �
of the algorithm� and all constants are known� Hence

�The run�time variables are positional just as in a pro�
cedure call� The user has to know what information is re�
turned by the execution module at each position in order
to properly specify the action�



Command Precondition E�ects
readComb
x� K
haveComb
x�� Plan Time�

add
Kv � combo
x��
Run Time�
exec
readComb
x�� !val�

delete
Kv� combo
x��� add
Kf � combo
x� � !val�
dialComb
x� y� K
haveComb
x���

Kv
y�
Plan Time�
K
y � combo
x�� 	 add
Kf � 
open
x���
Run Time�
exec
dialComb
x�� !safeopen�

!safeopen � True	
add
Kf � 
open
x���� add
Kf � 
y � combo
x���

Table �� Open Safe Domain Actions

the agent knows at plan time that the action	s precon�
ditions are satis�ed�

Since the action	s preconditions are satis�ed� the ac�
tion can be simulated
 on I to yield an updated DB�
I�� In this case however I� � I since the action has
no plan time e�ects on I� dialComb has a conditional
plan time e�ect� but in this case IA cannot deduce the
conditionK
y � combo
safe�� from I and so the e�ect
add
Kf � open
safe�� is not activated� Intuitively� the
agent does not know if dialing a random combination
will cause the safe to open�

When we execute the action from the initial state I�
however� we get a di�erent set of e�ects� The com�
bination ������� is passed to the execution module
along with the run time variable !safeopen 
this is
the exec
dialComb
x� y�� !safeopen� component of the
action where x is bound to safe and y is bound to
��������� The execution module will set !safeopen to
True or False dependent on whether or not the ac�
tion succeeded in opening the safe� At run time� if
!safeopen is set to True by the execution module� the
action	s conditional e�ect will be activated resulting
in both open
safe� and combo
safe� � ������� being
added to Kf to create a new state I�� Intuitively� if the
safe opens the agent comes to know it and also comes
to know that the combination dialed was in fact the
right combination� So we see that the act of dialing
a arbitrary combination does not allow the agent to
conclude at plan time that the safe will be opened�
However� at run time the agent may in fact be lucky
and cause the safe to open�

Now consider the action sequence readComb
safe� fol�
lowed by dialComb
safe� combo
safe��� again from ini�
tial state I� The precondition to the �rst action�

	We use the term �simulated� when talking about pro�
jecting the actions e�ects at plan time� and �executed�
when talking about projecting the actions e�ects at run
time�

readComb
safe�� is satis�ed in I� At plan time this
action updates I by adding combo
safe� to Kv� In�
tuitively� this action will cause the agent to come to
know the combination of the safe� Let the updated
state be I��

In I�� K
haveComb
safe�� holds as this fact was not
deleted from Kf � Furthermore� Kv
combo
safe�� also
holds as this term was added to Kv by the previous ac�
tion� Thus� we can conclude that the preconditions of
the second action dialComb
safe� combo
safe�� hold in
I�� When we simulate the action in I� we must deter�
mine if the conditional of dialComb	s plan time e�ect
holds in I�� For this action instance the conditional
is K
combo
safe� � combo
safe��� I� has nothing in
it to allow the inference algorithm to simplify these
terms� but the algorithm is still able to return T as
the two terms are syntactically identical 
step � of the
IA algorithm�� Hence� open
safe� is added to the Kf

database of I �� Intuitively� the agent knows at plan
time that these two actions will open the safe� even
though it does not currently know what combination
will be dialed�

At run time� readComb
safe� has the e�ect of deter�
mining what the actual value of the combination is�
The execution module binds this value to the run time
variable !val� Suppose that this value is �������� Then
combo
safe� � ������� will be added to Kf � In ad�
dition� the term combo
safe� is deleted from Kv�

��

These changes will be made to the initial state I to
yield a new state I �� Now dialComb
safe� combo
safe��
is executed in I�� Prior to passing information to
the execution module we must reduce all terms to
their simplest form using the EvalT algorithm� This
means that the run time call to the execution module
will be exec
dialComb
safe� ��������� !safeopen�� the
second argument of the action combo
safe� will have
been reduced to ������� by the function value added

�
This deletion is not strictly necessary� It �cleans up�
Kv by removing redundant information�



Command E�ects
drink Plan Time�

add
Kf � hydrated�
medicate Plan Time�

K
hydrated� 	 add
Kf ��infected�
K
�hydrated� 	 add
Kf � dead�
�Kw
hydrated� 	 delete
Kf ��dead�
Run Time�
exec
medicate� !alive�

!alive � False	 add
Kf � dead�
!alive � True	 add
Kf ��infected�

stain Plan Time�
add
Kw� blue�� add
Kw� infected�
Run Time�
exec
stain� !stainblue�

delete
Kw� blue�� delete
Kw� infected�
!stainblue � True	 add
Kf � blue�� add
Kf � infected�
!stainblue � False	 add
Kf ��blue�� add
Kf ��infected�

Table �� Medical Domain Actions

by the previous action� This reduction is important�
and is the reason we need a Kv
y� precondition on
the dialComb action� the execution module cannot be
expected to take complex terms whose value is un�
known as arguments� If the execution module is suc�
cessful it will return True in the run time variable
!safeopen� which will cause open
safe� to be added to
Kf in I�� The other addition is redundant as the value
of combo
safe� is already in I ��

Our second example is due to Smith and Weld� Three
actions are available� drink� medicate� and stain� The
goal is to cure a patients	 infection� without killing
them� drink has the e�ect of hydrating the patient�
medicate has the ability to cure the infection� but only
if the patient is hydrated� Otherwise� it kills the pa�
tient� stain can be used to test if the patient is infected�
the stain becomes blue if the patient is infected� These
actions are described in Table �� None of these actions
have preconditions that need to be satis�ed� so we are
only concerned with their e�ects�

Suppose that the agent	s initial knowledge state is de�
scribed by Kf � f�deadg� One possible plan is the
action sequence drink followed by medicate� drink has
the plan time e�ect that the agent knows that the pa�
tient is hydrated� The second action� medicate� has
a conditional plan time e�ect� Since the agent knows
hydrated� it will also come to know �infected� Fur�
thermore� K
hydrated� implies Kw
hydrated� so the
third conditional is not activated� Hence� neither of
these actions removes �dead from Kf � so the agent
also knows the patient will be alive after these two ac�
tions� Thus� the agent is able to construct to plan that
it knows will achieve its goals� Furthermore� it knows
this at plan time�

Another possible plan is to perform the action
medicate without �rst hydrating� Since initially the
agent does not have any knowledge about hydration
the third conditional e�ect is activated and the agent
loses its knowledge that the patient is not dead� So
at plan time the agent can conclude that the medicate
action has an unknown e�ect on dead and hence that
this plan is not safe�

Finally consider the plan stain followed by the con�
ditional action if K
infected� then drink followed by
medicate� The action stain has the plan time e�ect
of adding infected to Kw � In other words� the agent
knows at plan time that after executing stain it will ei�
ther be in a state where it knows infected or it knows
�infected� It is not di�cult to extend the planner
so that at plan time it can add a conditional branch
for any fact in Kw� like infected� Along one of the
branches it adds infected to Kf � assuming infected to
be true� and along the other it adds �infected to Kf

assuming infected to be false� It then proceeds to com�
plete the plan along both branches ensuring that all
branches achieve the goal� At execution time the Kw

fact that conditions any branch will be resolved and
the plan executor will know which branch to take�

In this example� after the stain action one branch will
start in a state where Kf � f�dead� infectedg� In this
state it is not di�cult to see that the actions drink then
medicate achieve the agent	s goal� The other branch
starts in a state where Kf � f�dead��infectedg� No
additional actions are needed along this branch to
achieve the agent	s goal�

So we see that the agent is able to determine at plan
time that the above conditional plan achieves its goal�



Command Precondition E�ects
ls �al z K
readable
z�� Plan Time�

add
Kw� in�dir
x� z��
add
Kw� in�dir
x� z� � readable
x��
add
Kw� in�dir
x� z� � size
x� � y�
Run Time�
exec
ls �al z� !	le� !readable� !size�

add
Kf � in�dir
!	le� z��
!readable 	 add
Kf � readable
!	le��
add
Kf � size
!	le� � !size�

add
LCW � in�dir
x� z��
add
LCW � in�dir
x� z� � readable
x��
add
LCW � in�dir
x� z� � size
x� � y�

gzip x K
readable
x�� Plan Time�
delete
Kv� size
x��
Run Time�
exec
gzip x�

delete
Kf � size
x��� delete
Kv� size
x��

Table �� UNIX Domain Actions

At run time when the stain action is executed� the ex�
ecution module determines if the colour of the stain
is blue and binds the result to the run time vari�
able 
stainblue� The truth value of this variable will
then determine whether or not infected or �infected
is added to Kf � In either case� the plan executor will
have su�cient information to correctly execute the rest
of the conditional plan 
cf� �Lev�����

Notice that at plan time the agent is able to guaran�
tee that the goal of curing the infection is achieved�
by considering the possible consequences of the �rst
action and planning appropriately� But� it is not until
run time that the actual branch of the plan to execute
in order to achieve the goal 
either medicating or doing
nothing� becomes known�

We close the paper with a �nal example taken the
UNIX domain� The actions used in the example are
given in Table ���� This example uses a mechanism
for posting exceptions to Kw and LCW information�
specifying particular instances for which aKw or LCW
formula no longer holds� This mechanism will be ex�
plained in full in a later paper�

Say that in the real world we have readable
��ps��
readable
��ps�� readable
old�� in�dir
��ps� old��
size
��ps� � ��� ���� and in�dir
��ps� new�� The
following conditional plan is intended to achieve
the goal �If the �le ��ps is in directory old and
readable then compress it� and if ��ps is in directory
old and readable compress it�� 
�� ls �al old� 
�� if
in�dir
��ps� old� and readable
��ps� execute gzip ��ps�

�� if in�dir
��ps� old� and readable
��ps� execute

��We have simpli�ed these UNIX actions somewhat for
ease of presentation�

gzip ��ps�

Say that the agent	s initial knowledge state is Kf �
freadable
��ps�� readable
��ps�� readable
old�g� with
all of the other databases empty� Using the above
action speci�cations we can project this conditional
plan forward to determine what the agent	s knowledge
state would be at the various steps of the plan�

From the initial state we can conclude that the pre�
conditions of ls �al old hold� Simulating this ac�
tion we generate the new knowledge state where
Kw � fin�dir
x� old�� in�dir
x� old� � readable
x��
in�dir
x� old� � size
x� � yg� and everything else is
una�ected� From this knowledge state we have that
Kw
in�dir
��ps� old��� and K
readable
��ps��� This
entails that we know whether the branch condition of
step � at this point in the plan� and hence the branch
is legitimate�

Along the false branch we can conclude that
K
�
in�dir
��ps� old�� and K
readable
��ps��� which
is su�cient to show that the �rst goal is achieved on
this branch� Along the true branch� Kf still contains
readable
��ps� which is su�cient to conclude that the
preconditions of gzip ��ps hold�

After simulating this action we obtain a new Kw

in which the entry in�dir
x� old� � size
x� � y has
been replaced by the entry in�dir
x� old� � size
x� �
y � 
x 
� ��ps� to reect the fact that we no longer
know the value of size
��ps�� The mechanism that
handles this update is part of an extension we have
developed to deal with exceptions to Kw 
and LCW �
facts� This mechanism recognizes that the delete spec�
i�ed by gzip � delete
Kv� size
��ps��� should not mean
the simple removal of this item from the Kv database




in this case it is not even present in Kv�� Rather�
in this situation Kw allows us to conclude that we
know this value� and so we must also update Kw� The
mechanism we have developed posts exceptions to Kw

and LCW facts� This allows us to update such facts
without loosing excessive amounts of information 
cf�
�EGW�����

The third step of the plan can be simulated in a similar
manner to show that both of its branches also succeed
in achieving the second goal 
irrespective of the branch
we took for step ���

Turning now to execution time� the e�ects of the �rst
and second steps of the plan are fairly straightfor�
ward� It is the third step that is interesting� At this
stage of execution we would have executed the true
branch of step � and would haveKf � freadable
��ps��
readable
��ps�� readable
old�� in�dir
��ps� old�g� At
execution time a size fact for ��ps would have been
added by step �� but deleted by the execution of gzip �
There are no facts in Kf about the �le ��ps as it was
not found to be in the listed directory� but we will
have that in�dir
x� old� � LCW � Now the inference al�
gorithm can infer that K
�
in�dir
��ps� old��� and the
execution module can correctly realize that it should
execute the false 
null� branch of step �	s conditional�

References

�BK��� F� Bacchus and F� Kabanza� Using tem�
poral logic to control search in a forward
chaining planner� In M� Ghallab and
A� Milani� editors� New Directions in Plan�

ning� pages �������� IOS Press� �����

�EGW��� O� Etzioni� K� Golden� and D� Weld�
Tractable closed�world reasoning with up�
dates� In Proceedings of the International

Conference on Principles of Knowledge

Representation and Reasoning� pages �� �
� �� �����

�EGW��� O� Etzioni� K� Golden� and D� Weld�
Sound and e�cient closed�world reason�
ing for planning� Arti�cial Intelligence�
����� To appear� preprint available at
ftp�cs�washington�edu�

�FHMV��� R� Fagin� J� Y� Halpern� Y� Moses� and
M� Y� Vardi� Reasoning about Knowledge�
MIT Press� Cambridge� Mass�� �����

�Gar��� J� W� Garson� Quanti�cation in modal
logic� In D� Gabbay and F� Guenthner�
editors� Handbook of Philosophical Logic�

Vol� II� pages �������� Reidel� Dordrecht�
Netherlands� �����

�GEW��� K� Golden� O� Etzioni� and D� Weld� Om�
nipotence without omniscience� E�cient
sensor management in planning� In Pro�

ceedings of the AAAI National Conference�
pages ��� ������ �����

�GW��� K� Golden and D� Weld� Representing
sensing actions� The middle ground re�
visited� In Proceedings of the Interna�

tional Conference on Principles of Knowl�

edge Representation and Reasoning� pages
����� �� �����

�Hin��� J� Hintikka� Impossible possible worlds
vindicated� Journal of Philosophical Logic�
������� �� �����

�Lev��� H� Levesque� What is planning in the pre�
sense of sensing" In Proceedings of the

AAAI National Conference� pages �����
����� �����

�McD��� D� McDermott� A heuristic estimator for
means�end analysis in planning� In Pro�

ceedings of the Third International Con�

ference on A�I� Planning Systems� �����

�Moo �� R� C� Moore� A formal theory of knowledge
and action� In J� Hobbs and R� C� Moore�
editors� Formal Theories of the Common�

sense World� pages ������ � Ablex Pub�
lishing Corp�� Norwood� NJ� �� ��

�PG��� L� Pryor and Collins G� Cassandra� Plan�
ning for contingencies� Technical Re�
port ��� Northwestern University� The In�
stitute for the Learning Sciences� June
�����

�PS��� M� Peot and D� Smith� Conditional non�
linear planning� In Proceedings of the First

International Conference on A�I� Planning

Systems� pages � ������ �����

�SL��� R� B� Scherl and H� J� Levesque� The
frame problem and knowledge�producing
actions� In Proceedings of the AAAI Na�

tional Conference� pages � ������ �����


