Value Elimination: Bayesian Inference via Backtracking Sarch*

1

Fahiem Bacchus

Shannon Dalmao

Toniann Pitassi

Department of Computer Science Department of Computer Science Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

Abstract

We presentalue Elimination, a new algorithm for
Bayesian Inference. Given the same variable order-
ing information, Value Elimination can achieve per-
formance that is within a constant factor of variable
elimination or recursive conditioning, and on some
problems it can perform exponentially betieespec-

tive of the variable ordering used by these algorithms.
Value Elimination’s other features include: (1) it can
achieve the same space-time tradeoff guarantees as re-
cursive conditioning; (2) it can utilize all of the logi-
cal reasoning techniques used in state of the art SAT
solvers; these techniques allow it to obtain consider-
able extra mileage out of zero entries in the CPTSs; (3)
it can be naturally and easily extended to take advan-
tage of context specific structure; and (4) it supports
dynamic variable orderings which might be particu-
larly advantageous in the presence of context specific
structure. We have implemented a version of Value
Elimination that demonstrates very promising perfor-
mance, often being one or two orders of magnitude
faster than a commercial Bayes inference engine, de-
spite the fact that it does not as yet take advantage of
context specific structure.

Introduction

University of Toronto
Toronto, Ontario, Canada

University of Toronto
Toronto, Ontario, Canada

Most popular algorithms for inference in Bayesian net-
works (BAYES) are based on the idea of eliminating vari-
ables. Starting with the initial conditional probabilitg-t
bles (CPTs) of the Bayes network, viewed as functions over
local collections of the network variables, variable elim-
ination involves summing out individual variables, in the
process creating new functions over typically larger séts o
variables.

Variable elimination can be used to solve a number of
other problems (Dechter 1999). It has a close relation-
ship to backtracking that is most apparent when we ex-
amine its application to SAT. SAT is the problem of de-
termining whether or not a satisfying assignment exists for
a CNF formula. The earliest algorithm for solving SAT
was the Davis-Putnam procedure (DP) (Davis & Putnam
1960) which utilizes ordered resolution. This procedure is
precisely variable elimination run on a symbolic represen-
tation of the local functions (each function is represented
as a set of clauses). At each stage DP eliminates a variable,
representing the new function thus created with a new set
of clauses (Rish & Dechter 2000).

SAT can also be solved with a backtracking search proce-
dure called DPLL (Davis, Logemann, & Loveland 1962).
It turns out that in practice DPLL isastly superiorto

Value elimination is a new algorithm for inference in pp. Eor example, in experimental data from 23 different
Bayesian networks (B/Es). It represents an advance over SAT solvers (available on-line at the SatEx site (Simon
previous algorithms in the sense that it can achieve all ok Chatalic 2001)), a version of DP that utilizes modern
their performance guarantees (up to constant factor), caReuristics for computing good elimination orders (Dechter
provable achieve an exponential speedup on some prolg Rish 1994) ranked last in its ability to solve problems. Its
lems, and, with some extra (polynomial) cost, can be conpehavior on the “jhn” family of problems is typical. This
siderably more flexibility than previous algorithms in te&fm family contains 50 problems each with 100 variables, 34 of
of its ability to exploit context specific structure, logica which are unsatisfiable. The fastest DPLL based procedure
reasoning, and more flexible variable orderings. is able to solve all 50 problems in 0.86 CPU seconds. The

Value elimination is based on the algorithmic paradigm ofvariable elimination DP algorithm was unable to solve any
backtracking, and was motivated by the close relationshif9f these problems: on each problem it either runs out of
between eliminating variables, as done in variable elimi-memory, or exceeds a 10,000 CPU seconds time bound.

nation, and instantiating variables, as done in backtrecki There are a number of reasons why DPLL can perform so
algorithms. much better. First, because it works at the level of assign-

This research funded by governments of Ontario and Canad'€nts to variables (values) it can take advantageoof
through their NSERC and PREA programs. text specific structuré.e., structure that appears only af-

ter some set of variables have been assigned particular vadan simulate both variable elimination as well as recursive
ues). Second, it can utilize constraint propagation (e.g.¢conditioning within a constant factor, thus showing that it
unit propagation) to prune away much of its search spacechieves the same performance guarantees as these algo-
And third, it can take further advantage of context specificrithms. We also show that there exists a class of problems
structure through the use of dynamic variable orderings thaon which it can perform exponentially better. Finally, we
can instantiate the variables in a different order alondneacpresent some encouraging empirical results from our im-
branch of the search tree. By instantiating variables DPLLplementation, and give some conclusions.

generates distinct subproblems, one for each value of the

variable. It is free to solve each of these subproblems ir2 Value Elimination

a different way, which can be very advantageous as these

subproblems are often structurally quite different. On the-ike Variable Elimination (Dechter 1999; Zhang & Poole
other hand, DP, and variable elimination in general, is al-1994) and Recursive Conditioning (Darwiche 2001), Value

ways working with a single undifferentiated problem: elim- Elimination is a query based algorithm for computing pos-

inating a variable does not split the problem into subprob-terior probabilities in a Bayesian network. Its input is a

lems. DP cannot treat different parts of the new problenBayesian network containing discrete valued variables,
in different ways, it must choose a single next variable to@nd7 CPTs specifying the probability distribution of each
eliminate. variable given any instantiation of its parents. The Bayes

network can be defined by the property that
These problem also exist in the popular jointreerBs al-
gorithms. These algorithms utilize a tree clustering teat i Pr(Vi = z1,..., Vi =) =[] Ci(®i(1), - - > Ti(k))
based on a fixed elimination ordering, and they work at the . _ .)
: whereV; is thei'th variable,C; thei'th CPT, andz; ;) the
level of variables rather than values. Although some tech alue of thej'th variable of thei'th CPT. That is, the joint

nigues have been suggested for utilizing context specifié’. N i .
structure, e.g., (Boutilieet al. 1996), these techniques stil distribution over the variables is given by the product & th

have to be retro-fitted into an algorithm that does not nat-C PTs.

urally accommodate such information. As a result not allValue Elimination is a backtracking algorithm that per-
such information can be exploited. forms a depth-first search in a tree of variable assignments.

In this paper show that backtracking search can be profl—_|ence value ellm!nathn is a “conditioning™ algorithm. We
develop the algorithm in stages.

itably applied to reasoning in Bayes networks by develop-
ing a backtracking basedABEs algorithm we call Value The first stage is not a backtracking algorithm. Rather it is
Elimination. Some work on using backtracking searcha simple generate and test (sum) procedure, that searches
for various probabilistic reasoning tasks has already beethe entire tree of variable assignments summing the proba-
done, e.g., (Walsh 2002; Poole 1996; Majercik & Littman bilities associated with the leaf nodes.

1998). Value Elimination, however, is based on a new gen-

eralization of (_1(_ep_endency direcFed backtrgcki_ng techesqu fen@nisljsn;)ect UnAssi gnedVar ()

to the probabilistic context. This generalization allovss u 2. i v == NONE

to compute and cache information during the search so that. prod = 1

redundant computations are eliminated, while still retain 4- foreach CPT ¢

ing the flexibility of using dynamic variable orderings and g: retﬁ:ncz%r O-d)eval (c)

context specific structure. These techniques allows Valug, sum = 0

Elimination to achieve the same worst case performancé. foreach d € Dotl)rr{ V]

guarantees as the current best algorithms feres, and ?-0. ngnl gg(é'engé\ndSurr()

at the same time provably outperform them on some proby ;- unassi gn(V)

lems. 12. return(sumn

We also present an implementation of Value EllmlnatlonIn each recursive call an unassigned variabis chosen,

along with empirical evidence to show that the approachy g each of its values examined (line 8). Visiting a new
can in many cases be competitive with currea¥Bs al- 540 i the search tree corresponds to executing line 9,

glor|thms. .Th|3 is especially .T_|gn|f|cant as our.ff:urrent 'M-\where we make a new assignment. Note that the variable
plementation does not yet utilize context specific SIELUr o qaring used can béynamie—the recursive calls below

Hence,_the fact that it IS already providing good perfor'each value of (line 10) might instantiate the remaining
mance IS very encouraging. variables in a different order. A leaf node is reached when
In the rest of the paper we will first present a developmengll of the variables have been assigned (line 2), at which
of Value Elimination, pointing out how it can take advan- point the product of all the CPTs is computeelvél eval-

tage of context specific structure. We then show that itiates each CPT with respect to the current variable assign-
ments as set bgssi gn()). By the definition of a Bayes

network this product is the probability of the current com- amount of work ovelGenAndSum, but it must still visit
plete assignment. The recursive search below each assigevery leaf node that has non-zero probablity.
ment toV returns the sum of the leaf nodes in the subtre

SThe next improvement to incorporate is intelligent back-
below.

tracking and nogood recording (Dechter 1990), to obtain
The net result is an exponential computation of one! How-further mileage from the zero entries in the CPTs. In the
ever, if we have some evidence iteris(assignments to BAYES context a nogood is a set of variable assignments
some of the variables), and a query varialewe can such that any complete assignment contaimihgas zero
make the evidence assignments prior to invokdgnAnd- probability. The idea behind nogood learning is to start
Sum, and select) as the first variable assigned. The sumwith sets of variable assignments that force some CRT,
returned byGenAndSum after) is assigned the valu¢ to evaluate to zero. Such sets are nogoods—the joint prob-
will be the probability of(QQ = d) A E, so the posterior dis- ability of any complete assignment extending this set will
tribution of) can be obtained by normalizing these prob-contain a zero factor contributed ldy. From thesébase
abilities. GenAndSum specifies the search tree explored nogoods more powerful nogoods can be generated. Specif-
and the semantics of what is being computed. The rest atally, if every possible assignment to a variableis a
the development of Value Elimination involves techniguesmember of some nogood, then the union of those nogoods
for optimizing the exploration of this tree so that the pos-minus all the assignments 10 s itself a new nogood (this
terior of Q can be computed without having to visit every corresponds to a resolution step). Any complete assign-
node. ment must make some assignmenttolf it also makes all
of the assignments iV, then it must activate at least one

The first improvement is to make the procedure into 3 ogood from the set of nogoods that were unioned to form

backtracking search. Backtracking is based on the idea ‘% s : .
, L . .IV. The new nogood can then participate in the creation of
checking constraints in the tree as soon as all of their variz

ables become assigned and backtracking immediately if gjrther nogoods.

constraintis violated. In the probabilistic context thieits- Nogoods can be unioned together during backtracking

lates to evaluating the CPTs as soon as they become singsearch, and then utilized to perform intelligent backtrack

valued: ing, as well as cached to allow the search to avoid fu-
ture parts of the tree. The methods for accomplishing this

1Prob;5&T:()sel ect UnAssi gnedvar () are well understood, and are explained in, e.g., (Bacchus
2 if V == NONE 2001). In practice nogood recording typically allows back-
3. return(1) tracking to save an exponential amount of work. It should
4. sum=0 also be noted that nogood recording is a much more power-
g: forgicshi gn(ev D(;))ni Vi ful technique for optimizing zero values during a&s

7. prod = 1 computation than the shrink map and zero compression
8. foreach CPT c¢ s.t. ¢ is newly single valued techniques described in (Huang & Darwiche 1996). Never-
9. - prod *= eval (c) theless, it only optimizes the detection of zero probapilit
1(1): if g: gg w e (F)’rob-BT() events; it does not solve the problem of having to visit all
12. sum += prod assignments having non-zero probabifity.

12: retlljrnn?sssL;ngn(V) The final improvement needed so that backtracking search

can achieve good performance on structurally simple net-
A CPT c becomes a single valued function when all of its works is a new generalization of the notion of a nogood.
variables have been instantiafedn Prob-BT we accu- This generalization is one of the main original contribu-
mulate the product of the CPTs that have just become sintions of this paper, and it yields the algorithm we o4llue
gle valued prior to searching the subtree below (line 9). ItElimination
is not difficult to see.that any CPg that be(_:omes single. Nogoods are invariant in the sense that once they are
valued at a node, will appear as a faCtor in every leaf MNearned they can be used anywhere in the tree. However,
the subtree below. Thus early activation of the CPT corre-
sponds to moving common factors outside of summations-
Furthermore, if one of the CPTs evaluates to zero we need The case where a CPT evaluates to zero is identical to the sit-

. uation in ordinary constraint satisfaction when a conastiiaivio-
not search the subtree below (line 10). GenAndSum lated. Hence, additional constraint propagation can bpeed

we would have visited each of the leaves and evaluated itg, getect other assignments that have zero probability. IstWa
probability (which would have been zero due to the zero2002), e.g., presents a backtracking approximation dhyarre-
common factor). Prob-BT can thus save an exponential lated to Prob-BT, in which he employs the additional coristra
propagation of Forward Checking.
In the presence of context specific structure the CPT might 3Nogoods for BiYES have been used by (Poole 1996), who
become single value before all of its variables are insiéedi presents a tree-search approximation algorithm in whigjoads
(Section 2.1). are generalized to capture events with very low probability

they only capture information about factors with zero pro
ability. We develop a similar notion of a “good” that cap- 5
tures information about factors with non-zero probability 3.
and that can similarly be used anywhere in the free. g-

Returning toProb-BT, consider the recursive call where 6.
thelast uninstantiated variable in the Bayes netwdrk,is /-
selected. (Hence all subsequent recursive calls on line 13‘

will return 1 via line 3.) LetDset , the dependency set, be 10.
the set of assignments already made higher up in the tree fol.

the variables in the CPTs activated at lineBetSset , the

subsumed set, b’} and letVal be the sum over all the 7,
values ofV computed by the time the procedure reachesis.

line 14. 16.
17.

Itis not difficult to see that the computed sum over all of the18.
values ofV will always be equal to&/al along any branch 19
whereV is the last variable instantiated and all of the as-54’
signments irDset have been made—the CPTs activated2?.
at line 9 will yield the same values. Hence, along any patH3.

that makes all of the assignmentsaet prior to instan-

tiating V, we can delay instantiating/, and in the penul- 5¢’
timate recursive call, after all of the other variables havez7.
been instantiated, we can multipbr od by Val rather 28.

than making a final recursive call to sum out the values oég

. 0.
V—that call would have returnédal in any case. 31,
32.

b- Value-Elim(| evel)

V = sel ect ActiveVar ()
if V == NONE
return(1)
sum= 0
Dset[level] = {}, Sset[level] = {}
foreach d € Doni V]
assign(V, d)
mar kl nacti veAt Level (V, | evel)
prod[level] =1
foreach CPT c s.t. ¢ is newly single valued
prod[level] *= eval (c)
Dset[| evel] U= assignments to vars ic
foreach f € Fact or Cache thatis newly activated
prod *= f. Val
Sset[level] U=
foreach X € f. Sset
mar kl nacti veAt Level (X | evel)
Dset[l evel] u= f.Dset
if prod[level] =0
Value-Elim(| evel +1)
sum += prod[|l evel]
unMar kAl | I nacti veAt Level (I evel)
Remove all assignments to V frorbset [| evel]
Sset[level] U= {V}
CacheFactor (Dset[| evel], Sset[| evel], sum
pushBL = Level of deepest assignment ibset [| evel]
prod[pushBL] *= sum
Dset [pushBL] U= Dset[l evel]
Sset [pushBL] U= Sset[l evel]
foreach X € Sset[| evel]
mar kl nact i veAt Level (X, pushBL)
return

f. Sset

Two important further optimizations can be made. First,
if the search is descending down a branch of the tree, we

can multiply Val into pr od the first time all of the as- Table 1: The. Value Elimination Algorithm (without no-
signments irDset are made and avoid branching on the 900d processing).

variable inSset in the subtree below-al is going to be

multiplied into every leaf node that lies below. This sim-

ply brings the common factdral up to.the highest level product decompositiorr(A)Pr(B|A)Pr(C|B), and a
of the search tree. Second, when we first compaewe ¢ o 1 with F Dset — (B = 0}, FSset = {C},

can immediately pass it back up the tree to multiply it intoand FVal = 1. This factor is valid. In particular,

thepr od associated with deepest assignmermsiet , and _ S
then avoid branching oif until we backtrack to undo this Lo PriA)Pr(B = 014)Pr(C|B = 0) is equal tacf(A)
wherex = > Pr(C|B = 0) = 1 = FVal and

assignment—this immediately moves the common facto?(A) — Pr(A)Pr(B = 0|A) is a function of the variables
of Val up as far in the tree as possible and avoids havingmt inFDset UFS

set
to deal withV while Dset is still active.
It is not difficult to see that the componeri¥set , Sset ,

Furthermore, we can use these base "goods” to COMPUlg, 45| defined above for the base case of summing out

n;]ore general gOOde oiact(c)jrs A factor I CO”E'StS OL the final variable, form a valid factor according to the above
three compon(znts, al epenl enclf]ylé@set a suf Sl;me semantics. In particular, every variable in every CPT that
setr.Sset , and a valug”Val . The semantics of a factor V appears in has been instantiated so summing out over

Fis askfollcl)lw?.lr: IS vaI_|d ifin th(jwj]o'm dlstn(;:)qun Wherlll V' in the joint distribution must produce the claimed con-
err:na e'ablo t_ € a53|gnmentﬁ| .Ese_t and sum O]Eta stant factor since this is precisely how the factor’s value
of the variables i Sset , we will obtain a constant factor -« computed.

equal toF.Val times some function of the variables not in

F.Dset U F.Sset . To exploit the full power of factors, however, we must de-

i i velop a method for composing factors into new factors, just
For example, consider a Bayes network defined by th%s we composed nogoods into new nogoods. Ignoring for
now context specific structure in the CPTs, this can be ac-
complished when the factor is passed up after first being
learned. When we branch on a variable we keep a running
Dset andSset. The contents of these sets are accumu-
lated as we examine the individual values of the variable.

“The development of a computationally effective notion of a
“good” was previously mentioned as an open problem in (Ba-
yardo & Pehoushek 2000).

SIgnoring for now the possibility of context specific struetu
all CPTs containing/ will be activated at line 9.

Once a factoi" is computed, we pass it up to the level of of some of its variables given an instantiation of some of
the deepest assignmentiihDset . At that level we multi- its other variables. For example, if the CPT is a function
ply the currentvalue’pr od by F.Val , unionF.Dset into C(W, X,Y, Z), and we make the assignmé#it = 0, then

the variable’s runnindpset andF.Sset into the running the new functionC” defined byC’(X,Y, Z) = C(W =
Sset . After all of the values of a variablg” have been 0, X,Y,Z) might have the propertyy,y’.C'(X,Y =
explored, we remove all assignmentdtdromits running v, Z) = C'(X,Y = ¢/, Z). Thatis, oncéV is assigned
Dset, addV to its runningSset , and create a new fac- the value 0 the CPT is no longer dependent on the value of
tor with thisDset , Sset and the value given by the sum Y.

computed atline 14. To take advantage of the global independencies induced by

PROPOSITIONL The new factors computed by the abovethese local independencies we modify the processing of de-
composition process are valid factors. pendency sets. The modification required is to mark all
Once factors are computed we can use them in the Samneewly independent variables as being dependent on the as-

way as described above. More precisely, at any node of thselgnments that made them independent. In the above ex-

i : ample, whenever we subsequently branciyomve would
search tree were all of the assignments inEset of a o
4 ; addW = 0 to its final Dset —the value computed when
factor are made ambneof the variables in th&set have

. . we sum oufy” could change if/ is not equal to 0 as then
been assignédwe can multiply the currenpr od by the : . . .
, . . . C might have an influence on its sum. However, the assign-
factor'sVal , and avoid branching on any of the variables

in Sset in the subtree below, ments toX andZ need not appear ifr’'s Dset —unless

’ these variables influencé through some CPT other than
Adding factor and nogood processingRoob-BT yields C. This reduction inY’’s Dset could also reduce the size
the Value Elimination algorithm presented in Table 1. Forof the dependency sets of all of the variab{&s sum ends
simplicity, the specification does not include the changesip being passed up to. Hence, subsumed variables could
required to implement nogood processing, but these arbe pushed back higher in the tree, and the resulting fac-
fairly straight forward. tors could be activated along more different paths. Thus an

Value Elimination first checks to see if any cached factorsexloonemlalI amount of work could be saved.

can be activated (line 10). Each activated factor is mul-Another type of context specific structure discussed in
tiplied into prod[| evel] As before, the active CPTs (Boutilier et al. 1996) occurs when two values of a vari-
are also multiplied intgr od[| evel] (line 11). In both able become equivalent in a certain context. This situation
casesDset [| evel] is updated to include the assign- can be detected at the time a variableis branched on.
ments that made those factors and CPTs have these specifichere are two values andv’ for V such that two in-
values (line 12 and 18). Finally, if a zero has not been foundtantiationsl” = v andV = v’ make all of the reduced
the subtree below is searched. On retpmed][| evel], CPTs that/ currently appears in identical, then the subtree
Dset[l evel], andSset [| evel], would have been below each instantiation would perform the same compu-
properly updated by any relevant factors computed in theations. Hence, we need only explore one of these values
subtree below. Finally, when the sum over all the valuesassigning the other value the sapreod.

of V are processed, we create and store a new factor (lin
23-25), compute where to pass it back to (line 26), an
update the information at that level (lines 27-30). Finally
since we have added new subsumed variables to the pu
back level,pushBL, we mark them as inactive until we
backtrack to that level (line 31).

ﬁ't;can also be shown that barren variables (Shachter 1986)
always yield “null” factors equal to one when summed out.
I—hence, such variables and their CPTs can be removed from
e search without affecting the final answers. Removing
one barren variable may in turn make other variables bar-
ren, and they can be recursively removed. The end result
2.1 Context Specific Structure is identical to Shachter’s static barren node removal proce
dure. However, with CSl it is also possible for variables
Value Elimination can be altered in very simple ways toto become barren dynamically after some assignments are
take advantage of various forms of context specific struciade. Such variables and their CPTs could be removed
ture. Here we briefly discuss some of the kinds of structurdrom the subtree in which they are barren.
that value elimination can take advantage of.

Local context specific independence (CSI) (Boutiler 2.2 Unit Propagation via Forward Checking and
al. 1996) occurs when a CPT' becomes independent Dynamic Variable Orderings

“When dynamic variable orderings are used it could be thal shoyid be noted that at line 1 Value Elimination is free

we later on instantiate some of the variables in$set prior to to ch iable to instantiat ti it i
making all of the assignments in tBset . In this case the factor 0 Choose any variable 1o Instantiateé next, 1.€., It can ut-

value cannot be used, as we are no longer summing over ak of th!ize dynamic variable o_rderings._ In particular, the reate's
Sset variables. invocations under the instantiatiols= a andV = b are

free to choose different variables to instantiate next.dgnf branched orl. LetF; be a factor produced by value elim-
tunately, we have not as yet found effective dynamic vari-ination at line 25 after branching on variablg, ;y, with

able ordering heuristics (in part because we are not yet ext;.Dset = {X; = z1,...,Xx = ax}. ThenF;.Val =
ploiting context specific structure in our implementation) f;(X1 = z1,..., Xk = zk).

Nevertheless, we do use dynamic orderings in conjunction _))

with forward checking to realize unit propagation. In other words, under a static variable ordering the fac-

)) o tors computed are precisely the values of the corresponding
Forward checking?) involves examining, at each node of fynction on a particular instantiation. From this it can be

the search tree, all CPTs that are newly reduced to only ongnown that the same number of multiplications and summa-
uninstantiated variable. If such a CPT evaluates to zero ofjgns are required to produce a facfgras are required by

a particular value of its last uninstantiated variable, 8ay ariable elimination to compute an entry in the table spec-
V' = a, we know thatl” = a will contribute zero probabil- jfying function f;. The only extra work required by value
ity in the subtree below. Forward checking is the procesgj|imination lies in the cost of cache lookup. However, as
of marking all such zero probability values. If an unin- e will explain below, if we are running value elimination
stantiated variable has all of its values marked (perhaps byt a static ordering, cache lookup costs can be reduced to

different CPTs), we exploit our ability to utilize dynamic the same cost as the array indexing that variable eliminatio
orderings, and immediately choose that variable to instaneang recursive conditioning) must use.

tiate next. At line 19r od[| evel] will hence be zero Lo .

. .) . ..COROLLARY 2 Value elimination when run with the re-
for each value in the variable’s domain, a new nogood WI"verse static ordering uses the same time and space as vari-
be immediately learned, and the search will backtrack. This 9 P

. S .. able elimination.
process allows us to avoid searching in subtrees containing

a “deadend variable”. Similarly, if an unipstantiatgd vari Fyrthermore, nogood recording can allow value elimina-

or “unit”) it also is immediately chosen next. Thus it is fynctions computed by variable elimination when zero
immediately instantiated to its forced value and the conseprgpapilities are present.

guences of that instantiation forward checked. Preferring

forced variables along with forward checking their forced3.2 Recursive Conditioning

value precisely corresponds to the unit propagation psoces

used in modern SAT solvers. By utilizing both nogood There is also a strong connection between variable elimi-

recording and unit propagation, Value Elimination is tak-nation and recursive conditioning. Consider first the moral

ing advantage of the key techniques utilized in modern SAT@raph associated with the input Bayes network in which

solvers. Thusitis able to get considerable extra mileage oi£ach variable is a node and each CPT is a clique over its

of the zero values in the CPTs. variables. Instantiating a variable corresponds to deleti
the corresponding node in the moral graph along with all
of its incident edges. Instantiating a set of variables can

3 Performance Guarantees thus cut the graph into disjoint components in which the

reduced CPTs of each component share no variables with
As specified Value Elimination is actually a family of al- egch other.

gorithms, each member of which is determined by the al- S

gorithm used to select the next variable. If we restrict our-value elimination is able to take advantage of components
selves to static variable selection strategies and ignuoye a Via its tracking of dependency sets. In particular, if at
context specific structure then value elimination turns ouft N°de in the search tree the moral graph has been di-
to be very closely related to two of the fundamental query’ided into & disjoint components by the assignments al-

based algorithms for BvEs: variable elimination and re- r€ady made, value elimination will require time propor-
cursive conditioning. tional to thesumof the sizes of these components rather

than time proportional the product. That is, value elimina-
tion through its use of dependency sets and passing back
of values operates as an opportunistic divide and conquer
algorithm. Recursive conditioning also utilizes dividedan
Given a ordering of the variables; = Vi), Vr2), conquer, butthe key difference is that it uses a static decom
-+ Va(n), at thei'th stage variable elimination sums out position scheme, specified by a branch decomposttion.

Vr(s) from the joint distribution producing a new function The pranch decomposition tells recursive conditioning ex-
fi(X1,...,X%) over some subset of the variablesinthe .

Set{Vw(i+1), . VTr(n) 1. In the absence of context specific "That is, the last variable eliminated by variable elimioatis
structure the following theorem holds. the first variable branched on by value elimination

T)) ®This structure is called a d-tree in (Darwiche 2001), but was
THEOREM1 Let value elimination be run using static originally called a branch decomposition in the earlier kvof
variable orderingwhere at level;j variable V(,_;) is (Robertson & Seymour 1991).

3.1 Variable Elimination

actly which variables it needs to instantiate at each stage irequired to do cache lookups. This cost stems solely from
order to divide the problem into two sub-problems. It thenour need to support dynamic variable ordering and context
invokes the same procedure on each sub-problem, dividingpecific structure.
these into even smaller problems. After the two subprob- _
: - .In particular, if we restrict value elimination to work with
lems have been evaluated it multiplies the results to obtain .
out these two features then, as discussed above, the fac-
the answer for the whole problem. o .
tors computed will simply be instances of the correspond-
Value elimination, on the other hand, can instantiate theng functions that variable elimination produces. Further
variables according to any strategy, including dynamicmore, the factors we must multiply together to compute the
strategies. The decompositions that the strategy happeips od for each value of a variable are also instantiations of
to generate will automatically be detected duringbEset functions known prior to search.
computations on backtrack. Theorem 4 proves that this can .
. . ._Hence, we can allocate tables to store each of the functions
yield exponential speedups on some problems. Formaliz;

ing these ideas allows the following theorem to be proved: hat would be produced by variable elimination, and use
9 9 P the Dset of a factor to index and store the factor’s value

THEOREM3 If recursive conditioning is run with the jn the table of its associated function. This gives us a fixed
branch-decomposition (d-tre&), then from53 a static vari- aqddress for each factor that could be computed. Since we
able ordering strategy can be constructed in linear timey,ow the factors we need to compueod we can “check

under which value elimination will require time and space the cache” by indexing into these tables to see if the factors
within a constant factor of the time and space requiredpaye already been stored. In other words, cache lookup is

wiche 2001). Furthermore, if we turn off the cache in valuey5|ye elimination.

elimination, value elimination will achieve the same space
time tradeoff as recursive conditioning without caching!n the fully general case, however, cache look up can be

crease in time). head is greatly reduced by utilizing the “watch literal"hec
nigues employed in current SAT solvers (Moskewatal.

It should be noted that these two theorems highlight a clos€001), but it remains fairly significant.

connection between variable elimination and recursive con

ditioning that was originally made in (Darwiche 2001). Another advantage of value elimination (shared by recur-

sive conditioning (Darwiche & Allen 2002)) is that it can
3.3 Value Elimination can be Exponentially better operate in an any space mode. In particular, the cache can
be purged at any point in the computation. The remain-
THEOREM4 There exists a class of problems on whiching computation simply recomputes these purged factors,
value elimination using a dynamic variable ordering runs if in fact it needs them. We have employed a very simple
in time n°e¢n) \whereas variable elimination, recur- scheme for purging the cache. When we run out of room
sive conditioning, and jointree algorithms, require time we remove one half of the stored factors, keeping the half
O(2V™) irrespective of the variable ordering (branch- that have the smallef@set s and largesSset ’s (these
decomposition) they utilize. are more likely to be reused and they required more com-

putation to compute). Many other purging schemes could
The problems are variants of the string of pearls probe investigated.

lem (Bonetet al. 1998) originally used to show that or-
dered resolution (DP) can be exponentially weaker tha
tree-resolution (DPLL). The proof (Bacchus, Dalmao, &
Pitassi 2003) basically shows that although the problem cafy, this section we report on an implementation of value
be solved in quasipolynomial time using a dynamic vari-gjimination. The implementation includes nogood record-
able ordering, it requires exponential time &nystatic or- jng, forward checking, unit propagation via a preference
dering. Variable elimination, recursive conditioningdan for forced variables, as well as a fully general caching
jointree algorithms all utilize static orderings. scheme for factors that uses the scheme described above

Surprisingly, even the simplest version of backtrackingt© Purge itself when it runs out of memory (the limit was
upon which value elimination is based, i.Brob-BT, can Set at 1.5GBY. We also perform barren variable removal

achieve this speed up over standard algorithms on thegdior to search (Section 2.1). However, the implementa-

'Y Empirical Results

problems. tion does notutilize context specific structure. All experi-
ments were run on 2.2GHz Pentium IV machines with 3GB
3.4 Cache Lookup Costs of RAM. The results compare our implementation against

The substantial difference between the complexity of value 9The cache does not employ the static order optimizations de-
elimination and the above two algorithm lies in the time scribed above.

Network #Trials | N-Fails | VE-Fails | > 100 100-10 10-1 1-0.1 0.1-0.01 < 0.01
Water (32) 414 | O 0 371 (0.002s)| 43(0.033s)| O 0 0 0

Munin1 (189) | 761 | O 1 662 (.043s) | 59 (1.74s) | 30 (21.53s)| 9 (212.5s) 0 1 (7000s)
Munin2 (1003) | 48 0 0 0 37 (0.06s) | 6(0.43s) 5(2.04s) 0 0

Munin3 (1044) | 16 0 0 0 1(0.09s) 0 13 (2.08s) 2(7.29s) | O

Munind (1041) | 621 | O 0 0 586 (0.12s)| 33 (1.00s) | 2 (9.77s) 0 0

Link (724) 808 | 799 0 808 (0.12s) | O 0 0 0 0

Barley (48) 795 | O 39 266 (0.003s)| 22 (0.14s) | 138 (3.22s)| 234 (13.17s)| 72 (61.5s)| 63 (25675)

Table 2: Speed up ratio of Value Elimination over Netica oriots networks for probabilistic trials. The number of
variables in the network is given in brackets after the nekwmme. N-Fails, VE-Fails are the number of trials Netica or
value elimination failed on (time out or memory exceeded)e Trials are divided into buckets based on speed up ratio
(Netica Time/Value Elimination Time). The number of tristseach bucket is given, as well as the average time value
elimination requires on trials in that bucket. Failurespleeed into the extremal speedup/slowdown buckets.

Netica, a commercial implementation of the join tree al-The random networB (Kozlov) was almost as easy. Run-
gorithm (Norsys Software Corp.). Comparing these twoning 1000 trials, Netica required less than a second for each
algorithms is problematic since the join tree algorithm istrial, whereas value elimination required more than a sec-
not query based. Nevertheless, we found that (1) Neticand on 126 of the trials. In 57 of these trials it was less than
was usually as fast or faster than various implementation$0 times slower than Netica. But on the worst trail it was
of query algorithms we experimented with, (2) it was more75 times slower than Netica, requiring 20 seconds. How-
robust and better suited for extensive empirical testing, a ever, its time on this trial improved to 1.8 seconds when we
(3) itis representative of the standard a new algorithm mustised our dynamic ordering heuristic.

achieve to be practical. Data for the more interesting networéater, Muninl1-4,

Most of our experiments involved computing the posteriorLink , andBarley is given in Table 2. We ran 1000 trials
distribution of a randomly chosen query variable given aon each network. Table 2 however excludes those trials on
randomly chosen evidence item. Before making these ranwhich both algorithms took less than a second, and those
dom selections, however, we first preprocess the networlwhere it turned out the evidence was contradictory or the
with a forward checking phase (a polytime computation) toquery variable forced. (Polynomial time preprocessing is
detect variables whose value is forced, and eliminate galueincapable of detecting all such cases). That is, the table
with zero probability. The evidence item was then selectednly includes “probabilistic” trials that cannot be solvegd

at random from the available assignments of an unforcegurely logical reasoning.

variable and the effect of that evidence was again forwar Lo .
) ; e see that value elimination performs very well, achiev-
checked. Finally, the query variable was randomly selecte) .
ing a speed up of more than 100 times on many trials. The

from the remaining unforced variables (thus the eViden.C?aiIed trial in Muninl (aborted after 7000 sec.) could be

\évase TSEV%ZVSIK/L:szcgzn;;at?:gtgg dl%i;\gf s the query vari- solyed _in 2057 sec. using Netica’'s sta_tic ordering, during
’ which time the cache was purged 16 times. However, the
Value elimination was mostly run with a static ordering same trial was solved in only 52.6 sec. when the dynamic
computed with a min-fill heuristic, but subject to the con- ordering was used. Netica took 34.5 sec. to solve this trial.
straint that the query variable must be branched on first. OAlthough Munin2 and 3, are much larger they were quite
some networks, e.gBarley, the static ordering utilized by easy, with almost all of the trials being either easy or solv-
Netica was more effective. We also experimented with aable by purely logical reasoning. Munin4 was a bit harder,
dynamic ordering based on fill in and cluster size but com-and on this network value elimination was usually 10-100
puted dynamically in the context of the changes made byimes faster. Link could rarely be solved by Netica, as for
the previous assignments. The dynamic ordering occasionnost evidence items it required too much space. Barley
ally produced some good results but was inconsisfent. was the only network that did not contain many zero en-
tries in its CPTs. Hence, the main advantage of our cur-
rent implementation, the exploitation of logical reasanin
to gain advantage from these zero entries, was not applica-
ble. As a result value elimination could often take a very
long time (on 39 trials it timed out after 3600 sec.). How-
ever, it still did quite well on many of the trials. We expect

19As mentioned above, dynamic orderings will probably only _that it could do much better once context specific structure

be truly effective when we are also exploiting context speci IS €xploited. Finally, on those trials that could be resdive
structure. by logical reasoning, i.e., the query was forced or the evi-

TheHailFinder andWin95pts networks were found to be
simple for both algorithms. We ran 1000 trials on each
network with both algorithms completing each trial in less
than one second.

dence impossible, value elimination was between 20—2000Dechter, R., and Rish, I. 1994. Directional resolution:
times faster than Netica: on these problems value elimina-The Davis-Putnam procedure, revisitedPitoceedings of
tion’s techniques for logical reasoning achieve their maxi the International Conference on Principles of Knowledge
mum advantage. Representation and Reasonjig4—145.

Dechter, R. 1990. Enhancement schemes for constraint
processing: Backjumping, learning, and cutset decompo-

We have presented an algorithm for¥:s that builds on sition. Artificial Intelligence41:273-312.
previous work in backtracking as well as on previous al- Dechter, R. 1999. Bucket elimination: A unifying frame-
gorithms for BAYES. The algorithm has the advantage of work for reasoningArtificial Intelligence113:41-85.

allowing the application of a new set of techniques, like Huang, C., and Darwiche, A. 1996. Inference in belief

nogood recording, to BYEs, prese_rving the perfo_rmance networks: A procedural guidelnternational Journal of
guarantees of standardaBes algorithms, and having ad- Approximate Reasonintp(3):225-263

ditional flexibility that can allow it to achieve an exponen- o _

tial speedup over previous algorithms on some problems.Majercik, S. M., and Littman, M. L. 1998. MAXPLAN:
Empirically, the algorithm displays very promising perfor A new approach to probabilistic planning. Rroceed-
mance, often being faster than current commercial soft- INgs of the Fourth International Conference on Artificial
ware. Sometimes, however, it is much slower. Given that Intelligence Planning86-93. AAAI Press.

the currentimplementation does not utilize context specifi Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
structure nor have very good dynamic heuristics, we feel Malik, S. 2001. Chaff: Engineering an efficient sat solver.

that these results give strong evidence of the algorithm’s |n Proc. of the Design Automation Conference (DAC)
considerable potential.

5 Conclusions

Poole, D. 1996. Probabilistic conflicts in a search al-
gorithm for estimating posterior probabilities in bay@sia
networks.Artificial Intelligence88:69-100.

Bacchus, F.; Dalmao, S.; and Pitassi, T. 2003. New algo- pjsh, |., and Dechter, R. 2000. Resolution versus search:

rithms and complexity results for #sat and bayesian infer- 1, strategies for SATJournal of Automated Reasoning
ence. Submitted to FOCS 2003. 24(1)225_275

References

Bacchus, F. 2001. Constraints. Lecture notes on CSPSRobertson, N., and Seymour, P. 1991. Graph minors x.
available at www.cs.toronto.edfbacchus/tutorial.html. obstructions to tree-decompositiodournal of Combina-
Bayardo, R. J., and Pehoushek, J. D. 2000. Countingtorial Theory, Series 52:153-190.

models using connected components.Ploceedings of ghachter, R. 1986. Evaluating influence diagra@ser-
the AAAI National Conferenc&57-162. ations ResearcB4(6):871-882.

Bonet, M.; Esteban, J. L.; Galesi, N.; and Johannsen, J.Sjmon, L., and Chatalic, P. 2001. Satex:

1998. Exponential separations between restricted resolu-n web-based framework for SAT experimentation
tion and cutting planes proof systems. Rroceedings of (http:/avww.ri.fri~simon/satex/satex.php3). LICS 2001
38th FOC$638-647. Workshop Satisfiability Testingolume 9 ofElectronic

Boutilier, C.: Friedman, N.: Goldszmidt, M.: and Koller, Notes in Discrete MathematicElsevier.

D. 1996. Context-specific independence in bayesian net-walsh, T. 2002. Stochastic constraint programming. In

works. InProceedings of the Twelfth Annual Conference proceedings of the European Conference on Artificial In-
on Uncertainty in Artificial Intelligence (UAI 96)115— telligence

123. Zhang, N. L., and Poole, D. 1994. A simple approach

Darwiche, A., and Allen, D. 2002. Optimal time-space to bayesian network computations. Proceedings of the

tradeoff in probabilistic inference. I&uropean Work- Canadian Atrtifical Intelligence Conferenck71-178.
shop on Probabilistic Graphical Models available at

www.cs.ucla.edudlarwiche.

Darwiche, A. 2001. Recursive conditioningrtificial
Intelligencel26:5-41.

Davis, M., and Putnam, H. 1960. A computing procedure
for quantification theoryJournal of the ACM7:201-215.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem-provinGommunications
of the ACM4:394-397.

