
Planning with Resources and Concurrency
A Forward Chaining Approach�

Fahiem Bacchus
Dept. Of Computer Science

University Of Toronto
Toronto, Ontario
Canada, M5S 1A4

fbacchus@cs.toronto.edu

Michael Ady
Winter City Software
Edmonton, Alberta
Canada, T5R 2M2

winter.city@v-wave.com

Abstract

Recently tremendous advances have been made in
the performance of AI planning systems. However
increased performance is only one of the prerequi-
sites for bringing planning into the realm of real ap-
plications; advances in the scope of problems that
can be represented and solved must also be made.
In this paper we address two important represen-
tational features, concurrently executable actions
with varying durations, and metric quantities like
resources, both essential for modeling real appli-
cations. We show how the forward chaining ap-
proach to planning can be extended to allow it to
solve planning problems with these two features.
Forward chaining using heuristics or domain spe-
cific information to guide search has shown itself
to be a very promising approach to planning, and it
is sensible to try to build on this success. In our
experiments we utilize the TLPLAN approach to
planning, in which declaratively represented con-
trol knowledge is used to guide search. We show
that this extra knowledge can be intuitive and easy
to obtain, and that with it impressive planning per-
formance can be achieved.

1 Introduction

For a long time AI planning systems were either capable
of solving only trivial problems, or required extensive en-
gineered knowledge to solve problems that were still rela-
tively simple. Recently, however, tremendous performance
gains have been made. These gains have come from the
development of new approaches to planning, and most re-
cently from the improvement of the old idea of forward chain-
ing. As a result, the fastest planning system in the recent
AIPS-2000 planning competition [AIPS, 2000] was a forward
chaining planner that was able to generate plans containing
2000 steps in less than 2 seconds. This level of performance
was achieved on simple test domains. Nevertheless, if per-
formance within one or two orders of magnitude of this can

�This research was supported by the Canadian Government
through their NSERC and NCE-IRIS programs.

be achieved in real application domains, tremendous possi-
bilities for the practical application of AI planning will be
created.

However, performance is not the only impediment to the
practical application of AI planning systems. The scope of
problems they can represent and solve is also a problem. The
planners in the competition were restricted to problems in
which actions could be modeled by a set of simultaneous up-
dates to the predicates describing the world. This is the model
of planning inherited from the STRIPS action representation;
it is also the model used by the ADL [Pednault, 1989] repre-
sentation. ADL simply provides more flexibility in specifying
the set of predicate updates that an action generates, so that,
e.g., this set can be conditional on the current world.

Real world applications require modeling a number of
more sophisticated features, including uncertainty, sensing,
varying action durations, delayed action effects, concurrently
executing actions, and metric quantities. In this paper we
address the last four issues. In particular, we present an
approach to modeling and solving planning problems con-
taining metric quantities, actions of varying duration, actions
with delayed effects, and concurrently executing actions. Our
approach is based on extending the forward chaining ap-
proach to planning. In our experiments we demonstrate that,
in particular, the TLPLAN approach to planning [Bacchus &
Kabanza, 2000] can be successfully extended to deal with
such problems.

Metric quantities have never been a significant problem for
forward chaining planners, and in fact the TLPLAN system
has been able to deal with metric quantities since its original
1996 implementation. Hence, the ability to deal with met-
ric quantities is not a contribution of this paper. However,
the manner in which TLPLAN deals with metric quantities is
unique and has many advantages that help support the other
extensions that are new to this paper.

In the sequel we first review and motivate the manner in
TLPLAN extends the STRIPS/ADL representation to deal with
metric quantities. Then we develop our approach to mod-
eling actions with delayed effects from which the ability to
model concurrent actions follows naturally. The approach
we present can be used in any forward chaining planner. We
compare our approach to some of the other work in this area,
and then present some empirical results to demonstrate the
potential of our approach and the capabilities of the planner



we have developed. Unfortunately it proved to be impossible
to run controlled experiments to compare our planner with
other systems that have been developed. So we have instead
made an effort to present a suite of experiments and provide
all of the necessary data sets so that a reusable experimental
basis can be established for future work.

2 Functions
We take planning problems as including a fully specified ini-
tial state, a goal, and a set of actions for transforming states
to new states. A solution to the problem is a sequence of ac-
tions that when applied to the initial state yields a sequence
of states satisfying the goal. The goal might simply be a con-
dition on the final state of the sequence, or it might place
conditions on the entire sequence of states.1

A forward chaining planner is one that searches in the
space generated by applying to each state � all actions whose
preconditions are satisfied by �, starting at the initial state � .
A forward chaining planner expands this space as it searches
for a sequence of actions that transform � to a state (or se-
quence of states) satisfying the goal. In other words, forward
chaining planners treat the planning problem as a state-based
search problem.

The key difference between the planning problem and a
generic search problem, however, is that planning assumes a
particular representation of states and operators. In planning
states are represented as databases of predicate instances, and
operators are represented by specifying the set of updates
they make to the database (state) to generate a new state
(database). In other words, planning uses a factored repre-
sentation of the state in which each transition updates only
a few of the state’s components. It is this factored represen-
tation that has allowed the development of planning specific
notions such as goal-regression.

In planning, the closed world assumption is standard: any
predicate instance not in the database is assumed to be false.
Under this assumption the state databases become first-order
models against which arbitrary first-order formulas can be ef-
ficiently evaluated [Halpern & Vardi, 1991]. Given a first-
order formula ����� containing some set of free variables ��,
we can efficiently find all tuples of bindings for �� that make
����� true in a state: this is the same problem as computing
the relation specified by an SQL query in databases.

A natural semantics for operators specified in the STRIPS
or ADL notation is to view them as being update queries.
Each operator has a precondition ����� that is a first-order
formula containing the free variables ��. Every binding �� for
the variables �� such that ���� � is true in a state � generates
an action that can be applied to � to yield a new state. The
STRIPS/ADL action representations have the property that a
set of fully instantiated predicates to add and delete from �
can be computed simply by evaluating formulas in �. For
example, if an ADL operator (drive ?t ?l ?l’) (drive

1See [Bacchus & Kabanza, 1998] for more about such
“temporally-extended” goals. In this paper we will confine our at-
tention to “final-state” goals. However, the extensions we describe
here could also be realized in the context of temporally-extended
goals.

truck ?t from location ?l to ?l’) contains the conditional
update2

(forall (?o) (in ?o ?t)
(and (add (at ?o ?l’)) (del (at ?o ?l))))

(i.e., update the at property of all objects ?o in ?t), then
given a binding for ?t, ?l, and ?l’, i.e., a fixed action in-
stance, by computing the set of bindings for ?o that satisfy
(in ?o ?t) in � all instances of at that must be changed
can be determined. Notice that the specific predicate in-
stances in the update are determined by replacing the terms
?o, ?l, and ?l’ by their values. In this case these terms are
variables and their values (interpretations) are determined by
the current variable bindings.

First-order languages typically include functions. Terms
can then be constructed by applying functions to other terms.
Thus a natural extension to the STRIPS/ADL representation
is to remove its function-free restriction. For every func-
tion f the state can include in its database a relation spec-
ifying the value of f on its various arguments. First-order
formulas can be evaluated just as before: whenever we en-
counter a term like (f t1 ... tk) in a formula we re-
place it with its value by recursively evaluating each of the
ti and then looking up the resulting tuple of values in the
relation specifying f. We specify updates to these function
values by asserting equalities that must hold in the next state.
Now, e.g., instead of describing the location of objects ?x
with an (at ?x ?l) relation, we could describe their loca-
tion with a (loc ?x) function. Then the operator (drive
?t ?l ?l’) could contain the conditional update

(forall (?o) (in ?o ?t) (add (= (loc ?o) ?l)))

We use the convention that the function that is the first argu-
ment of the equality (loc) is the function to be updated, its
arguments (the variable ?o) are evaluated in the current state
to determine which arguments of loc are to be updated, and
the second argument (the term ?l) is evaluated in the current
state to determine the new value.

Functions whose values are numbers, and numeric func-
tions like � can now be accommodated in the same way. Fur-
thermore, the standard numeric functions like � can be com-
puted using existing hardware or software: we do not need to
have a table of its values as part of the state’s database.

For example, if (capacity ?t) is the fuel capacity of
truck ?t, (fuel ?t) is its current level of fuel, and (fuel-
used) is a (0-ary) function whose value in any state is the
total amount of fuel used, then we can write an operator like
(refuel ?t) with the update

(and
(add (= (fuel-used)

(+ (fuel-used)
(- (capacity ?t) (fuel ?t)))))

(add (= (fuel ?t) (capacity ?t))))

In the new state truck ?t will have a full tank and we would
have accounted for the amount of fuel put into its tank.

2The update asserts the truth or falsity of a collection of predicate
instances in the next state, and due to the closed world assumption
these assertions can be realized by adding or deleting these instances
from �.



Adding functions to the action representation in this way,
motivated directly by viewing operators as database updates,
provides all the flexibility needed to model complex resource
usage. For example, the following operators model FIFO ac-
cess to a fixed resource and also track the number of times
the resource is used. (qhead) and (qtail) are 0 in the
initial state, (queue i) is a function whose value is the
i’th request in the queue, and (serve ?x) is a predicate
true of ?x if ?x is currently being served. (qtail) will al-
ways be the total number of times the resource is used, and
(qhead)�(qtail) is always the number of items currently
in the queue.

(def-adl-operator (enqueue-access ?x)
(and (add (= (queue (qtail)) ?x))

(add (= (qtail) (+ (qtail) 1)))))
(def-adl-operator (dequeue-and-serve)

(pre (> 0 (- (qtail) (qhead))))
(and
(del (serve (queue (qhead))))
(add (serve (queue (+ (qhead) 1))))
(add (= (qhead) (+ (qhead 1))))))

In the literature addressing metric quantities, specialized
notation has been developed for expressing resources (e.g.,
[Wolfman & Weld, 1999; Kvarnström, Doherty, & Haslum,
2000]). Our argument is that such notation is not required.
The natural extension of making functions first-class citizens
along with standard operator preconditions provides a bet-
ter solution.3 What we have just described is the manner
in which TLPLAN has implemented functions since its orig-
inal 1996 version. Functions as first-class citizens were also
present in the original ADL formalism [Pednault, 1989], and
[Geffner, 2000] provides some other arguments in support of
using functions.

3 Modeling Concurrent Actions
Forward chaining has proved itself to be a very fruitful ba-
sis for implementing high-performance planners. For ex-
ample, the two fastest planners in the recent AIPS-2000
planning competition (TALPlanner [Doherty & Kvarnström,
1999], a planner that uses the TLPLAN approach, and Fast-
Forward [Hoffmann, 2000] a planner using domain indepen-
dent heuristics to guide its search) were both forward chain-
ing planners. However, there is at least one aspect of forward
chaining planners that seems to be problematic: they explore
totally ordered sequences of actions. This is where they get
their power: such sequences provide complete information
about the current state and that information can provide pow-
erful guidance for search. But modeling concurrent actions
with linear sequences seems to be problematic. However it
turns out that there is a surprisingly simple way of modeling
concurrency with linear actions sequences.

We associate with every state a time stamp, starting with a
fixed start time in the initial state. The time stamp denotes the
actual time the state will occur during the execution of a plan.

3Computing plans in the presence of metric quantities might re-
quire restrictions on how these quantities can be updated. But such
restrictions should be imposed on a general representation, not used
to determine the representation.

In a linear sequence of states a number of successive states
may have the same time stamp. Intuitively this means that
the transitions between these states occur instantaneously, so
the intermediate states are never physically realized. Their
existence is simply a convenient computational fiction.

Additionally, each state has an event queue. The event
queue contains a set of updates (events) each scheduled to
occur at some time in the future (of the state’s time stamp).
Along any fixed sequence of states generated by a sequence
of actions, each state inherits the pending events of its par-
ent state. It might also queue up some additional events to
be passed to its children. Thus if we arrive at the same state
via two different actions sequences we could generate two
different event queues. We regard two states as being equal
only if they have both the same database and the same event
queue. Thus, when the planner backtracks it backtracks to a
state with a prior event queue, in effect backtracking the state
of the event queue.

As before, an action � can be executed in a state � only if
its preconditions are satisfied by �. Applying � to � generates
a new successor state ��. Standard actions do not advance the
world clock, so �� will have the same time stamp as �. Typi-
cally, it will have a different event queue (i.e., what will hap-
pen in the future has changed), and a different database (i.e.,
what is true “now” has changed). Updates to �’s database are
used to model �’s instantaneous effects, and updates to the
event queue are used to model �’s delayed effects.

For example, consider the action of driving a truck ?t from
?l to location ?l’:

(def-adl-operator (drive ?t ?l ?l’)
(pre (?t) (truck ?t)

(?l) (loc ?l)
(?l’) (loc ?l’)

(at ?t ?l))
(del (at ?t ?l))
(delayed-effect
(/ (dist ?l ?l’) (speed ?t))
(arrived-driving ?t ?l ?l’)
(add (at ?t ?l’))))

We can execute this action in � if ?t is a truck, both ?l and
?l’ are locations, and ?t is at location ?l in �. The instan-
taneous effect of the action is to delete the current location
of the truck, and the delayed effect is to add the new loca-
tion of the truck. The delayed effect is realized by adding an
item to the event queue. The first argument of the delayed-
effect specification is the event’s time delta, the number of
time units from the current time the event is scheduled to oc-
cur. This time delta is a term that will be evaluated in the
current state. In this case it is the distance between the two
locations divided by the speed of the vehicle. The next ar-
gument is simply a label for the event (designed to make the
final plan more readable). The delayed effects are the sub-
sequent arguments. In this case it is the addition of the new
location of the truck. In general, delayed effects can be any
kind of effect allowed in a normal action, including, e.g., con-
ditional effects.

In addition to the standard actions there is one special ac-
tion that advances the world clock: the unqueue-event



Plan(<s,Q>,Goal)
if (s �� Goal and Q = ��)

return(s)
else
s� := s
s�.prev := s
Q� := Q

choice a � �act : s �� pre(act)�
s�.action := a
if a != unqueue-event

s� := ApplyInstantaneousUpdates(s,a)
Q� := AddDelayedEvents(Q,s,a)

else
newTime := eventTime(front(Q))
s�.time := newTime
while eventTime(front(Q�)) == newTime
e := removeFront(Q�)
s� := ApplyEffect(s�,e)

Plan(s�,Q�)

Figure 1: Forward Chaining Search

action.4 This action moves time forward to the next scheduled
event, removes all events scheduled for that new time and
uses them to update the state’s database. This realizes various
delayed effects of previous actions. For example, eventually
the arrival of ?t at ?l’ will reach the front of the queue and
will be dequeued. This will cause a transition to a new state
in which the fact (at ?t ?l’) is added and the time is up-
dated. If a set of events have been scheduled for the same
time, they will all be dequeued and applied sequentially in
FIFO order.

Figure 1 specifies more precisely forward chaining search
in this enhanced search space. The non-deterministic choice
operator is realized by search. AddDelayedEvents exam-
ines the action, and for each delayed-effect in a evalu-
ates the term specifying the delay of that effect. Adding the
time of the current state, s.time, gives the absolute time of
the effect, and the effect is merged into the queue so as to keep
the queue in time sorted order. The current variable bindings
for the free variables in the effect are also stored along with
the effect. If the chosen action is unqueue-event time is
moved forward, and all effects scheduled for that time are re-
moved from the queue and applied sequentially to the state. A
goal state is a state whose database satisfies the goal and that
has an empty event queue; we can find the sequence of actions
leading to that state by following the state’s prev pointers.

Search for a plan is started by calling Plan on the initial
state. Note that the queue need not initially be empty. Instead
it could contain some set of events that are going to occur
in the future. The planner will then have to find a plan that
negotiates around these future events. This also facilitates
replanning where some previous actions cannot be canceled.
This feature is similar to the ability of temporal refinement

4Dead time can be inserted into the plan by including a “wait”
action in the domain. This action would have no instantaneous ef-
fects and would enqueue a null delayed effect, delayed by the wait
period, into the event queue. The presence of such an event on the
queue would allow unqueue-event to advance the world time by
the wait period.

planners like IxTeT [Ghallab & Laruelle, 1994] and RAX
[Jónsson et al., 2000] to flesh out an initial set of temporal
constraints.

The choice of which action to try next is where heuristic or
domain specific control comes into play. In the TLPLAN ap-
proach we restrict the set of possible action choices by requir-
ing that the next state s� satisfy the temporal control formula
(see [Bacchus & Kabanza, 2000] for details).

With delayed effects, concurrent actions are automatic.
When an action is executed it generates a successor state
in which its immediate effects have been made. This state
“marks” the start of the action, and since it has the same time
stamp as the previous state the action can be viewed as start-
ing at the current time. After some stream of delayed effects
have been executed the final delayed effect generates a state
that “marks” the end of the action. Depending on how we in-
terleave the unqueue-event action with the ordinary ac-
tions we can start a whole series of actions at the same time,
these actions can execute concurrently and some can end be-
fore others. Thus at any particular time any number of actions
can be executing concurrently. If we only choose unqueue-
event when there is no other action available, we will max-
imize the number of concurrent actions at each stage: each
ordinary action whose precondition is satisfied will be started
before the world clock is advanced. Or we can achieve finer
control over the degree of concurrency by controlling (via,
e.g., a temporal control formula) when unqueue-event is
chosen.

In our approach all concurrency control is handled by ac-
tion preconditions. Typically the instantaneous effects of an
action are used to modify the state so as to achieve concur-
rency control, while the delayed effects of an action are used
to model physical achievements in the world. This is a low
level but very powerful approach to concurrency control. For
example, in the previous drive operator, the current loca-
tion of the truck is immediately deleted. Since this is also a
precondition of drive, any attempt to concurrently drive the
same truck to another location is blocked. More sophisticated
situations are also quite straightforward to model, in part be-
cause of our general approach to functions and numeric com-
putations.

For example, consider a gas station with 6 refueling bays
and a limited amount of fuel shared among these bays. Let
(station-fuel) be the current amount of fuel at the sta-
tion, (bays-free) the number of bays currently free, (ca-
pacity ?v) the fuel capacity of a vehicle, and (fuel ?v)
the fuel in the vehicle. Then the following actions model re-
source bounded concurrent access to the gas station:

(def-adl-operator (refuel ?v ?amount)
(pre
(?v) (vehicle ?v)
(?amount) (= ?amount (- (capacity ?v)

(fuel ?v)))
(and (> 0 (bays-free))

(> (station-fuel) ?amount)))
(add (= (station-fuel)

(- (station-fuel) ?amount)))
(add (= (bays-free) (- (bays-free) 1)))
(delayed-effect 10
(fueled ?v ?amount)



(and (add (= (bays-free)
(+ (bays-free) 1)))

(add (= (fuel ?v) (capacity ?v))))))

The operator also demonstrates our system’s ability to use
functions to bind operator arguments. In this case ?amount
is bound to a function value computed from the binding of
?v.

Suppose in a state � there are 12 vehicles and that various
sets of these vehicles require more fuel that the station has.
From � a number of different sequences of concurrent re-
fuel actions can be initiated. But in each of these sequences
no more than 6 vehicles will be concurrently fueled, due to
the instantaneous update of the (bays-free) resource, and
no set of vehicles needing more fuel than available will be
concurrently fueled, due to the instantaneous update of the
(station-fuel) resource. In fact, it can be that after the
first batch of 6 vehicles is concurrently fueled an additional
batch of vehicles enter the station after 10 units of time have
elapsed and the bays have become free.5 Exactly which se-
quence of concurrent refueling appears in the plan will be
determined by what sequences allow the goal to be achieved
and the search strategy.

The final plan will be a linear sequence of actions grouped
into subsequences of actions each with the same time stamp.
However, the linear sequencing is not a limitation of our ap-
proach. For example, a simple post analysis of these subse-
quences can be used to determine if the actions have to be
started in the supplied order or if some other ordering can
be used. For example, if no action in the subsequence af-
fects the preconditions of another then they can be started in
any order, or simultaneously. However, if starting the actions
is near instantaneous in practice then there will be little to
gain from such a post analysis. For example, say that one
subsequence of actions to be executed at the same time is
(drive truck1 locA locB) followed (drive truck2
locC locD) (start driving two trucks concurrently) then it
typically will make very little difference if we tell truck1 to
start driving before telling truck2—the command to start
driving takes negligible time in comparison to the actual
drive.

Often what is required in these kinds of planning problems
are goals that specify conditions over time. That is, specify-
ing conditions on the final state is not sufficient. Temporal
refinement planners like IxTeT [Ghallab & Laruelle, 1994]
allow one to, e.g., enforce that a predicate holds without in-
terruption over a particular interval of time. In our approach
if one specifies only a condition on the final state, there is no
way of stopping the planner from inserting actions produce
undesired intermittent effects—there is no way of telling the
planner that these intermittent effects are undesirable. Al-
though we have not implemented it, there is no conceptual
difficulty with combining our approach with our previous
work on specifying temporally-extended goals [Bacchus &
Kabanza, 1998]. With such a combination, an extremely rich
set of extended conditions can be enforced on the final plan,
including the typical conditions supported by temporal refine-

5It would be easy have a more complex model of the time re-
quired to complete the fueling.

ment planners.

4 Empirical Results
We have implemented the above event-queue mechanism as
an extension of the TLPLAN system, and tested our imple-
mentation using different versions of the metric logistics do-
main developed by [Wolfman & Weld, 1999].

Using this domain allows us to make some empirical com-
parisons with previous work. Unfortunately, it proved to be
impossible to run controlled experiments with other plan-
ning systems (the systems and problems sets were not readily
available, or the systems were not easily ported to our ma-
chine). Therefore, the results we report are simply to demon-
strate that our approach can efficiently solve large planning
problems containing the features we are concerned with.
However, we are reporting a range of results, and making the
test sets available [Bacchus, 2001] so as to provide an exper-
imental base for future work.

In the logistic domain there are a collection of packages
that need to be transported to their final destination, trucks
for moving packages between points in a city, and planes for
moving packages between airports located in different cities.
Packages can be loaded and unloaded from vehicles and the
vehicles can be moved between compatible locations.

[Wolfman & Weld, 1999] added a fuel capacity for each
vehicle, and a refueling action that fills up a vehicle given that
the vehicle is located at a depot. In addition, each drive-
truck operator consumes a fixed amount of fuel, each fly-
airplane operator consumes an amount of fuel based on the
(fixed) fuel efficiency of planes and the distance between the
two airports, and one is not allowed to move a vehicle to a
location unless it contains enough fuel to get there.

We take the TLPLAN approach to planning in which do-
main specific information is declaratively encoded in a tem-
poral logic. Unlike standard heuristics which try to measure
the worth of a state, TLPLAN typically uses negative infor-
mation that tells it that certain kinds of action sequences are
flawed [Kibler & Morris, 1981]. This information is checked
against the sequences generated during forward chaining, and
any sequence satisfying a bad property is pruned from the
search space. This approach to planning has proved to be ex-
tremely successful: in yields a level of planning performance
that is an order of magnitude better than any other approach,
and the approach has been applied to a wide range of different
domains. In [Bacchus & Kabanza, 2000] an extensive set of
examples and empirical results are presented to demonstrate
both the performance of this approach and the fact that the
requisite knowledge for many different planning domains is
easily obtained and represented in the formalism.

In the standard logistic world the control information
needed is very simple.

1. Don’t move a vehicle to a location unless it needs to go
there to pickup or drop off a package.

2. Don’t move a vehicle from a location while it still con-
tains a package that needs to be dropped off at that loca-
tion.

3. A package needs to be picked up by a truck if it needs to
be moved to another destination in the same city.



4. A package needs to be picked up by a plane if it needs
to be moved to another city.

5. A package needs to be dropped off from a truck if the
truck is at its goal destination or if the truck is at an air-
port and its goal destination is in another city.

6. A package needs to be dropped off from a plane if the
plane is in the package’s destination city.

Each of these assertions can be easily encoded as a temporal
logic formula [Bacchus & Kabanza, 2000], and with this col-
lection of assertions the planner finds plans very efficiently.
Furthermore, this control knowledge is of such a simple form
that it becomes possible, by looking at each action’s effects,
to predict whether or not an action will extend the current
plan in such a way as to violate one of these assertions. As
a result one can systematically convert the control rules into
extra action preconditions [Bacchus & Ady, 1999]. This has
the effect of blocking an action first, rather than executing
it, generating the plan extension, and then determining that
the extension is invalid. Due to the extremely high branch-
ing factor in larger logistic problems (over a 1,000 applicable
actions in each state on the harder problems), this “compiled
one-step” look ahead improves planning performance by a
couple orders of magnitude. In our experiments, we used a
precondition encoding of these control rules.

We used two sets of test problems. A set of four small
problems, loga, logb, logc, and logd, utilized by Wolfman in
testing his LPSAT system, and a collection of 30 much larger
problems used in the AIPS98 planning competition. 6 All of
the experiments were run on a 500MHz PIII machine with
512MB of memory. All times are reported in CPU seconds.

In Table 1 the first set of columns gives the time it takes
the current version of TLPLAN to solve the original version
of these problems, and the number of steps in the resulting
plan. We then encoded Wolfman’s metric version, with fuel
consumption, and ran the problems again. We used Wolf-
man’s loga–logd problems directly, and for the AIPS98 suite
we added distances between the locations, fuel consumption
rates and fuel tank capacities for the planes and trucks. We
found that TLPLAN could solve these metric logistics prob-
lems very efficiently with the same control knowledge as used
in the standard logistics world, along with the extra informa-
tion

1. Allow a vehicle to move to a depot if it needs fuel.

2. Don’t refuel a vehicle unless it needs more fuel to make
a pickup or drop off.

3. Don’t move a truck or plane to a location in order to
pickup an object if there is already exists a similar vehi-
cle at that location with sufficient fuel capacity to take it
to its destination.

The times required to solve the fuel version of the logistic
problems are shown in the second set of columns of the table.
The data shows that our approach finds the metric problems
not that much more difficult than the standard problems.

6This test suite is not to be confused with the 30 problem ATT
logistics suite which are much easier.

[Wolfman & Weld, 1999] present a SAT encoding ap-
proach to solving these metric logistic problems. Their plan-
ner utilizes a combination of SAT solving and linear program-
ming: the SAT solver finds the plan while the linear program
solver ensures that the plan satisfies the (linear) metric con-
straints. The solution times they report are approximately 10
sec. for loga, 300 sec. for logb, 500 sec. for logc and 5000
sec. for logd (they also point out that their approach was
faster than previous approaches). These times indicate that
their approach scales poorly. Interestingly, in examining the
plans their system generated7 it was found that these plans
used much more fuel, e.g., 6426.67 units for the loga solu-
tion, and also contained many unnecessary moves, e.g., mov-
ing a truck back and forth without using it to transport any
packages. Their system does not use domain specific control
knowledge but some of the knowledge used here might be
useful in improving the performance of their system.

Then, we took the metric logistics domain and made it con-
current, so that the domain contained both metric quantities
and concurrent actions. In the concurrent version loads and
unloads take 1 unit of time to complete, and multiple con-
current loads/unloads into the same vehicle are allowed (the
same object cannot be manipulated concurrently). Refueling
a truck takes 1 unit of time, and an airplane takes 10 units.
Finally, driving a truck takes 5 units of time, and flying an
airplane takes time that is dependent on the distance between
the two locations. To the above control knowledge we added
the extra information

1. A vehicle can be moved to a location if there is an object
en route to that location (in a different type of vehicle)
that can be transported by the vehicle.

This allows the planner to get the vehicles moving so that they
can make progress towards the pickup location concurrently
with the object they are to pickup. For example, the planner
can start flying a plane to an airport while a truck is trans-
porting an object to the airport that needs to be transported to
another city. This decreases the duration of the plan. The last
set of columns shows our results for this domain. In this case
we show the duration of the plan as well as the length of the
plan (number of actions). Since the actions take at least 1 unit
of time, it can be seen that highly concurrent plans are being
found. The time to find a solution has also climbed, but not
by much, and so has fuel consumption. This makes sense, as
the concurrent plan will try to utilize more vehicles in order to
maximize concurrency, and more vehicles means more fuel.

Another planning system that is capable of dealing with
concurrent actions of different durations is the TGP system
[Smith & Weld, 1999] that is based on GraphPlan. How-
ever, its underlying algorithms are considerably more com-
plex than the approach we suggest here, and it cannot deal
with metric quantities. We were able to run the TGP sys-
tem on some simpler logistic problems involving varying ac-
tion durations but without fuel consumption. We found that
TGP could not solve any of loga–logd problems (when we
removed the fuel consumption component) even when given
an hour of CPU time. These results and the performance of
Wolfman’s LPSAT system, demonstrate that adding domain

7Thanks to Steve Wolfman for supplying us with these solutions.



Problem Standard Metric Fuel Fuel+Concurrent
CPU Len. CPU Len. Fuel CPU Dur. Len. Fuel

loga 0.02 51 0.06 60 2558 0.06 35.00 84 2518
logb 0.10 42 0.06 49 1392 0.08 35.25 90 2425
logc 0.02 51 0.08 60 3158 0.09 42.75 92 3158
logd 0.07 70 0.15 80 4384 0.19 67.25 154 4960
x-1 0.01 26 0.03 26 846 0.07 24.50 53 1994
x-2 0.03 33 0.11 33 2005 0.18 18.00 62 2187
x-3 0.15 55 0.39 55 3364 0.54 26.75 94 3963
x-4 0.22 59 0.53 59 3694 1.17 28.50 114 4562
x-5 0.02 22 0.03 22 1442 0.06 23.00 39 1825
x-6 0.33 72 0.83 74 5549 1.30 38.50 118 5886
x-7 0.04 34 0.22 34 2356 0.31 21.75 64 2855
x-8 0.16 41 0.77 41 3941 1.23 34.25 85 5571
x-9 0.41 85 1.17 85 3923 2.14 28.50 152 5595
x-10 0.50 105 1.77 106 11285 1.69 60.50 184 14554
x-11 0.05 31 0.12 32 859 0.20 16.75 49 1062
x-12 0.35 41 1.06 41 3415 3.16 25.50 73 3528
x-13 0.68 67 3.20 68 6736 2.95 27.25 110 8235
x-14 0.37 94 2.27 94 4641 1.87 24.00 142 5774
x-15 0.12 94 0.48 97 1406 0.43 47.75 151 1786
x-16 0.26 58 1.07 58 1937 2.01 29.00 93 2319
x-17 0.08 45 0.39 45 945 0.72 21.75 76 1497
x-18 3.23 170 10.24 174 15914 7.12 43.50 275 24111
x-19 2.24 153 5.17 159 4373 7.40 48.25 270 7229
x-20 2.34 150 7.35 156 7527 7.02 56.00 226 7999
x-21 1.52 104 4.03 105 4621 9.05 37.00 184 5803
x-22 17.95 296 34.75 305 25121 33.87 79.00 498 35278
x-23 0.25 115 1.20 115 3796 1.08 28.75 183 5728
x-24 0.30 41 1.40 41 1356 7.99 26.00 77 1759
x-25 7.66 190 16.77 196 14209 16.65 50.00 284 19203
x-26 4.89 194 11.65 203 39616 17.40 241.50 361 44291
x-27 2.90 149 16.44 155 7041 14.03 54.00 263 11293
x-28 26.10 274 63.86 283 13855 197.38 58.75 478 21899
x-29 20.36 330 43.08 339 26236 22.03 58.75 531 44308
x-30 4.60 136 10.57 139 10648 63.97 55.00 265 15265

Table 1: Test results on versions of Logistics

specific control knowledge and utilizing our forward chain-
ing approach allows us to move to another level of planning
performance.

There are two other planning systems that are quite simi-
lar to ours, [Pirri & Reiter, 2000] and [Kvarnström, Doherty,
& Haslum, 2000]. Both of these planner utilize the TLPLAN
approach and display good performance. However, both of
these systems utilize a rich logical representation for actions
and states, whereas the approach we present here can be uti-
lized by any forward chaining planner with the much simpler
STRIPS/ADL action representation.

Finally, temporal refinement planners are an alternate ap-
proach to planning with concurrent actions. The IxTeT plan-
ner is an impressive system capable of dealing with resources
and concurrent actions [Ghallab & Laruelle, 1994]. NASA’s
remote agent project RAX also utilized a refinement plan-
ner. Temporal refinement planners operate by taking an initial

plan that typically specifies the initial state and various goal
conditions, and refining that plan by adding additional actions
to achieve open conditions or constraints to protect other con-
ditions. A key component of these planners is the use of con-
straint propagation to maintain the temporal constraints im-
posed on the plan during the refinement process. Thus these
planner search in a space of partially specified plans using
constraint propagation to detect deadends, rather than in a
space of fully specified worlds as in our approach. The RAX
planner also utilized extensive search control knowledge in
order to achieve its good level of performance. However, the
control knowledge was at a much lower level and was more
procedural in style than that utilized by our approach. Many
of the standard concurrency control paradigms are easier to
specify with a temporal refinement planner than in our ap-
proach. However, it should be possible to develop macros for
our approach to encapsulate many of these paradigms thus



easing the specification problem.

5 Conclusion
Forward chaining’s ability to deal with metric quantities was
already documented, but in this paper we have demonstrated
that there is also a simple way of extending forward chaining
to deal with concurrent actions. These two features can then
be combined with other ideas like search control knowledge
to yield a powerful approach to planning in the presence of
concurrent actions of differing durations and resources.

Our empirical results show that complex and lengthy plans
can be generated with our approach, and serve to demonstrate
the potential of our approach. Further verifying that potential
is the subject of future work.

Other items of future work include (a) higher level con-
structs for concurrency control implemented as macros that
can are expanded to the very general lower level constructs
already supported by our system, and (b) access by actions to
the event queue. This last is worth further explanation. Con-
sider a situation where a truck is being driven from location A
to location B. At the start of the drive its arrival at location B
is entered into the event queue. Now it could be that location
B only has capacity for one truck, thus a subsequent action
should not be scheduled that would cause another truck to ar-
rive at location B at the same time. Checking this “precondi-
tion” involves querying the event queue. A different example
is when via some other action or event the truck gets a flat tire
en route. This will delay its arrival time. Thus the “flat-tire”
event must not only change the current state of the world but
it must also alter events in the event queue. Simply put ac-
tions must be able to treat the event queue just like the state’s
database: they must be able to query and update it. With this
ability it becomes easier to model on-going processes that can
be interrupted and restarted, something that is cumbersome in
our current model.

Acknowledgments The referees provided some very useful
suggestions that helped improve the paper.

References
[AIPS, 2000] AIPS 2000. Artificial Intelligence Planning &

Scheduling 2000 planning competition.
http://www.cs.toronto.edu/aips2000/

[Bacchus & Ady, 1999] Bacchus, F., and Ady, M. 1999. Pre-
condition control. available at

http://www.cs.toronto.edu/˜fbacchus/on-line.html

[Bacchus & Kabanza, 1998] Bacchus, F., and Kabanza, F.
1998. Planning for temporally extended goals. Annuals
of Mathematics and Artificial Intelligence 22:5–27.

[Bacchus & Kabanza, 2000] Bacchus, F., and Kabanza, F.
2000. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence 116:123–
191.

[Bacchus, 2001] Bacchus, F. 2001. On line experimental
data sets.

http://www.cs.toronto.edu/˜fbacchus/tlplan.html

[Doherty & Kvarnström, 1999] Doherty, P., and Kvarn-
ström, J. 1999. Talplanner: An empirical investigation of
a temporal logic-based forward chaining planner. In Pro-
ceedings of TIME ’99, IEEE Computer Society, 47–54.

[Geffner, 2000] Geffner, H. 2000. Functional strips: a
more flexible language for planning and problem solv-
ing. In Minker, J., ed., Logic-Based Artificial Intelligence.
Kluwer. in press.

[Ghallab & Laruelle, 1994] Ghallab, M., and Laruelle, H.
1994. Representation and control in IxTeT, a temporal
planner. In Proceedings of the International Conference
on Artificial Intelligence Planning, 61–67. AAAI Press.

[Halpern & Vardi, 1991] Halpern, J. Y., and Vardi, M. Y.
1991. Model checking vs. theorem proving: a manifesto.
In Allen, J. A.; Fikes, R.; and Sandewall, E., eds., Pro-
ceedings of the International Conference on Principles
of Knowledge Representation and Reasoning. San Mateo,
CA: Morgan Kaufmann, San Mateo, California. 325–334.

[Hoffmann, 2000] Hoffmann, J. 2000. Fast-forward.
http://www.informatik.uni-freiburg.de/˜hoffmann/ff.html.

[Jónsson et al., 2000] Jónsson, A. K.; Morris, P. H.;
Muschettola, N.; and Rajan, K. 2000. Planning in in-
terplanetary space: Theory and practice. In Proceedings
of the International Conference on Artificial Intelligence
Planning, 177–186. AAAI Press.

[Kibler & Morris, 1981] Kibler, D., and Morris, P. 1981.
Don’t be stupid. In Proceedings of the International Joint
Conference on Artifical Intelligence (IJCAI), 345–347.

[Kvarnström, Doherty, & Haslum, 2000] Kvarnström, J.;
Doherty, P.; and Haslum, P. 2000. Extending TALplanner
with concurrency and resources. In Proceedings of the
14th European Conference on Artificial Intelligence
(ECAI-2000).

[Pednault, 1989] Pednault, E. 1989. ADL: Exploring the
middle ground between STRIPS and the situation calcu-
lus. In Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning,
324–332.

[Pirri & Reiter, 2000] Pirri, F., and Reiter, R. 2000. Planning
with natural actions in the situation calculus. In Minker, J.,
ed., Logic-Based Artificial Intelligence. Kluwer Press. in
press.

[Smith & Weld, 1999] Smith, D. E., and Weld, D. S. 1999.
Temporal planning with mutual exclusion reasoning. In
Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 326–337.

[Wolfman & Weld, 1999] Wolfman, S. A., and Weld, D. S.
1999. The lpsat engine and its application to resource plan-
ning. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 310–317.


