
A SOFTWARE QUALITY WORKBENCH FOR TESTABLE
REQUIREMENTS AND SPECIFICATIONS

FARAZ AHMADI TORSHIZI

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF COMPUTER SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE AND ENGINEERING
YORK UNIVERSITY

TORONTO, ONTARIO
AUGUST 2007



A SOFTWARE QUALITY WORKBENCH FOR
TESTABLE REQUIREMENTS AND

SPECIFICATIONS

by Faraz Ahmadi Torshizi

a thesis submitted to the Faculty of Graduate Studies
of York University in partial fulfilment of the require-
ments for the degree of

MASTER OF COMPUTER SCIENCE
c© 2007

Permission has been granted to: a) YORK UNIVER-
SITY LIBRARIES to lend or sell copies of this disserta-
tion in paper, microform or electronic formats, and b)
LIBRARY AND ARCHIVES CANADA to reproduce,
lend, distribute, or sell copies of this thesis anywhere
in the world in microform, paper or electronic formats
and to authorise or procure the reproduction, loan, dis-
tribution or sale of copies of this thesis anywhere in the
world in microform, paper or electronic formats.

The author reserves other publication rights, and nei-
ther the thesis nor extensive extracts for it may be
printed or otherwise reproduced without the author’s
written permission.



A SOFTWARE QUALITY WORKBENCH FOR TESTABLE
REQUIREMENTS AND SPECIFICATIONS

by Faraz Ahmadi Torshizi

By virtue of submitting this document electronically, the author certifies that this
is a true electronic equivalent of the copy of the thesis approved by York Univer-
sity for the award of the degree. No alteration of the content has occurred and if
there are any minor variations in formatting, they are as a result of the coversion
to Adobe Acrobat format (or similar software application).

Examination Committee Members:

1. Dr. Jonathan S. Ostroff

2. Dr. Vassilios Tzerpos

3. Dr. Aijun An

4. Dr. Dong Liang



Abstract

In this thesis, customer requirements (in the problem domain) are differentiated

from design specifications (in the solution space). The design specification is the

artifact intermediate between the implemented code and the customer require-

ments. We argue that the customer requirements and the design specifications

should be testable and testable early in the design cycle leading to early detec-

tion of implementation and specification errors. We thus provide a method (and

a tool called ESpec) for early requirement and specification descriptions and test-

ing. The core idea behind early testable requirements is that the problem is de-

scribed before we search for a solution and the problem description drives the

design.

The method follows the single model principle, i.e., design specifications

written using expressive mathematical models such as sets, bags, sequences and

maps are contracts that are integrated into the program text itself. These tightly

integrated specifications allow inconsistencies between code, specifications and

iv



requirements to be detected as early as possible and during the lifetime of the

code. Customer requirements are described using Fit tables and specification vi-

olations (where they occur) are indicated in the Fit tables. The method does not

depend on a particular code development methodology (e.g. Agile vs. Conven-

tional) and can be used whatever development methodology is preferred.
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1 Introduction

The primary measure of success of a software system is the degree to which it

meets the purpose for which it was intended. Requirements engineering is the

process of discovering that purpose, by identifying stakeholders and their needs,

and documenting these in a form that is amenable to analysis, communication,

and subsequent implementation [69].

There are a number of inherent difficulties in eliciting and communicating

the requirements. There may be many stakeholders (paying customers, users

and developers) with varying goals that may conflict. These goals may not be

explicit; the goals may be difficult to articulate and even vague or ambiguous.

Inevitably, satisfaction of these goals may be constrained by a variety of factors

outside their control [69]. As Fred Brooks wrote, we are dealing with a very

difficult problem:

The hardest part of building a system is deciding what to build. No
other part of the conceptual work is as difficult as establishing the
detailed technical requirements, including all interfaces to people, to
machines and to other software systems. No other part is more diffi-
cult to rectify later [40].
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Surveys by the Standish Group [86] appear to show that 23% of all software

projects fail before they are completed. Of the remaining projects that are com-

pleted, 49% are significantly late, over budget, or do not include all the essen-

tial features and the requirements. Only 28% of software projects succeeded,

i.e., ship on time, within budget, and with all of the requested features [45]. Al-

though the precision of these statistics have been challenged [44], nobody doubts

that the problems are significant [43].

The most significant factors responsible for the lack of success are lack of cus-

tomer input, incomplete requirements and specifications and changing require-

ments and specifications. In their recipe for success the Standish group recom-

mends that stakeholders develop the ability to “clearly articulate requirements”

and translate these requirements between the business people (the customer)

and the technical people (software developers) [45].

It is generally not an easy task for a software developer to write and com-

municate the requirements. Both formal [69] and informal methods for doing so

have been developed, but as one IT specialist wrote:

I was once in a meeting in which a team had to review a business
specification for an application enhancement. The meeting had been
scheduled for one hour. It lasted for three painful hours, because
the team was stumbling over each paragraph: Verbosity, ambiguity
and an avalanche of bullets conspired to hide the meaning of those
phrases...

UML might be king in academic circles, but English is still the pre-
ferred and most-used tool in the field when it comes to communica-
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tion between business users and developers. I have recently heard a
tool vendor trying to score points for his product based on the fact
that the product uses plain English, not UML, in order to capture re-
quirements [4].

Writing a good requirements document is difficult in the eyes of most devel-

opers. It delays getting on with the coding and it is thus considered a waste of

time. But ignoring the requirements is a recipe for disaster (as pointed out by

Brooks)—nothing is more difficult to rectify than building the wrong product

(the one your customer does not want).

As discussed by Berry et. al. [14] there are a number of reasons that writing

a requirements document for a computer-based system before implementing it is a

good idea:

1. The process of writing the requirements document of the system under

construction is a good way to learn its requirements and to make it clear

what must be implemented to obtain the required system.

2. The process of writing the requirements document of the system helps to

reconcile differences among the stakeholders.

3. The requirements document allows the customers of the system to validate

that the projected system will be what they want before resources are spent

implementing a possibly incorrect system.
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4. The requirements document allows deriving both covering test cases and

expected results that allow to verify that the implementation of the system

does what it is supposed to do.

Despite the clear benefits of writing the requirements document before cod-

ing the system, many projects find themselves unable to produce the require-

ments document for a variety of reasons, some technical and some social [14]:

1. It is difficult to write a good requirements document, one that specifies ex-

actly what the system under construction is supposed to do without limit-

ing unnecessarily how to implement it (i.e., it is hard to specify what rather

than how the system must perform).

2. “Participants in most projects these days believe that they do not have the

time to do so, that it is necessary to proceed immediately, if not before, to

coding, in order to meet the codes delivery deadline or to be the first in the

market with the codes functionality (begging the question of how do they

know what to implement anyway if requirements are not specified).” [14]

3. Participants in most projects these days perceive that time spent on writing

requirements document is wasted since the requirements will change any-

way and the requirements may never be read, even by the implementers.
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The authors of [14] suggest that a user manual makes an excellent software

requirements document. The method produces a document that delivers the

benefits of writing a requirement document before implementation (enumerated

earlier) and helps mitigate the three problems that discourage the production of

requirements document before implementation.

1.1 Thesis Motivation

Suppose we think of a requirements document as a user’s manual (or alterna-

tively, as a document containing a mix of English text, descriptions of user in-

terfaces and informal sketches). Now, a user’s manual cannot be directly tested

(although it may be used as the basis for developing tests). Is there a way to

make a requirements document such as a user’s manual directly testable? In

this thesis, we will investigate the use of the Fit framework [31] to do just this

by adding some additional information in a notation that is “user-friendly”, i.e.,

understandable by our customers and mechanically testable with the right kind

of tools. The idea of specifying before implementing and specifying in a testable

way will be used throughout the proposals in this thesis from requirements to

the final code.

In this thesis, customer requirements (in the problem domain) are differenti-

ated from design specifications (in the solution space). A design specification is
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the artifact intermediate between implemented code and the customer require-

ments. We argue that customer requirements and design specifications should

be testable and testable early in the design cycle leading to early detection of re-

quirement and specification errors. We thus provide a method (and a tool called

ESpec for Eiffel) for early requirement and specification descriptions and testing.

The core idea behind early testable requirements is that the problem is described

before we search for a solution and the problem description drives the design.

The method follows the single model principle [76], i.e., design specifications

written using expressive mathematical models such as sets, bags, sequences and

maps are contracts that are integrated into the program text itself. These tightly

integrated specifications allow inconsistencies between code, specifications and

requirements to be detected as early as possible and during the lifetime of the

code. Customer requirements are described using Fit tables and specification vi-

olations (where they occur) are indicated in the Fit tables. The method does not

depend on a particular code development methodology (e.g. Agile vs. Conven-

tional) and can be used whatever development methodology is preferred.

This method is presented in the Eiffel language [66] which has a mature con-

tracting mechanism, but the conceptual ideas could be used in any of the emerg-

ing contracting languages such as Spec# [9] and ESC/Java [59].
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1.2 Requirements vs. Specifications

According to Jackson [54], a software application such as a word processor is

a machine—one similar to a typewriter, but with more versatility. Similarly, a

software telephone switch is a machine—one similar to an old-fashioned tele-

phone exchange, except that the new kind of machine does not consist of rotary

switches and clattering relays. The purpose of software development is to build

special kinds of machines. A general purpose computer accepts our description

of the particular machine that we want (as described in the code), and converts

itself into the desired machine.

1.2.1 The Machine Domain and the Problem Domain

The purpose of the machine (such as a software telephone switch) is for it to in-

teract with and achieve some effect in the world (e.g., help people make phone

calls). The part of the world in which the machine’s effects will be felt—and

which is of most interest to customers of the machine—is called the problem

domain, which we denote by the letter P. It is always right to pay serious atten-

tion to the problem domain. We let the letter C stand for the machine (i.e., the

implemented code).

If we are developing a program to control an airplane, we obviously need
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to understand how the airplane works, how it lands and takes off on runways,

and how it can be controlled while in the air. We may also need to understand

intangibles associated with the problem domain, such as the rules for safe avia-

tion. This understanding must be made prior to any attempt to lay out the data

structures and data flow of the code that will ultimately control the airplane. The

phenomena (states and events) of the problem domain are clearly distinct from

the phenomena of the machine domain (code and data structures) required to

operate it.

1.2.2 Requirements

The phenomena of the problem domain determine the customer’s Requirements

(R). Requirements are the goals of the customer expressed in terms of the phe-

nomena of the problem domain. Software requirements may be expressed in

various formal notations (e.g., predicate logic) or semi-formal notations such as

UML (e.g., use cases). But, more often than not, requirements are expressed us-

ing a combination of English text, user interface drawings and rough sketches.

As mentioned earlier, a well-written user’s manual is a type of requirements

document.

Requirements are therefore about the phenomena of the problem domain P

and not about the phenomena of the code C. Not all the phenomena of the prob-

8



lem domain are necessarily shared with the code. But, the code does share some

phenomena with the problem domain. The code can try to ensure that the re-

quirements are satisfied by manipulating the shared phenomena at the interface

of P and C. An example of a shared phenomenon is the event of a passenger

sitting in an aircraft seat and pushing a button to turn on a light. The push of the

button is a phenomenon that is shared at the interface between the passenger (in

the problem domain) and the control software (in the machine domain). To the

passenger the event is “push the button”, and to the machine the event might be

“input signal on interrupt line L1”.

1.2.3 Specifications

As we mentioned, not all of the phenomena of the problem domain are shared

with the code. There can thus be a gap between the customer’s requirements

and what the code can deliver directly. A Specification (S) is a bridge between the

phenomena of the problem domain and the phenomena of the code, describing

phenomena (inputs and outputs) at the intersection of P and C.

A specification in this context is a precise mathematical description of some

desired unit of functionality of the product. There are many types of system

specification which are written in different languages (e.g., formal languages like

B [1]). A specification is the developer’s model of the software product under con-
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Figure 1.1: The Machine and the Problem Domain

struction, akin to an engineer’s blueprint and can be expressed in several ways,

such as a contract between the supplier and the user of the product. Although

a specification may itself be (a high level) program text and may also be exe-

cutable, it is not the same thing as the final code for a software product. Rather,

it is an abstraction of the program under development, which allows us to reason

about the program during construction.
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1.2.4 An Example

Consider the diagram in Fig. 1.1 illustrating the problem of measuring vital signs

such as the heartbeat of a patient in an ICU taken from [55]. There are four

different descriptions of the patient monitoring system:

P—Problem Domain: A patient’s heart can beat from 0 to 170 beats/Sec (prede-

termined by human physiology).

R—Requirement: Monitor the patient’s heart beat and sound an alarm if it is

outside of the range from 60 to 100 beats per minute.

S—Specification: Alarm-Register := False when the Sound-Pulse-Register is

outside the range hexadecimal 3C to hexadecimal 64.

C—Computer Code: The machine code that implements specification S.

The central requirement R is to monitor the heartbeat—not the sound pulses

or the register values in the machine (i.e., the implemented computer code). The

requirements are the effects in the problem domain that your customer wants

the machine to guarantee. The requirements are all about the phenomena of the

problem domain (not the machine). The predicate P described the fixed con-

straints emerging from the problem domain.
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The specification S refers to phenomena shared by the problem domain and

the machine. S specifies a design solution that we hope to satisfy the require-

ments R. Finally, C is a description of the computer code needed to implement

the design specification S.

1.3 Rational Development Process

Our core idea behind early testable requirements and specification is as follows:

Requirements should be testable as early as possible so that the problem is stated

before we search for a solution. We also want the problem to drive the design. A

rational software development might proceed as follows:

• Elicit and document the Requirements R of the customer in terms of the

phenomena in the problem domain. Constraints of the problem domain

are described by P.

• From the Requirements, derive a Specification S for the software code that

must be developed.

• From the Specification, derive a machine C (the code).

We may describe the development process as follows:
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1. Specification correctness: P ∧ S → R

2. Implementation correctness: C → S

3. System correctness: From (1) and (2) conclude that: P ∧ C → R

The first equation asserts that any behaviour of the system that satisfies the

specification S in the problem domain P also satisfies the requirements R. Equa-

tion (1) is called specification correctness because it says that the solution S speci-

fied by the developer will satisfy the customer’s goals as expressed in R (i.e., we

are developing the right product—the one desired by the customer as described

by R).

The second equation asserts that any behaviour executed by the implemented

code C satisfies the specification S. This means that the software product is cor-

rect and we thus call equation (2) implementation correctness. Equation (1) checks

that we are developing the right product (often called validation) and (2) checks

that we are developing the product right (often called verification).

The third formula, which is a consequence of formulas (1) and (2), asserts

that our implemented solution C in the problem domain P satisfies the customer

requirements R.
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It is important to note that we do not pose any obligations on the developers

to follow a strict methodology:

Anyone who has been involved in intellectually taxing activities try-
ing to understand and solve a complex problem knows that the pro-
cess of arriving at a good solution is far from regular. On the contrary,
the most common impression during the course of the effort is often a
sense of total disorder and utter confusion. This is also true for cases
where the final result eventually turns out to be very simple and ele-
gant, and the greatest sense of confusion is often experienced shortly
before the crucial perspective is discovered. So the bad news is that
a rational process, where each step follows logically from the previ-
ous ones and everything is done in the most economic order, does
not exist. Complex problem solving just does not work that way. But
the good news is that we can fake it. We can try to follow an estab-
lished procedure as closely as possible, and when we finally have our
solution (achieved as usual through numerous departures from the
ideal process), we can produce the documentation that would have
resulted if we had followed the ideal process. [79]

This gives us a number of advantages. (a) The process will guide us, even if

we do not always follow it. When we are overwhelmed by the complexity of a

task, it can give us a good idea about how to proceed. (b) We will come closer

to rational modeling if we try to follow a reasonable procedure instead of just

working ad hoc. (c) It also becomes easier to measure progress. We can compare

what has been produced to what the ideal process calls for, and identify areas

where we are behind (or ahead).
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1.3.1 Testability and Tool Support for Testability

A key idea in this thesis is that Requirements and Specifications should be testable.

The distinction between a Requirement and a Specification (see previous section)

may now be used to define what we mean by testable Requirements and Speci-

fications.

What are testable requirements? Formula (1) in the previous section asserted

the following relationship between a specification S and a requirement R: P ∧

S → R. To test requirement R is to check that the suggested solution S entails

the requirement. If the requirements are described informally (e.g., as English

text) then there is no real way to test them mechanically. Furthermore, as the so-

lution S is refined, we will want to check P∧ S → R repeatedly (as in continuous

regression testing). So it would be advantageous to mechanize requirement test-

ing. This means that both specifications and requirements must be formalized in

order to mechanize requirement testing.

Our approach will be to use Fit tables to formalize requirements in a language

understandable to customers (i.e., it is not a programming language). Specifica-

tions will be formalized either as ML-Contracts or as Scenario Tests as will be

explained in the sequel.

What are testable specifications? Formula (2) in the previous section asserted
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the following relationship between implemented code C and the specification S:

C → S. To test the specification S is to verify that the implemented code satisfies

the specification. If the specification is an ML-Contract, we may do this veri-

fication using either run-time assertion checking or formal theorem proving. If

the specification is a Scenario Test, then the check can be performed by executing

the code and checking that the results specified in the Scenario Test are achieved.

Thus, we can also mechanize specification testing.

1.3.2 The ESpec Tool for Testability

The tool support developed as part of this thesis is called ESpec. The purpose of

ESpec is to provide mechanized support throughout the software development

process for writing and testing customer requirements and design specifications.

ESpec itself consists of three components: ES-Fit, ES-Test and ES-Verify.

Consider the diagram in Fig. 1.2 which provides an example of a Fit table

(labeled “Requirements”). This table describes a scenario provided by the cus-

tomer as a sequence of actions and checks that must hold after these actions are

taken. The requirements document (e.g., a user manual) can be decorated with

such tables which then become testable.

How does the developer satisfy the requirements specified in the customer-

provided Fit table? The developer will need to write two kinds of classes: Fixture
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classes and classes of the business logic (see Fig. 1.2). Fixtures are glue code

between the customer-provided requirements and the business logic C. ES-Fit

provides libraries that allow the developer to easily develop such Fixtures that

connect the requirements to the business logic. ES-Fit uses the developer written

Fixture classes to parse the requirement document, extract the tables, interpret

the tables and invoke the relevant business logic and then reflect the results of

running the business logic back to the tables in the requirements document. The

rows in tables where the checks succeed are coloured green and those that fail

are coloured red.

Fig. 1.3 shows the design cycle starting with requirements elicitation which

is followed by design, coding and then (conventionally) testing. Fit tables can of

course be developed by customers early in the process, before design and coding

activities. As the design proceeds, the implemented code can be continuously

tested against the behaviour described in the Fit tables.

The ES-Test component of the ESpec tool is used to check that the imple-

mented code satisfies the design specifications. Specifications are written using

Scenario Tests and ML-Contracts.

In Test Driven Development [10], unit tests are themselves executable code

that check the correctness of a “unit” of some module such as a method. The

critical insights are (a) that the test can be written before the method implemen-
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tation, and (b) that the test is a specification of the method. By forcing developers

to specify the functionality up-front, the description becomes more abstract (fo-

cussed more on what the feature should do rather than how it should do it) and

thus closer to a specification. Scenario Tests use the same framework as unit tests

but specify the interactions or collaborations among various modules (classes) of

the system to achieve some unit of functionality. Like unit tests, Scenario Tests

can be written before any class implementations. As the design proceeds and

the code is produced, the implemented code can be tested continuously to en-

sure that the Scenario Tests (and any unit tests) are satisfied.

Design by Contract (DbC) [64] is a way of specifying the mutual obligations

and benefits of clients and suppliers of classes. DbC is an important part of Eiffel

[66], and it is also supported in UML [38] via OCL [26]. The standard Eiffel DbC

contracts do not have the full mathematical power of OCL. Thus, for specify-

ing contracts, we use ML-Contracts [72] developed by a team that included this

author. ML is a mathematical modeling library written in Eiffel that uses math-

ematical sets, bags, sequences and maps in contracts that are integrated into the

program text itself. These tightly integrated specifications allow inconsistencies

between code, specifications and requirements to be detected as early as possible

and during the lifetime of the code. As defined in the OMG standard [70], OCL

is a description language and no executable semantics is supplied. Thus, OCL
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cannot be used to test code (say Java) without third party add-ons. By contrast,

the ML library is executable code written in Eiffel. As a result, implemented code

can be tested against the specifications written as ML-Contracts. ML-Contracts

satisfy the single model principle [76], i.e., the contracts are part of the program

text.

ES-Test checks ML-Contracts via runtime assertion checking. However, as

discussed in [72], Eiffel code with embedded ML-Contracts can also be verified

using a theorem prover. The ES-Verify component of ESpec may be used to run

the theorem proving tools developed in [72].

Using ESpec, testable requirements and specifications can be written and

checked under a single green/red bar as will be explained in the sequel.

1.4 Organization of this thesis

This thesis is organized as follows:

• Chapter 1 is an introduction that presents the background, motivation and

contribution for the method and the tool presented in this thesis.

• Chapter 2 discusses the idea of Testable Specifications by introducing vari-

ous types of system specifications such as ML-Contracts and Scenario Tests

that we use in our method. This chapter provides an overview on how
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ESpec’s Unit Testing framework (ES-Test) can be used to capture and test

these specifications throughout the development process.

• Chapter 3 presents the idea of Testable Requirements by giving an overview

of the Fit framework and various types of tests supported by this frame-

work. We also go over various kinds of Fixture code (the glue code be-

tween the customer-provided Fit tables and the system under test). With

simple examples we show how Testable Requirements can be used to de-

tect specification and/or implementation errors in the underlying system.

• Chapter 4 illustrates our method of Early Testable Requirements and Speci-

fications with a case study (Chat room example). This example shows how

specification and implementation bugs can be detected throughout the de-

velopment process.

• Chapter 5 is mainly devoted to the design and implementation of ESpec

tool itself. We describe the challenges and our design decisions in devel-

oping ES-Fit and integrating various components of the ESpec tool such as

ES-Test, ES-Verify and Mathematical Library (ML).

• Chapter 6 discusses the related research and compares this work to others.

• Chapter 7 concludes the thesis.
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• The Appendix contain a brief introduction to Eiffel language and agent

mechanism (Appendix A) the code for the example discussed in Chapter 4

(Appendix B), a discussion on ES-Verify (Appendix C). This component of

the tool translates Eiffel code with ML-Contracts into the Perfect Developer

specification language. The generated code may then be verified using the

Perfect Developer automatic theorem prover. Feedback from the theorem

prover is reflected back into the ESpec tool. Finally, the ESpec tool user’s

manual and the screen shots are provided in Appendix D.

1.5 Research contributions

The method and ESpec tool reported in this thesis was the basis of an invited

contribution to the Tests and Proofs Conference (TAP’07) in Zurich [74]. The con-

tributions are listed below.

1.5.1 Fit framework for Eiffel

The Fit framework of [68] may be used to write testable customer requirements

prior to (or during) the code development. This thesis provides the first imple-

mentation of Fit adapted to and extended for Eiffel.
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1.5.2 Extensions to the Fit framework

The original Fit framework of [68] is written in Java. Fit tests are run from the

command line. The Fit framework developed in this thesis (called ES-Fit) is an

Eiffel library for writing Fit Fixtures (the glue code between the Fit tables and the

system under test) and a convenient graphical tool for editing and running Fit ta-

bles and displaying the results of Fit tests. For the convenience of customers and

developers, ES-Fit extends the standard framework with new constructs which

appear as keywords in Fit tables. For example, the keyword reference is used

by a customer to describe a Fit table that acts as a global database of values that

may be queried from any other Fit table. The fixture library is designed to pro-

vide flexible constructs for defining new fixture types.

1.5.3 Integrating ML-Contracts into Fit tables

Eiffel has a built-in Design by Contract (DbC) mechanism. A further contribu-

tion is that ES-Fit ensures that contract violations are reported directly in Fit

tables. This allows the customer to observe and report these violations allowing

customers to provide early and specific feedback to developers.

The built-in Eiffel DbC mechanism is incomplete. It does not by itself allow

for complete abstract mathematical specifications. For example, a deferred class
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for a stack has no implementation and thus the contract for the push operation

(for example) would be incomplete. The authors of [72] (including this author)

developed an expressive executable mathematical library in Eiffel called ML

based on sets, bags, sequences and maps. With ML, complete contracts based on

mathematical models become possible obeying the single model principle [76]

(i.e., the mathematical contracts are part of the program text). Since the contracts

are executable, implementations can be checked against the code at runtime via

assertion checking. As described in [72], ML may be translated into the specifi-

cation language of the Perfect Developer theorem prover and implementations

can be mechanically verified against the contracts for a subset of Eiffel. ML is

part of the ESpec software quality workbench. ESpec tool is described below.

1.5.4 ES-Test improvements

ES-Test is a successor to an Eiffel unit testing library called E-Tester reported in

[73]. The contribution of this author to further development of the tool includes:

• Allowing unit tests to be integrated with other checks (such as Fit tests and

static verification) in a single test suite.

• The addition of Tagged Violation Tests (see section 2.5.2).

• Complete reports of the type of contract violation and the tag involved in
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the violation (both in the GUI and the command line version of the tool),

e.g., a developer may use the show error command to reflect the complete

call stack in the report (see Chapter 5).

1.5.5 ESpec tool: software quality workbench

• The ESpec tool is another contribution of this thesis that was developed

to support testable requirements and design specifications in an integrated

framework consisting of three components: ES-Fit, ES-Test and ES-Verify.

The tool allows the developer to write a test suite that consists of Fit fixtures

for running Fit tables (executed by ES-Fit), Scenario and unit tests (exe-

cuted by ES-Test) and code verification against ML-Contracts (executed by

ES-Verify).

The design in Fig. 1.4 shows how a developer can integrate Fit table checks

(for requirements) and specification checks within a single test suite. Eif-

fel’s multiple inheritance capability [67] was useful in this respect as a test

suite (ES SUITE) inherits ES-Fit, ES-Test and ES-Verify capabilities simulta-

neously.

• In Chapter 4 of the thesis, a chat application is developed using Fit tables

(for testable customer requirements) and ML-Contracts and Scenario Test
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Figure 1.4: ES SUITE architecture

(for testable design specifications). This chapter illustrates the integrated

use of the method and tool for early testable requirements and specifica-

tion.

• A Scenario Test involves a collaboration between a number of classes to

achieve some specified result that emerges through the collaboration. ES-

Test will report contract violations during the collaboration (if they fail) as

well as failure to achieve the specified result. ESpec aggregates all tests

under a single green/red bar to report overall success or failure.

1.5.6 Detection of specification and code errors

Every time the ESpec tool is invoked all the requirement and specification tests

are executed. Two types of errors may be reported by the tool. A category one
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error occurs when a customer requirement (in a Fit Table) is checked against the

implemented code and the actual result generated by the code does not match

the customer’s expectation (no contract violation is reported, just a mismatch

in expectation). Such an error may be an indication of a specification problem

because a properly specified design should have generated a contract violation.

A category two error is any contract violation whether it is reported in a Fit

table or elsewhere. Such a violation may indicate an implementation problem in

the code (the code does not satisfy the design specification).

1.5.7 ESpec maintenance and support

ESpec has been used as a mandatory part of a Software Design1 course at York

University since its first release in the Winter of 2005. ESpec is maintained under

the GPL licence for public download (see http://www.cse.yorku.ca/∼sel/espec/).

About 3000 downloads have been recorded worldwide. The tool has been men-

tioned on various Eiffel groups2.

1AK/CSE 3311 3.00 Software Design: A study of design methods and their use in the correct
implementation, maintenance and evolution of software systems. Topics include design, im-
plementation, testing, documentation needs and standards, support tools. Students design and
implement components of a software system.

2e.g.,
teameiffel.blogspot.com/2006/11/eiffel-specification-package-updated 15.html
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2 Testable Specifications

In the previous chapter, we distinguished between Requirements and Specifica-

tions (see Section 1.2). In this chapter, we explore two different types of Specifi-

cations: ML-Contracts [72] and Scenario Tests.

ML-Contract and Scenario Test specifications are “testable” in the sense that

the underlying code implementation can easily be checked against them. These

specifications may be written early, i.e., they may be written before the imple-

mented code is developed. As discussed in Section 1.1, early specifications are

not enforced by our method and tool; thus, specifications may be written at any

point in the development. However, the earlier they are written, the earlier they

can be used by developers to detect bugs in the development process. We show

how our software quality workbench, ESpec, is used as an integral part of the

development process.

The technique (and accompanying ESpec tool) use Eiffel programming lan-

guage [66] (and its UML-like modeling language, BON [75]). However, these

28



techniques are not limited to Eiffel and can be used with any language that has a

suitably expressive contracting mechanism (e.g., ESC/Java2 [59] and Spec# [8]).

A snapshot of ESpec GUI showing the use of the ES-Test component is shown in

Fig. 2.1.

Figure 2.1: Snapshot of ESpec GUI after execution of ES-Test

As was described in the first chapter, specifications are descriptions of prop-

erties of interest about a system. When developers have a clear understanding

of the requirements, they can start to produce system specifications. There are

many types of system specifications which are written in different languages
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(e.g., formal languages like B [1]). Each type of system specification has a differ-

ent characteristic and serves a different purpose.

However, in general, a specification describes a property of the code (of the

program, or machine, under construction) that is an abstraction of the program

which also allows us to reason about it during its construction. For example,

the specification of a routine to reverse a list of items does not explain how to

reverse elements in the list but what the reverse routine does. A specification of

reverse may, for example, express the relationship between the initial and final

states of the list. We can then reason about the list. For example, if the reverse

routine has been specified correctly, then reversing the list and reversing it again

should yield the original list. This activity may take place long before the body

of the routine is implemented.

Assuming that we have a notation for expressing specifications, then the for-

mula C → S expresses the desired relationship between a specification S of a

system and the implemented code C for that system (see implementation cor-

rectness in Section 1.3). This relationship can be used to test that the specification

is satisfied, i.e., to check that system behaviors as generated by the code C satisfy

the specification S.

Such tests of specifications could be done manually. However, it would be a

tedious task and prone to human error. It is desirable that the checks for correct-
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ness be done mechanically where possible. For mechanized checking we obvi-

ously require that the specification notation be amenable to mechanized testing.

Both ML-Contract and Scenario Test specifications can be checked mechanically

as we explain in the following sections.

2.1 Why double the work?

Our proposal is that developers (a) write machine checkable specifications and

(b) then implement the code. It is reasonable to ask: “does this approach not

unnecessarily double the work of the developer?”. Why not just proceed to im-

plementation code once the informal specification is known? Why this extra

burden on the developer?

To answer this question, we may refer to the “second time phenomenon”

discussed by Daniel Berry [13] in the context of requirements engineering:

In 1985, I published a paper with Jeannette Wing that suggests that
FMs [Formal Methods] work, not because of any inherent property
of FMs as opposed to just plain programming, which is really also
an FM, but rather, because of the second time phenomenon [16]. If
you do anything a second time around you do better, because you
have learned from your mistakes the first time around. Indeed, Fred
Brooks says: Plan to throw one [the first one] away; you will anyway!
[11]. In other words, you cannot get it right until the second time.
If you write a formal specification and then you write code, you’ve
done the problem formally two times.

Berry explains that informal specifications will not have the same effect as
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a machine checkable formal specification. In an informal specification it is too

easy to overlook details thus leading to failure.

Note that writing an informal specification and then writing code
does not have the same effect. It is too easy to handwave and over-
look details and thus fail to find the mistakes from which you learn.
It has to be two formal developments, specifications or code, for the
second-time phenomenon to work. Observe how the two-time ap-
proach is requirements centered. One is not going to fix implemen-
tation errors this way, because the second time is not the same im-
plementation as the first time. Even if they were the same, one can
introduce new errors in the rewrite. The focus of the first specifica-
tion or coding effort is on understanding the essence and eliminating
requirements errors. The focus of the second is on implementing the
understood essence. As Euripedes says, Second thoughts are always
wiser.

Thus, it is worthwhile doing both a formal specification (in the sense men-

tioned by Berry) as well as the implementation code. Specifications help us un-

derstand the essence of what must be built by eliminating requirement errors.

Since the specifications are machine checkable we cannot just handwave and

overlook details that lead to a mistaken view of the product that must be built.
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2.2 Contracts as Specifications

Contracts may be used to specify the behavior of classes (or modules). Each

feature of a class is provided with a precondition and postcondition, and class

invariants specify global constraints on the data structures of the class.

Contracts specify the obligations and benefits between the user (or client) of

a module and the developer (or supplier) of the module. Clients may invoke

the module if the precondition is satisfied and the supplier must guarantee the

postcondition. As in human affairs, a good contract brings with it obligations as

well as benefits for both parties—with an obligation for one usually turning into

a benefit for the other. This is also true of contracts between classes [67]:

• A precondition binds the client: it defines the conditions under which a

call to the routine is legitimate. It is an obligation for the client and a benefit

for the supplier.

• A postcondition binds the supplier: it defines the conditions that must

be ensured by the routine on return. It is a benefit for the client and an

obligation for the supplier.

For precision, specifications of software components are usually written us-

ing predicate logic and set theory as contracts between the supplier of the com-

ponent and the users. For testability, specifications must be embedded in pro-

33



gram text, and amenable to compiler checks such as type checking and static

analysis of program properties (e.g., null pointer de-referencing) [76]. A pio-

neering approach to writing testable specifications of this kind was the use of

Design by Contract (DbC) in Eiffel.

DbC [65] is a lightweight formal technique for engineering software systems

with significant requirements for reliability and robustness. It integrates math-

ematical descriptions with code, ensuring consistency, and it is designed to be

supported by tools that are comfortable and familiar to developers, e.g., compil-

ers, debuggers, static checkers, and testing frameworks.

The term “Design by Contract” was coined by Bertrand Meyer in connection

with his design of the Eiffel programming language and first described in vari-

ous articles starting in the mid 1980s (e.g., [64]) and the two successive editions

(1997, 1998) of his book Object-Oriented Software Construction [67]. Design by

Contract has its root in work on formal verification, formal specification and

Hoare logic [49].

The contracting language has many benefits. (a) Contracts are precise specifi-

cations of the required module behaviour. (b) Contracts document the class API

(application program interface) for both clients and suppliers. (c) Contracts can

be tested (at run-time) or verified (at compile time). (d) Contracts can be used

to define the notion of an exception (behaviour that violates the contract). (e)
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Contracts appropriately constrain redefinitions of methods in descendant classes

(Liskov substitution principle [62]). The DbC approach has been extended to

Java (e.g., JML [18]) and C# (e.g., Spec# [8]), and thus can be used effectively

with these languages as well.

2.2.1 Basic Contracts

class
SORTABLE_ARRAY[G -> COMPARABLE]

inherit
ARRAY[G]

feature -- commands

sort is
-- sort the array

require
∀i : INTEGER | valid index(i) • item(i) 6= Void

do
-- an algorithm

ensure
∀i : INTEGER | valid index(i) ∧ i < count • item(i) ≤ item(i + 1)
permutation (Current, old Current.twin)

end

feature -- queries

permutation (initial; final: ARRAY[G]): BOOLEAN is
-- Is the array ‘final’ a permutation of ‘initial’ ...

invariant
count > 0

end

Figure 2.2: Specification of a sorted array

Consider the specification of a class SORTABLE ARRAY in generic parameter G
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as shown in Fig. 2.2. The generic parameter G is constrained to inherit from class

COMPARABLE3. So we can have an array of INTEGER, REAL, STRING or any suitably

compatible user defined classes.

The class SORTABLE ARRAY inherits features such as count (the number of items

in the array) and item(i) (which is the element at index i) from class ARRAY. The

invariant count > 0 asserts that sortable arrays contain at least one element. The

invariant is established by the creation routine and must be true before and af-

ter any subsequent routine calls (including new routines such as sort as well

as routines inherited from class ARRAY). The precondition asserts (in the BON

mathematical notation) that:

(∀i : INTEGER | valid index(i) • item(i) 6= Void) (2.1)

i.e., there are no void elements in the array (where, valid index(i) ≡ lower ≤ i ≤

upper). This property and other predicate quantifiers (e.g., ∃) are expressed in

Eiffel using agents (see Appendix A for more on agents). The first postcondi-

tion asserts that the sort routine terminates with the array sorted, and the final

postcondition asserts that the final sorted array is a permutation of the initial

unsorted array.

Contract specifications follow the single model principle [76]. The class con-

3Any class that inherits from COMPARABLE comes equipped with a total order.
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tracts, consisting of expressive preconditions, postconditions and class invari-

ants are an executable part of the program text and constitute a specification that

describe sortable arrays without constraining implementation details and algo-

rithms.

How can the specification be tested? One way is to use a suitable theorem

prover (as in Appendix C). We can then formally prove that the implementation

entails the specification. Likewise, we may reason about the behaviour of any

client that uses the sorted array by using the contracts without the need to know

the implementation details. So testability in this case reduces to verification (the-

orem proving).

Alternatively, the specification of sortable arrays can be tested by runtime as-

sertion checking. In this lightweight approach only the executable behaviours

(execution paths) invoked by the test suite are checked against the specification.

If the contract holds, then no exception is generated. If the contract is violated, ei-

ther by a client or the supplier not satisfying their respective obligations, then an

exception is generated. Thus, in this way, testability translates into executability

and the use of exceptions to signal when the contract is broken.
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2.2.2 ML-Contracts

The basic Eiffel contracting mechanism is not always sufficient for specifying

complex data structures. Abstract classes may not have sufficient implemen-

tation detail so that properties can be adequately described. Even where full

concrete implementation is supplied, the implementations may be too low level

for writing succinct specifications.

In order to write contracts at a much higher level of abstraction, we use the

Eiffel Mathematical modeling Library (ML) developed in [72] for specifying the

abstract state of a program without exposing its implementation details. This

library is similar to the model-based specifications as in B [1] and Z [83], except

that it is object-oriented.

The Eiffel ML library contains mathematical collections such as ML SEQ, ML SET,

ML BAG, and ML MAP. Fig. 2.3 shows the ML class structure. Instances of these

classes are both immutable and executable. An object is immutable if its state

cannot be modified after it is created. This is in contrast to a mutable object,

which can be modified after it is created. Other than creation features, all fea-

tures of the immutable (hence mathematical) ML classes are queries (there are no

commands). Queries are features that do not change the state of the underlying

objects. Rather, queries return values without affecting the state.

38



A class describes some data structure and the operations that can be invoked

on the data. The mathematical structures of the ML library (such as sets and

maps) may be used to provide a high-level model of the data structure. The oper-

ations on the data structure can then be described by contracts written using ML

queries with respect to the model. Any subsequent implementation of the oper-

ation in terms of efficient mutable classes must satisfy the contracts described in

terms of the ML model.

Since ML-Contracts are executable, when runtime assertion checking is turned

on, contract violations (if any) are signalled via exceptions, thus indicating an

inconsistency between the implementation and its specification. The complete

specification of a system and its implementation can be provided in the same

compilable and executable Eiffel text. The immutable ML classes will be inef-

ficient (due to its re-construction of a new ML object every time a feature such

as appended by is invoked), by comparison to the mutable classes in Eiffel (such

as ARRAY and LIST). But this is acceptable as contract checking may be turned

off in the final delivered code which will only use the efficient base library for

implementation.

As a simple example, consider the BON contract view of a generic stack as

shown in Fig. 2.4a. The model of the stack consists of a ML SEQ[G] (i.e., a sequence

of items of type G, where G is a generic parameter) and count (the number of
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ML_MODEL[G]*

ML_COLLECTION[G]*

ML_SEQ[G]

ML_SET[G]

ML_MAP[G, H]

ML_HASH_MAP[G, H->HASHABLE]

ES_MATH

count, infix “#”: INTEGER

is_empty: BOOLEAN

infix “|=|”: BOOLEAN -- equality of items determined by `object_comparsion`

hold_count* (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): INTEGER

object_comparison: BOOLEAN 

appended_by, infix “|>”: ML_SEQ[G]

{^ML_COLLECTION.extended_by}

from_hash_table (t: HASH_TABLE[H, G]): like Current

from_array (a: ESV_ARRAY[G]): like Current

to_set: ML_SET[G]

for_all (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): BOOLEAN

there_exists (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): BOOLEAN

compare_objects*, compare_references*

from_list (l: ESV_LIST[G]): like Current

from_set (s: ESV_SET[G]): like Current

to_bag: ML_BAG[G]

from_two_arrays 

(k: ESV_ARRAY[G]; v: ESV_ARRAY[H]): ML_MAP[G, H]

comprehension (c: FUNCTION[ANY, TUPLE[G], BOOLEAN]): like Current

to_set: ML_SET[ML_PAIR[G, H]]

to_seq: ML_SEQ[ML_PAIR[G, H]]

to_bag: ML_BAG[ML_PAIR[G, H]]

extended_by* (x: G): like Current

to_seq: ML_SEQ[G]

domain: ML_SET[INTEGER]

extended_by, infix “^” (x: G): ML_SET[G]

prepended_by, infix “|<”: ML_SEQ[G]

is_value_equal*, infix “|==|”: BOOLEAN -- deep value equality

union, infix “+” (other: ML_SET[G]): ML_SET[G]

intersection, infix “*” (other: ML_SET[G]): ML_SET[G]

difference, infix “-” (other: ML_SET[G]): ML_SET[G]

is_disjoint_from, infix “|##|” (other: ML_SET[G]): BOOLEAN

from_an_item (x: G): ML_SET[G]

override (x, y: G): ML_SET[G]

remove (x: G): ML_SET[G]

is_subset_of, infix “|<<=|” (other: ML_SET[G]): BOOLEAN

from_table (t: ESV_TABLE[G, H]): ML_MAP[G, H]

head, last: G -- head = Current[0], tail = Current[count-1]

front, tail: ML_SEQ[G] -- tail is everything except `head` 

is_subseq_of, infix “|<<=|” (other: ML_SEQ[G]): BOOLEAN

override (i: INTEGER; x: G): ML_SEQ[G]

from_two_lists

(k: ESV_LIST[G]; v: ESV_LIST[H]): ML_MAP[G, H]

domain: ML_SET[G]

range_bag: ML_BAG[H]

item alias "[]"  (k: G): H 

ML_BAG[G]

item alias "[]"  (i: INTEGER): G 

has (x: G): BOOLEAN

has_key (k: G): BOOLEAN

extended_by (k: G; v: H): ML_MAP[G, H]

extended_by_pair, infix “^” (p: ML_PAIR[G,H]): ML_MAP[G, H]

remove (k: G): ML_MAP[G, H]remove  (i: INTEGER): ML_SEQ[G]

union, infix “+” (other: ML_MAP[G, H]): ML_MAP[G, H]

intersection, infix “*” (other: ML_MAP[G, H]): ML_MAP[G, H]

difference, infix “-” (other: ML_MAP[G, H]): ML_MAP[G, H]

is_disjoint_from, infix “|##|” (other: ML_MAP[G, H]): BOOLEAN

override (x: G; y: H): ML_MAP[G, H]

Figure 2.3: Core Classes in the Mathematical model Library (ML)
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STACK[G]

count: INTEGER

item: G

require count > 0

ensure   Result = model.last

model: ML_SEQ[G]

ensure   Result i: INTEGER | 0  i  imp.count  imp[i] Ð

put(x: G) 

ensure   model   old model  x

Invariant

NONE

imp: ARRAY[G]

count = #model

0  count imp.count

remove

require count > 0

ensure   old model (model  old item) 

MODEL

class  STACK[G] feature

     put (x: G) is

do

imp.force (x, imp.count)

ensure

model |=| old model |> x

end

…

end

(a) BON Diagram of STACK

(c) Stack LIFO property

(b) put feature of  STACK

class  STACK_PROPERTIES[G] feature

     lifo (s: STACK[G] ; x: G) is

require

     s /= void

do

     s.put (x)

     s.remove

ensure

     s.model |=| old s.model

end

…

end

Figure 2.4: STACK[G] modeled by ML SEQ[G]

items in the stack). The contracts of all the other features of the stack can be

described in terms of the sequence and count. In the absence of a sequence to

model the stack (i.e., with just the model attribute count), the best basic post-

condition for the stack push operation put is:

count = old count + 1 and item = x (2.2)

However, this specification is incomplete. For example, an implementor can

satisfy the above specification yet change old values of the stack that are not at

the top. Therefore, we need a frame condition that says the old part of the stack

remains unchanged. By adding a sequence to the model we can now express the
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complete contract as:

model ∼= old model ◮ x (2.3)

where, “◮” is the appended by (pure) function of a mathematical sequence that

returns a new sequence that is the same as the old one, but with the argument

item appended to the end, “∼=” means that left hand side and right hand side

are model equal (as will be explained below). Since (2.3) → (2.2), there is then

no need to write (2.2) as it is entailed by the model post-condition. With the full

model, we can then provide the complete contracts for the pop operation remove

and the query item that returns the top of the stack.

The Eiffel notation follows the BON notation quite closely as shown in Fig. 2.4b.

For “◮”, we may use either the appended by function or alternatively the infix

operator “|>”.

Model classes such as ML SEQ hold items that may be stored either by ref-

erence or by value (Eiffel has the expanded construct for constructing a value

semantics). Given two mathematical sequences, s1, s2 : ML SEQ[G], the asser-

tion s1
∼= s2 (i.e., s1 is model equal to s2) holds precisely when the two sequences

have the same number of elements and s1[i] = s2[i] at each index i. The de-

fault interpretation of “=” is equality by reference. However, the meaning of the
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equality symbol can be changed to a value semantics if needed (in which case,

the query is equal in class G is used to compare values at index i). In Eiffel pro-

grams, we use the infix operator “|=|” for model equality. Model equality of the

other collections are defined in the obvious way following this pattern.

With this specification of the stack, we may refine the specification to an effi-

cient implementation. We may use efficient mutable structures such as a linked

list or an array (e.g., ARRAY from the Eiffel base library).

Next, we need to define the abstraction relation [49] between the model query

(which returns a ML SEQ) and the concrete implementation imp which is an ARRAY

(see Fig. 2.4). The abstraction function maps the concrete variables into the ab-

stract objects which they represent. Thus, the body of the query model might be

a loop that iterates through the implementation array and returns an equivalent

sequence with the same elements as the array (i.e., we “lift” the mutable array

into a mathematical immutable sequence). The postcondition of the abstraction

function model is captured by the following postcondition:

Result
∧
= 〈i : INTEGER| 0 ≤ i < imp.count • imp [i]〉 (2.4)

where, the symbol “
∧
=” denotes equality by definition and the angle brackets

〈〉 stand for sequence comprehension (in the same way that {} stands for set
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comprehension; e.g., {i : INT|0 ≤ i ≤ 2i + 1} = {1, 2, 3}). Set, bag, sequence or

map comprehensions are expressive notations supported by the ML library.

2.3 Scenario Tests as Specifications

Classical testing methodologies include unit, integration, system and acceptance

tests [48]. Unit tests are usually thought of as tests that check a single method of

a class. In conventional testing, unit tests are written at the end of code develop-

ment.

test_characters_sorted: BOOLEAN is
local

sa: SORTABLE_ARRAY[CHARACTER]

do
sa := <<‘d’, ‘a’, ‘b’, ‘e’, ‘c’>>

sa.sort -- use the sort routine

check sa[1] = ‘a’ end
check sa[2] = ‘b’ end
check sa[3] = ‘c’ end
check sa[4] = ‘d’ end
check sa[5] = ‘e’ end
Result := sa.count = 5

end

Figure 2.5: A Unit Test (not a specification) for sortable array

Suppose, for example, a developer has already written a sort routine. A

classic test for the sort routine is shown in Fig. 2.5. The test runs the sort routine

on an unsorted array and then performs a sequence of concrete checks on the

individual elements of the array to ensure that the correct element is inserted at
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test_characters_sorted: BOOLEAN is
local

sa1, sa2: SORTABLE_ARRAY[CHARACTER]

do
sa1 := <<‘d’, ‘a’, ‘b’, ‘e’, ‘c’>>

sa2 := <<‘a’, ‘b’, ‘c’, ‘d’, ‘e’>>

sa1.sort

Result := equal(sa1, sa2)

end

Figure 2.6: A specification for sortable array

each index into the array.

Test Driven Development (TDD) [10] is a technique developed as part of the

emerging Agile methodologies [3]. In TDD, a unit test is written before the sort

method is implemented and is seen as a test specification of the method rather

than just a sequence of checks as shown in Fig. 2.5. In the test specification, the

sorted solution array is directly compared to the unsorted array (after applica-

tion of the sort method). This captures the essence of what it means for the sort

routine to succeed. First, the sorted array must be a permutation of the unsorted

array, and secondly, the sorted array must be in increasing order. In TDD, the or-

der is: (a) write a test; (b) develop enough code to satisfy the test; (c) refactor the

code (if necessary) to improve the design while keeping the test specifications

the same. The test in Fig. 2.6 is clearly closer to a specification that describes the

sortedness property without constraining implementation details or algorithms.

This unit test is nevertheless limited, testing only the case of an array of char-
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acters for the specific case treated. It does not cover the case of an array of reals or

some other class that conforms to a chosen total order, nor does it cover border-

line cases such as where the array only has one element or is void. By contrast,

the contracts written in the SORTABLE ARRAY (Fig. 2.2) is a general specification

that covers all these cases (any array in the constrained generic parameter G).

Tests have a narrower range than contracts in the sense that they only capture

a specific set of scenarios in which the system will engage. However, they are

concrete and fairly easy to write. The early and frequent nature of the tests (re-

gression testing) helps to catch defects early in the development cycle, prevent-

ing them from becoming endemic and expensive problems. Eliminating defects

early in the process usually avoids lengthy and tedious future debugging later

in the project.

The classical unit test checks a small unit of code and not its interaction with

other routines and modules. Likewise, contracts are good for specifying the obli-

gations and benefits of clients with respect to the features of a single class.

However, specifications of systems are often use cases that involve collabora-

tions between different modules in the system. Berry et. al. write as follows:

An RS [requirement specification] is often accompanied by or includes
descriptions of scenarios and use cases. These should be the same sce-
narios and use cases that describe how users exercise the CBS [com-
puter based system] to do their work. These scenarios and use cases
in turn form a good basis for building test cases that cover the ex-
pected ways the CBS will be used. Moreover, since the users are
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guided by the user’s manual in their uses of the CBS, these test cases
provide a good coverage of the expected uses of the CBS. [14]

In this thesis, we call such use cases and collaborations Scenario Tests and we use

the standard Eiffel unit testing framework to write them. Instead of testing a

single feature, a Scenario Test (by contrast) specifies a collaboration to achieve

some functionality among various modules of the system.

Consider, for example, the Scenario Test (shown in Fig. 2.7) for a chat applica-

tion4. This specifies a collaboration among various classes of the chat application

such as CHAT SERVER, CHAT ROOM and CHAT USER. The test specifies specific fea-

tures in CHAT SERVER such as: users, rooms, and add room (a user:CHAT USER)

by describing the following scenario:

1. Create a chat server (line 10)

2. Check that the newly created server has only one user (line 13) and only

one chat room (line 14)

3. Create two chat users (“Mike” and “Anna”) and connect them to the server

(lines 16–19)

4. Check that the new users are connected and reside in the lobby room of the

chat server (lines 20–22)

4The extended version of this example is described in Chapter 4.
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5. A user (“Mike”) adds a room to the server named “Technical Support”

(lines 24–25)

6. Check that the new room is successfully added to the server (line 26) and

its status is public (line 27)

7. The owner of (“Technical Support”) room (“Mike”) changes the room sta-

tus to private (line 30)

8. Check that the status of the room is changed to private (line 31)

9. The owner allows a user to join the room (“Mike” allows “Anna” to join

“Technical Support”)

10. Check that “Anna” is allowed to enter “Technical Support” (line 35)

The benefit of this type of test is that it helps to derive the design, e.g., if all

the classes and feature signatures of the above system (that are referred to in the

Scenario Test) are added to the system (such that project compiles), the design

illustrated in the BON class diagram in Fig. 2.8 will be automatically generated.

The class diagram presents a design of the system (classes and feature signatures,

but not yet code in the bodies of the features).

The Scenario Test will fail if: (a) the collaboration between the various ele-

ments fails to satisfy the specified checks or to produce the anticipated results or
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1 scenario_test: BOOLEAN is
2 local
3 server: CHAT_SERVER

4 mike, anna: CHAT_USER

5 mike_room: CHAT_ROOM

6 users: LIST[CHAT_USER]

7 rooms: LIST[CHAT_ROOM]

8 do
9 -- create the chat server and check it

10 create server.make

11 users := server.users

12 rooms := server.rooms

13 check server.user_count = 1 end
14 check server.room_count = 1 end
15 -- create 2 users Mike and Anna and connect them to the server

16 create mike.make ("Mike")

17 create anna.make ("Anna")

18 server.connect (mike)

19 server.connect (anna)

20 check server.user_count = 3 and server.room_count = 1 end
21 check mike.room = server.lobby and anna.room = server.lobby end
22 check users.has(mike) and users.has(anna) end
23 -- Mike creates and adds a room ‘‘Technical Support"

24 mike_room := mike.create_room ("Technical Support")

25 mike.add_room (mike_room)

26 check server.room_count = 2 end
27 check not mike_room.is_private end
28 check rooms.has(mike_room) end
29 -- Mike changes the status of his room to private

30 mike.set_private ("Technical Support")

31 check mike_room.is_private end
32 check not server.is_allowed (anna, "Technical Support") end
33 -- Mike allows Anna to join the Technical Support room

34 mike.allow_user ("Anna", "Technical Support")

35 check server.is_allowed (anna, "Technical Support") end
36 Result := True
37 end

Figure 2.7: Scenario Test

(b) the contracts fail while executing the tests. Scenario Tests (as in Fig. 2.7) thus

do two things for us. Firstly, they specify the design. Secondly, they specify such
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Figure 2.8: Design consequence of the Scenario Test

design in a mechanically testable manner.

2.4 Synergy between ML-Contracts and Scenario Tests

ML-Contracts provide precise general specifications covering all states of the

program, and Scenario Tests execute and check the correctness of the ML-Contracts

with respect to the specific data used. There is thus a synergy between the ML-

Contracts and the Scenario Tests. They both specify aspects of the design and

both are mechanically checkable. ML-Contracts act as test amplifiers, i.e., when

we execute the tests, all ML-Contracts will also be executed and tested. Together

they provide precise Testable Specifications of the future software product. By
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writing such testable specifications early we:

1. Communicate with clarity to all developers what the future product must

do.

2. Provide a concrete testable criterion to indicate when this job is completed.

3. Provide precise readable documentation guaranteed to be up to date with

the code.

4. If we work incrementally (as in TDD), we can add new units of function-

ality while at the same time providing regression testing of the already

implemented functionality.

5. Provide the developer with a safety net to refactor (change the implemen-

tation without changing the functionality), as the testable specifications can

be re-run after any changes to check that the functionality is preserved.

2.5 ES-Test for Testable Specifications

ES-Test (see Fig. 2.1) is the part of the ESpec tool that handles testable specifica-

tions (ML-Contracts and Scenario Tests). ES-Test has a unit testing framework

that provides facilities for developers to write and execute unit tests similar to

JUnit [41] for Java. This facility can be used to write Scenario Tests as well.
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However, ES-Test also supports contracts. Thus, contract violations are re-

ported in the GUI and accurately pinpoint the failing contract clauses of a given

feature (tests may be run from the command line as well). Two kinds of test cases

are supported: Boolean Tests and Violation Tests.

ES-Test is a successor to an Eiffel unit testing library called E-Tester reported

in [73]. The contribution of this author to further development of the tool in-

cludes:

1. Allowing unit tests to be integrated with other checks (such as Fit tests and

static verification) in a single test suite.

2. The addition of Tagged Violation Tests (see section 2.5.2).

3. Complete reports of the type of contract violation and the tag involved in

the violation (both in the GUI and the command line version of the tool).

A developer may use the show error command to reflect the complete call

stack in the report (see Chapter 5).

2.5.1 Boolean Test

ES-Test supports Boolean Test case and Violation Test case. A Boolean Test is a

query routine that returns a BOOLEAN result. This type of test checks the System

Under Test (SUT) by invoking program features, and then checking that the state
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of the computation satisfies certain conditions. The test passes if and only if the

conditions are true and all the contracts are satisfied (i.e., there are no contract

violations or runtime exceptions). If a Boolean Test case succeeds, i.e., it termi-

nates with a true result, then all the contracts invoked during the test have also

succeeded and we have thus partially checked the correctness of the SUT.

If any contract is violated during the execution of the test, the violation will

be reflected in the final report of the ES-Test tool. This report also provides ad-

ditional debugging information for the developer to fix the problem. A precon-

dition violation during the execution of a test tells us that the calling class is at

fault. Any postcondition, invariant or check instruction violation tells us that the

supplier is at fault.

An example of a Boolean Test case was already shown in Figures 2.7 and 2.6.

For detailed explanation on how to execute such tests, please see the ESpec’s

user manual in Appendix D.

2.5.2 Violation Test

If a Boolean Test succeeds, then there are no contract violations for the given sce-

nario. By contrast, a Violation Test calls a routine in a state in which it is expected

that the precondition (or the class invariant) is violated and then checks that the

violation occurs. Such a test succeeds only if the expected contract violation oc-
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curs.

Why would we want to test for violations? A Boolean Test can never check

that a feature has an appropriate precondition (or class invariant), whereas a

Violation Test can check for a missing precondition by calling the feature in a

state that violates the precondition.

At times, the precondition exists, but is only partially correct. For example,

suppose the precondition for a routine is i > 0 (accept only positive values for i),

and suppose instead, that the developer writes the incorrect precondition i ≥ 0.

A Violation Test might call the routine with i = 0 expecting a contract violation.

When the expected contract violation fails to occur, the developer is informed

that the precondition is incompletely specified.

As another example, consider the put feature of class DICTIONARY (shown

in Fig. 2.9) which inserts a key and its associated value into the dictionary. The

precondition of this feature (captured as an ML-Contract) asserts that the new

key should not already be a member of the dictionary (key /∈ model), where the

model is a mapping between the inserted keys and the corresponding values. The

construction of this model is done at lines 25–36 of Fig. 2.9 using the ML MAP class

of the ML library.

A Violation Test is a command routine (as opposed to a Boolean Test which

is a query). It is expected that the command routine will generate an exception
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1 class
2 DICTIONARY [KEY, VALUE]

3 ...

4 put(v: VALUE; k: KEY) is
5 -- Put key ’k’ into the dictionary with associated value ’v’

6 require
7 key_not_in: not model.has_key (k)

8 local
9 dictionary_item: DICTIONARY_ITEM[VALUE, KEY]

10 do
11 create dictionary_item.make(v, k) -- create an item with key ’k’ and

value ’v’

12 container.extend (dictionary_item)

13 ensure
14 count_incremented: count = old count + 1

15 new_key_value_added: model |=| ((old model).extended_by (k, v))

16 check_value: equal((model.item (k)), v)

17 end
18
19 feature {NONE} -- implementation

20
21 keys: LINKED_LIST [KEY]

22 values: LINKED_LIST [VALUE]

23
24 feature -- model

25 model: ML_MAP [KEY, VALUE] is
26 -- what is the implementation of the current dictionary?

27 local
28 set_pairs: ML_SET [ML_PAIR [KEY, VALUE]]

29 a_pair: ML_PAIR [KEY, VALUE]

30 do
31 create set_pairs.make

32 create a_pair

33 set_pairs := a_pair.from_parallel_lists (keys, values)

34 create Result.make_from_pair_set (set_pairs)

35 Result.compare_objects
36 end
37 ...

Figure 2.9: Put feature of a dictionary

during its execution. An example of a Violation Test for the dictionary is shown

in Fig. 2.10 which invokes the put routine with a key which is already in the

55



dictionary. This test case, creates a DICTIONARY object (line 11) and then inserts

the same key “key1” twice (lines 12 and 13) expecting that an exception should

be generated, thus checking that the precondition is correctly and completely

expressed.

1 put_violation is
2 local
3 a_dictionary: DICTIONARY[INTEGER, STRING]

4 v: INTEGER

5 k1, k2: STRING

6 do
7 comment("Fails to put a key which already exists in the dictionary")

8 v := 123

9 k1 := "key1"

10 k2 := "key1"

11 create a_dictionary.make

12 a_dictionary.put(v, k1)

13 a_dictionary.put(v, k2) -- should fail here

14 end

Figure 2.10: A Violation Test Case for put feature of the DICTIONARY

ESpec provides another type of violation test called a Tagged Violation Test.

This kind is similar to the standard violation case; however, a specific contract

violation is expected.

Contracts are written as a sequences of clauses. Each clause may option-

ally have an associated description tag (e.g., the tag key not in in Fig. 2.11). A

Tagged Violation Test provides a specific tag as input and succeeds only if there

is a contract violation associated with the clause associated with that tag.
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2.5.3 Collections of Test Cases

ES-Test provides the ability to group a set of test cases (either Boolean or Vio-

lation tests) together in a single class (that inherits from ES TEST). A test suite

collects together such groups of tests. A test suite is constructed in a class that

inherits from ES TEST SUITE (see Chapter 5 for more information).

An example of a group of test cases is provided in class DICTIONARY TEST

(shown in Fig. 2.11) which is a descendant of ES TEST class. A test may be added

to the group (in the make routine) either as a Boolean, Violation or Tagged Viola-

tion case (lines 9–16 in Fig. 2.11). The command add violation case (which is

inherited from ES TEST class) is used to add a standard violation test.

To add a Tagged Violation case, we use the add violation case with tag

(also inherited from ES TEST) and we provide the exact name of the expected

violation tag. Similarly, the add boolean case command is used to add Boolean

test cases.

The run espec command (line 15 in Fig. 2.11) executes all the test cases spec-

ified in the creation routine of class (DICTIONARY TEST).

The results will then be collected and reported to ESpec’s GUI. Any type of

exception such as precondition, postcondition, invariant, check instruction, loop

variant, and loop invariant violations as well as other errors (e.g., an OS error)
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1 class
2 DICTIONARY_TEST

3 inherit
4 ES_TEST -- All test unit classes inherit from ES_TEST

5 create
6 make

7 feature
8
9 make is

10 -- In the make routine we define test cases associated with this class

11 do
12 add boolean case (agent dictionary_test_put)

13 add violation case (agent put_violation)

14 add violation case with tag ("key_not_in", agent put_violation)

15 run espec
16 end
17
18 feature -- Test Cases (Boolean/Violation) are written in this section

19 ...

20 end

Figure 2.11: Test Unit class that contains number of test cases

will be reported directly to the GUI. The test cases can be run individually or in

unison with feedback to a single green/red bar. A snapshot of ESpec GUI was

shown in Fig. 2.1.

2.6 Conclusion

We have argued in this chapter that it is the automatic testability of specifications

that is important. Testable specifications are very concrete—they either succeed

or they fail, and then you know if the two viewpoints (specifications and imple-

mentations) are consistent.
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In the first chapter we described the development process as follows:

1. Specification correctness: P ∧ S → R

2. Implementation correctness: C → S

3. System correctness: From (1) and (2) conclude that: P ∧ C → R

In this chapter we have shown how ESpec can be used to test specifications—

formula (2). The next chapter discusses how we can test requirements—formula

(1)—in such a way that testable requirements and testable specifications can be

checked together in an integrated fashion.
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3 Testable Requirements

The primary measure of success of a software system is the degree to which it

meets the purpose for which it was intended. Requirements engineering is the

process of discovering that purpose, by identifying stakeholders and their needs,

and documenting these in a form that is amenable to analysis, communication,

and subsequent implementation [69].

A requirement will generally avoid saying how the system should be imple-

mented leaving such decisions to the designer. According to [89], a high quality

requirements document must be:

• Correct—Each requirement must accurately describe the functionality to

be delivered. The customer is the ultimate authority to determine the cor-

rectness of the requirement.

• Unambiguous—The reader of a requirement statement should be able to

draw only one interpretation of it.

• Complete—No necessary information should be missing from the require-
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ments.

• Consistent—A requirement should not conflict with other requirements or

with higher level business rules. Disagreements among requirements must

be resolved before development can proceed.

• Verifiable—The customer must be able to determine if the requirements

have been met. If a requirement is not verifiable, determining whether it

was correctly implemented becomes a matter of subjective opinion. Re-

quirements that are ambiguous are thus not verifiable.

A Testable Requirement is a consistent, unambiguous description of the ex-

pected system behaviour that is verifiable. The question is how do we make

requirements verifiable?

In the first chapter, we distinguished between a design specification S and

a customer requirement R in a problem domain described by P. As asserted in

Formula (1) in Section 1.3, the relationship between the customer’s requirement

and a design specification is P∧ S → R (i.e., any behaviours that satisfy the spec-

ification also satisfy the requirements). To test for the presence of requirement R

is to check that the suggested design solution S entails the requirement.

If the requirements are described informally (e.g., as English text) then there

is no real way to test them mechanically. Furthermore, as the solution S is re-
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fined, we will want to check P ∧ S → R repeatedly (as in continuous regression

testing). So it would be advantageous to mechanize requirement testing. This

means that requirements must be formalized in order to mechanize requirement

testing.

Our approach will be to use the Fit framework [68] to formalize requirements

in a language understandable to customers (i.e., it is not a programming lan-

guage). The benefit of the Fit framework is that business people and customers

can define and edit the tests according to what they believe is the correct function

of the code.

3.1 Fit Framework

The Fit framework (Fit) [68], was developed by Ward Cunningham as an at-

tempt to fill the gap between developers and the customers. Customers cannot

be expected to write Scenario Tests or ML-Contracts as these require special pro-

gramming skills. What the Fit framework does is it allows customers with no

programming background to write acceptance tests for software products in the

form of understandable tables in their word processor or spreadsheet applica-

tion (provided that HTML can be generated by the application). Customers can

use freely available web browsers or HTML editors to view and edit their tests.

Incorrect or incomplete requirements is a problem in software projects and it
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is usually due to lack of understanding on the part of developer of the customer

requirements. According to [45]:

Lack of user involvement traditionally has been the No. 1 reason
for project failure. Conversely, it has been the leading contributor
to project success. Even when delivered on time and on budget, a
project can fail if it doesn’t meet user needs or expectations...

Fit enhances the collaboration in the development process by allowing cus-

tomers to lend their experience in the subject matter to the effort. Fit automat-

ically compares customer’s expectations to actual results of testing and gives

them a way to see what software really does.

An important benefit of Fit is that it encourages thinking about the problem

domain (as opposed to the solution space), in the same way that Test Driven De-

velopment encourages thinking about design (as opposed to implementations).

As an example, consider the following business rule that describes the calcu-

lation of customer credit limits:

[R1] “Credit is allowed, up to an amount of $100,000 for compa-
nies who have been trading with us for at least one year and have
a balance owing of less than $60,000. This credit is extended to an
amount of $200,000 for companies who have been with us for more
than two years.”

Our banking customer may use an editor to create the Fit table shown in

Table 3.1 which is an example of a “Column Table” (which will be discussed

in more detail in the following sections). This table is a concrete and testable

description of the business rule [R1].
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Calculate Credit

Months trading Balance Should be given credit? Maximum credit allowed

12 50000 True 100000 

12 61000 False 0 

11 10000 False 0 

11 70000 False 0 

13 50000 True 100000 

15 70000 False 0 

24 10000 True 100000 

24 80000 False 0 

25 10000 True 200000 

25 59999 True 200000 

25 70000 False 0 

Table 3.1: Fit Table describing a set of concrete examples related to [R1]

The first row of the table contains the table name. The second row contains

the column headings. There are two types of column headings: The first two

(Months trading and Balance) are the given inputs and the next two (Should be

given credit? and Maximum credit allowed) are the expected values for testing the

creditworthiness of a company. The client is able to check the table against the

code that developers have been working on, and see the output shown in Ta-

ble 3.2 (passed cases are colored green5).

Each row is an independent test case. For example, the third row illustrates a

passed test, i.e., a company has been trading for one year and has a balance less

than $60,000. The 9th and 10th rows show failed tests, i.e., the system under test

generated outputs which were not expected for the case. Inspecting these two

failed cases shows that the implemented code has not correctly calculated the

5A color mapping chart is provided in the Appendix E (see Table E.1) for understanding the
black and white copies of this thesis.
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Calculate Credit

Months trading Balance Should be given credit? Maximum credit allowed

12 50000 True 100000 

12 61000 False 0

11 10000 False 0

11 70000 False 0

13 50000 True 100000 

15 70000 False 0

24 10000 True 100000 Expected

0 Actual

24 80000 False Expected

True Actual

0

25 10000 True 200000 

25 59999 True 200000 

25 70000 False Expected

True Actual

0 Expected

200000 Actual

Table 3.2: Result of running table 3.1

output values for the boundary case of 24 months. As shown in Table 3.2, these

errors are directly reported to the Fit table with both the actual value (as returned

by the system) and the expected value (asserted by the customer) highlighted.

The last row of the table shows another failed case. This case expects that

implemented code disallows credit for a company which has been trading for

more than two years (25 months) and has a balance of $70,000. Comparing this

test case to the informal requirement [R1], we can see that [R1] does not clearly

specify the required balance for giving credit to a company who has been trading

for more than two years (i.e., [R1] says “...This credit is extended to an amount

of $200,000 for companies who have been with us for more than two years” but

never clearly say anything about the balance of those companies). However, the
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tables clearly expects that no credit should be given to such company if its balance

is $70,000.

The failed cases in the Fit table usually generate discussions between the de-

velopers and the customers. These discussions are valuable because they give

the developers a better understanding of what the customers really want. Af-

ter further investigations about this particular case, developers understood that

the required balance for giving credit to a company remains the same (less than

$60,000) even for companies who have been trading for more than two years.

The informal requirement [R1] assumed that it was understood from the context

that the balance requirement is the same as before (less than $60,000); however,

an upfront concrete test like Table 3.2 from the client revealed that the system un-

der test did not achieve such requirement (see Section E.1 for the Fixture source

code).

Fit creates a feedback loop between customers and programmers. It’s an

invaluable way to collaborate on complicated problems—and get them right—

early in development. Informal requirements alone are inadequate (as we saw

in case of [R1]), especially when they have to be completed without feedback

from the development process. Having concrete tests that are based on realistic

examples from the business domain help build a common understanding of the

business needs.
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We can summarize the benefits of Fit tables as follows [68]:

• Communication: providing a way for people who want a system to dis-

cuss and communicate that need in a concrete way.

• Agility: keeping the software in good shape by supporting design changes

that are essential as the needs of the business change. Automated tests help

define those changes and help ensure that any changes to the software do

not break previously satisfied requirements.

• Balance: spending less time on gaining balance with fixing problems by

reducing the number and severity of problems, catching them early, and

making sure they don’t return.

3.2 ESpec support for Fit

ESpec’s Fit engine (ES-Fit) is the first implementation of the Fit Framework for

the Eiffel language. ES-Fit supports all the official tables as described in the

original Fit framework. Developers and/or the customers can run these tests

against the implementation under development to see if it behaves correctly.

How does the developer satisfy the requirements specified in the customer-

provided Fit table? The developer will need to write two kinds of classes: Fixture
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classes and classes of the business logic (see Fig. 3.1). Fixtures are glue code be-

tween the customer-provided requirements and the business logic. ES-Fit pro-

vides libraries that allow the developer to easily develop such Fixtures that con-

nect the requirements to the business logic. ES-Fit uses the developer written

Fixture classes to parse the requirement document, extract the tables, interpret

the tables and invoke the relevant business logic and then reflect the results of

running the business logic back to the tables in the requirements document. The

rows in tables where the checks succeed are coloured green and those that fail

are coloured red.

Requirements

Fixture code Business logic

Figure 3.1: Relationship between Fit tables, Fixtures and the Business logic.

Fixtures define how the underlying Fit engine should read and execute each

table of the HTML document. ES-Fit implements three types of Fixture classes
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that correspond to each of the table types in the original framework, namely:

ES COLUMN FIXTURE, ES ACTION FIXTURE, and ES ROW FIXTURE. ESpec adds num-

ber of extensions to the original Fit framework:

• Introducing Design by Contract (DbC) into the Fit Framework: Contract

violations will be reported directly to the tables allowing the customers to

give valuable feedback to the developers right from the start of the devel-

opment process. This helps developers catch bugs in the specifications.

• Flexible method for constructing new Fixture types: ES-Fit allows the de-

veloper to redefine—and therefore change the behaviour of—the default

Fixtures in order to create new desired types of Fixtures (implementation

detail will be discussed in Chapter 5).

• Addition of Reference Tables: The ability of a Fixture to reference com-

mon data that is shared between Fit tables simplifies the description of the

requirements (see Chapter 5).

• Flexible naming conventions: ES-Fit does not force customers to follow

a strict naming convention. Customers can directly use business terms as

they appear in the problem domain (i.e., customers don’t need to know

anything about the solution domain such as Fixtures classes, business logic

classes, etc.). This is an improvement to the original Java implementation
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of the Fit framework in which customers are restricted to use particular

names in their tables (e.g., in the Java version, header names of the table

should be the same as the Fixture class or header name of each column

should be exactly defined as the function name defined in the Fixture code).

ESpec works in either the command line mode or the GUI mode (see Ap-

pendix D). The developer and or the customer can select the input HTML file

(or a directory in case there are number of HTML inputs) and then press “Run

ES-Fit” button on ESpec’s GUI. This will invoke ES-Fit. ES-Fit will read the input

HTML file and execute the Fixture code associated with tables defined inside the

HTML document and reports the results back to the tables. If any of the Fit tests

fail, a red bar will be displayed to the user. The user can then click on the failed

Fit tests to see the failures.

After Fit tables are provided by the customers, the next step for the devel-

opers would be to implement the Fixture code. Fixtures drive the development

process by forcing the developers to write enough code (e.g., classes and feature

declarations) so that the system becomes compilable.

In the following sections, we introduce different types of default Fixtures

which are supported by ES-Fit. For more information regarding the implemen-

tation and design of the ES-Fit tool, please see Chapter 5.
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3.2.1 Column Fixture

The ES COLUMN FIXTURE class, provides facilities for the developers to define a Fit

Column Fixture. A Column Fixture is used to test the calculations or decisions

that are made by the system under test. A Column Table captures the business

logic (in the problem domain) by allowing the customers to define business logic

in a tabular format with number of columns corresponding to the input data and

a few more columns for expected results. A sample Column Table was already

shown in Table 3.1.

Table 3.3 is a simpler example of a Column Table. The header is the name of

the table and is a string arbitrary chosen by the customer. The first two columns

of this table (P and Q) are the input Boolean values and the next three columns

(P and Q, P or Q and P implies Q) are the expected Boolean outputs.

Logic Calculations

P Q P and Q P or Q P implies Q

True True True True True 

False True False True True 

True False False True False 

False False False False True 

Table 3.3: A sample Column Table

Fit ignores any formatting applied to table cells; italicized, bold, or under-

lined text can be used to highlight important rows or values in the table without

71



affecting Fit’s ability to execute the test. Fit executes tests one row at a time, from

left to right of the column order.

The Fixture code associated with this table is shown in Fig. 3.2. The Fixture

class is a concrete subclass of ES COLUMN FIXTURE (line 4). The creation routine

make (lines 10–15) binds the customer-provided names of the calculations (in the

Fit table) to the appropriate agent function defined in the body of the Fixture

class. For example, string “P and Q” is bound to calculate and agent at line 12.

For simple examples, the business logic resides in the Fixture code. For ex-

ample, in Fig. 3.2 the calculation of “P implies Q” given by Result := a implies

b is contained in the Fixture code (lines 29–32). Obviously, as the code increases

in complexity the developer will want to develop design classes. The job of the

Fixture code will be to call the appropriate features of the business logic.

In order to run the Fit tests, the developer needs to define a root class (shown

in Fig. 3.3) in which, the name of the tables are bound to the corresponding

Fixture classes, e.g., every table with name “Logic Calculations” is bound to the

LOGIC FIXTURE class.

ES-Fit can be invoked either through the command-line or through the ESpec

GUI. ES-Fit reads the input HTML file (or a directory containing HTML files)

and runs the Fit tables against the system under test. Fig. 3.4 shows the result of

executing the “Logic Calculation” table.
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1 class
2 LOGIC_FIXTURE

3 inherit
4 ES_COLUMN_FIXTURE

5
6 create make

7
8 feature -- creation

9
10 make -- binding is done in here

11 do
12 bind ("P and Q", agent calculate_and)

13 bind ("P or Q", agent calculate_or)

14 bind ("P implies Q", agent calculate_implies)

15 end
16
17 feature -- agents for calculations

18
19 calculate_and (a, b: BOOLEAN): BOOLEAN

20 do
21 Result := a and b

22 end
23
24 calculate_or (a, b: BOOLEAN): BOOLEAN

25 do
26 Result := a or b

27 end
28
29 calculate_implies (a, b: BOOLEAN): BOOLEAN

30 do
31 Result := a implies b

32 end
33 end -- class LOGIC_FIXTURE

Figure 3.2: The Fixture code associated with the Column Table 3.3

When a table is checked, the cells representing expected outcomes are shaded

green, red, yellow, or gray; green means that expected and actual values match,

red means they didn’t match (in which case expected and actual appear in the

cell), yellow indicates that an unexpected error happened or a contract violation
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class -- Root class of the system

ROOT_CLASS

inherit
ES_SUITE

create
make

feature -- binding the name of the table to the associated Fixture class

make

do
add fixture ("Logic Calculations", create {LOGIC_FIXTURE}.make)

run espec
end

end -- class ROOT_CLASS

Figure 3.3: System ROOT CLASS for running Table 3.3

was thrown (a stack trace appears in the cell directing the developers to the loca-

tion of the problem), and gray means that the field or method is not implemented

in the Fixture class or that the cell was ignored by ES-Fit.

Logic Calculations

P Q P and Q P or Q P implies Q

True True True True True

False True False True True

True False False True False

False False False False True

Table 3.4: Result of executing Table 3.3

3.2.2 Action Fixture

Any class that is a descendant of ES ACTION FIXTURE class, becomes an Action

Fixture. An Action Fixture tests that a series of actions carried out on an applica-
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tion works as expected. An Action Fixture starts a class from the underlying sys-

tem by creating an instance of that class. Subsequent actions are made through

feature calls on that object.

An Action Table (input to an Action Fixture) is created by the customers to

define a sequence of actions to be executed on the underlying system. Customers

can express the expected behaviour of the system when such sequence of actions

are carried out. Each row in an Action Table defines a single action. Actions

are defined with the help of following keywords (each row must start with a

keyword):

• start app: create/reset the application app.

• enter act arg: run action act, on the application app, and provide an input

argument arg.

• press act: run action act, on the application app (no argument is provided).

• check prop val: check that the property prop has value val in the application

app.

The start keyword in an Action Table causes the corresponding Action Fix-

ture to create or re-initialize an object. It is the job of the developer to make the

appropriate connections in the Fixture class (i.e., to decide which objects need to

be created).
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The press and the enter keywords execute commands that correspond to the

actions defined by the customers. The check keyword runs a function query on

the object which was originally initialized by the start.

Counting Device

start counter   

check display 0 

press increment   

check display 1 

press increment   

check display 2 

press decrement   

check display 1 

enter display value 3 

press set display   

check display 3 

Table 3.5: An Action Table for a
counter device

Counting Device

start counter   

check display 0

press increment   

check display 1

press increment   

check display 2

press decrement   

check display 1

enter display value 3 

press set display   

check display 3

Table 3.6: Result of Table 3.5

An Action Table for controlling and testing a counter device is shown in Ta-

ble 3.5. The corresponding Fixture code is shown in Fig. 3.4.

In the first row of Action Table 3.5 the Customer provides an arbitrary title

such as: “Counting Device”. In the first column of the table we can see keywords

(start, check, enter and press) which we described above.

The keyword start is used to initiate the counter device. Usually, there is

only one start per Action table. Thus, the second row of the table starts the

business logic for the counter. If there is another Action Table in the same HTML

document, it will use the current counter unless there is another start in that
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table (which would re-initialize the counter business logic).

The keyword used in the third row is check. It tests that a property (desig-

nated by the descriptive text in the second column) satisfies some value (speci-

fied by the text in the third column). The action in the third row thus states that

the counter “display” must have the value “0”.

Properties of the business logic are specified in the second column of the Ac-

tion table. The customer may use any descriptive string (say Str) to denote a

property (say Prop) in the second column. Once Str is specified then it always

denotes the same property Prop throughout this table and any other Action ta-

ble. Values in the third column of the Action table are interpreted by the Fit

framework as booleans, integers, reals, characters, strings and arrays of the ba-

sic types. As far as the customer is concerned, a value is just a descriptive string

(e.g., “0”, “1”, “2”, etc...).

The keyword press in Table 3.5 denotes an action that effects some change in

the business logic (incrementing the value of the counter). The keyword press

may be used together with enter to denote a parameterized action, e.g., we may

use “enter display value” together with the action “press set display” to change

the value of the counter to an arbitrary value.

The start keyword causes the Fixture code to run the start routine (lines 22–

23 in Fig. 3.4) by passing the value of the second cell (“counter”) as the argument.
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1 class COUNTER_FIXTURE inherit
2 ES_ACTION_FIXTURE

3 create
4 make

5
6 feature{NONE}
7 make is -- Binding is done in here

8 do
9 bind("increment", agent increase)

10 bind("decrement", agent decrease)

11 bind("display", agent display)

12 bind("display value", agent set_display_value)

13 bind("set display", agent set_display)

14 end
15
16 counter: COUNTER -- Global object created by start

17
18 display_value: INTEGER

19
20 feature -- Actions to be invoked on the system under test

21
22 start (arg: STRING) is
23 do create counter.make end
24
25 display: INTEGER is
26 do Result := counter.display end
27
28 increase is
29 do counter.increase end
30
31 decrease is
32 do counter.decrease end
33
34 set_display is
35 do counter.set_counter (display_value) end
36
37 set_display_value (v: INTEGER) is
38 do display_value := v end
39
40 end -- class COUNTER_FIXTURE

Figure 3.4: The Fixture code associated with the Action Table 3.5
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This argument value could be used to create variety of applications in the start

routine.

The check keyword executes the display (lines 25–26) routine and then com-

pares the returned value “0” to the expected value in the table. If there is a match,

then the corresponding cell will be marked with green. Binding the names ap-

peared in the table to the associated agent routines is done in the creation routine

make (lines 7–14) this is similar to a Column Fixture.

The enter action calls the routine set display value (lines 37–38) which is

bound to the name in the second column (“display value”) passing “3” as its

argument.

Another way to see an Action Table is to think of it as an “imaginary Graph-

ical User Interface (GUI)” with various empty text fields and buttons (similar to

Fig. 3.5). The job of an Action Table, is to mimic an imaginary customer who

enters text into the text fields of a GUI and then clicks on various GUI buttons in

order to test the underlying application.

3.2.3 Row Fixture

A Row Table tests whether the expected elements of a collection (or database)

matches the actual elements in the collection (or database).

In ES-Fit, the developer can define a Row Fixture class by inheriting from the
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Counter DeviceCounter Device

increment decrementstart

Display

set display3

Commands

Change Display

Ready

Enter display value 

Figure 3.5: Action Fixture Table simulates an imaginary GUI

generic class ES ROW FIXTURE. An algorithm matches rows with objects based on

one or more keys. Objects may be missing or in surplus and are so noted [68]. A

simple example of a Row Table is shown in Table 3.7 which checks the contents

of a phone book. The Fixture code associated with this example is shown in

Fig. 3.6.

Phone Book 

Name Telephone# 

Bob 416-212-1234 

Sara 905-213-1111 

Jack 416-433-1322 

Table 3.7: A Row Table for checking
entries in a phone book

Phone Book 

Name Telephone# 

Bob 416-212-1234 

Sara 905-213-1111 

Jack 416-433-1322 

Table 3.8: Result of Table 3.7
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The binding of the table headings, i.e., “Name” and “Telephone#”, to the asso-

ciated agents are done in the make routine as before (lines 10–14).

1 class
2 TELEPHONE_ROW_FIXTURE

3 inherit
4 ES_ROW_FIXTURE [TELEPHONE_ENTRY]

5
6 create
7 make

8
9 feature

10 make is -- Binding is done in here

11 do
12 bind("Name", agent get_name)

13 bind("Telephone#", agent get_number)

14 end
15
16 get_name(an_element: TELEPHONE_ENTRY): STRING is
17 do Result := an_element.name end
18
19 get_number(an_element: TELEPHONE_ENTRY): STRING is
20 do Result := an_element.telephone_number end
21
22 query (list: STRING): LINKED_LIST[TELEPHONE_ENTRY] is
23 local
24 elem1, elem2, elem3: TELEPHONE_ENTRY

25 do
26 create elem1.make ("Bob", "416-212-1234")

27 create elem2.make ("Sara", "905-213-1111")

28 create elem3.make ("Jack", "416-433-1322")

29 create Result.make
30 Result.extend (elem1)

31 Result.extend (elem2)

32 Result.extend (elem3)

33 end
34 end

Figure 3.6: The Fixture code associated with the Action Table 3.7

The query at line 22 is a deferred feature inherited from the ES ROW FIXTURE

which must be effected in the subclass. For this simple example, the business
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logic resides in the Fixture code, e.g., the database of telephone entries is created

and populated in the Fixture code (lines 26–32); however, in complex systems,

the job of the query feature is to retrieve the database from the system under test

and convert such database to a LINKED LIST[G] where G is the generic type of the

objects defined in the Row Fixture (TELEPHONE ENTRY in our example).

The result of running Table 3.7 is shown in Table 3.8. A green row indicates

that the element described by the row matches an element in the database (e.g.,

in the system under test, there exists a telephone entry object whose name is

“Bob” and with telephone number “416-212-1234”). If there are some objects in

the database of the system under test which are not expected (i.e., there are no

corresponding rows in the table), then they will be reported as Surplus. For ex-

ample, if we extend the database with a new telephone entry item (with name

“Tom” and telephone number “416-555-1212”), then the resulting table will look

like Table 3.9. On the other hand, if some elements are expected in the table

(in the form of rows) but the database does not contain objects corresponding to

those rows, they will be reported as Missing. For example, if we remove line 31 in

Fig. 3.6, the database will miss the telephone entry associated with “Sara”; there-

fore, the resulting table after execution of ES-Fit will look like Table 3.10. The

code of class TELEPHONE ENTRY (part of the business logic) is shown in Fig. 3.7.
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class
TELEPHONE_ENTRY

create
make

feature -- Creation

make (a_name: STRING; a_number: STRING) is
require

name_non_void: a_name /= void
number_non_void: a_number /= void

do
name := a_name

telephone_number := a_number

ensure
name_set: name.is_equal (a_name)

number_set: telephone_number.is_equal (a_number)

end

feature -- Implementation

name: STRING

telephone_number: STRING

end

Figure 3.7: A TELEPHONE ENTRY object with name and a telephone number

3.3 Errors in Fit Tables

In Chapter 2, Scenario Tests and ML-Contracts helped us to specify aspects of

the design in an automatically testable format. When these tests run success-

fully, we obtain a certain amount of confidence that the implementation satisfies

the specification. However, there is yet no guarantee that the specified design

satisfies the requirements as described in the Fit tables. We may be designing

the product right—yet, we still do not know if we have the right product! There
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Phone Book 

Name Telephone# 

Bob 416-212-1234 

Sara 905-213-1111 

Jack 416-433-1322 

Tom surplus  416-555-1212

Table 3.9: Database contains an un-
expected element

Phone Book 

Name Telephone# 

Bob 416-212-1234

Sara missing 905-213-1111

Jack 416-433-1322

Table 3.10: Database misses an ex-
pected element

are two types of errors that may be reported by ES-Fit:

• A category 1 error is one in which the expected behaviour declared in the ta-

ble disagrees with the actual behaviour of the system (without generating

any contractual violations). This type of error indicates that the implemen-

tation is faulty and (in addition) that there is either a wrong or incomplete

specification (that was not flagged by an appropriate contract violation).

• Any contract violation is a category 2 error and such violations are reported

in the Fit tables. This type of error indicates that implementation does not

satisfy its specification (contract).

Consider a customer who requires storage space on their system of 180 Gi-

gabytes as shown in Table 3.11. This requirement may be written as storage ≥

180GB. A variety of specifications are shown together with an incorrect imple-

mentation (make := Seagate ; storage := 160GB).

The first specification (make ∈ {Seagate, Hitachi}∧ storage = 160GB) is wrong

because it specifies too little storage to satisfy the requirement. The second spec-
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ification (make ∈ {Seagate, Hitachi}) is incomplete because while specifying the

make of the hard drive, it omits to specify the size (thus, allowing an imple-

mentor to provide too little storage). The third specification is both correct and

complete (satisfies the requirements) and thus catches the incorrect implementa-

tion.

• Requirement: storage ≥ 180GB

• Specification: see the table below

• Implementation: make := Seagate ; storage := 160GB

SPECIFICATION CATEGORY 1 

(EXPECTED VS. ACTUAL) 

CATEGORY 2 

(CONTRACT VIOLATION) 

make  { Seagate, Hitachi} 

 Storage = 160GB 
Specification Error 

make  { Seagate, Hitachi} 

Incomplete Specification 

make  { Seagate, Hitachi} 

 Storage = 200GB 
Implementation Error 

Table 3.11: Fit table errors

3.3.1 Password Example

Let’s suppose that we are implementing a password validation module for an

online banking service. The password rules are described as follows:

• [R1] A password must contain a non-numeric character in the
first and last position

• [R2] A password must contain at least one capital alphabetic and
one non-alphabetic character
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• [R3] A password must be at least six characters in length

Password Validation Fixture

Entered password Is Valid?

Good password

(satisfies all 

requirements) 

Bad password 

(requirement  

violated) 

Tsfg121GdgfD True 

#SDdg23dfbv!ffw True 

e32EdfgfGdd True 

F112231212G True 

X False   R3 
1TedfsghDs False   R1 
GdgdsZX5 False   R1 
efRftfDsscgG False  R2 

Table 3.12: Traceability of the informal requirements to Fit requirements

Consider the Fit Table 3.12 providing checks of requirements R1 to R3 in

which our customer has provided us with a series of concrete examples of valid

and invalid passwords. We effectively have two “databases” of the functional

requirements R1 to R3: (a) the informal requirements and (b) the Fit tests. It is

important to relate the two so that we can check that all the informal require-

ments are formally checked by Fit.

Tracing the informal requirements to the Fit tests is complicated by the fact

that there is a many-to-many relationship between the informal requirements

and the Fit tests (both ways). In developing Fit tests it is important to show that

all the requirements are covered and that there is consistency between the two

databases.
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The same kind of consistency check can be made using the UML’s use case

notation. However, the advantage of Fit tests is that we will actually be able to

check that these tests pass.

Password Validation Fixture

Entered password Is Valid?

Tsfg121GdgfD True

#SDdg23dfbv!ffw True Expected

False Actual

e32EdfgfGdd True

F112231212G True

X False Precondition violated.

PASSWORD_VALIDATION non_numberic_first_last 
has_atleast_two_char:
Precondition violated. Fail 
--------------------------------------------- 
PASSWORD_VALIDATION is_valid @1  
Routine failure. Fail

1TedfsghDs False

GdgdsZX5 False

efRftfDsscgG False

Table 3.13: Column table for password validation module

In order to check the requirements, the tables are connected to the password

validation module PASSWORD VALIDATION (shown in Fig. 3.13 and 3.14) through

a Column Fixture. The Fixture initializes a password validation object and calls

the is valid feature on that object substituting the password provided in the

table.

After running the tables against the implementation, the following tables are

generated by ES-Fit (Tables 3.13 and 3.14). The forth row of Table 3.13 shows
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Password Validation Fixture

Entered password Is Valid?

gsfgh21t False Postcondition violated.

PASSWORD_VALIDATION alpha_check @2 check_result:  
<000000000192D0C8> Postcondition violated. Fail 
--------------------------------------------- 
PASSWORD_VALIDATION alpha_check @10  
<000000000192D0C8> Routine failure. Fail 
--------------------------------------------- 
PASSWORD_VALIDATION is_valid @1  
<000000000192D0C8> Routine failure. Fail

gdfs%fDcfc True

Fwfdggt12111D True

empty False Precondition violated.

PASSWORD_VALIDATION make @4 password_non_empty: 
Precondition violated. Fail

sadfgadfgFd4 False

seasdfadfgadfg False

Table 3.14: Continuation of table 3.13

an example of an expected vs. actual error (category 1) which does not involve

a contract violation. As we mentioned before, this type of failure indicates that

there is something wrong in the specification. In our case, the postcondition of

the routine non numberic first last (Fig. 3.8) has a problem.

non_numberic_first_last: BOOLEAN is
require
password.count >= 2

ensure
Result = password[1].is_alpha and password[count].is_alpha

end

Figure 3.8: Contracts of non numberic first last
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The postcondition asserts that the routine returns true iff both the first and the

last characters of the password are alphabetic (is alpha is a feature of CHARACTER

class which returns true if the character is alphabetic). The informal require-

ments asserted that a password must have a “non-numeric character in the first

and last position”. Since a non-numeric character is not necessarily an alphabetic

one (e.g., ’#’) we can conclude that the postcondition was wrong. The implemen-

tation also needs to be revised to satisfy the new postcondition.

If we make the adjustments, the Fit table will indeed show green for that case.

The revised version of the routine is shown in Fig. 3.9.

non_numberic_first_last: BOOLEAN is
require
has_atleast_two_char: password.count >= 2

do
Result := not (password.item (1).is_digit or
password.item (password.count).is_digit)

ensure
check_result: Result = not (password[1].is_digit or password[count].

is_digit)

end

Figure 3.9: Fixed version of routine non numberic first last

Now we can focus on the next error in Table 3.13 (where a short password

“X” is provided). A precondition violation is reported with an error message point-

ing us to the location of the violation (feature non numberic first last). This

type of violation is an indication of an implementation problem in the body of

the routine that is the client of non numberic first last. The error trace points

89



us to is valid as the caller. Closer look at the implementation (lines 17–21 in

Fig. 3.13) reveals that is valid makes a call to non numberic first last with-

out satisfying its precondition password.count >= 2. A string with size less than

2 (e.g. “X”) caused this precondition violation. The revised version of is valid

is shown in Fig. 3.10. This implementation implicitly checks for the precondition

of the non numberic first last (through lazy evaluation). As a result of this

code change, all the tests in table 3.13 will pass.

is_valid: BOOLEAN is
do

Result := (password.count >= Valid_length and then
non_numberic_first_last and alpha_check)

end

Figure 3.10: Fixed version of is valid query

We can now focus on Table 3.14. Both of the failures reported in this table

involve a contract violation indicating a category 2 error. The first one (3rd row)

involves a postcondition violation. A postcondition violation tells us that there

is an implementation problem somewhere in the code, i.e., the implementation

does not satisfy its specification. In our case, the reported error message in the

table indicates that the postcondition of routine alpha check is violated at the

second line of the postcondition (line 42 in Fig. 3.13).

According to this postcondition, the routine returns true iff the password con-

tains at least one capital alphabetic and one non-alphabetic character. Since the
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postcondition was violated on input password (“gsfgh21t”), we conclude that the

routine is not properly implemented to do the check for capital alphabetic char-

acters (i.e., line 32 in Fig. 3.13 should also check if the character is uppercase).

The fixed version of the routine is shown in Fig. 3.11.

alpha_check: BOOLEAN is
require
non_empty: not password.is_empty

local
i: INTEGER; r1, r2: BOOLEAN

do
from i := 1

until Result or i > password.count

loop
if (password.item (i).is_alpha and
password.item (i).is_upper) then
r1 := true

elseif not password.item (i).is_alpha then
r2 := true

end
i := i + 1

Result := r1 and r2

end
ensure
check_result: Result =

(to_list.there_exists (agent is_alpha_caps(?))

and to_list.there_exists (agent is_non_alpha(?)))

end

Figure 3.11: Fixed version of routine alpha check

This brings us to the last violation in table 3.14 which involves a precondition

violation. The precondition of routine make is violated (line 10 in Fig. 3.13). This

precondition specifies that the make routine expects a non-empty string as the

input argument. The customer expects that the system deals with empty pass-
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words and rejects them6.

This type of error in the Fit table is a special case indicating a specification

error made by the programmers (i.e., the front modules to the outside world

must have been designed in a defensive way to be able to deal with unexpected

input values from the customers). Thus, the password validation module must

be able to deal with empty passwords as well as non-empty ones. The solution

is to remove the precondition as shown in Fig. 3.12. After this fix, both tables

will indeed pass.

make (a_password: STRING) is
require

password_non_void: a_password /= Void
do

password := a_password

ensure
password_set: password.is_equal (a_password)

end

Figure 3.12: Fixed version of routine make

3.3.2 Error keyword

Fit also allows the developers to describe a case in which the code should fail

with the use of error keyword in the table. This is very similar to a violation test

case (Chapter 2).

6This is asserted by the use of “empty” keyword in the Fit table.
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As an example, let’s assume that the precondition error in Table 3.14 was in-

deed expected from the point of view of the developer, i.e., the developer expects

that the code should fail on empty passwords.

In order to describe such a case, we use the error keyword. By declaring

the expected value of a cell to be “error”, we assert that an exception should be

generated. If such an exception happens, the Fit row will pass. Table 3.15 shows

a summary of other keywords that are available in Fit tables.

Fit Table Keywords Description 

Void Express a void value 

Empty Express an empty string 

Ignore Ignore the current table 

Error An error should be generated 

Reference A reference table 

start Start the business logic 

check Check a property of the business logic 

enter Enter text in a text box 

press Press a button 

Expected Customer expected value 

Actual Actual value returned by the system 

Surplus An item returned by the system is not in 

the table 

Missing An item expected in the table is not 

returned by the system 

Table 3.15: List of keywords allowed in the Fit tables

3.4 Reference Tables

ES-Fit extends the original Fit framework by adding the notion of “Reference”

Tables. Section 5.1.11 explains the details regarding the Reference Tables.
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3.5 Summary

In this chapter, we showed how to capture customer requirements through the

use of Fit tables. We introduced three types of Fit tables and their associated

Fixture code and discussed various contract violations that could be reported to

these tables. In the next chapter, we use an example to show how our method

can be used to detect bugs early in the development process.
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1 class PASSWORD_VALIDATION create
2 make

3 feature
4 password: STRING

5 Valid_length: INTEGER is 6

6
7 make (a_password: STRING) is
8 require
9 password_non_void: a_password /= Void

10 password_non_empty: not a_password.is_empty

11 do
12 password := a_password

13 ensure
14 password_set: password.is_equal (a_password)

15 end
16
17 is_valid: BOOLEAN is
18 do
19 Result := (non_numberic_first_last and
20 alpha_check and password.count >= Valid_length)

21 end
22
23 alpha_check: BOOLEAN is
24 require
25 non_empty: not password.is_empty

26 local
27 i: INTEGER; r1, r2: BOOLEAN

28 do
29 from i := 1

30 until Result or i > password.count

31 loop
32 if password.item (i).is_alpha then
33 r1 := true
34 elseif not password.item (i).is_alpha then
35 r2 := true
36 end
37 i := i + 1

38 Result := r1 and r2

39 ensure
40 check_result: Result =

41 (to_list.there_exists (agent is_alpha_caps(?)) and
42 to_list.there_exists (agent is_non_alpha(?)))

43 end

Figure 3.13: Password Validation Module
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44 non_numberic_first_last: BOOLEAN is
45 require
46 has_atleast_two_char: password.count >= 2

47 do
48 Result := (password.item (1)).is_alpha and
49 password.item (password.count).is_alpha

50 ensure
51 check_result: Result = (to_list.first.is_alpha and to_list.last.

is_alpha)

52 end
53
54 feature -- Support for contracts

55 to_list: LINKED_LIST [CHARACTER] is
56 -- converts ’password’ to list for contracts

57 local
58 i: INTEGER

59 do
60 from create Result.make; i := 1

61 until i > password.count

62 loop
63 Result.force (password.item (i))

64 i := i + 1

65 end
66 end
67
68 is_alpha_caps (c: CHARACTER): BOOLEAN is
69 do Result := c.is_alpha and c.is_upper end
70
71 is_non_alpha (c: CHARACTER): BOOLEAN is
72 do Result := not c.is_alpha end
73
74 invariant
75 password_non_void: password /= Void
76 end -- End of class PASSWORD_VALIDATION

Figure 3.14: Password Validation Module, Cont.
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4 A Case Study

In this chapter, we illustrate our method of early testable requirements and spec-

ifications with a chat room example. The point of the example is to show that our

approach and tool is wide-spectrum (i.e., deals both with customer requirements

and design specifications) in an integrated fashion. We provide a brief overview

before delving into the details.

4.1 Overview

We start with a description of the problem domain. The phenomena of the prob-

lem domain includes entities such as chat rooms, users, messages, the chat room

administrator and the interactions between these entities. The informal require-

ments refer to the phenomena of the problem domain and are normally stated

as English text, e.g., “allow chat users to connect or disconnect from the chat

server” or “the chat server may move a user from one room to another”.

We would like to convert these informal requirements into testable require-
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ments. To do this, customers and developers translate as much of the English

text as possible into Fit tables which captures the nature and interaction of the

entities in the chat application in a testable format. For example, our first Fit

requirement for the chat application is provided in Table 4.1.

At this point, there is no actual code that implements the application—thus,

all the Fit tests fail. The job of the developer is to describe a design that satisfies

the requirements. The design is expressed in terms of the phenomena of the

solution space (i.e., the phenomena of the machine in Jackson’s terminology, see

Chapter 1). So, for example, the design may be expressed in terms of object-

oriented classes such as CHAT SERVER, CHAT ROOM, and CHAT USER. Features such

as enter room will be needed in class CHAT SERVER to move a user from one chat

room to another. An initial design is shown in the BON diagram of Fig. 4.3.

A design is one thing. Knowing that the design satisfies the requirements is

something else. We could check an implementation of the design directly against

the Fit tables. A Fit table failure would then indicate a flaw in the implementa-

tion of the design.

However, design implementations are usually complex. Feature enter room

(in class CHAT SERVER) which moves a user from one chat room to another may

need a search algorithm to find the appropriate user to be moved. Thus, we

may need to write a search routine that is not immediately checked by the Fit
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tables. How will we check that this routine works correctly before integrating

it into feature enter room? Even after it is integrated, it may work correctly

in the cases described by the Fit tables, yet have flaws in cases not checked by

the tables. Also, the feature enter room may not correctly interact when used

in conjunction with other features. There are usually an enormous number of

interactions between components of the design that may go wrong and that need

to be checked. This is why developers test implemented components either as

they are developed or post facto, irrespective of any acceptance tests that will be

conducted by their customers.

But, against what must the implementation be tested? The answer is that

the developer has an intuitive idea how the design must behave—this is the de-

sign specification. Specifications are not the same thing as the customer require-

ments (that describe phenomena in the problem domain). Specifications must

describe the phenomena in the solution space such as class CHAT SERVER, its fea-

ture enter room and the search routine that it depends upon.

A design specification must also manifest good design principles. Some im-

portant ideas in this context include the notions of information hiding and sep-

aration of concerns via well-defined module interfaces. A large program should

be divided into separate chunks that can be developed and tested independently

of each other:
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A well-defined segmentation of the project effort ensures system mod-
ularity. Each task forms a separate, distinct program module. At im-
plementation time each module and its inputs and outputs are well-
defined, there is no confusion in the intended interface with other
system modules. ... Finally, the system is maintained in modular
fashion; system errors and deficiencies can be traced to specific sys-
tem modules, thus limiting the scope of detailed error searching ([78],
quoting Gauthier and Pont “Designing Systems Programs”).

Parnas’s information-hiding definition of modules is the first pub-
lished step in [a] crucially important research program, and it is an
intellectual ancestor of object-oriented programming. He defined a
module as a software entity with its own data model and its own
set of operations. Its data can only be accessed via one of its proper
operations. The second step was a contribution of several thinkers:
the upgrading of the Parnas module into an abstract data type, from
which many objects could be derived. The abstract data type pro-
vides a uniform way of thinking about and specifying module inter-
faces, and an access discipline that is easy to enforce ([39], Chapter
19).

In fact (and in short), object-orientation = abstract data types + inheritance [84].

What form should the design specification take, given that we want the speci-

fication to be testable and a specification of the underlying abstract data types?

We believe that ML-Contracts and Scenario Tests (see Chapter 2) are good can-

didates for such testable specifications.

Contracts document the complete behaviour of classes using class invariants

and pre and post conditions for each feature in the class. As described in earlier

chapters, the base Eiffel libraries of mutable classes are not adequate for com-

plete specifications. This is where the (immutable) mathematical libraries (ML)

described in Chapter 2 and Appendix C are needed. For example, using the ML-
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Contracts we may model the chat application with: (a) a location model which

is a function ML MAP[CHAT USER,CHAT ROOM] (i.e., given a user, the map returns

the current room of the user); (b) an ownership model which is a map from chat

rooms to chat users. With these mathematical models we can provide complete

contracts for classes such as CHAT SERVER and features such as enter room (e.g.,

see Fig. 4.17). This will be explained in detail in the sequel.

Once designs are specified with contracts, we can check that the implemen-

tation of the chat room design satisfies the contracts (i.e., the specification). In

Chapter 1, we called this implementation correctness. The check of implemen-

tation correctness can be done statically via theorem provers or dynamically via

runtime assertion checking.

Implementation correctness checks that the implementation satisfies the de-

sign specification. However, we do not yet know that we have designed the

right product, one that satisfies the goals of the customer. What we must do is

check specification correctness (as described in Chapter 1), i.e., the specification

must satisfy the customer requirements (Fit tables). Our software assurance tool

ESpec does this by reflecting contract violations in the Fit tables (for an example,

see Table 4.2 in the sequel). Such violations may lead us to detect mismatches

between implementation, specifications, and the requirements.

As shown in Fig. 4.1, we are not proposing a software development method-
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Figure 4.1: Concurrent Design

ology (also see Chapter 1). The figure indicates that requirements elicitation, de-

sign, programming and testing may be done concurrently. What we are propos-

ing is a method that allows us to test requirements and specifications no matter

where we are in the design process. Thus, we could start with Fit tables, ML-

Contracts, and then implementation and testing. Or we could start with imple-

mentations and then write the specifications and requirements.
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4.2 Informal Requirement Document

Our customer needs a chat application that allows company employees to com-

municate with each other. The chat application should allow members to post

messages to one or more of the authorized list of people who are currently on-

line.

The entities in the problem domain include many chat users and a server ad-

ministrator of the chat server. Users can join permitted rooms and send messages

to the other users of those rooms. A user who first creates a room is the owner

of the room and has the power to decide who accesses that room. A user who is

forbidden from a room, if currently in that room, must be moved to the “Lobby”.

In summary, the application has the following requirements:

R1: A chat server has an “administrator” and a room called the “Lobby”.
After starting the server, the administrator should be in the Lobby.
Initially, the administrator is the only user and the Lobby the
only room

R2: A user may connect to the chat server thus landing in the Lobby
or may disconnect from the server

R3: A user may add or remove public or private rooms thus becom-
ing the owner of the room

R4: An owner may permit or reject other users from accessing rooms

R5: A user may enter or exit rooms as allowed by the owner of the
room

R6: After entering an allowed room, a user may read and post mes-
sages in the room

Chat rooms need to be listed by their unique names so that the users can find

103



sessions relevant to their interests. Users should not be able to see the listings of

private rooms unless they are permitted to do so. Public rooms should be visible

to everyone.

4.3 A Testable Requirement Document (Fit table)

We (the customer and/or developer) are ready to write an HTML requirements

document with appropriate Fit table formalizations. We start with the first re-

quirement:

4.3.1 The Customer’s First Fit Table

R1: A chat server has an administrator and a room called the Lobby.
After starting the server, the administrator is in the Lobby. Ini-
tially, the administrator is the only user and the Lobby the only
room.

The first Fit table, shown in Table 4.1, is an Action Table. This table has a title

“R1: Chat Server Setup” and starts a chat server after which various properties

relating to R1 are checked.

An Action Fixture is a developer written class (e.g., CHAT ACTION) that will be

used to glue the implementation (the business logic) to the customer written Fit

table (Table 4.1). The title in the Fit table (“R1: Chat Server Setup”) will be used

to bind the customer Fit table to the execution of developer written Fixture class

104



• Start the chat server.

• Check that the chat server is up and running.

• Check that there is one room (the Lobby).

• Check that there is one user (the Administrator).

• Set [user] to “Admin” and [room] to “Lobby”.

• Check that [user] “Admin” is connected and in [room] “Lobby”.

• Check that the owner of the “Lobby” is “Admin”.

R1: Chat Server Setup

start Chat Server  

check Is server running? True 

check Number of server rooms 1 

check Number of server users 1 

enter [user] Admin

enter [room] Lobby 

check Is [user] connected? True 

check Is [user] in [room]? True 

check [room]'s owner Admin

Table 4.1: Chat Action Table for requirement R1

CHAT ACTION. The title is selected by the customer. We first describe the Action

Table; later in the sequel, we will return to the details of the Action Fixture glue

code.

As described in Chapter 3, there are four keywords that may be used by a

customer in an Action Table: start, check, enter and press. From the Eiffel Fix-

ture code point of view, we may think of “start x” as creating an object attached

to entity x. We may think of “check q v” as checking that query q has value v.
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Finally, the enter/press combination is used to call a routine “r(v1, v2)”, where

v1 and v2 are the set by enter and press is used to invoke r.

Consider the check for the property “Is [user] in [room]?” in row 9 of Ac-

tion Table 4.1. We could have used the descriptive string “Is Admin in Lobby?”

for the property. However, that limits this description to the specific property

involving the specific individuals Admin and Lobby. We would prefer to check

for the more generic property that some arbitrary user is in a given room. We

use the keyword enter to associate a value with a parameter of the property (like

an argument of a query). Thus, at row 6, the customer associates the value “Ad-

min” with the parameter “[user]”. The customer could have chosen “some user”

rather than “[user]” in the second column or some other descriptive string. We

use the convention of surrounding the parameter with square brackets so that

it stands out as a parameter of the property, e.g., in the property “Is [user] in

[room]?” at line 9 the parameters are “[user]” and “[room]” entered at lines 6

and 7 respectively.

The keyword press is not used in Table 4.1 but it will be used in the sequel.

This keyword denotes an action (like pressing a button) that effects some change

in the business logic. The keyword press may be used together with enter to

denote a parameterized action, e.g., we may use press together with the param-

eterized action “[user] adds [room]” as in Action Table in Fig. 4.11. This means
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that user “Bob” adds the room “Technical Support” to the chat application, and

“Bob” is now the owner of the room.

Fit tables make the requirements testable. However, at this point, if we run

the Fit table in the requirements document it will fail. For example, the checks

associated with the value cells in Table 4.1 will display as red indicating that

the requirement is not yet satisfied. As yet there is no implementation code and

so we expect failure. Our goal is now to specify a design that will satisfy the

requirements (i.e., cause each test row in the table to pass).

4.4 Test Driven Design or Design by Contract?

How do we add the new functionality required by Fit tables such as the one pro-

vided in the previous section? We could follow Test Driven Design Development

by writing unit tests for the new functionality, or we could follow a Design by

Contract approach by writing contracts for the features of the chat server. Both

approaches are good ways to specify the Design.

In the next section, we illustrate the use of design specifications following a

Design by Contract approach. In the rest of this section we briefly outline the

Test Driven approach.

The Scenario Test in Fig. 4.2 specifies part of the design needed to satisfy the

Fit table provided in the previous section. The Scenario Test describes a col-

107



1 scenario_test: BOOLEAN is
2 local
3 server: CHAT_SERVER

4 mike, anna: CHAT_USER

5 mike_room: CHAT_ROOM

6 users: LIST[CHAT_USER]

7 rooms: LIST[CHAT_ROOM]

8 do
9 -- create the chat server and check it

10 create server.make

11 users := server.users

12 rooms := server.rooms

13 check server.user_count = 1 end
14 check server.room_count = 1 end
15
16 -- create 2 users Mike and Anna and connect them to the server

17 create mike.make ("Mike")

18 create anna.make ("Anna")

19 server.connect (mike)

20 server.connect (anna)

21 check server.user_count = 3 and server.room_count = 1 end
22 check mike.room = server.lobby and anna.room = server.lobby end
23 check users.has(mike) and users.has(anna) end
24
25 -- Mike creates and adds a room ‘‘Technical Support"

26 mike_room := mike.create_room ("Technical Support")

27 mike.add_room (mike_room)

28 check server.room_count = 2 end
29 check not mike_room.is_private end
30 check rooms.has(mike_room) end
31
32 -- Mike changes the status of his room to private

33 mike.set_private ("Technical Support")

34 check mike_room.is_private end
35 check not server.is_allowed (anna, "Technical Support") end
36
37 -- Mike allows Anna to join the Technical Support room

38 mike.allow_user ("Anna", "Technical Support")

39 check server.is_allowed (anna, "Technical Support") end
40 Result := True
41 end

Figure 4.2: Scenario Test for a chat server
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laboration between three classes CHAT SERVER, CHAT USER, and CHAT ROOM. It thus

specifies the design shown in the BON diagram in Fig. 4.3.

Figure 4.3: Design of the chat application as a BON class diagram

The test specifies specific features in CHAT SERVER such as:

• users: LIST[CHAT USER]

• rooms: LIST[CHAT ROOM]

• add room (a user: CHAT USER)

If all the classes and features in the Scenario Test are added, the project will com-
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pile and the design illustrated in the BON class diagram in Fig. 4.3 is generated

automatically. The class diagram presents the design so far (classes and feature

signatures, but not yet code in the bodies of the features).

Getting this Scenario Tests to compile (thus producing the design in Fig. 4.3)

and pass (by adding implementation code) is an important step towards getting

the Fit table to succeed (see Section B.3 for more tests).

R1: Chat Server Setup

start Chat Server  

check Is server running? True

check 
Number of server 

rooms 
1

check 
Number of server 

users
1

enter [user] Admin 

enter [room] Lobby 

check Is [user] connected? 
True Expected

False Actual

check Is [user] in [room]? 

True

Postcondition violated.  

CHAT_SERVER get_user @10 server_has_it:  
<00000000018BC810> Postcondition 
violated. Fail 
--------------------------------------------- 
CHAT_SERVER get_user @3  
<00000000018BC810> Routine failure. Fail

check [room]'s owner Admin

Table 4.2: Result of running Table 4.1 shows contract errors.
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R1: Chat Server Setup 

start Chat Server  

check Is server running? True

check Number of server rooms 1

check Number of server users 1

enter [user] Admin

enter [room] Lobby 

check Is [user] connected? True

check Is [user] in [room]? True

check [room]'s owner Admin

Table 4.3: Result of running Table 4.1 after fixing the business logic.

4.4.1 Specification Correctness

Scenario Tests helped us to specify aspects of the design in an automatically

testable format. When these tests run successfully, we obtain a certain amount

of confidence that the implementation satisfies the specification. However, there

is yet no guarantee that the specified design satisfies the requirements as de-

scribed in the Fit tables. We may be designing the product right—yet, we still do

not know if we have the right product!

As we illustrated previously, if we run Action Table 4.1 with an incorrect

implementation or design, we get error results of the kind shown in Table 4.2.

Two types of errors are shown in Table 4.2. The first error (row 8 shown in

pink) indicates that the routine to check if a user is connected is not doing what

was expected (the value “True” was expected but the actual value returned by
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the business logic was “False”). As we described in Chapter 3, We call this type

of error a category 1 error. Category 1 errors usually indicate that the design

was not specified correctly. The implemented code was correct in a sense that

it did not trigger any contract violations or Scenario Test errors yet it failed to

satisfy the customer requirements. The design specification (via Scenario Tests

and contracts) is either incomplete or even incorrect.

The second error (row 9 shown in yellow) indicates a postcondition failure in

the business logic (in CHAT SERVER.get user). This is an example of a category

2 error. Category 2 errors usually indicate an implementation problem in the

business logic (i.e., the implementation failed to satisfy its contracts).

In a Test Driven approach, additional code is added and further tests devel-

oped (see Sections B.3 and B.4). This results in an implementation that passes

all the Scenario Tests thus guaranteeing that the Fit table succeeds as shown in

Fig. 4.3.

4.5 Writing Complete ML-Contracts

In the previous section we used Scenario Tests to write testable specifications. In

this section we explore the use of contracts for writing testable specifications.

As we mentioned in Chapter 2, the basic contracting facilities of Eiffel lan-

guage does not allow for complete contracts. We illustrate this lack and describe
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class CHAT_SERVER ...

feature {NONE} -- private features

rooms: LIST[CHAT_ROOM]

users: LIST[CHAT_USER]

feature -- public features

lobby: CHAT_ROOM

admin: CHAT_USER

connect (u: USER) is
require
a_user /= Void
-- user u not already connected

do
...

ensure
-- add u to the existing users in the lobby

end
end

Figure 4.4: Incomplete contract for routine connect

the use of ML-Contracts.

Consider the contract for the routine connect in class CHAT SERVER in Fig. 4.4.

This feature allows a user u to connect to the server. A new user is not initially

connected. In the precondition of routine connect we would like to specify that

a new user u is not yet connected, i.e., is not yet in our list of users. In the

postcondition, we would like to specify that the new user u is now added to the

existing users of the Lobby.
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CHAT_SERVER

make

ensure   location_model  admin § lobby

                       ownership_model lobby § admin

admin.server = Current

location_model: ML_MAP[CHAT_USER, CHAT_ROOM]

ensure  Result i: INTEGER | 0  i  users.count users[i] users[i].room

Invariant
user_count = #location_model

room_count = #owner_model

1 user_count  users.count

1 room_count  rooms.count

admin /= Void and lobby /= Void

connect (u: CHAT_USER)

require  u /= Void

u ´ location_model.domain and # location_model < Max_users

ensure   location_model    old location_model    u § lobby 

                       ownership_model old ownership_model

MODEL

add_room (r: CHAT_ROOM; u: CHAT_USER)

require  r Void and u  Void

r ´ ownership_model.domain

u location_model.domain and r.owner = u

ensure   ownership_model   old ownership_model    r u

                       location_model old location_model

has_user (a_name: STRING): BOOLEAN

require  

     a_name /= Void and not a_name.is_empty

ensure   

     Result  ( u location_model.domain  (u.user_name  a_name))

has_room (a_name: STRING): BOOLEAN

require  

     a_name /= Void and not a_name.is_empty

ensure   

     Result ( r ownership_model.domain  (r.name  a_name))

room_count: INTEGER

ensure   

    Result ownership_model

user_count: INTEGER

ensure   

    Result  # location_model

ownership_model: ML_MAP[CHAT_ROOM, CHAT_USER]

ensure  Result i: INTEGER | 0  i  rooms.count rooms[i] rooms[i].owner

CHAT_ROOM

CHAT_USER

make (a_name: STRING; a_user: CHAT_USER)

require a_name /= Void and a_user /= Void

ensure   owner =  a_user and name  a_name

                       occupant_model 

name: STRING

occupants: LIST[CHAT_USER]

MODEL

occupant_model: ML_SET[CHAT_USER]

ensure  Result i: INTEGER | 0  i 

occupants.count occupants[i]

make (a_name: STRING)

require a_name /= Void

ensure   current_room =  Void and

chat_server = Void and

                       user_name.is_equal (a_name) and

                       owned_model =  old owned_model     

user_name: STRING

room: CHAT_ROOM

server: CHAT_SERVER

owned: LIST[CHAT_ROOM]

MODEL

owned_model: ML_SET[CHAT_ROOM]

ensure  Result i: INTEGER | 0  i 

owned.count owned[i]

owner: CHAT_USER

get_user (a_name: STRING): CHAT_USER

require  a_name /= Void and not a_name.is_empty

 has_user (a_name)

ensure  

 (Result.user_name  a_name) and Result  location_model.domain

get_room (a_name: STRING): CHAT_ROOM

require  a_name /= Void and not a_name.is_empty

 has_room (a_name)

ensure  

 (Result.name  a_name) and Result  ownership_model.domain

FEATURES

rooms: LIST[...]

users: LIST[…]

room owner

server

rooms: LIST [CHAT_ROOM]

users: LIST [CHAT_USER]

admin: CHAT_USER

lobby: CHAT_ROOM

Symbols legend:

   equals by definition 

map

yields

pair

model equality (set, bag, list, map)

=   reference equality

is a member of

    object equality

#    size of

Figure 4.5: System Specifications in BON notation
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How do we specify these contracts? One possibility is to use the private

implementation data structures users and rooms which are linked lists of chat

rooms and chat users (respectively) to write the contracts. This is not ideal be-

cause the implementation is low level and might change. We would like the

specification of the feature to be independent of low level implementation de-

tails. In addition, not all classes are effective. Some classes are deferred (abstract)

and thus there is no available implementation.

So the question is: how do we specify complete contracts without depending

upon implementation detail?

4.5.1 The need for Mathematical Models

In order to fully specify the contracts of feature connect the chat application

must remember:

1. All the users that are already connected (so that a check can be made that

the same user does not connect twice).

2. All the users in the Lobby (so that the list of users of the Lobby can be

updated when the new user is connected).

We may use a mathematical model to describe the above state of affairs. The

location model is a function from CHAT USER to CHAT ROOM as shown in Fig. 4.6.
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Figure 4.6: Location model—mapping from users to rooms

In the location model each user is associated with a room. The location model

may be described using the mathematical map class ML MAP as shown in Fig. 4.7.

In Fig. 4.7, the location model is specified as

location_model: ML_MAP[CHAT_USER,CHAT_ROOM]

The ML-precondition of routine connect is u /∈ location model.domain which

asserts that the user u is not already connected (i.e., the user is not in the domain

of the map). The ML-postcondition is

location model ∼= (old location model) ◮ (u 7→ lobby) (4.1)

which asserts that after execution of connect, the location model is extended by

(symbol ◮) the pair u 7→ lobby, i.e., the location map in the poststate is the

same as it was in the prestate but with the addition that user u is connected

and in the Lobby. The symbol ∼= is the model equality symbol. Two maps are
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(a) BON mathematical notation

class CHAT_SERVER feature

location_model: ML_MAP[CHAT_USER,CHAT_ROOM]

ownership_model: ML_MAP[CHAT_ROOM,CHAT_USER]

lobby: CHAT_ROOM

admin: CHAT_USER

connect (u: USER) is
require

u 6= Void ∧ u /∈ location model.domain
ensure

location model ∼= old location model ◮ u 7→ lobby
ownership model ∼= old ownership model

end
end

(b) Eiffel notation

class CHAT_SERVER feature

location_model: ML_MAP[USER,ROOM]

ownership_model: ML_MAP[ROOM,USER]

lobby: CHAT_ROOM

admin: CHAT_USER

connect (u: USER) is
require

a_user /= Void
not location_model.domain.has_key(u)

ensure
location_model |=| old location_model ^ [u, lobby]

ownership_model |=| old ownership_model

end
end

Figure 4.7: Complete contracts for connect via maps

model equal provided they have the same elements in their respective domains

and map the same elements in the domain to the associated elements in their

respective ranges.
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The BON mathematical notation as in (4.1) is often convenient to use. The

equivalent Eiffel notation has been designed so as to be as close to the mathe-

matical notation as possible. As shown in Fig. 4.7(b) the Eiffel equivalent of (4.1)

is

location_model |=| old location_model ^ [u, lobby]

The ML library has mathematical maps, sets, bags and sequences and the

normal operators of set theory and predicate logic have been implemented (see

Chapter 2). For example, the postcondition of query has user in Fig. 4.10 is

specified as

Result
∧
= ∃u ∈ location model.domain • (u.user name ∼ a name) (4.2)

The symbol “
∧
=” denotes equality by definition. The symbol “∼” denotes object

equality (as opposed to reference equality which is denoted by “=”). In Eiffel,

the effect of ∼ is described by the user defined query is equal. Since the type of

u.user is STRING, the effect of is equal for STRING (two strings are equal in this

sense if they have the same sequence of characters).

The above postcondition thus asserts that the query holds when there exists

some connected user whose name (as a string) has the same characters as the

query argument a name.
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An implementor of class CHAT SERVER may provide any private implemen-

tation code that satisfies the ML-Contracts. For example, the implementor may

use two linked lists (users and rooms) for the implementation. However, all the

contracts are specified in terms of the model. Thus, the implementor must link

the implementation to the model by providing an abstraction function [49] that

maps (or “lifts”) the implementation detail to the model as shown in Fig. 4.10.

For example for the location model, the abstraction function is

Result ≡ 〈〈i : INT|0 ≤ i < users.count • users[i] 7→ users[i].room〉〉 (4.3)

The angle brackets 〈〈· · · 〉〉 is used for map comprehension (similar to set com-

prehension). Thus, (4.3) asserts that the location model is a map consisting of

pairs users[i] 7→ users[i].room where users[i] is the item (i.e., the user) at index i

in the linked list users.

In addition to the location model, we will also need an ownership model

which is a map from rooms to users (owners) as shown in Fig. 4.9. For example,

when a user adds a new room it is the ownership model that changes while the

location model remains the same (e.g., see routine add room in Fig. 4.5). The do-

main of the ownership model is the set of all rooms in the chat application. The

contracts (expressed in terms of the model) for the chat application are shown in
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more detail in Fig. 4.5.

Figure 4.8: Location model (map-
ping from users to rooms)

Figure 4.9: Ownership model (map-
ping from rooms to users)

CHAT_SERVER

location_model: ML_MAP[CHAT_USER, CHAT_ROOM]

ensure  Result i: INTEGER | 0  i  users.count users[i] users[i].room

Invariant

user_count = #location_model and room_count = #owner_model

admin /= Void and lobby /= Void

connect (u: CHAT_USER)

require u /= Void and u ´ location_model.domain

ensure   location_model    old location_model    u § lobby 

                       ownership_model old ownership_model

MODEL

has_user (a_name: STRING): BOOLEAN

require a_name /= Void and not a_name.is_empty

ensure    Result u location_model.domain  (u.user_name  a_name)

ownership_model: ML_MAP[CHAT_ROOM, CHAT_USER]

ensure  Result i: INTEGER| 0  i  rooms.count rooms[i] rooms[i].owner

PRIVATE

rooms: LIST [CHAT_ROOM];     users: LIST [CHAT_USER]

admin: CHAT_USER;                 

lobby: CHAT_ROOM;                 

Figure 4.10: BON specification of the chat server
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4.6 Contract violations in Fit tables

Section 4.4 used Scenario Tests to specify the design. Fit tables were able to catch

specification errors (as category 1 errors in which the expected value disagreed

with the actual values) in the design (category 1 errors may also reflect imple-

mentation errors). Section 4.5 used ML-Contracts to specify the design. The

advantage of ML-Contracts (as opposed to Scenario Tests for a particular execu-

tion) is that they specify the complete behaviour of modules (classes). In ESpec,

such contract violations are reflected back into the Fit tables (these are category

2 errors). This is useful because a contract error in the Fit table indicates that the

specification of the design is correct, but the implementation does not satisfy the

specified design solution. The contract violation in the Fit table provides precise

details as to which feature fails which makes it easier to fix the problem.

We illustrate the use of contract violations in Fit tables with some new Fit

tables in our requirement document as shown in Fig. 4.11 and Fig. 4.12. These

tables convert requirements R2, R3, and R4 into a mechanically testable format.

We use an Action Table to specify a sequence of actions such as adding users,

rooms and permissions. We then use a Row Table to query and check that the

underlying database of users, rooms and permissions are as expected.

Row Tables allow for powerful descriptions that collections of elements (e.g.,
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Action Table:

• Start a chat server, create three chat users (“Anna”, “Bob”
and “Tod”) and connect them to the server.

• User “Bob” creates a chat room called “Technical Support”
and adds it to the chat server.

• “Bob” changes the room status from public to private.

• “Bob” permits user “Anna” to join the room.

R2, R3 and R4: Scenario 

start Chat Server   

enter [user] Anna 

press Connect [user]   

enter [user] Bob 

press Connect [user]   

enter [user] Tod 

press Connect [user]   

enter [user] Bob 

enter [room] Technical Support

press [user] adds [room]   

press [user] makes [room] private  

enter [user list] Anna 

press [user] allows [user list] in [room]  

check Total number of users 4 

check Total number of rooms 2 

Row Table:
The following Row table checks the status of the database of users
and rooms.

R2, R3 and R4: Scenario Query 

Room name Owner Occupants Is public? Permitted list 

Lobby Admin Admin,Anna,Bob,Tod True Admin 

Technical Support Bob Empty False Bob,Anna 

Figure 4.11: Testing requirements R2—R4
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• User “Anna” enters room “Technical Support”

R2, R3 and R4: Scenario  

enter [user] Anna 

enter [room] Technical Support

press move [user] to [room]  

• Checking the status of chat server using a Row Fixture

R2, R3 and R4: Scenario Query 

Room name Owner Occupants Is public? Permitted list 

Lobby Admin Admin,Bob,Tod True Admin 

Technical Support Bob Anna False Bob,Anna 

Figure 4.12: Moving a user from one room to another

in lists, sets, bags and maps) are present as expected. For example, suppose only

“Bob” and “Anna” have been allowed to access the room “Technical Support”.

A single row in a Row Table can check that these users alone are in the permitted

list by simple enumeration.

Fig. 4.11 has an Action Table and a Row Table. The Action Table starts a chat

server, creates three chat users (“Anna”, “Bob”, and “Tod”) and connects them to

the server (“Connect [user]” at rows 4, 6, and 8). Then, “Bob” creates a chat room

called “Technical Support” and adds it to the chat server (“[user] adds [room]” at

row 11). Next, “Bob” changes the room status to private (“[user] makes [room]

private” at row 12) and permits “Anna” to join the room (“[user] allows [user

list] in [room]” at row 14). At this point, we expect that there must be two rooms

and four users (including the administrator) in the chat server. This is checked

by “Total number of users” at line 14 and “Total number of rooms” at row 16.
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Consider the Row Table in Fig. 4.11. The customer specifies the header of the

first column in the table as “Room name”. This means that the customer will be

querying a collection of entities of type room considered as phenomena in the

problem space.

Each row in the Row Table describes the properties of a room in the collec-

tion. In the Row Table of Fig. 4.11 the first row deals with room “Lobby” and

the second row deals with room “Technical Support”. These are the only two

rows because the customer has not created any other rooms. Suppose there are

other rooms but they are not expected in the table. Then execution of the Row

Table would yield an error stating that there are surplus rooms in the business

logic that were not expected in the requirements. Thus, Row tables can represent

exhaustive descriptions of the collection.

The other column headings of the Row Table in Fig. 4.11 describe properties

that each room must satisfy. The second column, for example, specifies who

is the owner of the room, the third column describes who are the occupants of

the room, the fourth column asserts whether the room is public (anybody may

enter), and the last column checks the permitted list. If the room is public then

the permitted list contains only the owner of the room.

It is of course up to the developer to connect the Row Table to the business

logic via a Row Fixture (CHAT ROW). The Fixture code associated with the Row
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Table (4.11) is shown in Section B.2.

Row and Action Tables in Fig. 4.11 are connected to each other. This is achiev-

able via using a construct called connect row to action. This allows a Row Fix-

ture to access objects that are initialized in an Action Fixture. For example, in the

CHAT ROW Fixture, we would like to access the list of rooms and list of users of the

server object which was initially created by the CHAT ACTION Fixture.

The connection is made in the root class which inherits from ES SUITE. The

root class is shown in listing 4.13. The root class inherits from ES SUITE. In the

root class we create the Scenario Tests and the Fixture objects. We also connect

the Fit tables to the corresponding Fixture objects. For example, we’ve bound

the name of the tables “R2, R3 and R4: Scenario” and “R2, R3 and R4: Sce-

nario Query” to the corresponding classes CHAT ACTION and CHAT ROW via the

add Fixture construct (lines 11–13 of Fig. 4.13). The connection between the

Row Fixture and the Action Fixture is made at line 16.

Tables in Fig. 4.12 are continuation of the requirement document described in

Fig. 4.11. Since the tables have the same title they refer to the same chat server

initialized and acted upon in Fig. 4.11. Subsequent to the actions of Fig. 4.11, our

customer uses the Action Table in Fig. 4.12 to specify that user “Anna” moves

from the “Lobby” to “Technical Support”. As shown in the Row Table, our cus-

tomer expects that user “Anna” is transferred from the “Lobby” to “Technical

125



1 class ROOT_CLASS inherit
2 ES_SUITE

3 create
4 make

5
6 feature -- Create

7
8 make is
9 do

10 -- Binding Fixture to the corresponding tables in the HTML document

11 add fixture("R1: Chat Server Setup", create {CHAT_ACTION}.make)

12 add fixture("R2, R3 and R4: Scenario", create {CHAT_ACTION}.make)

13 add fixture("R2, R3 and R4: Scenario Query", create {CHAT_ROW}.make)

14
15 -- Connecting Row to Action Tables

16 connect row to action("R2, R3 and R4: Scenario", "R2, R3 and R4:

Scenario Query")

17
18 -- Including Scenario Tests

19 add test (create {CHAT_TEST1}.make)

20
21 -- Show Contract Violations

22 show errors
23
24 -- Execute ESpec

25 run espec
26 end
27
28 end -- class ROOT_CLASS

Figure 4.13: The root class for testing our system

Support”.

Do the Fit tests pass given the design developed in previous section? If we

execute the Fit requirement tests described in Fig. 4.11 and Fig. 4.12 we obtain

the results shown in Fig. 4.14 and Fig. 4.15.

Both tables in Fig. 4.14 succeed whereas the Row Table in Fig 4.15 fails with

a category 1 error indicating that “Anna” is in two locations at the same time
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R2, R3 and R4: Scenario 

start Chat Server   

enter [user] Anna 

press Connect [user]   

enter [user] Bob 

press Connect [user]   

enter [user] Tod 

press Connect [user]   

enter [user] Bob 

enter [room] Technical Support

press [user] adds [room]   

press [user] makes [room] private  

enter [user list] Anna 

press [user] allows [user list] in [room]  

check Total number of users 4

check Total number of rooms 2

R2, R3 and R4: Scenario Query 

Room name Owner Occupants Is public? Permitted list 

Lobby Admin Admin,Anna,Bob,Tod True Admin

Technical Support Bob Empty False Bob,Anna

Figure 4.14: Success: Result of executing tables in Fig. 4.11

(in the “Lobby” and “Technical Support”). According to the Row Table, after

moving from one room to another, the customer’s expectation is that “Anna” is

solely in “Technical Support” and not in the “Lobby” anymore.

An investigation of the code shows an implementation error in the body of

routine CHAT SERVER.enter room (see Section B.7 for CHAT SERVER code). The de-

veloper simply forgot to remove the user from the original room while adding

this user to the new room thus causing the user to be in two locations at the

same time. This category 1 error in the Fit table is an indication of an incomplete

specification as the error should have been caught by a contract violation (i.e., a
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R2, R3 and R4: Scenario  

enter [user] Anna 

enter [room] Technical Support

press move [user] to [room]  

R2, R3 and R4: Scenario Query 

Room name Owner Occupants Is 

public? 

Permitted 

list

Lobby Admin Admin,Bob,Tod Expected

[Admin, Anna, Bob, Tod] 
Actual

True Admin

Technical 

Support

Bob Anna False Bob,Anna

Figure 4.15: Failure: Result of executing tables in Fig 4.12

category 2 error).

The fix for this problem is to convert a category 1 error into a category 2

contract error. Consider the specification of routine enter room in Fig. 4.16. The

postcondition is:

location model ∼= (old location model) ⊕ (u 7→ get room(r))

where ⊕ is the symbol for map override. The postcondition asserts that the lo-

cation model in the poststate is the same as in the prestate except that the room

associated with user u is now changed to get room(r) where query get room re-

turns the chat room object associated with string r (this is a search routine). The

ownership model is left unchanged by the routine enter room.
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class CHAT_SERVER

...

enter_room (u: CHAT_USER; r: STRING) is
-- Move user ‘u’ into room with string name ‘r’

require
(u 6= Void) ∧ (r 6= Void) ∧ ¬(r.is empty)
u ∈ location model.domain∧ has room(r)

ensure
user_entered: location model ∼= (old location model ⊕ (u 7→ get room(r))
ownerships_not_changed: ownership model ∼= old ownership model

end

get_room (r: STRING): CHAT_ROOM is
-- returns a room with name ’r’

require
(r 6= Void) ∧ ¬(r.is empty)
has_room (r)

ensure
(∃ room ∈ ownership model.domain | room.name ∼ Result.name)

end

...

location_model: ML_MAP [CHAT_USER, CHAT_ROOM]

ownership_model: ML_MAP [CHAT_ROOM, CHAT_USER]

invariant
disjoint_users:

(∀ r1, r2 ∈ own model.domain | r1 6= r2 • r1.occupant model ∩ r2.occupant model ∼= ∅)
coverage: (∪ r ∈ own model.domain • r.occupant model) ∼= location model.domain

end

Figure 4.16: BON specification of the invariant for the CHAT SERVER

The postcondition is correct but incomplete (as the error was category 1 and

not category 2). As shown in Fig. 4.5, class CHAT ROOM has an occupant model

(ML SET[CHAT USER]) that keeps track of the occupants of each room. There is no

assertion that ensures that the models of CHAT SERVER and CHAT ROOM are consis-

tent with each other. The consistency assertions are best written as invariants in
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1 class CHAT_SERVER

2 ...

3 location_model: ML_MAP [USER, ROOM]

4 ownership_model: ML_MAP [ROOM, USER]

5
6 forall_rooms (r1: CHAT_ROOM): BOOLEAN is
7 do
8 Result := ownership_model.domain.for_all

9 (agent empty_intersection (r1, ?))

10 end
11
12 empty_intersection (r1, r2: CHAT_ROOM): BOOLEAN is
13 do
14 if r1 /= r2 then
15 Result := (r1.occupant_model * r2.occupant_model).is_empty

16 else
17 Result := true
18 end
19 end
20
21 multi_union (s: ML_SET[CHAT_ROOM]): ML_SET[CHAT_USER] is
22 local
23 seq: ML_SEQ[CHAT_ROOM]

24 do
25 seq := s.to_seq

26 if seq.count = 1 then
27 Result := seq.head.occupant_model.to_set

28 else
29 Result := (multi_union (seq.tail.to_set) |++

30 (seq.head.occupant_model)).to_set

31 end
32 end
33
34 invariant
35 pairwise_disjoint:

36 ownership_model.domain.for_all (agent forall_rooms (?))

37 coverage:

38 multi_union (ownership_model.domain) |=| location_model.domain

Figure 4.17: Implementing the invariant using ML

class CHAT SERVER as shown in Fig. 4.16.

The invariant disjoint users asserts that any two rooms are pairwise dis-
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joint, i.e., a user may be in at most one room at a time. The second invariant

coverage asserts that the domain of the location model (i.e., all chat users) con-

sists of the union of the occupant model sets, i.e., all users specified in the loca-

tion model must be occupants of some room.

R2, R3 and R4: Scenario 

enter [user] Anna 

enter [room] Technical Support 

press move [user] to [room] Class invariant violated. 

CHAT_SERVER enter_room @7 pairwise_disjoint:  
Class invariant violated. Fail 
--------------------------------------------- 
CHAT_SERVER enter_room @11  
Routine failure. Fail

Table 4.4: Specification violations are reflected to the Fit table

Fig. 4.17 shows how the invariants are written using the ML-Contracts. The

invariant disjoint users is captured by enumerating through the list of all rooms

collecting, pairwise, intersections of the room occupants and then checking that

the resulting set is empty. Queries forall rooms and empty intersection are

agent routines that are used for this purpose (see lines 6–19 in Fig. 4.17). The

“*” infix operator is used for the intersection of two sets. The coverage property

is implemented using the multi union recursive agent. This agent collects the

union of all users in all rooms using the occupant model of each room and then

returns a set composed of all those users. The “|++” infix operator is used for the

union of two sets.
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The Fit table now reports an invariant error in class CHAT SERVER (i.e., a cate-

gory 2 error) thus indicating an implementation problem in routine enter room

in class CHAT SERVER. This contract error is reported in Table 4.4.

4.7 Security issues

Naturally, security is one of the most important aspects that we have to keep in

mind when developing a chat application. We can think of security at any level

of abstraction. Customers can assert the security rules that are important to them

in the Fit tables at the level of the problem domain. In the solution space, the

developers can write ML-Contracts or Scenario Tests for checking the security

rules. Violation test cases can be written for checking that contracts correctly

capture those rules. The following is an example of a security rule:

Security Rule: a chat user not in the permitted list of a private room
should not be allowed to enter the room.

In terms of the actual design, we use the Eiffel export declaration construct to

impose the security constraint. In the BON diagram Fig. 4.3, the feature users in

class CHAT SERVER is not exported to a CHAT USER. Whatever our design, we need

to test that the requirement has been satisfied.

In order to assert the above security rule, our customer creates a series of Fit

tables. This is shown in Figures 4.5– 4.7.
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• Connect 4 users to the server followed by adding 2 rooms

Chat Security     

start Chat Server   

enter [user list] Anna,Bob,Jackie,Tod

press Connect [user list]   

enter [user] Anna 

enter [room] Gold service 

press [user] adds [room]   

enter [user] Bob 

enter [room] Silver service 

press [user] adds [room]   

• Check rooms contents

Chat Security Query  

Room name Owner Allowed list Is private? Occupants 

Gold service Anna N/A False empty 

Silver service Bob N/A False empty 

Lobby Admin N/A False Admin,Anna,Bob,Jackie,Tod

Table 4.5: Setting up the server, users and rooms

• “Anna”, “Jackie” and “Tod” move to room “Gold service”

Chat Security     

enter [user] Anna 

enter [room] Gold service

press [user] enters [room]   

enter [user] Jackie 

press [user] enters [room]   

enter [user] Tod 

press [user] enters [room]   

• Checking rooms contents after the move

Chat Security Query  
Room name Owner Allowed list Is private? Occupants 

Gold service Anna N/A False Anna,Jackie,Tod 

Silver service Bob N/A False empty 

Lobby Admin N/A False Admin,Bob 

Table 4.6: Moving users
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• “Anna” changes the status of her room (“Gold service”) to private and
allows “Tod” and “Bob” to access the room

Chat Security     

enter [user] Anna 

enter [room] Gold service 

enter [user list] Tod,Bob 

press [user] allows [user list] to access [room]   

press [user] sets [room] to private   

check Is [room] private? True 

• Checking rooms contents

Chat Security Query 
Room name Owner Allowed list Is private? Occupants 

Gold service Anna Anna,Tod,Bob True Anna,Tod 

Silver service Bob N/A False empty 

Lobby Admin N/A False Admin,Bob,Jackie 

Table 4.7: Changing room status to private allowing users to access

The first table in Fig. 4.5 starts a chat server and connects four users (“Anna”,

“Bob”, “Jackie” and “Tod”) to the server. Users “Anna” and “Bob” add two

rooms to the server (“Gold service” and “Silver service” respectively). The fol-

lowing Row Table checks the rooms of the server by examining various proper-

ties about the rooms. If the rooms are public then anybody may join and thus

the allowed list constraint is marked as “N/A” (not applicable).

In the first table of Fig. 4.6, we move three users (“Anna”, “Jackie” and “Tod”)

to the “Gold service” room. Since “Gold service” is a public room at this point,

we expect that all three users enter it without any problems. This is tested in the

next table of Fig. 4.6 which checks the contents of each room to make sure that

the three users have successfully moved to the “Gold service” room.
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In Fig. 4.7, “Anna” adds two users (“Bob” and “Tod”) to the allowed list of

people who can enter her room. This is followed by changing the room status

to private. The second table of Fig. 4.7 explicitly checks that the above actions

are done correctly, i.e., allowed list has been updated and the room has become

private.

The concrete example described in the above tables, can be used by the de-

veloper in order to come up with the right specification for the code. We can

focus on the development of the set private feature. This feature will be called

by a user and its job is to set room’s status to private. According to the Fit ta-

ble, calling this method not only should change the room’s status (from public

to private) but also should force all un-authorized users out of the room to the

lobby. The design is shown in Figures 4.18 and 4.19.

set_private (u: CHAT_USER; room: STRING) is
-- sets the room to private

require
u 6= void∧ room 6= void∧ ¬room.is empty
has room(room)
has user(u.user name)
get room(room).owner = u

ensure
get room(name).is private
∀ (u 7→ r) ∈ old location model •

(is allowed(u, r.name) → (u 7→ r) ∈ location model) ∧
¬is allowed(u, r.name) → (u 7→ lobby) ∈ location model)

ownership model ∼= old owership model

Figure 4.18: CHAT SERVER.set private
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occupant_model: ML_SET [CHAT_USER]

...

set_private is
-- set room to be of type private

require
¬is private

ensure
is private

...

invariant
no_unauthorized_users: ∀ u ∈ occupant model • is allowed(u)

Figure 4.19: CHAT ROOM.set private

The specification for set private is as follows: (a) the room status must

change to private, (b) all users who are not allowed, should be moved to the

lobby room and all users who are allowed, remain in their original rooms and

(c) ownership model remains unchanged.

As we mentioned in Chapter 2, it is not easy to describe assertions such as

(b) using basic Eiffel contracting mechanism. However, these assertions can be

easily described in the terms of our models. The invariant of CHAT ROOM class (see

Fig. 4.19) asserts that all users in a room must be authorized.

4.8 Conclusions

In this chapter, we showed snippets of the development process of a chat appli-

cation using our method.

Complete code, contracts and tests for this example are provided in Ap-
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pendix B. We used the ESpec tool in order to capture the customer’s informal

requirements in the form of testable Fit tables and then we used these tables to

drive the design. During the design phase we used ML-Contracts and Scenario

Tests to write and test the design specifications for the various modules.

The ESpec tool tests the requirements (Fit tables) and specifications (ML-

Contracts and Scenario Tests) under the control of a single green bar as shown in

Fig. 4.8. If all the tests pass, then we have checked the design and validated that

the design satisfies the customer requirements.

The chat room example thus illustrates our method of early testable require-

ments and specifications which shows that our approach and tool is an inte-

grated wide-spectrum (i.e., deals both with customer requirements and design

specifications) method.
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Table 4.8: Snapshot of ESpec after running all the tests
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5 Design of the ESpec Tool

In previous chapters we illustrated our method of Testable Specifications and

Requirements using Eiffel and ESpec. This chapter describes the design and

implementation of the ESpec tool itself. In the following sections we’ll describe

the challenges that we faced in developing various components of our tool and

our design decisions.

ESpec has two major components as shown in the UML deployment diagram

in Fig. 5.1:

1. ESpec Library: which contains the core components of the tool. This li-

brary must be included as part of the system under test. It provides enough

facilities for the developers to use ESpec at the command line or Eiffel Stu-

dio’s integrated development environment.

2. ESpec GUI: which is the graphical user interface component of the tool.

The ESpec GUI communicates with the ESpec library over a socket con-

nection making it completely independent of the business logic and the
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ESpec GUI

Software Developer working on an IDE

Business 

Logic
ESpec Library

ES-Fit

ES-Test

Fixture 

Code

Scenario 

Tests

Math Library 

(ML)

ES-Verify

Socket ES_SUITE

Figure 5.1: Deployment diagram of the components of the ESpec tool

system under test. The GUI helps the developers work at a faster pace and

provides a familiar way for the customers to develop and test the software

product.

Consider software developers who would like to test their business logic.

The tests (e.g. Fit and Scenario tests) will exercise the business logic and report

results back to the ESpec GUI. Test results should be reported in real-time to the

GUI as they execute. How will the tests and the GUI communicate with each

other. Our solution is as follows. The developer imports the ESpec libraries

which communicate with the GUI via sockets. The tests may also be run from
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the command line in which case the sockets are not used.

The library is divided into four main subcomponents: (1) ES-Fit, (2) ES-Test,

(3) ES-Verify, and (4) ML—Mathematical Library. These components are con-

nected to each other using a shared interface which we call ES SUITE. ES SUITE

allows the developers to access any of the above tools individually or in combi-

nation with other tools. But before discussing the design of ES SUITE, we need to

understand each of the above components. The next section is devoted to ES-Fit

tool and the challenges associated with implementing it in Eiffel language.

5.1 ES-Fit Architecture

Classes associated with ES-Fit are located in the ES-FIT subcluster in the ESPEC

library. ES-Fit goes through five main steps to read and execute the Fit tables.

These essential steps are shown in Fig. 5.2: (1) Parsing the input HTML file; (2)

Running the Fixture code associated with each table; (3) Converting the type of

strings read from the tables to the appropriate types; (4) Executing the Fixture

code and compare the results to the expected values from the tables; (5) Report-

ing the results back to the HTML document. In the following sections, we will

describe various ES-Fit modules that handle each step.
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(1) Parse HTML (2) Run Fixture code

(4) Compare results

(3) Convert Type

(5) Write the output HTML

Figure 5.2: Activity diagram of Fit processing steps

5.1.1 HTML parser

The parser handles any HTML document. The advantage of representing our

requirement description documents as HTML is that it allows customers to use

their standard document preparation tools (e.g., Word, Open Office, Excel) be-

cause all these tools generate HTML.

ES-Fit reads the input HTML document and then parses it into tokens. The

parser builds an internal model of the HTML document preserving all of the

content while exposing the Fit table data to further processing.

The visible text within a cell of each table is extracted and treated as a string,

free of formatting. Markup tags, character escapes, and leading and trailing

spaces are all removed. The parsed tables can be modified in memory and a

revised document can be written with feedback for the user. The revised doc-

ument is an extended version of the input document which includes cell back-

ground colors, cell contents, additional rows or additional columns. The parser
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looks for one tag at a time. A matching pair, including both start and end, e.g.,

< table > and < /table >, are stored in a single parse node. This same node

stores the text before, between and after the tags. These are called the leader, body

and trailer, respectively, and are of type STRING.

Should the trailer contain another tag then it is parsed and the result stored

in attribute more. Likewise, if the body contains additional tags then these are

parsed and the result stored in attribute parts. The result is a parse tree which

happens to be a binary tree where parts is the left subtree and more is the right

subtree. A depth-first traversal visits each cell in the natural reading order of top

down, left to right.

In ES-Fit, the parsing is done in class ES HTML PARSER. This class follows the

Fit specification, therefore any HTML document that follows the Fit standard is

supported by the parser. A sequence of tables in a file and the subcomponents of

those tables are represented by objects of class ES HTML PARSER. As an example,

the parse structure of Table 5.1 is illustrated in Fig. 5.3.

Table A 

Col 1 Col 2 

Value 1 Value 2

Table 5.1: Sample Fit table

In Fig. 5.3 we show instances (objects) of class ES HTML PARSER that represent
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morepartstable

ES_HTML_PARSER

morepartstr

ES_HTML_PARSER

morepartsTable Atd

ES_HTML_PARSER

morepartstr

ES_HTML_PARSER

morepartsCol 1td

ES_HTML_PARSER

morepartsCol 2td

ES_HTML_PARSER

morepartstr

ES_HTML_PARSER

morepartsValue 1td

ES_HTML_PARSER

morepartsValue 2td

ES_HTML_PARSER

Figure 5.3: Parse structure for table 5.1

the indicated Fit table. Each object is shown with four fields: type, body, parts and

more. The figure shows the values of each of these fields in each object.

The field type in each object takes one of three possible values: table, tr (rep-

resenting a table row) or td (represent a table cell), corresponding to the HTML

tags. The body contains the string representation of the text inside the cell (when

object is of type td).

The top ES HTML PARSE object represents the whole table, parts refer to a se-

quence of tr ES HTML PARSE objects that represent the rows of the table; more refers

to the next table, if any. Each tr (row) object in turn refers to a sequence of td

(column) objects. The sequence of components is formed by following the more

values. Fig. 5.4 shows the list of available features in the ES HTML PARSE class.
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Figure 5.4: Features available in ES HTML PARSE
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5.1.2 Dealing with the Fixture code

As we discussed in earlier chapters, The Fit framework provides three standard

types of Fixtures: Column Fixture, Action Fixture, and Row Fixture. In addition,

Fit allows the developers to implement new types of Fixtures.

In ES-Fit, various types of Fixtures (i.e., ES COLUMN FIXTURE, ES ACTION FIXTURE,

and ES ROW FIXTURE) are implemented by inheriting from ES FIXTURE UNIT class

(see BON diagram in Fig. 5.5). This class contains all the core features to im-

plement and run various types of Fixtures. Each ES FIXTURE UNIT object corre-

spond to a table in the HTML input file. ES FIXTURE UNIT contains a mapping

which binds the string names of the operations defined in the HTML table, to the

ES FIXTURE CASE objects. This mapping can be accessed through the bindings

feature of ES FIXTURE UNIT.

ES FIXTURE CASE objects represent a basic unit of computation that can be per-

formed by ES-Fit and refer to a cell in the HTML table that has a current (origi-

nal) value and the future (computed) value. Each ES FIXTURE CASE object could

be attached to a cell of the current HTML table.

This is done through the set fixture table cell feature. Therefore, if the

computation is a function (returns a value) the result of that can be directly re-

flected back the corresponding cell (e.g., by changing the color of the cell).
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As shown in Fig. 5.5, there are two kinds of Fixture cases: one that returns

a value, i.e., ES FIXTURE CASE FUNCTION, and one that does not return a value

(ES FIXTURE CASE PROCEDURE). The original string value of a particular cell can

be accessed using the fixture case table value feature. The mapping between

an ES FIXTURE CASE object and table name is done manually by the developer in

the Fixture code using the bind feature.

Figure 5.5: ES-Fit Fixture architecture

5.1.3 Flexible Fixture redefinition

In order to have an object-oriented and flexible way to define Fixtures, we de-

cided to make the ES FIXTURE UNIT a deferred class (see Fig. 5.5). This allows

the developers to implement various Fixture types by simply inheriting from
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Figure 5.6: Available features of ES FIXTURE UNIT

the ES FIXTURE UNIT class and effecting its deferred features. This architecture

abstracts away unnecessary loop structures from the Fixture code. The benefit

is that the developers do not have to worry about the implementation details

of running a Fixture table. This is because the underlying ES-Fit engine reads

and processes one row at a time. Fit programmers need only to figure out how

they would like ES-Fit to process one row at a time instead of thinking about the

whole table.

The developer may decide to inherit from any of the standard fixtures or
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start writing the code from scratch. If we inherit from a standard Fixture, we

can change the default behavior of that Fixture by redefining the following key

methods related to table processing. A list of the available features is shown in

Fig. 5.6. The complete source code is available at the ESpec website. Each Fit

table is processed as follows:

• pre process table: actions to be performed before executing the current

table.

• pre process row: actions to be performed before executing the current row

of the current table.

• process row: actions to be performed while executing the current row of

the current table.

• post process row: actions to be performed after the execution of the cur-

rent row of the current table.

• post process table: actions to be performed after the execution of the cur-

rent table.

Fig. 5.7 illustrates how ES FIXTURE UNIT processes the tables. In the follow-

ing sections we describe how various kinds of default Fixtures are implemented

using this architecture.
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Row n

pre-process-table

pre-process-row

process-row

post-process-row

post-process-table

Table n

Figure 5.7: How ES-Fit processes the tables

5.1.4 Implementing standard Fixtures

Column Fixture: The Column Fixture is processed row by row. The concept is

that each column corresponds to a separate call to the Fixture, either to store a

table value for later use, or to provide a calculated result using the previously

stored values.

The class ES COLUMN FIXTURE, provides facilities for the developers to de-

fine a Column Fixture. In order to develop ES COLUMN FIXTURE, we inherit from

ES FIXTURE UNIT and redefine the above key features to generate the column Fix-

ture behavior (see Fig. 5.6). For example, before processing a row of the table,

we must process the header information of the table to generate ES FIXTURE CASE

objects. This is done by redefining the pre process row feature. The Fixture code

for the ES COLUMN FIXTURE is located at the ESpec website.
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Action Fixture: The Action Fixture is used to run a sequence of actions on

the underlying application. As in all Fixtures, the first row contains one cell that

specifies the name of the Fixture. The rest of the table consists of rows which

each have three columns. The first column contains one of four operations and

the second and third columns contain actions and data for the operation.

For most of the operations, the second column contains the name of a field,

method or property, and the third field contains data to be set or checked.

In order to develop ES ACTION FIXTURE, we inherit from ES FIXTURE UNIT

and redefine the above key features to generate the action Fixture behavior (see

Fig. 5.6). The Fixture code for the ES ACTION FIXTURE is located at the ESpec

website.

Row Fixture: A Row Fixture associated with a table tests whether the ex-

pected elements of a list (or database) matches the actual elements in the list

(or database). The developer creates a Row Fixture by inheriting from class

ES ROW FIXTURE[G], where G is a generic parameter which must be instantiated

to the type of the object in the database. As before, the table headings are bound

(via agent expressions) to appropriate routines. A deferred function routine

query must be effected by the developer. The query routine returns a linked

list representing the items in the database of the business logic. An algorithm

matches rows with objects based on one or more keys. Objects may be missing
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or in surplus and are so noted [68]. The Fixture processes all the rows of one

table following steps:

1. Bind: which is done manually by binding the table headings to agents

defined in the Fixture code in the make routine.

2. Query: gets the list of objects from the System Under Test.

3. Match: compares the expected elements and the list of objects returned by

the query feature.

4. Build: creates html for missing rows.

5. Mark: marks missing and surplus rows as such.

The comparison is made using a recursive partitioning strategy. That is, on

the first pass both the rows from the table and the objects from the collection are

partitioned based on the first column. The values from the table are converted to

object format before the partitioning (we will see more on the conversion in later

section).

If a partition contains exactly one row and one object, all fields are com-

pared and the results displayed and tabulated. Fields which do not compare

are marked wrong, fields which do compare are not marked. If either side is

empty, all members of the other are marked as containing either extra or missing

rows.

152



If either side contains more than one row or object (and the other is not

empty) then that partition is recursively partitioned on the next column. The

process continues until either a match, extra or missing row is found, or we run

out of columns. In the latter case we obviously have duplicates, so the top entries

are matched, and the excess on either side is either extra or missing.

The match process ends when both sides contain exactly one object (a match),

one side or the other contains no objects (missing or surplus) or there are no

more columns to partition. This last case is only possible if there are duplicate

rows or objects; as many rows and objects as possible are matched, the remainder

are either missing or surplus. The results appear in the same order they occurred

in the table. Extra rows are inserted immediately after the cluster they belong to.

Columns which are missing data are ignored in the match. Columns which

do not match in any object are an error and the table is aborted immediately.

Objects which have missing attributes during the match are otherwise marked as

excess; missing attributes after the partitioning process completes are considered

mismatches and are marked wrong.

In order to develop ES ROW FIXTURE, we need to inherit from ES FIXTURE UNIT

and redefine the above key features to generate the action Fixture behavior. The

Fixture code for the ES ROW FIXTURE is located at the ESpec website.
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5.1.5 Implementing new Fixture types

Consider Table 5.2 which is an extension of our credit example from Chapter 3

(see Section E.2 for the Fixture code). The table looks like a Column Fixture,

but it also has a Total Credit in the last row (as in a spreadsheet). Since the ta-

ble is very similar to a Column Fixture, we inherit from ES COLUMN FIXTURE and

redefine the standard behavior. We have redefined routines process row, and

post process table (lines 4–5). Routine process row (lines 42–49) is redefined

to ignore the last row as this row will be treated in feature post process table

at which point it executes a routine that is associated with the rightmost bottom

cell where the total of all credits must be calculated and checked.

In post process table (lines 51–55), we must (a) specify the target cell where

the total credit will be printed, and (b) bind a routine to the cell (in this case rou-

tine credit sum). We may think of the table as a spreadsheet with the appropri-

ate cell at the intersection of row Total Credit and column Maximum credit allowed

(Table 5.2). The specification of this cell is done by a call to connect to target

at line 53. This routine inherited from ES FIXTURE UNIT. As before, the binding

of the cell to routine credit sum is done in the constructor make (lines 12–17).

The credit sum attribute is added to the Fixture class to calculate the required

totals. Since we need the values in the last column of the table (with heading
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“Maximum credit allowed”), we increase the credit sum attribute in the agent

that handles that column (i.e., credit limit).

The row-by-row processing, adopted in this design, allows us to create new

fixtures with relative ease.

Calculate Credit 2

Months trading Balance Should be given credit? Maximum credit allowed

12 50000 True 100000 

13 50000 True 100000 

15 70000 False 0 

25 59999 True 200000 

    Total Credit 400000 

Table 5.2: New kind of Fit table

5.1.6 Execution of Fixtures

ES-Fit can execute on either an input HTML file or an input directory containing

many HTML files. In directory mode, the system will recursively run the parser

on every file in the directory that has an “HTML” or “HTM” extension. After the

HTML files are read and parsed, and the ES FIXTURE UNIT objects are matched

with the corresponding tables in the document, then the Fixtures are executed.

A single HTML document may contain as many Fit tables (with various

types) as is needed. We associate an HTML file with an ES FIXTURE SUITE ob-

ject. An instance of ES FIXTURE SUITE contains a collection of ES FIXTURE UNIT
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objects that can be accessed through the fixtures attribute7. The order in which

ES FIXTURE UNIT objects are stored in the fixtures array correspond to the order

in which Fit tables appear in the HTML document. These ES FIXTURE UNIT ob-

jects are added to the system by the developer in the creation routine in the root

class of the system via routine add fixture. This routine binds the name on the

header of each HTML fit table to the corresponding objects in the suite. Fig. 5.8

shows how ES FIXTURE UNIT objects (stored in the ES FIXTURE SUITE) object cor-

respond to the Fit tables in the HTML document. Fig. 5.8 shows that we can

store various concrete subclasses of ES FIXTURE UNIT class (e.g., CREDIT FIXTURE,

TELEPHONE FIXTURE, COUNTER FIXTURE) in the ES FIXTURE SUITE.

As mentioned earlier, all Fixture objects associated with an HTML document

is stored in ES FIXTURE SUITE. A routine called run html in ES FIXTURE SUITE

will go through the list of fixtures that are currently stored and execute them

one after the other. For every table T in the HTML document (that has an asso-

ciated ES FIXTURE UNIT object O), we execute the following steps on O:

1. call pre-process-table

2. while T has more rows

7Since ES FIXTURE UNIT is a deferred class, we cannot directly create an object of its
type. Therefore, we need to create an object of a concrete subclass of ES FIXTURE UNIT, e.g.
ES COLUMN FIXTURE, ES ROW FIXTURE, ES ACTION FIXTURE, etc...)
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Figure 5.8: ES FIXTURE SUITE and its relation to the HTML document

(a) call pre-process-row

(b) call process-row

(c) call post-process-row

3. call post-process-table

In process-row we execute the ES FIXTURE CASE objects which correspond to

the basic calculations of a row. In order to execute an operation in ES FIXTURE CASE,

we need to read the input values from the Fit tables and convert them to appro-
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priate types (e.g., BOOLEAN, STRING) as required by the operation. The question

that comes to mind is how to do this conversion automatically. The following

section describes how this is done in ES-Fit.

5.1.7 Reflection

The original Fit framework in Java is highly dependent on the reflection capabil-

ities of the supporting language8. The Eiffel language itself does not yet support

reflection although external reflection libraries are available [61]. Reflection re-

moves some of the burden on the developer. For example, in a Column Fixture, a

class is automatically created via reflection with the same name as the table head-

ing. In that class, attributes and methods corresponding to the column headings

are created automatically. All that the developer needs to do is to implement the

method referring to the attributes for what are, in effect, the arguments of the

methods.

One of our design decisions was not to use the reflection capabilities. One

reason was pragmatic—we were not sure at the time how robust the external li-

braries were. In addition, a major problem with reflection is that it forces the cus-

tomer to use names consistent with Java syntax for class, attribute and method

8Reflection is a mechanism that allows an application to query its own metadata. Reflection
allows an application to discover information about itself so that it may display this information
to the user, modify its own behavior by using late-binding and dynamic invocation (i.e., binding
to and calling methods at runtime), or create new types at runtime (Reflection Emit).
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names. In our approach, the developer has to do more work (by binding names

to routines) but this has the advantage that customers have complete freedom in

the choice of names consistent with their business logics. We will describe other

advantages to our approach.

Eiffel does provide some reflection capabilities. Agent expressions encapsu-

late routines as objects so that those routines can be executed at some later time

as needed. Class INTERNAL in the base library offers several features to access

and manipulate the state of an object and to create new instances of a particular

type. The Fit framework benefits from reflection in the following scenarios:

1. When creating a new instance of the Fixture class based on the class name

provided in the HTML file (table header).

2. When binding the string name of the method or attribute in HTML file to

the actual Methods or Fields in the Fixture class.

3. When setting Fields or executing Methods of the Fixture class on the con-

verted input values read from the table.

4. When comparing the result of method calls with the contents of a cell in

the HTML file.

As mentioned in the above sections, in ES-Fit we take care of (1) by using the

agent mechanism of Eiffel where developers create the Fixture objects in the root
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class and bind those objects to the names that appear in the HTML file (using

the add fixture routine). To handle (2) we use agents to encapsulate various

operations of each Fixture. ES FIXTURE CASE class is used to pass these oper-

ations to ES-Fit engine. Binding the actual names of these operations to these

ES FIXTURE CASE objects is done by the developers in the make routine of the Fix-

ture class (using the bind routine).

This restriction comes with a valuable benefit: we are able to use the customer

provided HTML tables directly without further modifications. In other words,

ES-Fit is neither dependent upon the strings in the header of the tables nor on

the string names of the operations. This is valuable because the customer can

focus on the business logic without having to think about underlying classes

and methods.

The original Java version of Fit stored column inputs in attributes and col-

umn computations in methods without arguments. In our approach, the rou-

tines have arguments corresponding to the input columns so that the routine

better encapsulates the computations.

In order to deal with scenarios (3) and (4), we need to find a way to convert

the input string values (that are read from the HTML file) to the actual types of

the corresponding agent arguments. Note that this conversion should be done at

run-time. For example, consider the Fit table 5.3 and its Fixture code in Fig. 5.9.
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Logic Fixture

P Q P and Q

True True True 

False True False 

True False False 

False False False 

Table 5.3: A Column Fixture

Before executing the calculate and agent, ES-Fit has to convert the input

values (read from the tables cells) to the appropriate type conforming to the

type of the argument (BOOLEAN in this case) and use these values as input ar-

guments. Similarly, after the operation is finished, ES-Fit has to convert the ex-

pected output value of the agent (read from the table) to the return type of the

calculate and agent (BOOLEAN in this case).

5.1.8 Type Conversion

The type conversions of ES-Fit use the Eiffel tuple and agent (see Appendix A)

constructs.

The tuple type is any type based on class TUPLE, i.e., any type of the form

TUPLE [T1, T2, ..., Tn] for any n (including 0, for which there is no generic pa-

rameter). An instance of TUPLE [T1, T2, ..., Tn] is a tuple whose first element is

an instance of T1, the second element being an instance of T2 etc. Mathemati-

cally, TUPLE [T1, T2, ..., Tn] is the set TUPLEn of all partial functions f from N+
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class LOGIC_FIXTURE inherit
ES_COLUMN_FIXTURE

create
make

feature{NONE}

make

do
bind ("P and Q", agent calculate_and)

end

calculate_and (a, b: BOOLEAN): BOOLEAN

do
Result := a and b

end
end -- class LOGIC_FIXTURE

Figure 5.9: The Fixture code associated with a Column Fixture 5.3

(the set of non-negative integers) to T1 ∪ T2 ∪ ...Tn, such that: (a) The domain of

f contains the interval 1 · · · n (in other words, f is defined for any i such that

1 6 i 6 n). (b) For 1 6 i 6 n, f (i) is a member of Ti. There can be more than n

elements to the tuple. For example, the tuple [5, “ f oo”] (i.e., the tuple with first

element 5 and second element “foo”) is an instance of all of the following tuple

types: TUPLE; TUPLE [INTEGER]; TUPLE [INTEGER, STRING].

Developers link Eiffel routines (with arguments) to computations that must

be performed in Fit tables. The binding operation stores the routines as an agent

expression object (an instance of ROUTINE) which can be queried for its empty

operands as a tuple (via the query empty operands). The tuple so returned
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(representing the arguments of the routine) can be queried for the type of each

operand. For example, class TUPLE has an is integer item(i) query that may

be used to check if the i-th argument is of type integer. This type checking is

done in class ES FIXTURE CASE.

The type of the output of the computation is detected in the similar way (out-

put type is converted to a TUPLE object and then checked against the various

supported types).

After detecting the input argument/output types, we need to convert the cor-

responding string value that was read from the HTML table, to the detected type

(for example, if the first argument was of type INTEGER, the value read from the

table should be converted to an INTEGER). If the there is an error in conversion, it

will be reported to the table as a type error (for example, if we expect to convert to

an INTEGER, and the read value was a character). Type conversion is done in the

ES FIT COMPUTATION class which has features for converting STRING type to var-

ious supported types (see Fig. 5.10). These features are of form handle T case

(where T is the name of the type, e.g. integer). ES-Fit currently supports the

following types: STRING, INTEGER, REAL, BOOLEAN, CHARACTER, ARRAY [STRING],

ARRAY [INTEGER], ARRAY [REAL], ARRAY [BOOLEAN], and ARRAY [CHARACTER].
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Figure 5.10: Available features of ES FIT COMPUTATION
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5.1.9 Dealing with Contract Violations

If there are violations of any kind (e.g., Contract violations or assertion viola-

tions, etc.) ES-Fit reports it directly to the table (with yellow background) with a

detailed description indicating the location of the error. This information can be

used by the developers as a debugging facility to locate bugs in the specification

and/or the implementation.

In order to be able to report such errors, we need to use the Base Library class

EXCEPTIONS, which provides facilities such as reporting the type of the last excep-

tion. The EXCEPTIONS class provides the symbolic names for all exceptions (e.g.,

“precondition violation”, “post condition violation”, etc.). We can then detect

various exceptions by testing the generated exception against various possibili-

ties. In ES-Fit, the ES FIXTURE CASE class inherits from the EXCEPTIONS class and

deals with run-time violations.

5.1.10 Result comparison

In this step, we compare the value that was returned by the business logic (ac-

tual) to the value which was read from the table (expected). The comparison

is done in the ES FIT COMPUTATION class right after the conversion. If the ex-

pected value is different than the actual value, a report is written back to the
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corresponding table cell (with red background), otherwise, the report shows

a “passed” case (with green background). These statistics are also kept in the

ES FIT COMPUTATION class.

If the output cell from the table is left as blank then the cell will be ignored

and the actual result will be written to that cell (with gray background).

The Void keyword is used in the Fit tables to expect a void result. In this case,

the cell will be marked as green if the returned value by the system under test is

void. The Empty keyword can be used in the Fit table to express expectation for

an empty string (i.e., “”). In this case, the cell is marked green only if the resulting

string generated by the system under test is empty. The Error keyword is used

when an exception is expected (e.g, a precondition violation). The corresponding

cell will be marked as green only if during the execution of the agent a violation

happen.

ES-Fit also allows the developer to define new types and new equality rules.

The new equality rule will be used by the ES-Fit engine to check the expected

value (read from the table) against the actual value (returned by the system). For

example, the developer may associate string “Yes” from the Fit table to Boolean

value “True”.

ES FIT TYPE class can be used to define new type definitions. The developer

has to create an object of type ES FIT TYPE and define a new equality rule (e.g.,
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Less than

A B Is less than?

1 2 yes 

2 1 No 

15 19 YES 

Table 5.4: An example of table with developer defined types

how two values are equal) and pass it to ES-Fit. ES-Fit takes care of the rest.

A simple example is shown in Table 5.4. The first two columns are the input

integer values and the third column is the expected output value. As shown, the

customer has used “Yes” instead of “True” and “No” instead of “False” values.

Fig. 5.11 shows the Fixture code that deals with Table 5.4. The agent that is

bound to computation a < b, returns an object of type ES FIT TYPE (line 12); this

object is created at line 15. The new equality rule which will be used by ES-Fit to

compare the actual and the expected values is defined at lines 24–27 in a form of

an agent function which takes two string arguments and returns a Boolean value.

In our example, the developer decided that the comparison should be done case

insensitive (see line 26). The equality agent is then passed to the ES FIT TYPE

object using the set comparison func feature. The developer can then manually

convert the actual value (returned by the business logic) to the desired strings,

e.g., when a < b, the developer tells ES-Fit to interpret this as a “Yes” (see line

18).
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1 class LESS_THAN_FIXTURE inherit
2 ES_COLUMN_FIXTURE

3 create make

4
5 feature {NONE}

6
7 make

8 do
9 bind ("Is less than?", agent compute)

10 end
11
12 compute(a, b: INTEGER): ES_FIT_TYPE -- returns an ES_FIT_TYPE

13 -- is a less than b?

14 do
15 create Result
16 Result.set_comparison_func (agent equality)

17 if a < b then -- binding "Yes" to true

18 Result.set_actual_value ("Yes")

19 else -- binding "No" to false

20 Result.set_actual_value ("No")

21 end
22 end
23
24 equality (s1, s2: STRING): BOOLEAN is
25 -- Defines how the comparison is done by ES-Fit

26 do
27 Result := s1.is_case_insensitive_equal (s2)

28 end
29 end -- class LESS_THAN_FIXTURE

Figure 5.11: The Fixture code associated with Table 5.4

The type definition is useful because a customer can freely assert business

needs without having to know much about programming. Another good ap-

plication of type definition is when we are comparing real numbers with many

decimal places. The developer can define an ǫ value (e.g., a < b iff a − b < ǫ) for

comparing the actual and expected values read from the table.
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5.1.11 Reference tables in the HTML input

A Fit requirements document may contain many tables that need to share data.

For example, a description of a bank dealing with foreign currencies may need

to refer to a table of standard conversion rates. In such a case it is convenient to

place all the conversion rates in a single table with the data in that table shared

by all the other tables. To update the conversions we need only make the change

in one place. The standard Fit framework does not supply such a construct.

We thus introduce such tables representing shared data with a new keyword

Reference.

Consider the following requirement for calculating the credit limit of a com-

pany:

[R2] Credit is allowed, up to an amount of $X for companies who
have been trading with us for at least one year and have a balance
owing of less than $Y. This credit is extended to an amount of $Z for
companies who have been with us for more than two years.

The values X, Y and Z could be described via extra columns in Table 3.1;

however, the intention in this case is that X, Y and Z are global data. It would

be inconvenient to change these parameters for every row in the table. What we

need is another table that contains this global data that is referenced by Table 3.1.

Customers may easily change the Reference Table to test that the code is

working correctly with the new requirements. The standard Fit framework does
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not accommodate such references. We have thus extended the ES-Fit with the

Reference keyword (see Table 5.5). Fixture code may refer to the Reference Ta-

ble for retrieving the global data. The following code is used to refer to the Max

Balance (Y) constant in the Reference Table “Data 1” (see line 37–40 in Fig. 5.12):

get reference (‘‘Data 1’’, <<‘‘Max Balance (Y)’’, ‘‘?’’>>).to real

Reference: Data 1 

Max credit (X) 100,000 

Max Balance (Y) 600,000 

Max credit (Z) 200,000 

Table 5.5: Reference table for the credit example

The above expression searches a reference table with heading Data 1 for a row

that starts with Max Balance (Y). The question mark (“?”) represents the value in

the associated table cell that we wish to retrieve (i.e., $600,000). Since the value

is read in form of a string, the developer has to convert it to a real value (using

to real feature).

The get reference feature is implemented in ES FIXTURE UNIT in ES-Fit li-

brary and is available to all Fixture classes (see Fig. 5.6). Another important

feature which can be used refer to a Reference Table is get reference cell(t,

n, m) which returns the contents of the table cell located at row n and column m

of the Reference Table t.
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1 class CREDIT_FIXTURE inherit
2 ES_COLUMN_FIXTURE

3 create
4 make

5
6 feature {NONE}

7 make

8 do
9 bind ("Should be given credit?", agent allow_credit)

10 bind ("Maximum credit allowed", agent credit_limit)

11 end
12
13 allow_credit (months: INTEGER; balance: REAL): BOOLEAN

14 local rules: RULE -- RULE class is part of business logic

15 do
16 create rules.make (max_balance, max_credit_1, max_credit_2)

17 Result := rules.is_allowed (months, balance)

18 end
19
20 credit_limit (months: INTEGER; balance: REAL): REAL

21 local rules: RULE

22 do
23 create rules.make (max_balance, max_credit_1, max_credit_2)

24 Result := rules.credit_limit (months, balance)

25 end
26
27 max_credit_1: REAL is
28 do
29 Result := get_reference ("Data 1",<<"Max credit (X)", "?">>).to_real

30 end
31
32 max_credit_2: REAL is
33 do
34 Result := get_reference ("Data 1",<<"Max credit (Z)", "?">>).to_real

35 end
36
37 max_balance: REAL is
38 do
39 Result := get_reference ("Data 1",<<"Max Balance (Y)", "?">>).

to_real

40 end
41 end -- class CREDIT_FIXTURE

Figure 5.12: Referring to a Reference Table

171



5.1.12 Output

ES-Fit uses the ES HTML PARSER class to write the results back to the tables. There

are a variety of features available to write output back to the tables. These fea-

tures are implemented in the ES HTML PARSER class (see ESpec code for more in-

formation).

The following section describes the design and implementation of ES-Test.

5.2 ES-Test Architecture

ES-Test is the first lightweight unit testing framework for Eiffel. Unit testing,

when combined with DbC, BON and other best practices, leads to rapid soft-

ware development without sacrificing proper design principles. The BON static

diagram of the ES TEST cluster is shown in Fig. 5.13. This section introduces the

basic architecture ES-Test.

The ES TEST cluster contains three clusters:

• CASES

• COLLECTIONS

• HTML-REPORTING

ES-Test is flexible in that one can structure the tests in an arbitrary ordering.
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Figure 5.13: BON Static Diagram of es-test cluster located in ESpec library

To implement a unit test class, one is required to subclass UNIT TEST and de-

fine zero or more test cases (see Chapter 2 for examples). The UNIT TEST class

contains a LINKED LIST containing various test cases. The test cases are either

a BOOLEAN TEST CASE or a VIOLATION TEST CASE (both inherit from TEST CASE

class). These test cases are added to the unit test objects directly by the de-

velopers in the concrete subclasses of UNIT TEST. The test cases are added us-

ing any of the following methods: add boolean case, add violation case, and

add violation case with tag. Zero or more UNIT TEST subclasses are then ag-

gregated into a subclass of TEST SUITE which is then executed to run all tests.

In summary, a TEST SUITE object is a collection of UNIT TEST objects which

are themselves collections of TEST CASE objects. The test suite is built up recur-

sively: class tests and an inter-class test comprise a cluster test; cluster tests and
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an inter-cluster test comprise a system test. In all Unit Tests, the test cases will be

added in the make creation routine. These cases were explained with examples

in Chapter 2.

ES-Test supports two forms of output: HTML or GUI. The HTML REPORTING

cluster contains classes which implement HTML functionality. An HTML report

will be generated for every unit test class showing the status of testing of each

test case in that class. An example of an HTML output for a suite of Unit Tests

(i.e., ALL DICTIONARY TESTS) is shown in Fig. 5.14. Violations are reported to this

HTML report with information regarding the location of the violation. Contract

violations can then be traced using the HTML output. The name of the HTML

file is declared in the make creation feature of system root class.

5.2.1 Communication with ESpec’s GUI

Running the tests (ES-Fit or ES-Test) can be done from either command-line (re-

sults in generation of an HTML output file), or from the ESpec GUI. The ESpec

GUI helps developers to execute various modules of ESpec (i.e., ES-Fit, ES-Test

or ES-Verify) individually or in unison under a single green/red bar.

The GUI communicates with the ESpec library through a TCP/IP stream (see

Fig. 5.1). This design is chosen because it completely separates the business logic

(ESpec library) from the GUI. The design also allows us to update the ESpec
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Figure 5.14: HTML report generated by ES-Test
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library without having to re-compile the GUI.

The GUI runs the tests and displays the results. If all tests pass, a green bar

is shown with test statistics (Fig. 5.15). Boolean/Violation test case successes are

reported separately. As well, each test passed is listed. If even one test fails, a

red bar is displayed and the failing tests are indicated (see Appendix D for GUI

screenshots).

Figure 5.15: ESpec runs ES-Test when “ES-Test” button is pressed

In order to communicate with the GUI, we have developed the ES CONNECTION

class. Various ESpec tools such as ES-Test, ES-Fit and ES-Verify use this class
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to send their results to the GUI. For example, ES TEST class inherits from both

UNIT TEST (which is used to run Scenario Tests) and ES CONNECTION allowing

the ES-Test application to communicate with the ESpec GUI. Similarly, ES FIT

(which runs the Fit tests) and ES VERIFY (which runs the verification tool) both

inherit from ES CONNECTION to report the results to the GUI.

ES CONNECTION reports the test results immediately, as they are executed and

controls the test progress with the ability to cancel a test run without losing the

results. It opens a TCP client connection to the loopback interface (locahost) and

sends the results to the GUI as soon as the information is available by the running

application (because of this, ESpec library is dependent upon the net library in

Eiffel Base). If a network error occurs while running the test suite, the execution

stops before the next test case. This allows the GUI to abort test applications that

are responsive (i.e., not in an infinite loop). Using this architecture, we can au-

tomatically change the behaviour of ESpec depending on the mode of execution

(i.e., GUI or command line). ES CONNECTION checks whether ESpec is running in

GUI mode, if so, reports from various tools are sent to the GUI, otherwise, the

report is sent to the command line. Fig. 5.16 shows a BON diagram of this part

of ESpec library.

This architecture allows for future extension of ESpec (e.g., introducing model

checking facility). The available features in ES CONNECTION class are shown in
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Figure 5.16: Connection architecture

Fig. 5.17.

5.3 ES-Verify

The design and implementation of ES-Verify is described in Appendix C. The

remaining sections of this chapter are devoted to the description of ES SUITE

(the shared interface between various tools in the system).

5.4 Seamless integration of ES-Fit, ES-Test and ES-Verify

In Java, a developer may use JUnit [41] for Unit Tests and the Fit command line

application for the Fit tests [31]. As pointed out earlier, ESpec adds to the stan-

dard tools some additional features. The first addition is that contracts are used

to formally specify the details of the business logic. Violations of this specifica-
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Figure 5.17: Available features of ES CONNECTION

tion will be reported in the Scenario Tests and the Fit Tables. The second addition

is that we unify the Fit Fixtures, Scenario Tests, and the Verification module in

the same class, so that validation and verification can be performed simultane-

ously in order to certify the quality of the product.

In order to run the Fit tests, the software developer places the test Fixtures

in a class that inherits from class ES FIT. Scenario Tests are placed in a class that

inherits from ES TEST SUITE. Similarly, to run ES-Verify, developer has to inherit

from ES VERIFY and specify the files to be verified. We may combine Validation

(Fit Fixture Tests), Lightweight Verification (Scenario Tests and Contracts) and
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full verification (ES-Verify) under the report of a single green bar by declaring

three types of tests in a class that is a descendant of ES SUITE. Eiffel supports mul-

tiple inheritance, and thus allows us to develop this shared interface by inherit-

ing from multiple classes in the system. We developed ES SUITE which unifies

the three types of tests in a single class by inheriting from ES FIT, ES TEST SUITE

and ES VERIFY. So it would be enough that we inherit from ES SUITE in system’s

root class where we combine various kinds of tests. Fig. 5.18 shows this architec-

ture9

The list of available commands in the ES SUITE class is shown in Table 5.6.

These commands may be used in the make routine of a subclass of ES SUITE.

9This architecture raises the diamond problem. In object-oriented programming languages with
multiple inheritance, the diamond problem is an ambiguity that arises when two classes B and
C inherit from a shared parent A, and another class D inherits from both B and C. It is called the
“diamond” problem because of the shape of the class inheritance diagram in this situation. Class
A is at the top, both B and C separately beneath it, and D joins the two together at the bottom to
form a diamond shape. Of course the above statement can be extended to more than two classes
like in our case: three classes ES TEST SUITE, ES FIT, and ES VERIFY inherit from ES CONNECTION

and ES TEST SUITE inherits from the three classes (see Fig. 5.18).
Eiffel deals with the diamond problem through the use of select and rename keywords, where

the ancestor’s methods to use in a descendant are explicitly specified. This allows the methods
of the base class to be shared between its descendants or to even give each of them a separate
copy of the base class.
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Figure 5.18: ES SUITE shared interface

5.5 ESpec GUI

The purpose of ESpec GUI is to provide a convenient environment and graphical

interface for users of ESpec library. ESpec GUI is written in Eiffel 6.0 and is cross-

platform for Linux, UNIX and MS Windows. ESpec GUI is maintained in three

flavors:

• ESpec Full (Research Edition) for Windows

• ESpec Student (Academic Edition) For Windows

• ESpec Student (Academic Edition) For Linux/Mac

We aimed to base our GUI design on well-known HCI principles [33]. It is

targeted towards maximum usability. The basic principles of usability and the
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ES_SUITE developer commands Descriptions 

add_fixture (name:STRING, 

fixture_obj:ES_FIXTURE_UNIT) 

example: add_fixture (“R1: Chat Server 
Setup”, create{CHAT_ACTION}.make)

Associate the Fit table with title 

“name” to the “fixture_obj” and 

add it to the current suite of 

tests.  

connect_row_to_action (row_fixture, 

action_fixture: STRING) 

example: connect_row_to_ac on (“R2, R3ti
and R4: Scenario Query”,“ R2, R3 and R4: 
Scenario”) 

Connect the Row Table with title 

“row_fixture” to the Action Table 

with title “action_fixture”, note: 

associated Fixtures must already 

be in the current test suite. 

add_input_directory (path: STRING) 

example: add_input_directory 
(“./pro ect”) j

Add all files in the directory 

specified in “path” to the current 

suite for full verification using 

the ES-Verify tool. “path” is a 

relative path from the root 

directory.

add_input_file (file: STRING) 

example: add_input_file (“./stack.e”) 
Add a single file specified in 

“file” to the current suite for full 

verification using the ES-Verify 

tool. “file” is a relative path from 

the root directory. 

set_output_directory (path: STRING) Set the target directory for the 

translated files. 

add_test (t: UNIT_TEST) 

example: add_test (create 
{UNIT_TEST_1}.make)

Add the unit test “t” to the 

current test suite. 

show_errors Show the complete stack of the 

generated exception (if any) in 

the ESpec GUI. 

set_html_name (name: STRING) Set the name of the generated 

HTML report by ES-Test. 

run_espec, run_all Run all tests in this suite. 

run_es_test Only execute Unit Tests of this 

suite.

run_es_fit Only execute the Fit tests of this 

suite.

run_es_verify Only execute the ES-Verify tool. 

print_to_screen (m: STRING) Print message “m” to ESpec GUI 

or command line output. 

es_sleep (n: INTEGER) Put the current thread into sleep 

for “n” milliseconds. 

Table 5.6: ES SUITE commands available to the developer

ways our application satisfies them are described below:

Predictability: The main functions are clearly displayed in the command

panel on the right side of the screen. Standard Windows shortcuts are used

whenever possible. The menus are organized in a familiar way. We try to keep
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them as standard and intuitive as possible.

Consistency: The function names are consistent throughout the application.

Command names are consistent between the menus and the screen buttons.

Flexibility: Almost all the functionality can be activated by keyboard short-

cuts.

Customizability: User may adjust such attributes as working directory, in-

teraction mode, color scheme, font size, name of service directories, default ES-

Clean settings, etc (see details in the user manual in Appendix D).

Observability: The current status is displayed on the screen at all times. The

counters on the run panel are updated as tests run. This provides opportunity

for the user to see the status incrementally. Test results, error messages, test

cases and opened files are displayed to different displays in order to allow user

to work with several documents in the same time and not to lose information.

Recoverability: The results of the tests that have already run are preserved,

even if the testing is stopped. Error recovery is performed by displaying a hint

to the user.

Responsiveness: The interface remains responsive even throughout long op-

erations. If there is no need to continue running the rest of the tests, a button to

stop the execution can be pressed.

183



The software developer may run all types of tests simultaneously under a

single green/red bar via the Run all Specs button in ESpec tool (see Fig. 5.15).

Alternatively, the developer can run a specific type of tests by invoking the as-

sociated button (i.e., Run ES-Test, Run ES-Fit, and Run ES-Verify). Test results for

both types of tests are reported in the tool results window.

In addition, the user can open and edit HTML documents (for Fit require-

ments) using ESpec’s internal HTML editor, perform the ES-Clean operation to

remove compilation-generated files, archive the Eiffel source files (using ES-

Archive), look up test cases in multiple source files, edit Eiffel source files, re-

compile existing Eiffel projects (freeze) and print test results and source code

(see Appendix D for screenshots of the GUI).

The GUI code consists of two major clusters, which are the ESPEC-GUI cluster

and the ESPEC-LOGIC cluster. They interoperate to various degrees to achieve the

goals of the application. Fig. 5.19 shows the top-level diagram of the system.

5.5.1 The Business Logic cluster

The business logic class, ES LOGIC, manages Eiffel project directories, and con-

tains routines that execute all the testing tools (ES-Test, ES-Fit, ES-Verify) at the

same time or each of them individually. This class also contains routines to exe-

cute ES-Archive, ES-Clean and Freeze utilities. The ES GLOBALS class stores and
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Figure 5.19: Cluster-level overview

provides access to global constants and shared variables.

The ES FILE TOOLS utility class provides simple file system related routines

for the both the GUI and the logic classes. Fig. 5.20 shows the classes of the

business logic cluster.
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Figure 5.20: BON diagram of the ESpec logic cluster

5.5.2 The GUI cluster

The application’s main window class, ES MAIN WINDOW, handles the interaction

with the user of the system and uses the business logic classes to perform project

maintenance operations and access test data. The GUI is modularized to make

it easier to modify and maintain. Fig. 5.21 shows a high level overview of the

contents of the main window.

The main window consists of four ES PANELs. Each panel is responsible for

a distinct part of the window’s functionality. ES MAIN WINDOW plays the role of

a Mediator between all the panels. This is important to allow for easy addition

of functionality to the application. The custom panels, command buttons and

blocks all augment Vision2 widgets with extra functionality (see Fig. 5.22).

The main command panel, ES COMMAND PANEL, consists of twelve buttons.
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Figure 5.21: BON diagram of the ESpec gui cluster

Figure 5.22: Main window as a mediator
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Figure 5.23: Command Buttons

Figure 5.24: ESpec Dialogs

These buttons represented by implementations of the ES COMMAND BUTTON de-

ferred class. The command buttons, for Run all Specs, ES-Test, ES-Fit, ES-Verify,

AutoTest are handled by ES RUN COMMAND BUTTON class and ES-Archive and ES-
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Clean are handled by ES ARCHIVE COMMAND BUTTON and ES ECLEAN COMMAND BUTTON.

This architecture allows the business side of the application to focus entirely

on business-related functionality. Fig. 5.23 shows the diagram associated with

these buttons.

We build custom dialogs from dialog blocks, as can be seen in Figures 5.24

and 5.21 all the dialogs consist of blocks: such as path combo box plus browse

button; or set of check boxes.

5.5.3 Summary of design patterns used

Our main window is a Mediator (see Fig. 5.22). It dispatches messages between

the menu bar, the display and the command buttons, which have no direct

knowledge of each other. This is done to lower the coupling between the compo-

nents. ES GLOBALS is a Singleton class. The nature of its data and functions is that

it should exist only in one copy (like constants and shared variables). We decided

to implement most of the GUI modules as subclasses of Vision2 widgets, allow-

ing them to be inserted into the GUI structure directly (e.g. ES COMMAND BUTTONs).

They maintain their GUI behaviour, such as responding to button clicks, but

have additional functionality.

We decided to make the ES GLOBALS class inherit from STORABLE so that we

could easily maintain settings between uses of the applications. The application
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loads the structure from disk at start-up time and then saves it every time a

parameter is changed.

5.6 Conclusions

In this chapter we explained the design decisions that were made in developing

the ESpec library and the ESpec GUI. We showed the development of ES-Fit

and our extensions to the original framework. We also showed the integrated

interface architecture (ES SUITE) that allows the developer to run various tools

of the system individually or together for the purpose of testing.
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6 Related Work

In Section 1.3 we described a rational software development as follows:

• Elicit and document the Requirements R of the customer in terms of the

phenomena in the Problem Domain. Constraints of the Problem Domain

are described by P.

• From the Requirements, derive Specifications S for the software code that

must be developed.

• From the Specifications, derive a machine C (the code) that satisfies the

Specifications.

This process was described as follows:

1. Validation of Requirements: P ∧ S → R

2. Verification of Specifications: C → S

3. System Correctness: From (1) and (2) conclude that: P ∧ C → R
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We describe requirements before proceeding to design because the problem

to be solved should be specified before proceeding to solutions. We validate

the requirements (formula 1) by showing that the specified solution (S) satisfies

the customer requirements (R) in the problem domain (P). The Validation for-

mula checks that we are developing the right product—the one desired by the

customer as described by R.

Verification (formula 2) checks that the behaviour executed by the imple-

mented code C satisfies the specification S. This formula checks that we are

developing the product right.

Verification and Validation (V&V) have been pursued both formally and in-

formally. Informal methods of V&V use, as their notations, English text and

informal sketches, but also semi-formal notations such as UML which is used

in Model Driven Development [82]. The advantage of English text is that cus-

tomers understand it and can certify that what is being described is what they

want. Fully formal methods are “mathematically-based techniques, often sup-

ported by reasoning tools, that can offer a rigorous and effective way to model,

design and analyze computer systems” [42, 15, 27].

The Verification formula C → S is asserted in a way that is friendly to the idea

of testable specifications and the use of formal methods. The formula asserts that

a behaviour that satisfies the software implementation must also satisfy the de-
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sign specification. Software developers (not customers) do verification and thus

both the code and the specification can be described formally and even mathe-

matically (customers are not expected to read these mathematical descriptions).

Consequently, there is a vast literature on methods and tools for doing formal

verification [27, 1, 83].

When it comes to Requirements Validation, the use of formal methods is

much more sparse. There are, in fact, relatively few tools that check require-

ments (as opposed to specifications). There are many good commercial tools

(such as DOORS [51]) for managing requirements. But these tools do not check

that the design specification satisfies the customer requirements.

Methods and tools such as i∗ and KAOS [90, 80] have been developed for

requirements descriptions. These methods and tools address the early require-

ments stage in which goals must be elicited before the requirements of a product

to be developed can be described. For example, a conference committee may

have, as a first-sketch, the Goal that authors receive feedback within 4 weeks of

the submission date. There are many ways to achieve this high-level goal. In

order to achieve this goal, the Requirement may be to develop an online sub-

mission and refereeing application that helps programme chairs cope with the

complexity of the refereeing process. This may include features such as man-

agement and monitoring of the programme committee and flexible facilities for
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management of the access of programme committee members and referees to pa-

pers that take into account conflicts of interests. Features might include facilities

for automatic paper submission, paper assignment based on the preferences of

PC members.10 A Goal is likely to be more stable and last longer than the corre-

sponding Requirement. The early phase aims to model and analyze stakeholder

interests and goals and how they might be addressed, or compromised, by var-

ious system-and-environment alternatives. Requirements modeling techniques

can be used to help deal with the knowledge and reasoning needed in this earlier

phase of requirements engineering. While this is an important area of ongoing

research, it is orthogonal to validating requirements in the context of this thesis

which deals with the later stage in which the requirements (as opposed to just

the goals) are better known.

The Problem Frames approach of Jackson [55] provides a framework for un-

derstanding the interaction between software and other system components.

It emphasizes decomposing an end-to-end system requirement into a machine

specification plus a set of assumptions about domains in the problem world.

The standard approach does not provide the designer with a means for per-

forming such a decomposition, apart from consulting a catalog of frame concern

patterns. In [81], a more systematic method for transforming an end-to-end sys-

10See, for example, http://www.easychair.org/
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tem requirement into a machine specification plus a set of domain properties is

presented. The Problem Frames approach is extended to include a systematic

way to transform an end-to-end system requirement into a machine specifica-

tion. Given a Problem Frame description and an end-to-end requirement, a se-

ries of transformations turn the requirement into a specification and produce a

set of breadcrumb assumptions about the problem world. The specification and

breadcrumbs form a frame concern correctness argument for why the machine

enforces the requirement. The Alloy tool [53] is used for this decomposition.

Our interest in this thesis has been specifying object oriented systems using

Design by Contract using mathematical models (ML-Contracts). We will thus

survey other methods and tools that support object-oriented Design by Contract.

These tools have been developed only in the last decade or so.

Contributions of this thesis

Requirements are often described informally so that customers can read them. It

is thus harder to come up with mechanically testable requirements than testable

specifications. This is probably why there is much more research on formal Ver-

ification (formula 2) than formal Validation (formula 1). In this thesis we have

focused on three aspects of Validation and Verification (V&V) as described in

formulas (1), (2) and (3). The first aspect is that we insisted that in Validation
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we should strive to make requirements testable, and in Verification we should

strive to make specifications testable. The second aspect was that testing should

be supported by mechanized (possibly lightweight) formal methods tools. The

third aspect was to integrate the various tools in a single toolset so that Valida-

tion of requirements and Verification of specifications are used in a coordinated

way to check System Correctness. Because our method and tool (ESpec) deals

with requirements and specifications it is wide-spectrum.

The Fit framework used in this thesis is a suitable way of achieving the goal of

testable requirements in a way that can be fully integrated with testable specifi-

cations (ML-Contracts) so as to check system correctness as illustrated in the chat

application case study in Chapter 4. The method and tool (ESpec) for integrated

checks on testable requirements and specifications is the main contribution of

this thesis. Violations of ML-Contracts is the integrative medium for checking

requirements (the Fit tables) and the specifications. The specific contributions

are detailed in Section 1.5.

6.1 Method and Tool comparison

Table 6.1 compares the most important methods and tools that support Design

by Contract with respect to the ESpec tool developed in this thesis. The tools

include JML [19], Perfect Developer [20], the KeY tool [2], and Spec# [9]. These
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 ESpec JML Perfect 

Developer 

Spec# KeY 

Testable

Requirements (Fit 

framework)

Testable

Specifications  

(executable 

mathematical

models) 

(ML-

Contracts)

(Model 

Variables)

(Perfect 

Language)

(OCL)

System Correctness  

(integrated testing 

of requirements and 

specifications) 

Table 6.1: Tool comparison in terms of three main characteristics

tools were designed to deal with the mechanical Verification of Specifications

(not Requirements Validation) as shown in the table. All the tools (other than

Spec#) use immutable mathematical models, but these mathematical models are

not always executable. The advantage of executable mathematical models is that

they can be used for runtime assertion checking in addition to formal verification

using theorem proving techniques.

Each of these tools has advantages (and disadvantages) not shared by the

other tools. Table 6.2 compares the tools (including ESpec) with respect to im-

portant features. We provide below more detailed comparisons including a brief

overview of these tools.

As described in Chapter 2, the ES-Test component of the ESpec tool allows

the developers to write and verify two kinds of specifications: ML-Contracts
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(i.e., Contracts written in ML) and Scenario Tests.

Scenario Tests provide the facilities for specifying and testing the collabo-

ration between various modules of the system and ML-Contracts provide the

ability describe a precise and complete high-level design specifications of the

system. ES-Test can then execute the Scenario Tests which then have the am-

plifying effect of checking the ML-Contracts, while at the same time checking

that the scenarios satisfy the specifications. Contract failures provide diagnostic

feedback in Fit tables (requirements) as well as in the test report (specifications).

ES-Verify is the component of ESpec that uses theorem proving for verifying

implementation correctness. The ES-Verify component translates Eiffel source

code (annotated with ML-Contracts) into the specification language for the theo-

rem prover and invokes the theorem prover to do the verification. 11 The current

version works with a value semantics with ongoing work to extend it to refer-

ence semantics (see Appendix C).

11ES-Verify uses the Perfect Developer theorem prover which is one of the tools used in the
comparison. In Perfect Developer, the software developer writes specifications in the special
Perfect Specification language. The tool then generates Java or C++ executables based on the
specifications. However, the contracts are not executable nor may a debugger be used at the
Perfect language level. ES-Verify uses the theorem proving facilities at the Perfect specification
language level, not the code generating facilities.
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JML

The Java Modeling Language is a behavioral interface specification language for

Java which extends Java with Design by Contract. JML uses some of the ideas

from Eiffel, Larch [47] and the Refinement Calculus [5]. JML is used to specify

the detailed design of Java classes and interfaces by adding contracts to Java

source files. The aim of JML is to provide a specification language that is easy

to use for Java programmers and that is supported by a wide range of tools for

specification typechecking, runtime debugging, static analysis, and verification

[19].

Like Eiffel, JML uses Java’s expression syntax in assertions so it is easier for

programmers to learn. However, unlike Eiffel, JML specifications must be writ-

ten as comments in the Java source program and are ignored by the Java com-

piler javac. As a result, it is essential to use external JML tools (e.g., the JML

syntax checker jml or the JML runtime assertion checker jmlc) to parse and de-

bug the JML code.

In addition to supporting the Eiffel-style Design by Contract (such as pre-

condition, postcondition and class invariants), JML introduces new keywords

such as “signals” and “assignable”. The “signals” keyword introduces the idea

of exceptional postconditions, which allows JML developers to specify program
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behaviour in the case of exceptions.

The “assignable” keyword specifies the frame conditions. Frame conditions

describe the properties that remain unchanged after a feature call. Frame condi-

tions are essential for verification of code using the theorem provers. Although

native Eiffel does not provide the capability to directly define such frame con-

ditions, ESpec allows definition of frame constraints for the purpose of formal

verification. We use the pd modify declaration in the Eiffel code with its string

argument passed as a list of attributes that the Eiffel feature may change.

A similarity between JML and ESpec is that both come with executable li-

braries that provide types that can be used for describing the specification math-

ematically. These (ML) libraries include such concepts as sets, lists, maps, se-

quences, and relations. They are similar to libraries of mathematical concepts

found in VDM [58], Z [83], or OCL [88], with the difference that they are exe-

cutable.

JML provides Model Variables which play the role of abstract values for ab-

stract data types [24] allowing the developer to hide implementation details. The

Eiffel language does not directly provide model declarations at the language

level that guarantees side-effect free functions. However, the command-query

separation rule is used instead to ensure that all queries may be used in contracts

without affecting the state. Such an approach relies on the goodwill of program-
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mers. However, ES-Verify can check that the resulting query implementations

are indeed pure.

In JML, unit tests can be written and executed in Java’s unit testing frame-

work JUnit [41]; however, in order to get the contracts working, the JML code

needs to be compiled using the JML compiler jmlc. Currently, JUnit and jmlc

can be used together in the Eclipse IDE. The combination of JUnit and jmlc work

like ES-Test. If during the execution of a unit test any contract violation is gener-

ated, it is reported in the Eclipse GUI (as assertion violations).

Another tool for unit testing of JML code is introduced in [23], called JMLU-

nit, which uses a JML runtime assertion checker to decide whether methods are

working correctly, thus automating the writing of unit test oracles. These ora-

cles can then be combined with hand-written test data. This tool is very similar

to the random testing tool for Eiffel called AutoTest [25]. AutoTest allows the

user to generate, compile and run tests on the push of a button and seamlessly

integrates with existing manual unit tests. AutoTest relies on the contracts in

the Eiffel code: it interprets contract violations as bugs. The research version of

the ESpec tool include AutoTest as part of the package and is currently at the

experimental stage.

For performing formal verification in JML, a number of third-party tools are

available. Perhaps the most popular is the Extended Static Checker for Java (ES-
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C/Java), and the later version ESC/Java2 [28]. ESC/Java2 is a programming tool

that attempts to find common run-time errors in JML-annotated Java programs

by static analysis of the program code and its formal annotations. ESC/Java2 is

written with Java 1.4 and only runs on a Java 1.4 virtual machine; so new features

offered by Java 1.5 (e.g., genericity) are not yet supported.

ESC/Java2 does not use models for the purpose of verification and only

parses them, whereas ESpec’s formal verification tool, ES-Verify, directly trans-

lates and verifies mathematical models included in the Eiffel code. These models

not only provide a higher level abstractions than normal contracts, but also help

to simplify the verification process.

ESC/Java2 uses the Simplify theorem prover for static verification of JML

code [32]. Simplify works with integers and booleans primitive data types but

not reals, characters and strings. By contrast, ESpec’s theorem prover supports

booleans, integers, reals, characters and strings.

ESC/Java2 provide precise feedback as to where errors occur. By contrast,

the ESpec tool does not yet provide such precise feedback; however, the out-

put HTML file produced by the theorem prover goes some way to providing

feedback. The line number in the HTML points to the Eiffel feature having the

same name or assertion tag, so that it is relatively easy to track back to where the

problem was.
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A number of other tools that help the verification process are available for

JML (see [19] for an overview on JML tools). The LOOP/PVS tool is the most

ambitious project to date for verifying Java code based on JML specifications.

The authors of [56] describe the project as follows:

Currently, the LOOP tool and ESC/Java 2 probably cover the largest
subset of Java, and the LOOP tool probably supports the most com-
plicated specification language.

One distinguishing feature of the LOOP project is that it uses a shal-
low embedding of Java in [the theorem prover] PVS. This has both
advantages and disadvantages.

An advantage is that is has allowed us to give a completely formal
proof of the soundness of all the programming logic we use, inside
the theorem prover PVS ... A disadvantage of the use of a shallow
embedding is that much of the reasoning takes places at the semantic
level, rather than the syntactical level, which means that during the
proof we have an uglier and, at least initially, less familiar syntax to
deal with. Using the LOOP tool and PVS to verify programs requires
a high level of expertise in the use of PVS, and an understanding of
the way the semantics of Java and JML has been defined.

A difference between LOOP and many of the others approaches ... [is
that] the LOOP tool produces a single, big, proof obligation in PVS
for every method, and then relies on the capabilities of PVS to reduce
this proof obligation into ever smaller ones which we can ultimately
prove. Most of the other tools already split up the proof obligation for
a single method into smaller chunks (verification conditions) before
feeding them to the theorem prover, for instance by using wp-calculi.
A drawback of the LOOP approach is that the capabilities of theorem
prover become a bottleneck sooner than in the other approaches.

Theorem proving tools are generally quite complex (a remark that applies

equally to ES-Verify). The authors of [50] write as follows about the problems of

integrating the various tools for JML.
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... we describe our findings after integrating several tools based upon
the Java Modeling Language (JML), a specification language used to
annotate Java programs. The tools we consider are Daikon, ESC/-
Java, JML runtime assertion checker, and LOOP/PVS tool. The first
one generates specifications; the others are used to verify them. We
find that for the first three it is worthwhile to combine them because
this is relatively easy and it improves the specifications. Combin-
ing Daikon and the LOOP/PVS tool directly works in theory, but in
practice it only works if the test suite is very good and hence it is not
advisable...

Perfect Developer

Perfect Developer [30] is a tool with a formal specification language (the Perfect

Language), a compiler for parsing the language, a theorem prover for verifying

that implementations satisfy specifications and a code generator that transforms

Perfect specifications to executable code (e.g. in Java). We use the abbreviation

PD (Perfect Developer) to refer (somewhat imprecisely) to the method and any

of its tools.

More precisely, it [PD] is a specification language with an imple-
mentable subset identified as its programming language. The ver-
ifier is a custom-built theorem prover that collects and attempts to
discharge proof obligations for the software it is presented with. The
compiler accepts code written in the programming language and com-
piles it into equivalent Java, C++ or Ada95 code. Third party editors
and UML modeling tools can be integrated into PD [20].

What is the motivation for PD? Currently industries use Programming languages

(e.g. C++, Ada, Java) and, to a much lesser extent, Specification languages (e.g.
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Z, VDM and B). These Programming and Specification languages are very dif-

ferent from each other, and it is often hard to relate a specification written in Z

or VDM to a program written in a programming language. Also, the syntax of

current specification languages is highly mathematical and difficult for program-

mers to learn. PD was designed to express both specifications and implementa-

tions of object-oriented software systems in a syntax familiar to programmers

instead of the more mathematically inclined notations of Z and VDM. PD ex-

pressions, while being closer to programming notations, are nevertheless fully

mathematical.

The PD specification language has the capability to deal with real numbers,

characters, and strings in addition to the integer and boolean primitives. The PD

specification language also has a mathematical library of generic sequences, sets,

bags and maps, as well as predicate logic quantification [35].12

A limitation of PD is that it discourages reference semantics [30]. It is well-

known that the presence of multiple references to a common object causes alias-

ing and makes sound and complete static verification problematic. Therefore,

PD, unlike say Java and Eiffel, adopts a value semantics by default. In PD, if a

reference semantics is adopted, then, roughly speaking, a heap declaration, e.g.

12The ESpec mathematical model library (ML) is translated into the PD specification language
so that PD’s theorem prover can be used to verify Eiffel code. See Appendix C for more on the
ES-Verify component.
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heap MyHeap, would be required. Escher Technologies Ltd. is in the process of

developing better handling of a reference semantics.13

The theoretical foundations of PD are Floyd-Hoare logic and Dijkstra’s weak-

est precondition calculus and it has the power of first-order predicate calculus,

as well as a few higher-order constructs [29]. The prover generates verification

conditions and aims for verifying the total correctness (termination and refine-

ment satisfying specification) of the input code. It delivers either a proof, upon

success in discharging all verification conditions, or otherwise a list of warnings,

possibly accompanied by useful fix suggestions. Output from the prover can be

in formats such as HTML or Tex. From an academic point of view, there is a lack

of information about the inner workings of the PD theorem prover (as opposed

to an interactive theorem-proving system such as Isabelle [17]). Ideally, the logical

rules used in correctness proofs should be open for inspection so that indepen-

dent trust can be established. However, the PD theorem prover does provide the

complete proof, and thus the product is robust and suitable for engineering use

[36].

PD-generated code (e.g. Java) is typically much longer and more complex

than the original contract-based specification and is not intended to be read.

13Despite these limitations, we have adopted PD for automated deduction in our ES-Verify
tool, and we are in the process of constructing a library of base Eiffel classes with a value seman-
tics (see Appendix C) using the Eiffel expanded construct. As a future goal we have to expand
our tool to handle verification of reference aliasing and inheritance.
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The PD approach is useful if there is never a need to deal with the generated

code. However, Perfect specifications are neither directly executable nor is there

a debugger at the model level. The PD tool provides a basic GUI for doing the

verification of the specification but does not integrate unit testing or run-time

assertion checking into the tool.

Spec#

The Spec# programming language [8] is an extension (superset) of the Java-like

object-oriented language C# with the addition of Design by Contract. It extends

the type system to include non-null types and checked exceptions. Many errors

in modern programs manifest themselves as null-dereference errors, suggesting

the importance of a programming language providing the ability to discriminate

between expressions that may evaluate to null and those that are not null [9].

This feature is not yet implemented in Eiffel, but it is in the new Eiffel ECMA

specification [34].

Similar to Eiffel, the Spec# compiler is fully integrated into the VS.NET IDE

(i.e., Visual Studio for the .NET platform), so there is no need for external tool

support for compiling the source code (unlike JML). Contracts are written di-

rectly in the code (not in the form of comments) and are parsed and type checked

by the Spec# compiler.
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The Spec# compiler differs from Eiffel compiler in that it does not only pro-

duce executable code from a program written in the Spec# language, but also

preserves all specifications into a language-independent format. Having the

specifications available as a separate, compiled unit means program analysis and

verification tools can consume the specifications without the need to either mod-

ify the Spec# compiler or to write a new source-language compiler [9].

Similar to JML and unlike Eiffel, Spec# supports exceptional postconditions

which specify behaviour of the method when exceptions are thrown. Spec# al-

lows a throws declaration to be combined with a postcondition that takes effect

in the event that the exception is thrown.

Spec# supports a more sophisticated version of frame conditions than JML

or ESpec. Method contracts can include modifies clauses, which restrict which

pieces of the program state a method implementation is allowed to modify. Spec#

also supports wildcards to specify entities for the modify clause (see [7]), which

additionally address the problem of specifying the modification of state in sub-

classes.

Eiffel does not deal with the invariant problem introduced when re-entering a

method (see [7]); however, Spec# makes it explicit when an object is in its steady

state versus when it is exposed, which means the object is vulnerable to modifi-

cations. It introduces a block statement expose that explicitly indicates when an
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object’s invariant may temporarily be broken.

The Spec# compiler statically enforces non-null types, emits run-time checks

for method contracts and invariants. To exercise the contracts, the developer

can use any of the testing tools available for .NET. NUnit [52] is the unit testing

framework that has the majority of the market share. It was one of the first

unit testing frameworks for the .NET platform. NUnit tests can be run several

different ways. Like ES-Test, NUnit can be executed in from the GUI application

or from the console’s application or can be used as an integral part of VS.NET

IDE as well.

Visual Studio Team System (VSTS) [46] is another testing platform from Mi-

crosoft, with unit testing as one of its testing types. VSTS supports other testing,

such as functional and load testing. VSTS enjoys a close relationship with the

VS.NET IDE. The IDE allows the developers to use a wizard to generate the unit

tests from the code. VSTS includes TestManager, which is a GUI to allow the de-

veloper to select tests to run and to see the results of those tests. TestManager

is similar to ES-Test with respect to regression testing. It helps to run all unit

tests at once, or user can select which tests to run. Like ES-Test, VSTS supports

debugging unit tests in the IDE, so that it’s possible to set breakpoints and start

debug run via unit test.

In terms of formal verification, Spec# provides a static program verifier. This

209



component is fully integrated into VS.NET IDE and is called Boogie [6]. Boo-

gie generates logical verification conditions from a Spec# program. Internally,

it uses the simplify automatic theorem prover similar to ESC/Java2. Boogie has

better capabilities than PD (and thus ES-Verify) with respect to references and

aliasing. Boogie currently has some limitations (in contrast to ES-Verify). It does

not support methods in contracts, quantifiers in loop invariants, genericity, real

numbers, and loop variants. These limitations are likely to disappear over time.

Perhaps the main difference between Spec# and ES-Verify is that Spec# does not

yet support high-level mathematical libraries (ML) for describing program prop-

erties neither in run-time assertion checking nor in program verification.

KeY

KeY [2] is a GUI based tool that provides facilities for formal specification and

verification of programs within a commercial platform for UML based software

development. Like ESpec, KeY aims at integrating formal specification and ver-

ification of software into the software development process.

The target language of KeY tool is Java Card [22]. Java Card is a proper subset

of Java, excluding certain features (like threads, cloning or dynamic class load-

ing) and with a much reduced API. KeY allows the developer to use a combina-

tion of graphical UML diagrams [63], OCL specifications [88] (or alternatively,
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 ESpec JML Perfect 

Developer 

Spec# KeY

Support for Design by Contract 

Executable contracts 

Debugging contracts 

Command line execution 

Support for mathematical models 

Executable mathematical models 

IDE integration 

Fully automatic theorem prover 

Verification of mathematical 

contracts and frame conditions 

Verification of genericity 

Verification of real numbers support 

Verification of inheritance 

Verification of aliasing 

Exceptional post condition 

Precise theorem prover feedback to 

the source code in an integrated GUI 

Seamless integration of Unit testing 

and theorem proving 

Table 6.2: Summary of comparisons

JML) to write the specification for the Java Card source code. OCL is poorly

understood at this point and is undergoing changes. This makes it difficult to

provide a calculus for reasoning about specifications in OCL. The KeY project

dealt with this problem as follows [2, p10]:

Although possible, there are good arguments against building such a
calculus directly for OCL:

• It is difficult and expensive to develop a theorem prover for a
given formal language. OCL is a big language compared to logic
languages (such as first-order logic) and, in contrast to them,
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proof search in OCL is not well understood. Moreover, OCL
is frequently revised.

• OCL was not designed with proof support in mind, and like
UML it is independent of the implementation language. It does
not know about concrete implementations of datatypes such as
the integers. Before version 2.0, there was no way to specify ini-
tial states of classes. OCL is also not intended to express complex
proof obligations that involve several invariants (see below).

As a consequence, we take a “compilation” approach: OCL expres-
sions are translated into formulae of first-order logic (FOL). OCL com-
pilation circumvents the difficulties outlined above. It also makes
KeY independent from OCL as the sole specification language: re-
cently, JML emerged as a popular specification language used in many
formal methods projects dealing with JAVA and JAVA CARD [19].
Replacing the OCL to FOL compiler with a JML front end enables
the use of KeY with JML. A further major advantage of translating
OCL and JML into FOL is that we do not need to define a dedicated
formal semantics for these specification languages. Their semantics
is implicitly defined by the translation into FOL, the latter having a
standard semantics that is widely agreed upon. The translation ap-
proach works only if it is natural to represent a specification language
by FOL. Admittedly, this is not the case for “vanilla” FOL as encoun-
tered in logic textbooks. Object types, undefined expressions, and
predefined operators need to be added to the syntax, semantics, and
calculus of FOL in order to allow a natural and adequate translation.
None of these extensions to FOL is new, but surprisingly no tutorial
treatment of this material accessible to non-specialists is available.

The KeY tool has a modeling component that consists of the CASE tool with

extensions for formal specification. In ESpec, the specifications (ML-Contracts)

are an executable part of the programming language and preconditions, postcon-

ditions and class invariants are language constructs. In KeY, OCL or JML speci-

fications are annotations (comments) that are processed by the theorem prover,
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but they are not executable and are not supported by the Java debugger [2].

KeY is able to generate automatically constraints by using design pattern in-

stantiations. For standard formulations predefined instantiations of design pat-

tern exist and can be easily used. On the other hand the user is free to formulate

any valid OCL statement without the assistance of KeY.

In terms of visual modeling, EiffelStudio also provides the similar facility

for the users to model their code using the BON [77] diagrams. However, the

benefit of the KeY tool over EiffelStudio is that it processes the UML diagrams

and integrates them with OCL and JML specifications for the purpose of veri-

fication. KeY translates the UML model, the implementation (Java Card) and

the specification (OCL, JML) into Java Card Dynamic Logic [12] proof obliga-

tions which are passed to the deduction component. Java Card Dynamic Logic

is a program logic used by the KeY prover (deduction component). The deduc-

tion component is used to construct proofs for the generated Java Card Dynamic

Logic proof obligations.

Unlike ES-Verify, the KeY prover is not fully automatic. The KeY prover is an

interactive verification system combined with powerful automated deduction

techniques. However, as stated in [37]:

Java, UML, OCL, and CASE tools are familiar to software engineers
and students alike, which helps in getting started. Nevertheless, KeY
cannot be recommended for such target groups at present: the in-
teractive prover and its interaction with the user are in their infancy
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and are inadequate for serious use. Moreover, OCL is not expres-
sive enough to specify complex program behaviour. Considering that
KeY is still in alpha stage, it seems to be worthwhile to reevaluate the
system in a few years in order to see whether it lives up to expecta-
tions

It is undoubtedly the case that while KeY is relatively new and underdevel-

oped, it will in future become a serious verification tool given the research effort

in place [2].

For a summary of comparison between ESpec and the various tools men-

tioned above see Table 6.2.
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7 Future Work and Conclusions

7.1 Future work

ESpec is an on going project at the Software Engineering Lab at York University.

It has been used in the Software Design course at York University since its first

release in the Winter of 2005. ESpec is maintained under the GPL licence for

public download (see http://www.cse.yorku.ca/∼sel/espec/).

As we showed in Table 6.2, ESpec does not precisely report the location of the

theorem proving error in the source code. In our future project we are planing to

improve this error reporting. Also there is an ongoing project to integrate ESpec

tools directly into the Eiffel Studio IDE. During this experimental project, ES-

Test component was successfully integrated into the IDE. This will allow Eiffel

programmers to access ESpec tools directly from their working environment. We

are also fully integrating the AutoTest tool into our ESpec.

Currently, working with the model libraries needs precise user interaction

when debugging facilities are needed. Model libraries are very hard to debug
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especially when there is a contract violation. There is a need to develop ad-

vanced debugging tools specially fine tuned for these models. Finally, the goal is

to support concurrent contracting via the SCOOP mechanism. This is an active

and challenging area of current research [71].

7.2 Conclusions

In this thesis, we differentiated the customer requirements (in the problem domain)

from design specifications (in the solution space). The design specifications are

the artifact intermediate between implemented code and the customer require-

ments.

We argued that the customer requirements and design specifications should

be testable and testable early in the design cycle leading to early detection of re-

quirement and specification errors. We described a method (and the ESpec tool)

for early requirement and specification descriptions and testing and showed

how this technique allows us to detect bugs in both implementation and specifi-

cation of the software product.

The core idea behind early testable requirements was that the problem is de-

scribed before we search for a solution and the problem description drives the

design.

We followed the single model principle, i.e., design specifications written us-
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ing expressive mathematical models such as sets, bags, sequences and maps are

contracts that are integrated into the program text itself. These tightly integrated

specifications allowed us to detect inconsistencies between code, specifications

and requirements as early as possible and during the lifetime of the code.

We described the customer requirements using Fit tables and specification

violations (where they occur) were indicated in these Fit tables. We showed that

the method does not depend on a particular code development methodology

(e.g., Agile vs. Conventional) and whatever development methodology is pre-

ferred can be used.
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A Appendix: Introduction to Eiffel

A.1 Eiffel

The tool support for this thesis is implemented in Eiffel language [67]. The lan-

guage targeted by the tool is also Eiffel. For this reason, the following gives a

brief overview of the language. Eiffel is a pure object oriented programming

language. The main features of the language are: Static type system, Multiple

inheritance, Constrained genericity and Design by Contract (DbC).

Fig. A.1 shows the Eiffel version of the Hello World example. The only class

in this example is HELLO WORLD. This class has only one feature: the procedure

make. The implementation of this procedure prints the string Hello world!. In

Eiffel, every class implicitly or explicitly inherits from the class ANY. The routine

print is defined in class ANY for convenience reasons. The procedure make is also

marked to be a creation procedure. Since it has no arguments it can serve as the

program entry point. For more information about Eiffel programming language

please refer to [67].
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class
HELLO_WORLD

create
make

feature
make

do
print ("Hello World!")

end
end -- class HELLO_WORLD

Figure A.1: ”Hello World” program in Eiffel language

A.1.1 Eiffel Terminology

Eiffel has its own naming convention which often diverges from the conventions

used in languages such as C++, Java or C#. Throughout this thesis, we use the

Eiffel naming convention. A terminology-mapping from Eiffel to C++ [57] is

provided in Table A.1. This table is based on the mapping from [57] and shows

the entries relevant for this thesis.

A.1.2 Eiffel Agents

Agents are the key Eiffel technology used in this thesis. Agents are objects that

represent operations; they are effectively closures from functional programming.

Agents can be passed to different software elements, which can use the object

to execute the operation whenever they want. Agents thus provide a way of

separating the definition of a routine from its execution. Agents are also a way
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of combining high-level functions (operations acting on other operations) with

static typing in Eiffel. The following is a simple example of an agent using Eiffel’s

GUI library EiffelVision. Suppose you want to add the routine eval state to the

list of event handlers that will be executed when a mouse click occurs on the

widget my button. To carry this out, we could execute Eiffel statement shown in

agent expression A.1:

my button.click actions.extend(agent eval state) (A.1)

The operation being added to the button is indicated by the agent keyword.

The keyword distinguishes an operation call to eval state from a binding of

the operation to the button. In general, the argument to extend can be any agent

expression. An agent expression will include an operation plus any context that

the operation may need (e.g., arguments). Predicate agents are of significant use.

These agents apply boolean-valued operations to collections. For example, agent

expression A.2 applies the boolean-valued function is positive to elements of

the integer list intlist, and conjoins together the result. The question mark

? indicates an open argument that is provided by iterating through the range

arguments provided, i.e., it indicates an arbitrary element of intlist. In A.3, the

boolean-valued function perfect cube is applied to each element of the integer
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list intlist and the final result is the disjoins of all the results.

intlist.for all (agent is positive(?)) (A.2)

intlist.there exists(agent perfect cube(?)) (A.3)
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Eiffel C++
ancestor class superclass
class class
object object
child class derived class
parent class base class
deferred feature pure virtual function
deferred class abstract base class
generic class template
feature function
function virtual function
once function n/a
descendent class subclass
precursor super()
attribute data member
creation feature constructor
assertion assertion
require n/a
ensure n/a
invariant n/a
variant n/a
loop invariant n/a
check assert
x is do end virtual void x() { }
x.f (expanded object) x.f()
x.f (reference object) x->f()
a = b a == b
equal (a,b) a == b
create x.make y = new x
Result return
violation exception

Table A.1: Eiffel to C++ terminology mapping
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B Appendix: Chat example source code

B.1 CHAT SCENARIO 1

class CHAT_SCENARIO_1 inherit
ES_ACTION_FIXTURE

create
make

feature
make is

do
bind ("[user]", agent set_user_name)

bind ("Connect [user]", agent connect_user)

bind ("[room]", agent set_room_name)

bind ("[user] adds [room]", agent add_room)

bind ("[user] makes [room] private", agent user_sets_room_to_private)

bind ("[user list]", agent set_user_list)

bind ("[user] allows [user list] in [room]", agent user_allows_list)

bind ("Total number of users", agent num_server_users)

bind ("Total number of rooms", agent num_server_rooms)

-- second scenario, move

bind ("move [user] to [room]", agent move_user_to_room)

end

temp_user: STRING

temp_room: STRING

temp_user_list: ARRAY[STRING]

server: CHAT_SERVER
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start (arg: STRING) is
-- initalize the objects

do
if arg.is_equal ("Chat Server") then

create server.make

end
end

set_user_name (a_name: STRING) is
do
temp_user := a_name

end

set_room_name (a_name: STRING) is
do
temp_room := a_name

end

num_server_rooms: INTEGER is
do

Result := server.room_count

end

num_server_users: INTEGER is
do

Result := server.user_count

end

connect_user is
local
a_user: CHAT_USER

do
create a_user.make (temp_user)

server.connect (a_user)

end

add_room is
local
a_room: CHAT_ROOM

a_user: CHAT_USER

do
a_user := server.get_user (temp_user)

a_room := a_user.create_room (temp_room)

a_user.add_room (a_room)

end

set_user_list (input: ARRAY[STRING]) is
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do
temp_user_list := input

end

user_sets_room_to_private is
local
a_user: CHAT_USER

do
a_user := server.get_user (temp_user)

a_user.set_private (temp_room)

end

user_allows_list is
local
a_user: CHAT_USER

i: INTEGER

do
a_user := server.get_user (temp_user)

from
i := temp_user_list.lower

until
i > temp_user_list.upper

loop
a_user.allow_user (temp_user_list.item (i), temp_room)

i := i + 1

end

end

move_user_to_room is
local
a_user: CHAT_USER

do
a_user := server.get_user (temp_user)

a_user.enter_room (temp_room)

end
end

225



B.2 CHAT SCENARIO QUERY 1

class CHAT_SCENARIO_QUERY_1 inherit
ES_ROW_FIXTURE[CHAT_ROOM]

create
make

feature
make is

-- Bining of table headers to agents

do
bind ("Room name", agent get_room_name)

bind ("Owner", agent get_room_owner)

bind ("Occupants", agent get_room_occupants)

bind ("Is public?", agent is_room_public)

bind ("Permitted list", agent get_room_allowed_list)

end

get_room_name (a_room: CHAT_ROOM): STRING is
do

Result := a_room.name

end

get_room_owner (a_room: CHAT_ROOM): STRING is
do

Result := a_room.owner.user_name

end

get_room_occupants (a_room: CHAT_ROOM): ARRAY[STRING] is
local
loc: INTEGER

do
from
loc := a_room.occupants.index

a_room.occupants.start
create Result.make (0, -1)

until
a_room.occupants.after

loop
Result.force (a_room.occupants.item.user_name, Result.count)
a_room.occupants.forth

end
a_room.occupants.go_i_th (loc)

end
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get_user_name (a_user: CHAT_USER): STRING is
do

Result := a_user.user_name

end

get_user_room (a_user: CHAT_USER): STRING is
do

Result := a_user.room.name

end

is_room_public (a_room: CHAT_ROOM): BOOLEAN is
do

Result := not a_room.is_private

end

get_room_allowed_list (a_room: CHAT_ROOM): ARRAY[STRING] is
do

Result := a_room.allowed_list

end

query (a_name: STRING): LINKED_LIST [CHAT_ROOM]

-- argument ‘a_name’ is not used in this example

-- LIST will contain ‘Lobby, Technical Support’

local
chat_scenario1: CHAT_SCENARIO_1

chat_server: CHAT_SERVER

do
chat_scenario1 ?= connected_to

check chat_scenario1 /= Void end
chat_server := chat_scenario1.server

Result ?= chat_server.rooms.deep_twin

end
end
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B.3 CHAT TEST 1

class CHAT_TEST1 inherit
ES_TEST

create
make

feature -- Add cases

make is
do

add boolean case (agent test_server_creation)

add boolean case (agent test_user_creation)

add boolean case (agent test_set_user_server)

add boolean case (agent test_room_creation)

add boolean case (agent test_set_room_server)

add boolean case (agent user_connects_server)

add boolean case (agent test_scenario_1)

add violation case (agent conneting_same_user_twice)

add violation case (agent connecting_two_users_same_name)

end

feature -- Boolean Cases

test_scenario_1: BOOLEAN is
local
server: CHAT_SERVER

mike, anna: CHAT_USER

mike_room: CHAT_ROOM

users: LIST[CHAT_USER]

rooms: LIST[CHAT_ROOM]

do
-- create the chat server and check it

create server.make

users := server.users

rooms := server.rooms

check server.user_count = 1 end
check server.room_count = 1 end

-- create 2 users Mike and Anna and connect them to the server

create mike.make ("Mike")

create anna.make ("Anna")

server.connect (mike)

server.connect (anna)

check server.user_count = 3 and server.room_count = 1 end
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check mike.room = server.lobby and anna.room = server.lobby end
check users.has(mike) and users.has(anna) end

-- Mike creates a room ‘‘Technical Support"

mike_room := mike.create_room ("Technical Support")

mike.add_room (mike_room)

check server.room_count = 2 end
check not mike_room.is_private end
check rooms.has(mike_room) end

-- Mike changes the status of his room to private

mike.set_private ("Technical Support")

check mike_room.is_private end
check not server.is_allowed (anna, "Technical Support") end

-- Mike allows Anna to join the Technical Support room

mike.allow_user ("Anna", "Technical Support")

check server.is_allowed (anna, "Technical Support") end
Result := True

end

test_server_creation: BOOLEAN is
local
chat_server: CHAT_SERVER

Lobby_name, Admin_name: STRING

do
comment ("Create chat server")

Lobby_name := "Lobby"

Admin_name := "Admin"

create chat_server.make

Result := chat_server.is_active

Result := Result and chat_server.rooms.count = 1

Result := Result and chat_server.lobby.name.is_equal (Lobby_name)

Result := Result and chat_server.users.count = 1

Result := Result and (chat_server.admin /= void and
chat_server.admin.user_name.is_equal (Admin_name) and
chat_server.admin.server = chat_server)

Result := Result and chat_server.rooms.has (chat_server.lobby)

Result := Result and chat_server.users.has (chat_server.admin)

Result := Result and chat_server.lobby.occupants.has (chat_server.admin)

Result := Result and chat_server.lobby.owner = chat_server.admin

end

test_user_creation: BOOLEAN is
local
a_user: CHAT_USER

do
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comment ("Create a user")

create a_user.make ("Mike")

Result := a_user.user_name.is_equal ("Mike")

Result := Result and a_user.server = Void
Result := Result and a_user.room = Void
Result := Result and a_user.owned.is_empty

end

test_set_user_server: BOOLEAN is
local
a_user: CHAT_USER

a_server: CHAT_SERVER

do
comment ("Set chat server for a user")

create a_user.make ("Mike")

create a_server.make

Result := a_user.server = Void
a_user.set_server (a_server)

Result := Result and a_user.server = a_server

end

test_room_creation: BOOLEAN is
local
a_user: CHAT_USER

a_room: CHAT_ROOM

do
comment ("Create a room")

create a_user.make ("Mike")

a_room := a_user.create_room ("Mike’s room")

Result := a_room.owner = a_user

Result := Result and a_room.name.is_equal ("Mike’s room")

Result := Result and a_user.owned.has (a_room)

Result := Result and a_room.occupants.is_empty

end

test_set_room_server: BOOLEAN is
local
a_user: CHAT_USER

a_room: CHAT_ROOM

a_server: CHAT_SERVER

do
comment ("Set room server")

create a_user.make ("Mike")

create a_server.make

a_room := a_user.create_room ("A")

Result := a_room.server = Void
a_room.set_server (a_server)
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Result := Result and a_room.server = a_server

end

user_connects_server: BOOLEAN is
-- user connects to a chat server

local
server: CHAT_SERVER

mike: CHAT_USER

do
comment ("User connects to a chat server")

create server.make

create mike.make ("Mike")

server.connect (mike)

Result := mike.server = server

Result := Result and mike.room = server.lobby

Result := Result and server.users.has (mike)

Result := Result and server.user_count = 2

Result := Result and server.lobby.has_username ("Mike")

Result := Result and server.has_user ("Mike")

end

conneting_same_user_twice is
local
server: CHAT_SERVER

user1: CHAT_USER

do
comment ("conneting same user twice")

create server.make

create user1.make ("user1")

server.connect (user1)

server.connect (user1)

end

connecting_two_users_same_name is
local
server: CHAT_SERVER

user1, user2: CHAT_USER

do
comment ("connecting_two_users_same_name")

create server.make

create user1.make ("user1")

create user2.make ("user1")

server.connect (user1)

server.connect (user2)

end
end
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B.4 CHAT TEST 2

class CHAT_TEST2 inherit
ES_TEST

create
make

feature -- Defining tests

make is
do

add violation case with tag ("not_already_connected", agent
conneting_same_user_twice)

add violation case with tag ("user_names_unique", agent
connecting_two_users_same_name)

add violation case with tag ("user_connected", agent
adding_a_room_without_connecting)

add violation case with tag ("user_is_owner", agent adding_a_non_owned_room)

add violation case with tag ("room_is_new", agent adding_an_existing_room)

add violation case with tag ("room_is_new", agent adding_the_same_room_twice)

add violation case with tag ("user_not_already_in", agent
entering_a_room_twice)

add violation case with tag ("user_allowed", agent entering_a_private_room)

add violation case with tag ("user_allowed", agent switching_rooms_to_private)

add violation case with tag ("not_already_allowed", agent allowing_owner)

add violation case with tag ("user_is_owner", agent
making_non_owned_rooms_private)

add violation case with tag ("user_is_owner", agent
changing_allowed_list_of_non_owned_rooms)

add violation case with tag ("room_exists", agent removing_a_non_existing_room

)

add violation case with tag ("user_is_owner", agent removing_a_non_owned_room)

add violation case with tag ("user_is_owner", agent removing_lobby)

add violation case with tag ("already_connected", agent
disconnecting_without_being_connected )

end

feature -- Agents

conneting_same_user_twice is
do
comment ("conneting same user twice")

create server.make

create user1.make ("user1")

user1.connect (server)

user1.connect (server)
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end

connecting_two_users_same_name is
do
comment ("connecting_two_users_same_name")

create server.make

create user1.make ("user1")

create user2.make ("user1")

user1.connect (server)

user2.connect (server)

end

adding_a_room_without_connecting is
do
comment ("adding_a_room_without_connecting")

create server.make

create user1.make ("user1")

room1 := user1.create_room ("room1")

user1.add_room (room1)

end

adding_a_non_owned_room is
do
comment ("adding_a_non_owned_room")

create server.make

create user1.make ("user1")

create user2.make ("user2")

room1 := user1.create_room ("room1")

room2 := user2.create_room ("room2")

user1.connect (server)

user2.connect (server)

user1.add_room (room2)

end

adding_a_room_same_as_username is
do
comment ("adding_a_room_same_as_username")

create server.make

create user1.make ("user1")

create user2.make ("user2")

room1 := user1.create_room ("room1")

room2 := user2.create_room ("user1")

user1.connect (server)

user2.connect (server)

user1.add_room (room1)

user2.add_room (room2)

end
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adding_an_existing_room is
do
comment ("adding_an_existing_room_name")

create server.make

create user1.make ("user1")

create user2.make ("user2")

room1 := user1.create_room ("room1")

room2 := user2.create_room ("room1")

user1.connect (server)

user2.connect (server)

user1.add_room (room1)

user2.add_room (room2)

end

adding_the_same_room_twice is
do
comment ("adding_the_same_room_twice")

create server.make

create user1.make ("user1")

create user2.make ("user2")

room1 := user1.create_room ("room1")

user1.connect (server)

user2.connect (server)

user1.add_room (room1)

user1.add_room (room1)

end

entering_a_room_twice is
do
comment ("entering_a_room_twice")

create server.make

create user1.make ("user1")

create user2.make ("user2")

room1 := user1.create_room ("room1")

room2 := user2.create_room ("room2")

user1.connect (server)

user2.connect (server)

user1.add_room (room1)

user2.add_room (room2)

user1.enter_room (room2.name)

user1.enter_room (room2.name)

end

entering_a_private_room is
do
comment ("entering_a_private_room")
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create server.make

create user1.make ("user1")

create user2.make ("user2")

room1 := user1.create_room ("room1")

user1.connect (server)

user2.connect (server)

user1.add_room (room1)

user1.set_private (room1.name)

user1.enter_room (room1.name)

user2.enter_room (room1.name)

end

switching_rooms_to_private is
do
comment ("switching_rooms_to_private")

create server.make

create user1.make ("user1")

create user2.make ("user2")

room1 := user1.create_room ("room1")

room2 := user2.create_room ("room2")

user1.connect (server)

user2.connect (server)

user1.add_room (room1)

user2.add_room (room2)

user1.set_private (room1.name)

user2.enter_room (room2.name)

user2.enter_room (room1.name)

end

allowing_owner is
do
comment ("allowing_owner")

create server.make

create user1.make ("user1")

room1 := user1.create_room ("room1")

user1.connect (server)

user1.add_room (room1)

user1.set_private (room1.name)

user1.allow_user (user1.user_name, room1.name)

end

making_non_owned_rooms_private is
do
comment ("making_non_owned_rooms_private")

create server.make

create user1.make ("user1")

create user2.make ("user2")
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room1 := user1.create_room ("room1")

room2 := user2.create_room ("room2")

user1.connect (server)

user2.connect (server)

user1.add_room (room1)

user2.add_room (room2)

user2.set_private (room1.name)

end

changing_allowed_list_of_non_owned_rooms is
do
comment ("changing_allowed_list_of_non_owned_rooms")

create server.make

create user1.make ("user1")

create user2.make ("user2")

room1 := user1.create_room ("room1")

room2 := user2.create_room ("room2")

user1.connect (server)

user2.connect (server)

user1.add_room (room1)

user2.add_room (room2)

user2.allow_user (user2.user_name, room1.name)

end

removing_a_non_existing_room is
do
comment ("removing_a_non_existing_room")

create server.make

create user1.make ("user1")

create user2.make ("user2")

room1 := user1.create_room ("room1")

room2 := user2.create_room ("room2")

user1.connect (server)

user2.connect (server)

user1.remove_room (room1)

end

removing_a_non_owned_room is
do
comment ("removing_a_non_owned_room")

create server.make

create user1.make ("user1")

create user2.make ("user2")

room1 := user1.create_room ("room1")

room2 := user2.create_room ("room2")

user1.connect (server)

user2.connect (server)
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user1.add_room (room1)

user2.add_room (room2)

user1.remove_room (room2)

end

removing_lobby is
do
comment ("removing_lobby")

create server.make

create user1.make ("user1")

user1.connect (server)

user1.remove_room (server.lobby)

end

disconnecting_without_being_connected is
do
comment ("disconnecting_without_being_connected")

create server.make

create user1.make ("user1")

user1.disconnect

end

user1, user2, user3, user4, user5: CHAT_USER

room1, room2, room3, room4, room5: CHAT_ROOM

server: CHAT_SERVER

end
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B.5 CHAT ROOM

class
CHAT_ROOM

create
make

feature {CHAT_SERVER, UNIT_TEST, ES_FIXTURE_UNIT} -- access private

occupants: LIST [CHAT_USER] -- list of occupants in this chat room

owner: CHAT_USER -- user who owns the room

server: CHAT_SERVER -- server associated with the room

feature -- access

allowed_list: ARRAY [STRING] -- list of allowed people in the room

is_private: BOOLEAN -- status of the room (public or private)

name: STRING -- name of the room

feature -- Room actions

make (a_name: STRING_8; a_user: CHAT_USER) is
-- creates a chat room with name ’a_name’

-- and owner ’a_user’

require
a_name_non_void: a_name /= void
a_name_non_empty: not a_name.is_empty

a_user_non_void: a_user /= void
do
name := a_name

occupants := create {LINKED_LIST[CHAT_USER]}.make

owner := a_user

create allowed_list.make (0, -1)

allowed_list.compare_objects

allowed_list.force (a_user.user_name, allowed_list.count)

ensure
name_set: name.is_equal (a_name)

occupants_empty: occupant_model.is_empty

owner_assigned: owner = a_user

allowed_list_created: allowed_list.count = 1

end

feature -- query

has_username (a_name: STRING): BOOLEAN is
-- returns true if user with ’a_name’ is in this room

require
a_name_non_void: a_name /= Void

local
loc: INTEGER
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do
from
loc := occupants.index

occupants.start
until
occupants.after or Result

loop
if occupants.item.user_name.is_equal (a_name) then

Result := true
else
occupants.forth

end
end

occupants.go_i_th (loc)

ensure
Result = occupant_model.there_exists (agent user_with_name (?, a_name))

end

is_user_allowed (a_user: STRING): BOOLEAN is
-- true if ’a_user’ is allowed

require
a_user_non_void: a_user /= void

do
Result := allowed_list.has (a_user)

end

is_owner (a_user: CHAT_USER): BOOLEAN is
require
a_user_non_void: a_user /= void

do
Result := (a_user = owner)

ensure
result_ok: Result = (a_user = owner)

end

is_allowed (a_user: CHAT_USER): BOOLEAN is
-- true if ’a_user’ is allowed to enter the current room

require
a_user_non_void: a_user /= void

do
Result := not is_private or (is_private and allowed_list.has (a_user.

user_name))

end

is_in_allowed_list (a_user: CHAT_USER): BOOLEAN is
-- true if ’a_user’ is allowed to enter the current room
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require
a_user_non_void: a_user /= void

do
Result := allowed_list.has (a_user.user_name)

end

feature {CHAT_SERVER, UNIT_TEST, ES_FIXTURE_UNIT} -- server access

set_server (a_server: CHAT_SERVER) is
-- set the server

require
a_server_non_void: a_server /= void

do
server := a_server

ensure
server = a_server

end

remove_user (a_user: CHAT_USER) is
-- removes the ’a_user’ from the chat room

require
a_user_non_void: a_user /= void
user_exists: occupant_model.has (a_user)

do
occupants.start
occupants.search (a_user)

occupants.remove

occupants.start
ensure
user_removed: occupant_model.extended_by (a_user) |=| old occupant_model

end

add_user (a_user: CHAT_USER) is
-- adds ’a_user’ to the current room

require
a_user_non_void: a_user /= Void
not_already_in: not occupant_model.has (a_user)

a_user_must_be_allowed: is_allowed (a_user)

do
occupants.force (a_user)

a_user.set_room (Current)
ensure
user_added: occupant_model |=| (old occupant_model).extended_by (a_user)

end

set_allowed_list (list: ARRAY [STRING]) is
require
list_not_void: list /= void
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do
allowed_list := list

allowed_list.compare_objects

ensure
allowed_list = list

end

set_private is
-- set room to be of type private

require
not_already_private: not is_private

do
is_private := true

ensure
is_private

end

set_public is
-- set room to be of type public

require
not_already_private: is_private

do
is_private := false

ensure
not is_private

end

has_user (a_user: CHAT_USER): BOOLEAN is
require
a_user_non_void: a_user /= void

do
Result := occupants.has (a_user)

ensure
result_ok: Result = occupant_model.has (a_user)

end

allow_user (a_user: CHAT_USER) is
-- allow ’a_user’ to access this room

require
a_user_non_void: a_user /= Void
not_already_allowed: not is_in_allowed_list (a_user)

do
allowed_list.force (a_user.user_name, allowed_list.count)

ensure
user_allowed: is_allowed (a_user)

end
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feature {NONE} -- agent

user_with_name (a_user: CHAT_USER; a_name: STRING): BOOLEAN is
-- true if ’a_user’s name is ’a_name’

require
a_user_non_void: a_user /= void
a_name_non_void: a_name /= void

do
Result := a_user.user_name.is_equal (a_name)

ensure
Result = a_user.user_name.is_equal (a_name)

end

must_be_allowed (a_user: CHAT_USER): BOOLEAN is
-- true if ’a_user’ is allowed to enter the current room

require
a_user_non_void: a_user /= void

do
Result := allowed_list.has (a_user.user_name)

end

feature -- Model

occupant_model: ML_SET [CHAT_USER] is
-- model of the occupants in this room

local
loc: INTEGER

do
from

create Result.make
loc := occupants.index

if occupants /= void then
occupants.start

end
until
occupants = void or occupants.after

loop
Result := Result.extended_by (occupants.item)

occupants.forth

end
occupants.go_i_th (loc)

end

invariant
all_users_authorized: is_private implies occupant_model.for_all (agent

must_be_allowed (?))

owner_is_always_allowed: is_allowed (owner)

end
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B.6 CHAT USER

class CHAT_USER

create
make

feature -- attributes

user_name: STRING -- username (login name) of the current user

feature {CHAT_ROOM, CHAT_SERVER, UNIT_TEST, ES_FIXTURE_UNIT} -- access

room: CHAT_ROOM -- room (location) of the current user

server: CHAT_SERVER -- the server that current user is connected to

owned: LINKED_LIST[CHAT_ROOM] -- list of rooms that is owned by current user

feature -- model

owned_model: ML_SET[CHAT_ROOM] is
-- returns a model representing the list of rooms this user owns

local
loc: INTEGER

do
from

create Result.make
if owned /= Void then
loc := owned.index

owned.start
end

until
owned = Void or owned.after

loop
Result := Result.extended_by (owned.item)

owned.forth

end

if owned /= Void then
owned.go_i_th (loc)

end

end

feature {CHAT_SERVER, UNIT_TEST, ES_FIXTURE_UNIT} -- create / connect user

make (a_user_name: STRING) is
-- create a chat user with user name ’a_user_name’

require
a_name_non_void: a_user_name /= void
a_name_non_empty: not a_user_name.is_empty

do
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server := Void
room := Void
create owned.make

user_name := a_user_name

ensure
name_is_set: user_name.is_equal (a_user_name)

chat_server_void: server = Void
current_room_void: room = Void
owned_list_created: owned_model.is_empty

end

connect (a_server: CHAT_SERVER) is
-- user connects to ‘a_server’

-- should not have already connected

-- chat server may accept/reject the user

require
not_already_connected: not is_connected

server_is_active: a_server /= Void and a_server.is_active

do
a_server.connect (Current)

ensure
user_connected: is_connected

owned_model_unchanged: owned_model |=| old owned_model

end

disconnect is
-- disconnect the user from the chat server

require
already_connected: is_connected

do
server.disconnect (Current)
create owned.make -- clear ownerships

server := Void
room := Void

ensure
not_connected: not is_connected

connected_chat_server_void: server = Void
not_in_room: room = Void
server_not_has_user: not (old server).has_user (Current.user_name)
model_empty: owned_model.is_empty

end
feature -- query

is_connected: BOOLEAN is
-- true if user connected to a server

do
if server /= Void then

Result := server.has_user (Current.user_name)
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end
end

is_in_room (a_room: STRING): BOOLEAN is
-- true if user is in room a_room

require
a_room_non_void: a_room /= Void

do
Result := room.name.is_equal (a_room)

ensure
result_correct: Result = room.name.is_equal (a_room)

end

is_room_owned (a_room: STRING): BOOLEAN is
-- true if ’a_room’ is owned by this user

require
a_room_non_void: a_room /= Void

local
loc: INTEGER

do
from
loc := owned.index

owned.start
until
owned.after or Result

loop
if owned.item.name.is_equal (a_room) then

Result := true
end
owned.forth

end
owned.go_i_th (loc)

end

feature {CHAT_SERVER, CHAT_ROOM, UNIT_TEST, ES_FIXTURE_UNIT} -- user actions

set_server (a_server: CHAT_SERVER) is
-- set the current of server to ’a_server’

require
a_server_non_void: a_server /= void

do
server := a_server

ensure
server_set: server = a_server

owned_unchaged: owned_model |=| old owned_model

end
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set_room (a_room: CHAT_ROOM) is
-- set the current room of this user to be ‘a_room’

require
a_room_non_void: a_room /= Void
a_room_on_server: server.has_room (a_room.name)

do
room := a_room

ensure
room_set: room = a_room

owned_unchaged: owned_model |=| old owned_model

end

create_room (a_name: STRING): CHAT_ROOM is
-- create a room with name ’a_name’

-- user becomes the owner of the create room

require
a_name_non_void: a_name /= void
non_empty_a_name: not a_name.is_empty

not_already_owned: not is_room_owned (a_name)

local
a_room: CHAT_ROOM

do
create a_room.make (a_name, Current)
owned.force (a_room)

Result := a_room

ensure
room_create: Result.name.is_equal (a_name)

ownership_added: owned_model |=| (old owned_model).extended_by (Result)
is_allowed_in_room: Result.is_user_allowed (user_name)

end

add_room (a_room: CHAT_ROOM) is
-- add ’a_room’ to the chat server

require
a_room_non_void: a_room /= Void
user_connected: is_connected

user_is_owner: owned.has (a_room)

room_is_new: not server.has_room (a_room.name)

do
server.add_room (a_room, Current)

ensure
room_added: server.ownership_model.domain.has (a_room)

owned_unchaged: owned_model |=| old owned_model

end

remove_room (a_room: CHAT_ROOM) is
-- user removes a room
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require
room_non_void: a_room /= void
user_connected: is_connected

user_is_owner: is_room_owned (a_room.name)

do
server.remove_room (Current, a_room.name)

ensure
not_has_it: not server.has_room (a_room.name)

end

enter_room (a_room: STRING) is
-- user enters room ’a_room’

require
a_room_non_void: a_room /= Void and not a_room.is_empty

room_exists: server.has_room (a_room)

user_allowed: server.is_allowed (Current, a_room)

user_not_already_in: not room.name.is_equal (a_room)

do
server.enter_room (Current, a_room)

ensure
entered_room: room.name.is_equal (a_room)

owned_unchaged: owned_model |=| old owned_model

end

set_private (a_room: STRING) is
require
a_room_non_void: a_room /= Void and not a_room.is_empty

user_is_owner: is_room_owned (a_room)

room_not_private: not server.is_room_private (a_room)

do
server.set_private (Current, a_room)

ensure
is_private: server.is_room_private (a_room)

owned_unchaged: owned_model |=| old owned_model

end

set_public (a_room: STRING) is
require
a_room_non_void: a_room /= Void and not a_room.is_empty

user_is_owner: is_room_owned (a_room)

room_not_public: server.is_room_private (a_room)

do
server.set_public (Current, a_room)

ensure
is_public: not server.is_room_private (a_room)

owned_unchaged: owned_model |=| old owned_model

end
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allow_user (a_user: STRING; a_room: STRING) is
-- allow ’a_user’ to access ’a_room’

require
a_user_non_void: a_user /= Void and not a_user.is_empty

a_room_non_void: a_room /= Void
user_is_owner: is_room_owned (a_room)

do
server.allow_user (a_user, a_room, Current)

ensure
user_allowed: get_owned_room (a_room).is_user_allowed (a_user)

owned_unchaged: owned_model |=| old owned_model

end

feature {NONE} -- agents

has_room_with_name (a_room: CHAT_ROOM; a_name: STRING): BOOLEAN is
-- true if name of ’a_room’ is equal to ’a_name’

do
Result := a_room.name.is_equal (a_name)

end

get_owned_room (a_room: STRING): CHAT_ROOM is
-- returns the room associated with the a_room

require
a_room_non_void: a_room /= Void
a_room_is_owned: is_room_owned (a_room)

local
loc: INTEGER

found: BOOLEAN

do
from
loc := owned.index

owned.start
until
owned.after or found

loop
if owned.item.name.is_equal (a_room) then
found := true
Result := owned.item

end
owned.forth

end
owned.go_i_th (loc)

end
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server_has_room (a_room: CHAT_ROOM): BOOLEAN is
-- server does not have ’a_room’

do
Result := server.has_room (a_room.name)

end

invariant
user_name_non_void: user_name /= Void
owned_non_void: owned /= Void

end
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B.7 CHAT SERVER

class CHAT_SERVER create
make

feature {UNIT_TEST, ES_FIXTURE_UNIT} -- access

lobby: CHAT_ROOM -- Lobby room of the server

admin: CHAT_USER -- Administrator user

rooms: LIST[CHAT_ROOM] -- list of Server chatrooms

users: LIST[CHAT_USER] -- list of Server users

Admin_name: STRING is "Admin"

Lobby_name: STRING is "Lobby"

feature {UNIT_TEST, ES_FIXTURE_UNIT} -- creation

make is
do
rooms := create {LINKED_LIST[CHAT_ROOM]}.make

users := create {LINKED_LIST[CHAT_USER]}.make

create admin.make (admin_name) -- create admin user

users.force (admin) -- add it to the server

admin.set_server (Current)
-- admin creates lobby

lobby := admin.create_room (lobby_name)

lobby.set_server (Current)
rooms.force (lobby) -- admin enters lobby

lobby.occupants.force (admin)

admin.set_room (lobby)

ensure
admin_in_lobby: location_model |=| (old location_model).extended_by (admin,

lobby)

admin_owns_lobby: ownership_model |=| (old ownership_model).extended_by (

lobby, admin)

room_server_set: lobby.server = Current
admin_server_set: admin.server = Current
admin_name_set: admin.user_name.is_equal (Admin_name)

lobby_name_set: lobby.name.is_equal (Lobby_name)

end

feature -- queries

is_active: BOOLEAN is
-- returns true if server is active

do
Result := rooms.count >= 1

ensure
result_correct: # location_model >= 1

end
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user_count: INTEGER is
-- number of users on the chat server

do
Result := users.count

end

room_count: INTEGER is
-- number of rooms on the chat server

do
Result := rooms.count

end

has_user (a_name: STRING): BOOLEAN is
-- returns true if chat server has a user with username ’a_name’

require
a_name_non_void: a_name /= Void

local
loc: INTEGER

do
from
loc := users.index -- for consistancy keep the current index

users.start
until
users.after or Result

loop
if users.item.user_name.is_equal (a_name) then

Result := true
end
users.forth

end
users.go_i_th (loc) -- set the index to original

ensure
result_correct: Result = location_model.domain.there_exists (agent

user_with_name (?, a_name))

end

has_room (a_name: STRING): BOOLEAN is
-- returns true if chat server has a room with name ’a_name’

require
a_name_non_void: a_name /= void

local
loc: INTEGER

do
from
loc := rooms.index

rooms.start
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until
rooms.after or Result

loop
if rooms.item.name.is_equal (a_name) then

Result := true
end
rooms.forth

end
rooms.go_i_th (loc)

ensure
result_correct: Result = ownership_model.domain.there_exists (agent

room_with_name (?, a_name))

end

is_allowed (a_user: CHAT_USER; a_room: STRING): BOOLEAN is
-- is ’a_user’ allowed to access ’a_room’?

require
a_room_non_void: a_room /= void and not a_room.is_empty

user_exists: location_model.has_key (a_user)

room_exists: has_room (a_room)

local
the_room: CHAT_ROOM

do
the_room := get_room (a_room)

Result := the_room.is_allowed (a_user)

ensure
result_allowed: get_room (a_room).is_allowed (a_user)

end

is_room_private (a_room: STRING): BOOLEAN is
-- returns true if room is private

require
a_room_non_void: a_room /= void and not a_room.is_empty

room_exists: has_room (a_room)

local
the_room: CHAT_ROOM

do
the_room := get_room (a_room)

Result := the_room.is_private

end

feature {UNIT_TEST, ES_FIXTURE_UNIT} -- queries (private)

get_user (a_name: STRING): CHAT_USER is
-- returns a user with user_name ’a_name’

require
name_non_void: a_name /= Void
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already_in: has_user (a_name)

local
found: BOOLEAN

loc: INTEGER

do
from
loc := users.index

users.start
until
users.after or found

loop
if (users.item).user_name.is_equal (a_name) then
found := true
Result := users.item

end
users.forth

end
users.go_i_th (loc)

ensure
server_has_it: location_model.has_key (Result)
result_correct: Result.user_name.is_equal (a_name)

locations_un_changed: location_model |=| old location_model

ownership_un_changed: ownership_model |=| old ownership_model

end

get_room (room_name: STRING): CHAT_ROOM is
-- returns a room with name ’a_name’

require
name_non_void_non_empty: room_name /= Void
already_in: has_room (room_name)

local
espec_loop: ESR_COMP[CHAT_ROOM]

loc: INTEGER

do
loc := rooms.index

create espec_loop

Result := (espec_loop.for_list (rooms, agent name_equal(?, ?, room_name)))

[1]

imp_comment("Result = (those i: 1 .. rooms.count yield rooms[i] ~ room_name

)")

rooms.go_i_th (loc)

ensure
result_correct: ownership_model.there_exists (agent room_exists (?, Result,

room_name))

Result.name.is_equal (room_name) and ownership_model.has_key (Result)
comment ("Result.name ~ room_name and Result in ownership_model.domain")

locations_un_changed: location_model |=| old location_model
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ownership_un_changed: ownership_model |=| old ownership_model

end

get_room2 (a_name: STRING): CHAT_ROOM is
-- returns a room with name ’a_name’

require
name_non_void_non_empty: a_name /= void and not a_name.is_empty

already_in: has_room (a_name)

local
found: BOOLEAN

do
from rooms.start
invariant
found implies mSlice (rooms.index).there_exists (agent room_exists (?,

Result, a_name))

not found implies Result = Void
variant
# ownership_model - rooms.index + 1

until rooms.after or found

loop
if (rooms.item).name.is_equal (a_name) then
found := true
Result := rooms.item

end
rooms.forth

end
ensure
result_correct: ownership_model.there_exists (agent room_exists (?, Result,

a_name))

end

feature {NONE} -- Agents

user_with_name (a_user: CHAT_USER; a_name: STRING): BOOLEAN is
-- true if ’a_user’s name is ’a_name’

require
a_user_non_void: a_user /= void
a_name_non_void: a_name /= void

do
Result := a_user.user_name.is_equal (a_name)

ensure
Result = a_user.user_name.is_equal (a_name)

end

room_with_name (a_room: CHAT_ROOM; a_name: STRING_8): BOOLEAN is
-- true if ’a_room’s name is ’a_name’

require
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a_room_non_void: a_room /= void
a_name_non_void: a_name /= void

do
Result := a_room.name.is_equal (a_name)

ensure
Result = a_room.name.is_equal (a_name)

end

name_equal (r: CHAT_ROOM; i: INTEGER; name: STRING): BOOLEAN is
do

Result := r.name.is_equal (name)

-- Result := rooms[i].name.is_equal(name)

end

mSlice (upto: INTEGER): ML_MAP [CHAT_ROOM, CHAT_USER] is
-- creates a slice of ownership map up to index ’upto’

local
seq_room_users: ML_SEQ [ML_PAIR[CHAT_ROOM, CHAT_USER]]

i: INTEGER

do
from

create Result.make
seq_room_users := ownership_model.to_seq

i := 1

until
i = upto

loop
Result := Result.extended_by_pair (seq_room_users.item (i))

i := i + 1

end
end

room_exists (r1: CHAT_ROOM; r2: CHAT_ROOM; name: STRING): BOOLEAN is
do

Result := r1 = r2 and r1.name.is_equal (name)

end

user_name_is_unique (a_user: CHAT_USER): BOOLEAN is
-- username of ’a_user’ is unique

require
a_user_non_void: a_user /= Void

do
Result := not location_model.there_exists (agent same_name (?, a_user))

end

same_name (user1: CHAT_USER; user2: CHAT_USER): BOOLEAN is
-- true if user1 /= user2 but user1.user_name.is_equal (user2.user_name)
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do
Result := user1 /= user2 and user1.user_name.is_equal (user2.user_name)

end

room_name_is_unique (a_room: CHAT_ROOM): BOOLEAN is
-- room name of ’a_room’ is unique

require
a_room_non_void: a_room /= Void

local
loc: INTEGER

do
from
loc := rooms.index

Result := true
rooms.start

until
rooms.after or not Result

loop
if rooms.item /= a_room and rooms.item.name.is_equal (a_room.name) then

Result := false
end
rooms.forth

end
rooms.go_i_th (loc)

end

comment(s:STRING):BOOLEAN do Result := true end
imp_comment(s:STRING) do end

feature -- models

location_model: ML_MAP [CHAT_USER, CHAT_ROOM] is
-- model for the chat server

local
loc:INTEGER

do
from

create Result.make
if users /= void then
-- store cursor’s location

loc := users.index

users.start
end

until
users = void or else users.after

loop
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Result := Result.extended_by (users.item, users.item.room)

users.forth

end
if users /= Void then -- set the cursor to its original position

users.go_i_th (loc)

end
end

ownership_model: ML_MAP [CHAT_ROOM, CHAT_USER] is
-- maps the rooms to the owners

local
loc: INTEGER

do
from

create Result.make
if rooms /= void then
loc := rooms.index

rooms.start
end

until
rooms = void or else rooms.after

loop
Result := Result.extended_by (rooms.item, rooms.item.owner)

rooms.forth

end

if rooms /= Void then -- set the cursor to its original position

rooms.go_i_th (loc)

end
end

occupants (r: CHAT_ROOM): ML_SET[CHAT_USER] is
-- returns a model of ’r’s occupants

local
loc: INTEGER

do
from

create Result.make
loc := r.occupants.index

r.occupants.start
until
r.occupants.after

loop
Result := Result.extended_by (r.occupants.item)

r.occupants.forth

end
r.occupants.go_i_th (loc)
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end

feature {CHAT_USER, UNIT_TEST, ES_FIXTURE_UNIT} -- Server Actions

connect (a_user: CHAT_USER) is
-- connect ’a_user’ to chat server if user not already connected

require
user_non_void: a_user /= Void and a_user.user_name /= Void
user_not_connected: not a_user.is_connected

user_name_not_in: not location_model.has_key (a_user)

do
users.force (a_user)

a_user.set_server (Current)
lobby.occupants.force (a_user)

a_user.set_room (lobby)

ensure
user_added: location_model |=| (old location_model).extended_by (a_user,

lobby)

ownership_un_changed: ownership_model |=| old ownership_model

user_connected: a_user.server = Current
user_in_lobby: a_user.room = lobby

lobby_has_user: lobby.occupants.has (a_user)

end

add_room (a_room: CHAT_ROOM; a_user: CHAT_USER) is
-- adds the ’a_room’ to the current server

require
a_room_non_void: a_room /= Void and a_room.name /= Void
a_user_non_void: a_user /= Void and a_user.user_name /= Void
requester_is_owner: a_user.is_room_owned (a_room.name)

has_user: location_model.has_key (a_user)

not_already_in: not ownership_model.has_key (a_room)

do
rooms.force (a_room)

a_room.set_server (Current)
ensure
current_server_set: a_room.server = Current
ownership_model_updated: ownership_model |=| (old ownership_model).

extended_by (a_room, a_user)

locations_un_changed: location_model |=| old location_model

end

remove_room (a_user: CHAT_USER; a_room: STRING) is
-- remove a room from the server

require
user_non_void: a_user /= void

258



a_room_non_void: a_room /= void
room_exists: has_room (a_room)

has_user: location_model.has_key (a_user)

user_is_owner: is_allowed (a_user, a_room)

do
help_remove_room (a_user, get_room (a_room))

end

enter_room (a_user: CHAT_USER; a_room: STRING) is
-- ’a_user’ requests to enter into ’a_room’

require
a_user_non_void: a_user /= void
a_room_non_void: a_room /= void and not a_room.is_empty

room_exists: has_room (a_room)

has_user: location_model.has_key (a_user)

not_already_in: not a_user.is_in_room (a_room)

user_allowed: is_allowed (a_user, a_room)

local
the_room: CHAT_ROOM

-- dummy_user: CHAT_USER

do
the_room := get_room (a_room)

a_user.room.remove_user (a_user)

the_room.add_user (a_user)

-- create dummy_user.make ("Dummy")

-- the_room.add_user (dummy_user)

ensure
user_entered: location_model |=| (old location_model).override (a_user,

get_room (a_room))

ownerships_not_changed: ownership_model |=| old ownership_model

end

set_private (a_user: CHAT_USER; a_room: STRING) is
-- ’a_user’ sets ’a_room’ to private, this removes all unauthorized users

require
user_non_void: a_user /= void
a_room_non_void: a_room /= void and not a_room.is_empty

room_exists: has_room (a_room)

has_user: location_model.has_key (a_user)

user_is_owner: a_user.is_room_owned (a_room)

room_public: not is_room_private (a_room)

local
the_room: CHAT_ROOM

temp_user: CHAT_USER

loc: INTEGER

do
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the_room := get_room (a_room)

-- move all un-authorized users to the lobby

from
loc := the_room.occupants.index

the_room.occupants.start
until
the_room.occupants.after

loop
temp_user := the_room.occupants.item

if not the_room.is_in_allowed_list (temp_user) then
the_room.remove_user (temp_user)

lobby.add_user (temp_user)

else
the_room.occupants.forth

end
end
the_room.set_private

the_room.occupants.go_i_th (loc)

ensure
room_set_to_private: get_room (a_room).is_private

all_unauthorized_move_to_lobby: (old location_model).comp (agent
in_room_not_allowed (?, ?, a_room)).for_all (agent user_room_is_lobby

(?, ?))

authorized_in_room: (old location_model).comp (agent in_room_allowed (?, ?,

a_room)) |=| (location_model).comp (agent in_room_allowed (?, ?,

a_room))

others_unchanged: (old location_model).comp (agent not_in_room (?, ?,

a_room)) |=| (location_model.comp (agent not_in_room (?, ?, a_room))).

difference ((old location_model).comp (agent in_room_not_allowed (?, ?,

a_room) ) )

owner_model_unchanged: ownership_model |=| old ownership_model

end

set_public (a_user: CHAT_USER; a_room: STRING) is
-- sets the room to public

require
user_non_void: a_user /= void
a_room_non_void: a_room /= void and not a_room.is_empty

room_exists: has_room (a_room)

has_user: location_model.has_key (a_user)

user_is_owner: a_user.is_room_owned (a_room)

room_private: is_room_private (a_room)

local
the_room: CHAT_ROOM

do
the_room := get_room (a_room)

the_room.set_public
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ensure
room_set_to_public: not get_room (a_room).is_private

end

allow_user (a_user: STRING; a_room: STRING; requester: CHAT_USER) is
-- a ’requester’ requests the server to allow ’a_user’ to access ’a_room’

require
a_user_non_void: a_user /= void
a_room_non_void: a_room /= void and not a_room.is_empty

room_exists: has_room (a_room)

has_user: has_user (a_user)

user_is_owner: requester.is_room_owned (a_room)

local
the_room: CHAT_ROOM

temp_user: CHAT_USER

do
the_room := get_room (a_room)

temp_user:= get_user (a_user)

the_room.allow_user (temp_user)

ensure
user_allowed: is_allowed (get_user(a_user), a_room)

end

disconnect (a_user: CHAT_USER) is
-- disconnects the user to chat server

-- (a) it should remove all rooms belonging to this user

-- (b) move all users from such rooms to lobby

require
user_non_void: a_user /= void
user_in: location_model.has_key (a_user)

user_connected: a_user.is_connected

do
-- close all rooms whose owner is ’a_user’

remove_all_rooms_of (a_user) -- close all rooms with owner ’a_user’

a_user.room.remove_user (a_user)-- remove the user from its current room

users.start -- remove the user from the server user’s list

users.search (a_user)

users.remove

users.start
ensure
user_disconnected: not a_user.is_connected

no_room_is_owned_by_this_user: not ownership_model.domain.there_exists (

agent room_owned_by (?, a_user))

all_users_in_owned_rooms_moved_to_lobby: true
end

remove_all_rooms_of (a_user: CHAT_USER) is
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-- closes all rooms whose owner is ’a_user’

require
a_user_non_void: a_user /= Void
has_user: location_model.has_key (a_user)

do
from
rooms.start

until
rooms.after

loop
if rooms.item.owner = a_user then
help_remove_room (a_user, rooms.item)

else
rooms.forth

end
end

ensure
rooms_removed: not ownership_model.domain.there_exists (agent room_owned_by

(?, a_user))

all_rooms_removed: ownership_model.union (old ownership_model.comp (agent
pairs_affected (?, ?, a_user))) |=| old ownership_model

end

list_room_names (a_user: CHAT_USER): LINKED_LIST[STRING] is
-- a user may list room names of a chat server (lists only show public

rooms)

-- private rooms are shown to allowed list

require
a_user_non_void: a_user /= void
has_user: location_model.has_key (a_user)

local
loc: INTEGER

do
from
loc := rooms.index

rooms.start
create Result.make

until
rooms.after

loop
if (not rooms.item.is_private) or (rooms.item.is_private and rooms.item.

is_allowed (a_user)) then
Result.force (rooms.item.name)

end
rooms.forth

end
rooms.go_i_th (loc)
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end

feature {NONE} -- agents

in_room_not_allowed (a_user: CHAT_USER; a_room: CHAT_ROOM; name: STRING):

BOOLEAN is
do

Result := a_room.name.is_equal (name) and not a_room.is_allowed (a_user)

end

user_room_is_lobby (a_user: CHAT_USER; a_room: CHAT_ROOM): BOOLEAN is
do

Result := a_user.room = lobby

end

not_in_room (a_user: CHAT_USER; a_room: CHAT_ROOM; name: STRING): BOOLEAN is
do

Result := not (a_room.name.is_equal (name))

end

in_room_allowed (a_user: CHAT_USER; a_room: CHAT_ROOM; name: STRING): BOOLEAN

is
do

Result := a_room.name.is_equal (name) and a_room.is_allowed (a_user)

end

room_owned_by (a_room: CHAT_ROOM; a_user: CHAT_USER): BOOLEAN is
-- returns true if room is owned by user

do
Result := a_room.owner = a_user

end

collect_people_in_room (a_user: CHAT_USER; a_room: CHAT_ROOM; other_room:

CHAT_ROOM): BOOLEAN is
-- returns true if ’a_room’ = ’other_room’

require
a_user_non_void: a_user /= void
a_room_non_void: a_room /= void
other_room_non_void: other_room /= void

do
Result := (a_room = other_room)

ensure
Result = (a_room = other_room)

end

room_associated_user_is_lobby (a_user: CHAT_USER): BOOLEAN is
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-- returns true if ’a_user’s current room is lobby

require
a_user_non_void: a_user /= void

do
Result := a_user.room = lobby

ensure
Result = (a_user.room = lobby)

end

mapping_changed_or_maintained (user: CHAT_USER; room: CHAT_ROOM; a_room:

CHAT_ROOM;): BOOLEAN is
-- returns true if desired room’s location in lobby

do
if room = a_room then

Result := (location_model[user] = lobby)

else
Result := (location_model[user] = room)

end
end

pairs_affected (a_room: CHAT_ROOM; a_user: CHAT_USER; owner: CHAT_USER):

BOOLEAN is
-- if a_user = owner

do
Result := a_user = owner

end

feature {NONE} -- agents for the loop

sublist_of_rooms (upto: INTEGER): LINKED_LIST[CHAT_ROOM] is
--

local
i: INTEGER

pos: INTEGER

do
from
i := 1

pos := rooms.index

create Result.make
rooms.start

until
i = upto

loop
Result.extend (rooms.item)

rooms.forth

i := i + 1
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end

rooms.go_i_th (pos)

end

sublist_of_users (upto: INTEGER): LINKED_LIST[CHAT_USER] is
--

local
i: INTEGER

pos: INTEGER

do
from
i := 1

pos := users.index

create Result.make
users.start

until
i = upto

loop
Result.extend (users.item)

users.forth

i := i + 1

end

users.go_i_th (pos)

end

room_with_name_exists (a_room: CHAT_ROOM; a_user: CHAT_USER; room_name: STRING

): BOOLEAN is
--

do
Result := a_room.name.is_equal (room_name)

end

forall_rooms (r1: CHAT_ROOM): BOOLEAN is
do

Result := ownership_model.domain.for_all (agent empty_intersection (r1

, ?))

end

empty_intersection (r1, r2: CHAT_ROOM): BOOLEAN is
do

if r1 /= r2 then
Result := (r1.occupant_model * r2.occupant_model) |=| create {

ML_SET[CHAT_USER]}.make

else
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Result := true
end

end

multi_union (s: ML_SET[CHAT_ROOM]): ML_SET[CHAT_USER] is
local
seq: ML_SEQ[CHAT_ROOM]

do
seq := s.to_seq

if seq.count = 1 then
Result := seq.head.occupant_model.to_set

else
Result := (multi_union (seq.tail.to_set) |++ (seq.head.occupant_model))

.to_set

end
end

feature {NONE} -- helpers

help_remove_room (a_user: CHAT_USER; a_room: CHAT_ROOM) is
-- removes ’a_room’ requested by ’a_user’

do
move_users_from_room_to_lobby (a_room)

rooms.start
rooms.search (a_room)

rooms.remove

ensure
room_removed: ownership_model.extended_by (a_room, a_user) |=| old

ownership_model

-- no_user_owns_the_removed_room: not user_to_room_model.range_bag.has (a_room

)

-- The above contract is violated since when removing a room owner remains

unchanged: comment first line out

-- label: (old user_to_room_model - user_to_room_model).domain |=| old

user_to_room_model.comp (agent collect_people_in_room (?, ?, a_room)).domain

all_moved_to_lobby: (old location_model.comp (agent collect_people_in_room

(?, ?, a_room)).domain).for_all (agent room_associated_user_is_lobby

(?))

other_remained_the_same: (old location_model).for_all (agent
mapping_changed_or_maintained (?, ?, a_room))

end

move_users_from_room_to_lobby (a_room: CHAT_ROOM) is
-- move all users of the current room to the

-- lobby room

require
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a_room_non_void: a_room /= void
room_exists: ownership_model.has_key (a_room)

local
loc: INTEGER

do
from
loc := users.index

users.start
until
users.after

loop
if users.item.room = a_room then
enter_room (users.item, lobby_name)

end
users.forth

end
users.go_i_th (loc)

ensure
ownership_not_changed: ownership_model |=| old ownership_model

all_moved_to_lobby: (old location_model.comp (agent collect_people_in_room

(?, ?, a_room)).domain).for_all (agent room_associated_user_is_lobby

(?))

end

switch_user_to_lobby (a_user: CHAT_USER) is
-- moves ’a_user’ from its current room to looby

require
a_user_non_void: a_user /= void
user_not_already_in_lobby: not lobby.has_user (a_user)

do
enter_room (a_user, "Lobby")

ensure
user_in_lobby: lobby.has_user (a_user)

end

invariant
pairwise_disjoint: ownership_model.domain.for_all (agent forall_rooms (?))

coverage: multi_union (ownership_model.domain) |=| location_model.domain

user_names_unique: location_model.domain.for_all (agent user_name_is_unique

(?))

room_names_unique: ownership_model.domain.for_all (agent room_name_is_unique

(?))

administrator_non_void: admin /= Void
lobby_non_void: lobby /= Void

end
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C Appendix: ES-Verify

C.1 Introduction

A software product is reliable if it is correct (performs its tasks according to spec-

ification) and robust (reacts appropriately to abnormal conditions). How should

specifications be provided and how do we check that software behaves accord-

ing to its specification? Design by Contract (DbC) is a promising method for an-

swering these questions. A class can be specified via expressive pre-conditions,

post-conditions and class invariants [67].

A variety of object-oriented languages have followed this contracting ap-

proach to software quality such as Eiffel [67], Spec# [8], JML [60] tools like ESC/-

Java2 [28, 21], and UML/OCL [17]. A “lightweight” formal approach to checking

the correctness of code works by runtime assertion checking, i.e. the contracts

are checked as the code is executed and an exception is raised if there is a contract

violation. However, we would also like to reason formally about the correctness

of programs and to mechanize such process. Automated verification of object-

oriented code has been pursued in systems such as Spec# and JML tools like

ESC/Java2.

ESpec (Eiffel Specification) software quality workbench is a unified environ-
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ment allowing software developers to combine Fit tables (ES-Fit for customer re-

quirements and acceptance tests) with contracts and unit testing tools (ES-Test).

This means that a single integrated tool can be used to specify, develop, test, and

verify the requirements and design of a software product. Formal verification

is a substantial addition to the capabilities of the ESpec toolset, allowing for a

combination of lightweight validation and automated deductive verification.

In this chapter we describe the automated model-based verification for a sig-

nificant subset of Eiffel. The following three components, which together we call

the ES-Verify, are under development as part of the ESpec suite:

• An Eiffel Model Library (ML) for specifying the abstract state of a program

without exposing its implementation details. This library is similar to the

model-based specifications as in B [1] and Z [83], except that it is object-

oriented. ML contains classes such as ML SEQ, ML SET, ML BAG, and ML MAP.

These classes are both immutable and executable. They are immutable so

that software properties specified in the pre- and post- conditions as well

as the class invariants can be based on them. They are executable so that

contract violations will be reported (if any). This mathematical library is

thus useful for lightweight verification even in the absence of a theorem

prover.

• An Eiffel base library (ES BASE) of data structures (classes such as ESV ARRAY,

ESV LIST, ESV SET, and ESV TABLE) for the efficient implementation of soft-

ware products. The prefix “ESV” stands for an “ESpec Value” structure,

which is part of the ESpec library (built on top of the Eiffel base library
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via inheritance) for implementing code. These ESV classes apply a value

semantics [30], but for efficiency they are mutable. While class features

are contracted via ML (which are executable but inefficient due to their

mathematical immutability), their bodies are implemented via the ES BASE

classes (which are mutable and hence efficient, but not as suitable for spec-

ifications as ML ones).

• A translator that will convert Eiffel code implemented via ES BASE and

specified via ML into an equivalence written in a specification language

Perfect [35]. The advantage of this translator is that there is, associated with

the Perfect language, a fully-automated reasoning tool - Perfect Developer

(PD) - that fits well for our source Eiffel code. PD supports object-oriented,

model-driven, and DbC software development as well as its verification

[29]. PD converts its specification (written in the Perfect Language) into

complete verification conditions and attempts to automatically discharge

their proofs.

As stated, ES-Verify uses the PD tools (the Perfect language and its associated

theorem prover). Although we are impressed by the expressiveness and power

of the PD tools, we have not used them in the intended fashion. The intended use

of PD tools is that developers write their specifications in the Perfect Language,

which is then used to automatically generate executable code (e.g. Java or C++).

In this respect, Perfect is akin to model-driven development (MDD) methods.

Perfect also has a notion of refinement that can be used to improve the efficiency

of the generated code.
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We have examined the Java code and found that the generated code - much

longer and more complex than the original contract-based specification - is not

intended to be read. The MDD approach is useful if there is never a need to deal

with the generated code. However, Perfect specifications are neither directly ex-

ecutable nor is there a debugger at the model level. As a result, our preference is

to write code in Eiffel. Eiffel has a mature industrial-strength contracting mech-

anism with a full set of tools such as debuggers, profilers, documentation, and

browsing capabilities. The language is admired for its clear syntax and expres-

sive use of a full range of object-oriented constructs such as multiple inheritance.

Our approach is to write the code in Eiffel and thus retaining the simple but

expressive use of its language constructs. The Eiffel code is then translated into

Perfect using (a) the Perfect refinement constructs for Eiffel feature implemen-

tations and (b) the Perfect contracting mechanism for Eiffel contracts. The Eiffel

model library (ML) was designed in order to avoid mismatches between itself

and the Perfect data structures. Theorem proving program involving genericity

and loops (with their invariants) is a non-trivial task, and this work shows that

model libraries (such as ML) must be designed with the target theorem prover

in mind. In the sequel we will use the abbreviation PD for the combination the

Perfect specification language and its associated theorem prover.

C.2 Models via ML

As explained in [83] with reference to Z, formal specifications use mathematical

notation to describe, in a precise way, the properties which a software product
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ML_MODEL[G]*

ML_COLLECTION[G]*

ML_SEQ[G]

ML_SET[G]

ML_MAP[G, H]

ML_HASH_MAP[G, H->HASHABLE]

ES_MATH

count, infix “#”: INTEGER

is_empty: BOOLEAN

infix “|=|”: BOOLEAN -- equality of items determined by `object_comparsion`

hold_count* (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): INTEGER

object_comparison: BOOLEAN 

appended_by, infix “|>”: ML_SEQ[G]

{^ML_COLLECTION.extended_by}

from_hash_table (t: HASH_TABLE[H, G]): like Current

from_array (a: ESV_ARRAY[G]): like Current

to_set: ML_SET[G]

for_all (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): BOOLEAN

there_exists (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): BOOLEAN

compare_objects*, compare_references*

from_list (l: ESV_LIST[G]): like Current

from_set (s: ESV_SET[G]): like Current

to_bag: ML_BAG[G]

from_two_arrays 

(k: ESV_ARRAY[G]; v: ESV_ARRAY[H]): ML_MAP[G, H]

comprehension (c: FUNCTION[ANY, TUPLE[G], BOOLEAN]): like Current

to_set: ML_SET[ML_PAIR[G, H]]

to_seq: ML_SEQ[ML_PAIR[G, H]]

to_bag: ML_BAG[ML_PAIR[G, H]]

extended_by* (x: G): like Current

to_seq: ML_SEQ[G]

domain: ML_SET[INTEGER]

extended_by, infix “^” (x: G): ML_SET[G]

prepended_by, infix “|<”: ML_SEQ[G]

is_value_equal*, infix “|==|”: BOOLEAN -- deep value equality

union, infix “+” (other: ML_SET[G]): ML_SET[G]

intersection, infix “*” (other: ML_SET[G]): ML_SET[G]

difference, infix “-” (other: ML_SET[G]): ML_SET[G]

is_disjoint_from, infix “|##|” (other: ML_SET[G]): BOOLEAN

from_an_item (x: G): ML_SET[G]

override (x, y: G): ML_SET[G]

remove (x: G): ML_SET[G]

is_subset_of, infix “|<<=|” (other: ML_SET[G]): BOOLEAN

from_table (t: ESV_TABLE[G, H]): ML_MAP[G, H]

head, last: G -- head = Current[0], tail = Current[count-1]

front, tail: ML_SEQ[G] -- tail is everything except `head` 

is_subseq_of, infix “|<<=|” (other: ML_SEQ[G]): BOOLEAN

override (i: INTEGER; x: G): ML_SEQ[G]

from_two_lists

(k: ESV_LIST[G]; v: ESV_LIST[H]): ML_MAP[G, H]

domain: ML_SET[G]

range_bag: ML_BAG[H]

item alias "[]"  (k: G): H 

ML_BAG[G]

item alias "[]"  (i: INTEGER): G 

has (x: G): BOOLEAN

has_key (k: G): BOOLEAN

extended_by (k: G; v: H): ML_MAP[G, H]

extended_by_pair, infix “^” (p: ML_PAIR[G,H]): ML_MAP[G, H]

remove (k: G): ML_MAP[G, H]remove  (i: INTEGER): ML_SEQ[G]

union, infix “+” (other: ML_MAP[G, H]): ML_MAP[G, H]

intersection, infix “*” (other: ML_MAP[G, H]): ML_MAP[G, H]

difference, infix “-” (other: ML_MAP[G, H]): ML_MAP[G, H]

is_disjoint_from, infix “|##|” (other: ML_MAP[G, H]): BOOLEAN

override (x: G; y: H): ML_MAP[G, H]

Figure C.1: Classes in the Mathematical Library (ML)
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STACK[G]

count: INTEGER

item: G

require count > 0

ensure   Result = model.last

model: ML_SEQ[G]

ensure   Result i: INTEGER | 0  i  imp.count  imp[i] Ð

put(x: G) 

ensure   model   old model  x

Invariant

NONE

imp: ARRAY[G]

count = #model

0  count imp.count

remove

require count > 0

ensure   old model (model  old item) 

MODEL

class  STACK[G] feature

     put (x: G) is

do

imp.force (x, imp.count)

ensure

model |=| old model |> x

end

…

end

(a) BON Diagram of STACK

(c) Stack LIFO property

(b) put feature of  STACK

class  STACK_PROPERTIES[G] feature

     lifo (s: STACK[G] ; x: G) is

require

     s /= void

do

     s.put (x)

     s.remove

ensure

     s.model |=| old s.model

end

…

end

Figure C.2: STACK[G] modelled by ML SEQ[G]

must have, without unduly constraining the way in which these properties are

achieved. We may call the mathematical description an abstract model of the sys-

tem under development. The model describes what the system must do without

saying how it is to be done. Models allow questions about what the system does

to be answered confidently, without the need to either disentangle the informa-

tion from a mass of detailed program code, or speculate about the meaning of

phrases in an imprecisely-worded prose description.

In Z, the mathematical models are based on predicate logic and the set theory,

and thus obey a rich collection of mathematical laws which makes it possible

to effectively reason about the way a specified system will behave. But these

models are not oriented towards computer representation.

The model library (ML) described in this chapter encodes predicate logic act-

ing on sets, sequences, bags, and maps (as in Z), but the mathematical theories
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are structured as classes (instantiated to immutable objects needed for mathe-

matical specification) whose features (e.g. ∀, ∃, ∈, set comprehension, etc.) are

pure functions executable in the object-oriented style. The Eiffel agent mecha-

nism for iteratively applying a supplied expression to a collection is much used.

The classes of ML are shown in Fig. C.1. Contracts may be specified using ML

and these contracts are executable. When runtime assertion checking is turned

on, contract violations (if any) are signalled via exceptions, thus indicating an

inconsistency between the implementation and its specification. The complete

specification of a system and its implementation can be provided in the same

compilable and executable Eiffel text (e.g. see class STACK[G] in Fig. C.7). The

immutable ML classes will be inefficient (due to its re-construction of a new ML

object every time a feature such as appended by is invoked), by comparison to

the mutable classes in the Eiffel or ES base library (such as ARRAY and LIST). But

this is acceptable as contract checking may be turned off in the final delivered

code which will only use the efficient base library for implementation.

As a simple example, consider the BON [87] contract view of a generic stack

as shown in Fig. C.2a. The model of the stack consists of a ML SEQ[G] (i.e. a se-

quence of items of type G, where G is a generic parameter) and count (the number

of items in the stack). The contracts of all the other features of the stack can be

described in terms of the sequence and count. In the absence of a sequence to

model the stack (i.e. with just the model attribute count), the best post-condition

for the stack push operation put is:

count = old count + 1 and item = x (C.1)
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However, such abstract specification is incomplete. For example, an imple-

mentor can satisfy the above specification yet change old values of the stack that

are not at the top. Therefore, we need a frame condition that says the old part of

the stack remains unchanged. By adding a sequence to the model we can now

express the complete contract as:

model ∼= old model ◮ x (C.2)

where ◮ is the appended by (pure) function of a mathematical sequence that re-

turns a new sequence same as the old one, but with the argument item appended

to the end. Since (C.2) =⇒ (C.1), there is then no need to write (C.1) as it is en-

tailed by the model post-condition. With the full model we can then provide the

complete contracts for the pop operation remove and the query item that returns

the top of the stack. The Eiffel notation follows the BON notation quite closely

as shown in Fig. C.2b. For ◮, we may use either the appended by function or

alternatively the infix operator |> as shown in class ML SEQ in Fig. C.1.

Model classes such as ML SEQ hold items that may be stored either by ref-

erence or by value. Eiffel has the expanded construct for constructing a value

semantics. We thus introduce the notion of model equality (infix operator |=|)

which depends on what type of comparison is requested (see ML MODEL in Fig. C.1).

The default is that two model sequences (say s1 and s2) are compared for their

stored items via reference equality (i.e. s1 |=| s2 iff the two sequences have the

same size and the items stored at each index both refer to the same object). A

specifier may invoke feature compare objects (see ML MODEL), in which case the
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items stored at each index will be compared based on how the inherited feature

is equal (of the actual generic type G) is defined.

With our contracts complete, and even in the absence of implementation de-

tails, we may already begin to validate our specification based only on the model.

For example, the last-in-first-out (LIFO) property of the stack can be specified as

shown in Fig. C.2c. In the absence of implementation, we cannot execute or unit

test the LIFO property. However, with the translator and theorem prover, the

LIFO property will prove with a warning that the body of put and remove must

be refined with an implementation.

We must now refine the specification to an efficient implementation. We

choose mutable structures such as an array or linked list. We may use ARRAY

from the Eiffel base library, or from the ES base library if a value semantics rather

than a reference semantics is desired (i.e. by declaring imp:ESV ARRAY[G]).

Next, we need to define the abstraction relation between the abstract space in

which the abstract program is written (i.e. model) and the space of the concrete

representation (i.e. imp). This can be accomplished by giving an abstraction

function which maps the concrete variables into the abstract objects which they

represent. We may do this as follows. The body of the query model (a ML SEQ[G])

for the stack in Fig. C.2 could be a loop that iterates through the implementation

array and returns an equivalent sequence with the same elements as the array.

That is, we “lift” the mutable array into a mathematical immutable sequence.

The abstraction function [49] is captured by the post-condition of query model as
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follows:

Result = 〈i : INTEGER|0 ≤ i < imp.count.imp[i]〉 (C.3)

where the angle brackets 〈〉 stand for sequence comprehension in the same way

that {} stands for set comprehension. For example, {i : INT|0 ≤ i ≤ 2i +

1} = {1, 2, 3}. Set, bag, sequence or map comprehension presents expressive

notation for abstraction functions and is supported in ML. The Eiffel ML library

uses the agent construct for writing comprehension (see Fig. C.1). However, for

the post-condition of model we may use one of the pre-defined ML functions

from array that “lifts” an efficient mutable array to a mathematical sequence.

Function from array returns a new sequence whose items refer to the same items

as in the array imp between 0 · · · count − 1. So the post-condition (C.3) written in

ML becomes:

Result |=| Result.from array(imp.subarray(0,count-1))

which asserts that the resulting sequence returned by the model is model-equal

to the implementation array treated as a sequence. The contracts of all other

features remain the same as they are all described in terms of model.

C.2.1 The Birthday Book example

The author of [85] reports that a web-enabled database system, consisting of

35,799 lines of Perfect, generated 9810 proof obligations and proved automati-

cally in 4.5 hours (1.6 seconds per proof) on a modest laptop. We believe that the
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BIRTHDAY_BOOK

count: INTEGER

add_birthday (n:NAME; d: DATE)

require  model.has_key(n)

ensure count = old count + 1 and model = (old model) ^ [n, d]

find_birthday (n:NAME): DATE

require model.has_key(n)

ensure Result = model[n] and model = old model

remind (d: DATE): SET[NAME]

   ensure {n: NAME | Result.has(n) n} = {n model.domain | model[n] = d  n}

                 model = old model

model: MAP[NAME, DATE]

ensure Result = [ i: INTEGER | names.lower i names.upper [names[i], dates[i]] ]

names: ARRAY[NAME]

dates:   ARRAY[DATE]

Invariant

count = #model

names.count = dates.count and names.is_unique

NONE

MODEL

(a) BON Diagram of BIRTHDAY_BOOK

(b) remind feature of BIRTHDAY_BOOK

class  BRITHDAY_BOOK feature

remind (n: NAME ; d: DATE): SET[NAME] is

    local

      i : INTEGER 

do

create Result.make  

from 

        i := dates.lower   

invariant  

        pd_modify ("i, Result")

        i >= 0 and then i <= names.count

        i < names.count implies names.valid_index (i) 

        inv: -- see text 

variant 

        dates.count - i

until 

        i = dates.count

loop    

if dates.item (i).is_equal (today) then

          Result.extend (names[i])   

end  

        i := i + 1 

end   

ensure

      model_set.from_set (Result) |=| 

      model.comprehension (agent date_matches (?, ?, d)).domain

end    

     …

end

Figure C.3: Birthday Book

above performance is sustainable for reasonable chunks of code but there is min-

imal refinement and PD does the code generation. However, in our case there is

refinement from high level models to more complex constructs (e.g. loops their

variants and invariants), and thus the demands on PD are much greater. Nev-

ertheless, by means of careful matching between ML and PD data structures as

well as tuning of the translator, we can achieve proofs of the vast majority (if not

all) verification conditions.

The birthday book example [83] nicely illustrates refinement to loops and

more intensive use of ML as shown by the BON diagram in Fig. C.3a.

The model for the birthday book is a combination of the number of name-

and-date pairs stored (i.e. count) and a ML MAP[NAME, DATE] (i.e. a set of name-

and-date pairs). Alternatively, this map is a function whose domain is a set of

names and whose range is a bag of dates. The features of the birthday book
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include the ability to add a new pair (e.g. [Peter, (March 1)]), find a birthday

given a name, and a remind function that for a given date d returns the set of

names whose birthday is on d.

The remind function returns a set of names (SET[NAME]) where SET is an ef-

ficient mutable structure from either the Eiffel or ES base library. The birthday

book is implemented as two arrays: one for names and the other for dates. The

post-condition of the remind query is

{n : NAME|Result.has(n) • n} = {n ∈ model.domain|model[n] = d • n} (C.4)

where the right hand side expression means the set of all names, from the do-

main of the model map, whose birthday is on the provided date d. And this

must be equal to the left hand side expression which represents the set of all

names returned by the remind function. The Eiffel notation for the remind func-

tion is shown in Fig. C.3b. The Eiffel post-condition of the remind query in (C.4)

shown in Fig. C.4:

model_set.from_set(Result) |=| model.comprehension(agent date_matches (?, ?, d)

).domain}

Figure C.4: remind postcondition

The agent function used in the post-condition (and loop invariant) of the remind

query is shown in Fig. C.5:

By defining a slice of the model map, according to the current loop counter i
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date_matches (x: NAME; y, date: DATE): BOOLEAN is
do

if y.is_equal (date) then
Result := true

end
end

Figure C.5: remind query

as well as arrays names and dates, as follows:

mSlice(i, names, dates)
∧
= 〈〈j : INTEGER|0 ≤ j < i • [names[j], dates[j]]〉〉 (C.5)

we can show that the loop invariant for the remind query has been constructed

to approximate and hence similar to its post-condition:

{n|Result.has(n) • n} = {n ∈ mSlice(i, names, dates).domain|model[n] = d • n}

(C.6)

And the equivalent Eiffel loop invariant inv in Fig. C.3b) is shown in Fig. C.6.

model_set.from_set (Result) |=| model.from_two_arrays(names.subarray (0, i-1),

dates.subarray(0, i-1)).comprehension(agent date_matches (?, ?, today)).

domain

Figure C.6: Class invariant
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C.3 The Eiffel to PD Translator

C.3.0.1 Underlying Theorem Prover

Our goal is to automatically verify Eiffel code specified via ML as in the stack and

birthday book examples. The question would be, which theorem prover do we

use? The Perfect Developer (PD) specification language and theorem prover [30]

is a technically mature product that is aligned with the object-orientation and

design by contract paradigms. PD theorem prover has about the same level of

power and automation as Simplify [32] that is used for static verification in Spec#

and ESC/Java2. Simplify handles integers and booleans at the primitive level

while PD has a greater repertoire (e.g. reals, characters, and strings). PD spec-

ification language also has a library of generic sequences, sets, bags, and maps

well-suited to ML [35]. A limitation of PD is that it discourages reference seman-

tics [30]. It is well-known that the presence of multiple references to a common

object causes aliasing and makes sound and complete static verification prob-

lematic. Therefore, PD, unlike say Java and Eiffel, adopts a value semantics by

default and discourages the use of reference semantics 14. Despite these limita-

tions, we have adopted PD for automated deduction in our ES-Verify tool, and

we are in the process of constructing a library of base Eiffel classes with a value

semantics (see Introduction) using the Eiffel expanded construct. As a future

goal we have to expand our tool to handle verification of reference aliasing and

14In PD, if a reference semantics is adopted, then, roughly speaking, a heap declaration, e.g.
heap MyHeap, would be required. Although we have several simple PD examples on basic
aliasing effect, we have not yet experienced much the power of the prover on handling reference
semantics. Escher Technologies Ltd. is in the process of developing a new beta intending to
properly handle the issue.
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inheritance.

The theoretical foundations of PD are Floyd-Hoare logic and Dijkstra’s weak-

est pre-condition calculus and it has the power of first-order predicate calculus,

as well as a few higher-order constructs [29]. The prover generates verification

conditions and aims for verifying the total correctness (termination and refine-

ment satisfying specification) of the input code. It delivers either a proof, upon

success in discharging all verification conditions, or otherwise a list of warnings,

possibly accompanied by useful fix suggestions. Output from the prover can be

in formats such as HTML or Tex. From an academic point of view, there is a lack

of information about the inner workings of the PD theorem prover (as opposed

to an interactive theorem-proving system such as Isabelle [17]). Ideally, the logical

rules used in correctness proofs should be open for inspection so that indepen-

dent trust can be established. However, the PD theorem prover does provide the

complete proof, and thus the product is robust and suitable for engineering use

[36].

Outline of Routine Translation:

As stated, Eiffel commands and queries become PD schemas and functions,

respectively. For an Eiffel command that may modify the current object, frame

constraints are needed. In order to specify frame constraints, PD supports a

change clause15. For translation into PD, we use in Eiffel specification a pd modify16

declaration with its string argument passed as a list of attributes that the PD

15The new ECMA specification for Eiffel has a somewhat equivalent only clause.

16A boolean function that takes as argument a string and always returns true, and thus can al-
ways pass the run-time contract checking. Expression pd modify("*") is an abbreviation mean-
ing all attributes may change.

282



schema may change. For an Eiffel command or query, its require clause (for pre-

condition) and ensure clause (for post-condition) appear as equivalent PD pre

and satisfy clauses, respectively. For Eiffel command, its ensure clause (with its

pd modify declaration) appears as the equivalent PD change and satisfy clauses

under a post declaration. For Eiffel query, it is translated in the same way as it

for a command except there is no pd modify declaration in its post-condition,

and thus there exists no change list and post declaration for its translation in PD.

Moreover, the Eiffel old notation for the value of expressions in a pre-state is

converted into the equivalent PD primed notation. Finally, the body of an Eiffel

command or query appears as an equivalent PD via ... end refinement segment.

C.4 Conclusion

In this chapter, we have introduced a system where we make use of the math-

ematical but executable ML library and the translator to convert clean and ex-

pressive Eiffel code into PD for automated verification. The translation process

transforms each Eiffel construct into an equivalent PD one so that this one-to-

one relation between Eiffel and PD constructs allows us to assign the semantics

of the PD language to that of Eiffel. Of course such semantics depends upon the

soundness of PD.

When the ES-Verify translator is applied to the Eiffel code for the birthday

book example, the PD theorem prover generates 158 verification conditions which

are all automatically discharged. This includes proof of termination via the loop

variant. We used a value semantics class ESV ARRAY for the two implementa-
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class  MY_STACK[G] create 
make

feature {ANY} -- public feature declaration

make is -- constructor

do 
create imp ; count := 0

ensure 

pd_modify ("*")

# model = 0 and  count = 0

end 

count: INTEGER  

item: G is

require count > 0

do 

Result := imp [count - 1]

ensure Result = model.last 

end    

put(x: G) is   

do    

if imp.is_empty then imp.force (x, 0) 

else
if count = imp.count then 

imp.grow (imp.count * 2)

end  

imp.put (x, count)  

end 

count := count + 1 

ensure 

pd_modify ("*")

count = old count + 1 and then  model |=| (old model |> x)

end  

feature {ML_MODEL} -- implementation feature declaration

imp: ESV_ARRAY[G] 

feature {ML_MODEL, ANY} -- model feature declaration

model: ML_SEQ[G] is

do  

create Result.make; Result := Result.from_array(imp.subarray (0, count -1)) 

ensure  

Result |=| Result.from_array (imp.subarray (0, count -1 ))  

end 

invariant     
count >= 0 and then count <= imp.count  and then count <= # model  

end

import 

"ESV_ARRAY.pd",  "ML_COLLECTION.pd";

class MY_STACK of ( G ) ^= 

abstract 

var model:  ML_SEQ of ( G ), 

count: int;

invariant count <= #model;

internal //refinement

var imp: ESV_ARRAY of ( G );

invariant count >= 0 & count <= #imp;

function model

^= (for i :: 0 .. <#imp.slice(0, (count-1)-0+1) yield imp.slice(0, (count-1)-0+1)[i]);

function model_verification: ML_SEQ of ( G ) 

^= (for i :: 0 .. <#imp.slice(0, (count-1)-0+1) yield imp.slice(0, (count-1)-0+1)[i])

via

var Result:  ML_SEQ of ( G ); Result! =  ML_SEQ of ( G ){} ; 

Result! = 

(for i :: 0 .. <#imp.slice(0, (count-1)-0+1) yield imp.slice(0, (count-1)-0+1)[i]);

value Result;

end;

interface //public methods

function count;

build {}  //constructor equivalent to Eiffel `make’

post

change model, count satisfy #model' = 0 & self'.count = 0

via imp! =  ESV_ARRAY of ( G ){} ; count! = 0 end;

schema! put(x : G) 

post

change 

model, count 

satisfy 
self'.count = count + 1, model' = model.append( x )

via

if [imp.empty]: imp! = force @ ESV_ARRAY_HELPER of  G (imp, x, 0) ; 

[]: 

if [count = #imp]: 

imp! = grow @ ESV_ARRAY_HELPER of  G (imp, #imp*2);  

[]: pass 

fi ; imp! = put @ ESV_ARRAY_HELPER of  G (imp, x, count)  

fi ; count! = count + 1

end;

function item: G

pre count > 0 satisfy result = model.last

via var Result:  G ; Result! = imp[count - 1] ; value Result end;

end;
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tion arrays. Preliminary experience with other examples indicates that the vast

majority of verification conditions are quickly and automatically discharged, in-

cluding loop variants and invariants, without any interaction with the user. The

user may add axioms (with the danger of introducing inconsistencies) or asser-

tions to help the theorem prover, but this is mostly unnecessary. Future work

aims to extend the verification to handle the issue of reference aliasing and in-

heritance.
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D Appendix: Screenshots of the ESpec Tool

Keyboard shortcut Action 

Ctrl + O Open File 

Ctrl + S Save File 

Ctrl + P Print

Ctrl + Q Exit

Ctrl + W Close Current Window 

Alt + S Open ES-Test Settings Window

Alt + M Open ES-Fit Settings Window 

Alt + R or F5 Run ES-Test 

Alt + E or F6 Run ES-Fit 

Alt + A ES-Archive 

Alt + C ES-Clean

F7 Freeze

F1 Help

Figure D.1: ESpec shortcuts
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The main display of ESpec: (1) Menu bar (2) Window tabs: mes-
sages generated by ESpec is shown in “Messages” tab and test re-
sults are shown in “Test Results” tab, files are open in separate tabs
for editing (3) Editor window: shows the file contents to the user
and allows the user to edit the contents or select the test results (4)
Command buttons: “Run all Specs” button executes all tests (i.e.,
Unit tests, Fit tests and ES-Verify) at the same time. “ES-Test”, “ES-
Fit” and “ES-Verify” buttons only run ES-Test, ES-Fit and ES-Verify
respectively. “Settings” buttons are used for user settings. “Open
html” opens the HTML document selected by the user (user selects
the file on the Editor window) (5) Tests results summary box: shows
a summary of the test results to the user. Passed is the number of
tests (Unit, Fit) that are passed, Failed is the number of tests that
failed (Unit or Fit or verification modules), Violations is the num-
ber of Contract violations that happen during the test (Unit, Fit),
Total is the total number of test cases executed (6) User buttons:
“Freeze” button is used to re-compile the system when user made
some changes to the test case. “Stop” button kills the running pro-
cesses and stops the testing process (7) Progress bar: shows the sta-
tus of the tool

Figure D.2: ESpec main window

287



ESpec self-test: ESpec provides an option called “Self test” to test
itself. It is recommended that user runs the “Self Test” tool the first
time ESpec is installed. This makes sure that ESpec is installed and
works correctly. To do a self test, select “Self Test” from the “Tools”
menu.

Self Test result: The result of self test will be shown on ESpec’s
main window. A green bar indicates that ESpec is installed cor-
rectly. Please note: during the first execution of ESpec, a firewall
warning may be generated. User must allow ESpec to access local
sockets by pressing “Allow” or “Unblock”.

Figure D.3: Self test option
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Open File: ESpec allows users to open and edit any text file (e.g.,
*.e files). Select the “Open File” from the File menu and choose the
name of the file.

(1) Editor tab: each file will open in a new editor tab (2) User can
directly edit the file.

Figure D.4: Opening a file
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Save File: Users can directly edit their opened files in the Editor
Window. To save the file, select “Save” from the menu items.

Close window: After editing a file, user may close the tab by select-
ing “close current window” from the “Window” menu.

Figure D.5: Editing, Saving and closing a file
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Print File: To print a file to the printer, select the “print” menu item.

Figure D.6: Printing a File
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Setting up the project: Before running the tests, user should setup
the system under test using the settings window. This window can
be opened by choosing the “ES-Test Settings” from the menu items
under “View/Edit” menu bar or alternatively by pressing the “Set-
tings” button under “ES-Test” button.

Setting options: (1) Root directory: browse to the directory of the
system under test. This directory will be used by ES-Clean and ES-
Archive (optional) (2) Choose the workbench executable file gen-
erated by the compiler (located in EIFGEN folder under W code).
This file will be executed every time the tool is invoked. (3) A unit
test file can be preset in here for further editing and re-compiling
(optional) (4) Choose the ECF file for the project. This file will be
used for Freezing the system after each change.

Figure D.7: ESpec settings
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Setting up the project continued: (5) ES-Clean removes the com-
piler generated files (in EIFGEN folder) and it could be invoked by
pressing the “ES-Clean” command button from the GUI. ES-Clean
has different modes: (a) Quiet (does not show the list of files that
has been deleted), (b) All: removes all automatically generated files
such as Document and Diagram. (c) DeleteDoc: removes the Doc-
ument folder. (d) List only: shows the user the list of files to be
deleted without actually deleting them. (6) User mode: user can dis-
able re-confirmations of ESpec by selecting “Don’t ask”. (7) Name
of the archive folder can be set here. (8) User can change the size of
the history list. (9) Appearance of the ESpec.

Figure D.8: ESpec settings continued
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Running the unit tests: After setting up the project using “Settings
Windows”, it is time to run the unit test. The unit tests can be ex-
ecuted by pressing the “ES-Test” command button on the GUI or
selecting the “Run ES-Test” from the menu item.

Figure D.9: Run ES-Test
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ES-Test in progress: When the “ES-Test” is invoked and is running,
the ESpec status will be changed to “Please Wait”. User can inter-
rupt execution of the tests by pressing the “Stop” button at any time.

Figure D.10: ES-Test in progress and results
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Error in the test results: Passed test cases are check marked in green
(first column). For convenience the status of each test case (passed
or failed) is reported in the second column. The failed cases (if any)
are marked in red. The type of the contract violation (of any) is
reported in the third column. Forth column shows the duration
of execution of the test case. More information about the viola-
tion is reported to the fifth column; this option is enabled by using
“show errors” command in the code.

Selecting test cases: Test cases can be selected (using the control
key + left key of mouse). To view or edit the selected test case, press
the “show selected test cases” button.

Figure D.11: Failed cases and selecting test cases
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Editing the test case: When a test case is selected for editing, ESpec
will open it in a new tab and allows the user to edit and save the
test case directly from ESpec (saving is done as before).

Freezing the system: When there is a change in the system under
test, it must be re-compiled. This can be done from ESpec GUI by
pressing the “Freeze” button (Freeze assumes that the ECF configu-
ration file is already set from the “Settings” Window).

Figure D.12: Editing test cases directly from ESpec and freezing the system
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ES-Archive for backing up the project: User can archive the cur-
rent project at any time by selecting the “ES-Archive” item from
the “Tools” menu. ES-Archive tool will generate a backup folder
in the current directory which is tagged with the time and date of
this archive. EIFGENs and automatically generated (e.g., Document
and Diagram) directories will not be archived.

ES-Archive results: ES-Archive shows the list of files which were
archived at the end of the process.

Figure D.13: ES-Archive tool
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ES-Clean for cleaning auto-generated files: User can remove Eif-
fel’s automatically generated files such as files Diagrams, Documen-
tation and EIFGENs (compiler generated files). It is recommended
that users ES-Clean their projects after number of compilations. ES-
Clean tool can be invoked by selecting “ES-Clean” item from the
“Tools” menu.

ES-Clean window: (1) User can select which project will be ES-
Cleaned: by default the current project is selected, however ES-
pec allows the user to choose another project. (2) User can se-
lect ES-Clean mode (Quiet: no reports will be generated but files
will be removed, All: EIFGENs, Documents and Diagram files will
be deleted. DeleteDoc: remove the generated documentation files
(files in Document folder), List only: only shows the list of files to-
be-deleted (no files are actually removed). (3) type of files to be
ignored by ES-Clean.

Figure D.14: ES-Clean tool
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ES-Fit settings: In order to execute the ES-Fit tool, user needs to first
initialize the ES-Fit settings. User can open the settings window by
selecting “ES-Fit Settings” item from the “Tools” menu.

Setting ES-Fit inputs: (1) Executable ES-Fit file to run: this box is
the project executable file (default is the current executable) (2) In-
put path: is the path of the input HTML requirement document.
User can either select a single HTML or HTM document or a di-
rectory containing many HTML files. (3) Output path: is the path
where output files are generated. By default it is going to be the
same path as the input files.

Figure D.15: ES-Fit settings
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ES-Fit execution: After setting up the initial settings, user can exe-
cute the Fit tables (specified in the input path) by pressing the “Run”
button in the “ES-Fit settings” window or simply by pressing “ES-
Fit” command button. Similar to ES-Test the ES-Fit results are dis-
played in the main ESpec window. Each table in the HTML input
document is treated as a single case. A table that does not have any
failure (all rows are passed) will be shown as a passed table (with
green checkmark in the first column). A failed table is a table that
has at least one failed row which is marked as red. Tables can be
ignored (in case of a reference table or tables with heading contain-
ing the word “Ignore”) which will be shown in yellow. A detailed
report for each table is generated in the fifth column of the display
in the form of [ p Wrong, q Correct, r Ignored, s Violations ]. where
p, q, r, and s are the number of cells in the table which are failed,
passed, ignored or generated violations respectively.

Figure D.16: ES-Fit execution
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Opening HTML documents: To see the generated HTML (the ES-
Fit result) or the input HTML document, user can select the entry
in the ESpec display corresponding to a Fit table, and press “Open
html” command button.

Viewing the HTML documents: After pressing the “Open html”
button, the selected Fit document will open in the browser (or ES-
pec’s internal HTML editor—shown in the sequel).

Figure D.17: Opening HTML in ES-Fit
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Editing HTML documents: User can also directly edit the input
HTML document from the ESpec tool by selecting the Fit table entry
and pressing the “Edit html” button.

Editing in FrontPage: After pressing the “Edit html” button, the se-
lected Fit document will open in the FrontPage (or ESpec’s internal
HTML editor—shown in the sequel).

Figure D.18: Editing HTML in ES-Fit
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ES-Fit advanced settings: Depending on the user preference, any
HTML editor tool can be used for opening/viewing HTML docu-
ments. ESpec’s internal table editor can also be used if desired. In
order to changed these settings, press the “Advanced” button in the
“ES-Fit settings” window.

Internal vs. External HTML editor: (1) Windows HTML viewer:
this is the user specified external HTML viewing tool for windows
(Explorer by default) to be used by ESpec (2) Unix HTML viewer:
HTML viewer for Linux users (3) Windows HTML Editor: The
HTML editor tool for Windows (4) Linux HTML Editor: The HTML
editor tool for Linux (5) If selected, the internal ESpec HTML edi-
tor will be used (6) Default output extension: this is the string that
will be concatenated to the name of the generated output HTML
documents (“ out” by default).

Figure D.19: ES-Fit Advanced options
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ES-Fit internal HTML table editor: ESpec’s internal HTML editor
allows users to easily view or edit HTML Fit tables. This editor
will automatically open when the user has chosen it from the ES-
Fit advanced setting window. (1) New Table: creates a new table in
the input HTML file, Open: opens an HTML input file containing
multiple tables, Save: saves the current HTML document. Save as:
allows to save another copy of the file with different name. Exit:
exits the editor tool. (2) This text area is used to add comments in
front of each table. (3) Number of rows/columns of a selected ta-
ble can be modified here (width of each row/column can also be
modified). (4) All tables in the opened HTML document are listed
here. To edit a table, select the title from the list and the table ap-
pears in the display area. Any changes to the table have to be saved
using the “Modify” button. To add a new table press “Add” and to
remove a table select the title from the list and press “Delete”. (5)
Main display area to edit the tables.

Figure D.20: ESpec internal HTML editor
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ES-Verify settings: ES-Verify component of ESpec, translates the
input Eiffel files (which are specified in the test suite) to the Per-
fect Developer language and then runs the Perfect Developer theo-
rem prover on the translated files. For settings, press the “Settings”
button under “ES-Verify” button in the main window. This opens
the “ES-Verify settings” window. User must select the project exe-
cutable located in EIFGENs folder.

Running ES-Verify tool To run ES-Verify, select “Run ES-Verify”
from the “Tools” menu.

Figure D.21: ES-Verify settings
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ES-Verify in progress: ES-Verify tool runs as a separate thread in-
side ESpec tool. This process is CPU intensive and usually takes a
long time. User should wait for the process to finish. A syntax er-
ror in the input Eiffel file or a translation error will stop the process
automatically and the failure will be reported to the GUI. ES-Verify
can also be stopped manually at any time by the user if the “Stop”
button is pressed.

ES-Verify results: The result of running the theorem prover will be
displayed inside ESpec main window. If all proof obligations are
discharged successfully, the green bar will be shown. User can see
the generated HTML proof file by double clicking on it (“output
proof html path”).

Figure D.22: ES-Verify results (passed)
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HTML proof file: When user chooses to see the generated HTML
proof file, ESpec opens the generated file in the HTML viewer.

ES-Verify failures: The failures (if any) are reported to the ESpec
GUI. These errors can lead the developer to the location of the prob-
lem in the original Eiffel file.

Figure D.23: ES-Verify failures
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Opening the unproven HTML: User can request to see the un-
proven rules by double clicking on the “Output un-proven html
path”.

Unproven HTML: The un-proven HTML will be opened in a new
window. This output will help the expert developer (with PD
knowledge) to fix the code.

Figure D.24: ES-Verify failures cont.
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Running all ESpec tools at the same time: For regression testing,
user is encouraged to run all the tests (i.e., ES-Test, ES-Fit and ES-
Verify components) after each modification. Of course the system
has to be freezed every time there is a change in the system under
test. In order to run all the tests, press “Run all specs” on the ESpec
GUI. This option invokes ES-Test, ES-Fit and ES-verify and collects
their results under a single green/red bar.

Figure D.25: Running all the tests
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E Appendix: Misc

E.1 CREDIT FIXTURE

class CREDIT_FIXTURE inherit
ES_COLUMN_FIXTURE

create
make

feature {NONE}

make

do
bind ("Should be given credit?", agent allow_credit)

bind ("Maximum credit allowed", agent credit_limit)

end

allow_credit (m: INTEGER; b: REAL): BOOLEAN

-- m, b are ’months’ and ’balance’ inputs

do
if (m >= 12 and m < 24) and b < 60000.00 then

Result := true
elseif (m >= 24) then

Result := true
end

end

credit_limit (m: INTEGER; b: REAL): REAL

do
if (m >= 12 and m < 24) and b < 60000.00 then

Result := 100000.00

elseif m > 24 then
Result := 200000.00

else
Result := 0.00

end
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end

end -- class CREDIT_FIXTURE

E.2 NEW CREDIT FIXTURE

1 class NEW_CREDIT_FIXTURE inherit
2 ES_COLUMN_FIXTURE

3 redefine
4 process row,

5 post process table
6 end
7
8 create
9 make

10
11 feature {NONE}

12 make

13 do
14 bind ("Should be given credit?", agent allow_credit)

15 bind ("Maximum credit allowed", agent credit_limit)

16 bind ("Total Credit", agent credit_sum)

17 end
18
19 allow_credit (m: INTEGER; b: REAL): BOOLEAN

20 -- m, b are ’months’ and ’balance’ inputs

21 do
22 if (m >= 12 and m < 24) and b < 60000.00 then
23 Result := true
24 elseif (m >= 24) then
25 Result := true
26 end
27 end
28
29 credit_limit (m: INTEGER; b: REAL): REAL

30 do
31 if (m >= 12 and m < 24) and b < 60000.00 then
32 Result := 100000.00

33 elseif m > 24 then
34 Result := 200000.00

35 else
36 Result := 0.00

37 end
38
39 credit_sum := credit_sum + b -- new code for collecting the credit

40 end
41
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42 process row is
43 -- redefined: ignores the last row

44 do
45 if not (content_under_heading ("Should be given credit?").is_equal

46 ("Total Credit")) then
47 Precursor -- if it is not the last row, process as a row fixture

48 end -- if it is the last row, ignore it

49 end
50
51 post process table is
52 do
53 connect to target ("Total Credit", "Maximum credit allowed")

54 execute cell ("Total Credit")

55 end
56
57 credit_sum: REAL -- collects the credit

58
59 end -- class NEW_CREDIT_FIXTURE

Color mapping chart for black 

and white copies

Yellow

Green

Red

Gray

Table E.1: Color mapping for understanding the black and white copies of this
thesis
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tin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas
Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool. Software and
Systems Modeling, 4(1):32–54, February 2005.

[3] Scott Ambler. Agile Model Driven Development is Good Enough. IEEE
Software, 20(5):71–73, 2003. Agile Model Driven Development is Good
Enough.

[4] Tatiana Andronache. The english language as an effective IT tool. Comput-
erworld, page 18, Feb. 2007.

[5] Ralph Johan Back and Joakim von Wright. Refinement Calculus. Springer-
Verlag, New York, 1998. Refinement Calculus.

[6] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A Modular Reusable Verifier for Object-Oriented
Programs. In Proceedings of FMCO, 2005.

[7] Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Rustan M. Leino, and
Wolfram Schulte. Verification of object-oriented programs with invariants.
Journal of Object Technology, 3(6):27–56, 2004.

[8] Mike Barnett, Robert DeLine, Bart Jacobs, Manuel Fhndrich, K. Rustan M.
Leino, Wolfram Schulte, and Herman Venter. The Spec# Programming Sys-
tem: Challenges and Directions. Position paper at VSTTE, 2005.

[9] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# pro-
gramming system: An overview. In CASSIS 2004. Springer Verlag, LNCS
3362, 2004.

314



[10] Kent Beck. Test-driven development: by example. Addison-Wesley, Boston,
2003.

[11] Kent Beck, Alistair Cockburn, R Ron Jeffries, and J. Highsmith. Agile Man-
ifesto www.agilemanifesto.org/history.html. Technical report, 2001.

[12] Bernhard Beckert and Vladimir Klebanov. A dynamic logic for deductive
verification of concurrent programs. In Mike Hinchey and Tiziana Mar-
garia, editors, Proceedings, 5th IEEE International Conference on Software Engi-
neering and Formal Methods (SEFM), London, UK. IEEE Press, 2007. To appear.

[13] Daniel M. Berry. Formal methods: the very idea — Some thoughts about
why they work when they work. Science of Computer Programming, 42(1):11–
27, 2002. citeseer.nj.nec.com/berry99formal.html.

[14] M. Berry, K. Daudjee, J. Dong, I. Fainchtein, A. Nelson, T. Nelson, and L. Ou.
User’s manual as a requirements specification: case studies. Requir. Eng.,
9(1):67–82, 2004.

[15] D. Bjorner and L. Druffel. Position statement: ICSE-12 workshop on indus-
trial experience using formal methods. In ICSE ’90: Proceedings of the 12th
international conference on Software engineering, pages 264–266, Los Alamitos,
CA, USA, 1990. IEEE Computer Society Press.

[16] G. Brat and W. Visser. Combining static analysis and model checking for
software analysis. IEEE, 2001. Combining static analysis and model check-
ing for software analysis.

[17] Achim D. Brucker and Burkhart Wolff. A Proposal for a Formal OCL Se-
mantics in Isabelle/Hol. In Theorem Proving in Higher Order Logics, volume
LNCS 2410. Springer-Verlag, 2002.

[18] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and
applications. In Eighth International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 03), 2003.

[19] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R.
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of
JML tools and applications. Int. J. Softw. Tools Technol. Transf., 7(3):212–232,
2005.

315



[20] Gareth Carter, Rosemary Monahan, and Joseph M. Morris. Software refine-
ment with perfect developer. In SEFM ’05: Proceedings of the Third IEEE
International Conference on Software Engineering and Formal Methods, pages
363–373, Washington, DC, USA, 2005. IEEE Computer Society.

[21] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond
Assertions: Advanced Specification and Verification with JML and ESC/-
Java2. In Springer-Verlag, editor, Formal Methods for Components and Objects
(FMCO’2005), LNCS, 2006.

[22] Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and Pro-
grammer’s Guide. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

[23] Yoonsik Cheon, Leavens, and Gary T. A Simple and Practical Approach to
Unit Testing: The JML and JUnit Way. (01–12), 2001.

[24] Yoonsik Cheon, Gary Leavens, Murali Sitaraman, and Stephen Edwards.
Model variables: cleanly supporting abstraction in design by contract.
Softw. Pract. Exper., 35(6):583–599, 2005.

[25] Leitner A. Ciupa, I. Automatic testing based on design by contract. In Pro-
ceedings of Net.ObjectDays 2005 (6th Annual International Conference on Object-
Oriented and Internet-based Technologies, Concepts, and Applications for a Net-
worked World), pages 545–557, September 19-22 2005.

[26] Tony Clark, Jos B. Warmer, and Lecture Notes in computer science
York University. Object modeling with the OCL : the rationale behind the Ob-
ject Constraint Language. Springer-Verlag Berlin Heidelberg, Berlin ; New
York, 2002.

[27] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the
art and future directions. ACM Comput. Surv., 28(4):626–643, 1996.

[28] David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and
JML: Progress and issues in building and using ESC/Java2. Technical Re-
port NIII-R0413, Nijmegen Institute for Computing and Information Sci-
ence, May 2004.

[29] David Crocker. Perfect Developer: A tool for Object-Oriented Formal Spec-
ification and Refinement. In Tools Exhibition Notes at Formal Methods Europe,
2003.

316



[30] David Crocker. Safe Object-Oriented Software: The Verified Desing-By-
Contract Paradigm. In F.Redmill & T.Anderson, editor, Twelfth Safety-
Critical Systems Symposium, pages 19–41. Springer-Verlag, London, 2004.

[31] Ward Cunningham. Framework for Integrated Test, Java Platform,
http://fit.c2.com/wiki.cgi?JavaPlatform, 2005.

[32] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem
Prover for Program Checking. Journal of the ACM (JACM), 52(3):365–473,
2005.

[33] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-computer
interaction. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[34] ECMA. Eiffel: Analysis, design and programming language. Standard
ECMA-367 (2nd edition), June 2006.

[35] Escher Technologies. Perfect Developer Language Reference Manual, 3.0 edi-
tion, December 2004. Available from www.eschertech.com.

[36] Ingo Feinerer. Formal Program Verification: a Comparison of Selected Tools
and Their Theoretical Foundations. Master’s thesis, Vienna University of
Technology, January 2005.

[37] Ingo Feinerer and Gernot Salzer. Automated tools for teaching formal soft-
ware verification. In P. Boca, J.P. Bowen, and D.A. Duce, editors, Proceedings
of Teaching Formal Methods: Practice and Experience, Electronic Workshops
in Computing (eWiC), pages 15–19, BCS London Office, UK, 15 December
2006. British Computing Society, BCS.

[38] Martin Fowler and Kendall Scott. UML distilled : applying the standard object
modeling language. Addison Wesley Longman, Reading, Mass., 1997.

[39] Jr. Frederick P. Brooks. The Mythical Man-Month: Essays on Softw. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1978.

[40] Jr. Frederick P. Brooks. No silver bullet: essence and accidents of software
engineering. Computer, 20(4):10–19, 1987.

[41] Erich Gamma and K. Kent Beck. JUnit: A cook’s tour, 1999.

317



[42] Marie-Claude Gaudel. Formal specification techniques (extended abstract).
In ICSE ’94: Proceedings of the 16th international conference on Software engi-
neering, pages 223–227, Los Alamitos, CA, USA, 1994. IEEE Computer Soci-
ety Press.

[43] Robert L. Glass. Software Engineering: Facts and Fallacies. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[44] Robert L. Glass. The standish report: does it really describe a software
crisis? Commun. ACM, 49(8):15–16, 2006.

[45] Standish Group. Project management: The criteria for success. Software
Magazine, February 2001.

[46] Sam Guckenheimer and Juan J. Perez. Software Engineering with Microsoft Vi-
sual Studio Team System (Microsoft .NET Development Series). Addison-Wesley
Professional, 2006.

[47] John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal
Specification. Springer-Verlag, 1993. Larch: Languages and Tools for Formal
Specification.

[48] Bill Hetzel. The complete guide to software testing (2nd ed.). QED Information
Sciences, Inc., Wellesley, MA, USA, 1988.

[49] C. A. R. Hoare. Proof of correctness of data representations. Acta Inf., 1:271–
281, 1972.

[50] Engelbert Hubbers. Integrating tools for automatic program verification. In
Ershov Memorial Conference, pages 214–221, 2003.

[51] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements Engineering.
SpringerVerlag, 2005.

[52] Andy Hunt and Dave Thomas. Pragmatic Unit Testing in C# with NUnit. The
Pragmatic Programmers, 2004.

[53] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2006.

[54] Michael Jackson. Software Requirements & Specifications: a lexicon of practice,
principles and prejudices. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 1995.

318



[55] Michael Jackson. Problem frames: analyzing and structuring software develop-
ment problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

[56] Bart Jacobs and Erik Poll. Java program verification at nijmegen: Develop-
ments and perspective. In ISSS, pages 134–153, 2003.

[57] Loryn Jenkins. Eiffel to C++ terminology mapping.

[58] C.B. Jones. Systematic Software Development using VDM. Prentice-Hall, 1986.
Systematic Software Development using VDM.

[59] Greg Nelson K. Rustan M. Leino and James B. Saxe. ESC/Java User’s Manual,
2000. http://research.compaq.com/SRC/esc/papers.htm.

[60] Gary T. Leavens, K. Rustan M. Leino, and Peter Muller. Specification and
verification challenges for sequential object-oriented programs. TR 06-14,
Department of Computer Science, Iowa State University, May 2006.

[61] Andreas Leitner, Patrick Eugster, Manuel Oriol, and Ilinca Ciupa. Reflecting
on an existing programming language. In Proceedings of TOOLS EUROPE
2007 - Objects, Models, Components, Patterns,, July 2007.

[62] R. C. Martin. The Liskov substitution principle. 8(3):14, 16–17, 20–23, March
1996.

[63] Robert C. Martin. UML for Java Programmers. Prentice Hall, 2003. UML for
Java Programmers.

[64] Bertrand Meyer. Design by Contract. Technical Report TR-EI-12/CO, Inter-
active Software Engineering Inc., 1986.

[65] Bertrand Meyer. Applying ”Design by Contract”. Computer (IEEE), 25:40–
51, 1992.

[66] Bertrand Meyer. Eiffel the Language. Prentice Hall, 1992. Eiffel the Language.

[67] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[68] Rick Mugridge and Ward Cunningham. Fit for Developing Software: Frame-
work for Integrated Tests. Prentice-Hall, 2005.

[69] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a
roadmap. pages 35–46, Limerick, Ireland, 2000.

319



[70] OMG. OMG Unified Modeling Language Specification: Version 1.4. Tech-
nical report, 2001. OMG Unified Modeling Language Specification: Version
1.4.

[71] Jonathan Ostroff, Faraz Torshizi, and Hai Feng Huang. Verifying properties
beyond contracts of SCOOP programs. In First International Symposium on
Concurrency, Real-Time and Distribution in Eiffel-like Languages (CORDIE’06),
2006.

[72] Jonathan Ostroff, Chen-Wei Wang, Eric Kerfoot, and Faraz Ahmadi Tor-
shizi. Automated model-based verification of object oriented code. In Ver-
ified Software: Theories, Tools, Experiments (VSTTE Workshop, Floc 2006). Mi-
crosoft Research MSR-TR-2006-117, 2006.

[73] Jonathan S. Ostroff, Richard F. Paige, David Makalsky, and Phillip J. Brooke.
E-tester: a contract-aware and agent-based unit testing framework for eiffel.
Journal of Object Technology, 4(7):97–114, 2005.

[74] Jonathan S. Ostroff and Faraz Ahmadi Torshizi. Testable Requirements
and Specifications. In Bertrand Meyer and Yuri Gurevich, editors, Tests and
Proofs (TAP’07), volume LNCS 4454. Springer Verlag, 2007.

[75] Richard Paige and Jonathan S. Ostroff. From Z to Bon/Eiffel. Hawaii,
1998. IEEE Computer Society. www.cs.yorku.ca/techreports/1998/CS-98-
05.html.

[76] Richard Paige and Jonathan S. Ostroff. The Single Model Principle. Journal
of Object Oriented Technology, 1(5), 2002.

[77] Richard F. Paige and Jonathan S. Ostroff. Developing BON as an Industrial-
Strength Formal Method. volume LNCS 1708. Springer-Verlag, 1999. De-
veloping BON as an Industrial-Strength Formal Method.

[78] D. L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Commun. ACM, 15(12):1053–1058, 1972.

[79] David Lorge Parnas and Paul C. Clements. A Rational Design Process: How
and Why to Fake it. IEEE Trans. on Software Engineering, SE-12(2):251–257,
1986. A Rational Design Process: How and Why to Fake it.

[80] William N. Robinson, Suzanne D. Pawlowski, and Vecheslav Volkov. Re-
quirements interaction management. ACM Comput. Surv., 35(2):132–190,
2003.

320



[81] Robert Seater and Daniel Jackson. Problem frame transformations: deriving
specifications from requirements. In IWAAPF ’06: Proceedings of the 2006
international workshop on Advances and applications of problem frames, pages
71–80, New York, NY, USA, 2006. ACM Press.

[82] Bran Selic. The Pragmatics of Model-Driven Development. IEEE Software,
20(5):19–25, 2003. The Pragmatics of Model-Driven Development.

[83] J.M. Spivey. The Z Notation: A Reference Manual (2nd edition). Prentice-Hall,
Englewood Cliffs, N.J., 1992.

[84] Friedrich Steimann. The paradoxical success of aspect-oriented program-
ming. SIGPLAN Not., 41(10):481–497, 2006.

[85] Brian Stevens. Implementing Object-Z with PerfectDeveloper. Journal of
Object Technology, 6(2):189–202, March-April 2006.

[86] Inc. The Standish Group International. Extreme chaos. Technical report,
2001.

[87] Kim Walden and Jean-Marc Nerson. Seamless Object Oriented Software and
Architecture. Prentice Hall, 1995. Seamless Object Oriented Software and
Architecture.

[88] Jos Warmer and Anneke Kleppe. The Object Constraint Language Second Edi-
tion, Getting Your Models Ready for MDA. Addison-Wesley, Boston, 2003.

[89] Karl Wiegers. Writing Quality Requirements. Softw. Dev., 7(5):44–48, 1999.

[90] Eric S. K. Yu. Models for supporting the redesign of organizational work.
In COCS ’95: Proceedings of conference on Organizational computing systems,
pages 226–236, New York, NY, USA, 1995. ACM Press.

321


	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Motivation
	Requirements vs. Specifications
	The Machine Domain and the Problem Domain
	Requirements
	Specifications
	An Example

	Rational Development Process
	Testability and Tool Support for Testability
	The ESpec Tool for Testability

	Organization of this thesis
	Research contributions
	Fit framework for Eiffel
	Extensions to the Fit framework
	Integrating ML-Contracts into Fit tables
	ES-Test improvements
	ESpec tool: software quality workbench
	Detection of specification and code errors
	ESpec maintenance and support


	Testable Specifications
	Why double the work?
	Contracts as Specifications
	Basic Contracts
	ML-Contracts

	Scenario Tests as Specifications
	Synergy between ML-Contracts and Scenario Tests
	ES-Test for Testable Specifications
	Boolean Test
	Violation Test
	Collections of Test Cases

	Conclusion

	Testable Requirements
	Fit Framework
	ESpec support for Fit
	Column Fixture
	Action Fixture
	Row Fixture

	Errors in Fit Tables
	Password Example
	Error keyword

	Reference Tables
	Summary

	A Case Study
	Overview
	Informal Requirement Document
	A Testable Requirement Document (Fit table)
	The Customer's First Fit Table

	Test Driven Design or Design by Contract?
	Specification Correctness

	Writing Complete ML-Contracts
	The need for Mathematical Models

	Contract violations in Fit tables
	Security issues
	Conclusions

	Design of the ESpec Tool
	ES-Fit Architecture
	HTML parser
	Dealing with the Fixture code
	Flexible Fixture redefinition
	Implementing standard Fixtures
	Implementing new Fixture types
	Execution of Fixtures
	Reflection
	Type Conversion
	Dealing with Contract Violations
	Result comparison
	Reference tables in the HTML input
	Output

	ES-Test Architecture
	Communication with ESpec's GUI

	ES-Verify
	Seamless integration of ES-Fit, ES-Test and ES-Verify
	ESpec GUI
	The Business Logic cluster
	The GUI cluster
	Summary of design patterns used

	Conclusions

	Related Work
	Method and Tool comparison

	Future Work and Conclusions
	Future work
	Conclusions

	Appendix: Introduction to Eiffel
	Eiffel
	Eiffel Terminology
	Eiffel Agents


	Appendix: Chat example source code
	CHAT_SCENARIO_1
	CHAT_SCENARIO_QUERY_1
	CHAT_TEST_1
	CHAT_TEST_2
	CHAT_ROOM
	CHAT_USER
	CHAT_SERVER

	Appendix: ES-Verify
	Introduction
	Models via ML
	The Birthday Book example

	The Eiffel to PD Translator
	Conclusion

	Appendix: Screenshots of the ESpec Tool
	Appendix: Misc
	CREDIT_FIXTURE
	NEW_CREDIT_FIXTURE


