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Abstract

We consider the problem of partitioning n agents in an undi-
rected social network into k almost equal in size (differing by
at most one) groups, where the utility of an agent for a group
is the number of her neighbors in the group. The core and
envy-freeness are two compelling axiomatic fairness guaran-
tees in such settings. The former demands that there be no
coalition of agents such that each agent in the coalition has
more utility for that coalition than for her own group, while
the latter demands that no agent envy another agent for the
group they are in. We provide (often tight) approximations to
both fairness guarantees, and many of our positive results are
obtained via efficient algorithms.

1 Introduction
The computer science department at University X is orga-
nizing a visit day for its newly admitted students. One of the
most anticipated activity is the campus tour, during which
the admitted students get to see the department they might
one day join. Due to COVID-19 related capacity restrictions,
the admitted students are divided into k separate tours. But
more tours means the need for more volunteers. Luckily, n
current graduate students have volunteered to help lead the
tours. We want to partition them almost equally between the
k tours so that all the admitted students have equal opportu-
nity to socialize with the current students. However, the cur-
rent students have developed friendships during their time at
the university. We would like to ensure that each volunteer is
assigned to a tour with as many of their friends as possible,
so they have a good experience and will want to volunteer
again next year.

In this paper, we introduce and study a model that cap-
tures such real-life applications. Specifically, we consider
the problem of partitioning n agents into k almost equal-
sized groups (each with size either bn/kc or dn/ke), when
the agents are connected via an undirected social network
indicating friendships. An agent’s utility for being part of a
group is the number of her friends who are in that group.

Formally, this model sits within the hedonic games for-
malism in cooperative game theory with nontransferable
utilities (Aziz and Savani 2016). Two compelling axiomatic
guarantees that have received significant attention in this
literature are the core (Gillies 1953), which informally re-
quires that there be no deviating coalition of agents such that

each agent in the coalition has strictly more utility for the
coalition than for her group in the given partition, and envy-
freeness (George and Marvin 1958), which informally re-
quires that no agent receive strictly more utility when swap-
ping places with another agent in the given partition. How-
ever, this literature typically does not impose any restric-
tion on the partition (including on the number of groups
it has). This would make our problem trivial because the
grand coalition — a single group containing all agents —
would trivially satisfy both the core and envy-freeness re-
quirements. To study the core and envy-freeness meaning-
fully, this literature allows agents to have negative utility for
other agents. We are interested in the case where the utilities
are non-negative, but we require there to be exactly k groups
and the groups to be of approximately equal sizes.1

This problem can be viewed as a multi-dimensional gen-
eralization of the stable roommates problem (Irving 1985),
in which the goal is to partition 2n agents between n rooms
of capacity 2 each, and agents have preferences over who
they wish to have as a roommate. The core becomes a no-
tion of stability: if a pair of agents prefer each other to their
assigned roommates, they may actually deviate and rent a
room by themselves. But the core has also been studied in
contexts where groups cannot really deviate, such as alloca-
tion of public resources (Aziz et al. 2017; Fain, Munagala,
and Shah 2018; Conitzer et al. 2019) and clustering (Chen
et al. 2019; Micha and Shah 2020). In such cases, it serves
as a notion of group fairness, generalizing proportional-
ity (Steinhaus 1948), because it posits that each set of bn/kc
or dn/ke agents is entitled to be a group on its own and de-
mands that the agents in the set be treated no worse than if
they were their own group. Envy-freeness, on the other hand,
serves as a notion of individual fairness and requires that no
agent envy another agent for the group they belong to.

Our Results

For the core, we study bicriteria approximations of the form
(α, β)-core, where a deviating coalition must improve the
utility of each of its members by more than a multiplicative

1In Section 5, we briefly consider imposing only the former re-
striction, allowing k arbitrarily-sized non-empty groups.



factor of α and an additive factor of β.2
We begin with the most well-studied case of k = 2. We

show that the (2, 0)-core is non-empty, and a 2-partition in
the (3, 0)-core can be found in polynomial time. For larger
k, we note that a k-partition in the (1, k)-core always ex-
ists when n < k2 + k and provide a lower bound prov-
ing that this guarantee is asymptotically the best possible
with respect to an additive approximation. We show that a
finite multiplicative approximation of the core is possible in
general, but when n > k2 + k, a min k-cut (a k-partition
minimizing the so-called “cut size”) is in the (2k − 1, 0)-
core. While finding a min k-cut is known to be NP-hard,
we present a polynomial-time algorithm that finds a (differ-
ent) partition with the same approximation guarantee. We
also show that min k-cuts cannot provide an asymptotically
better approximation guarantee (i.e., our analysis is almost
tight), and conjecture that no algorithm can.

For envy-freeness, we consider a similar additive approx-
imation, EF-r, where an agent’s utility must not increase
by more than r when swapping places with another agent.
We make a connection to discrepancy theory (Chen et al.
2014) to show that a EF-O(

√
n
k · log k) partition always ex-

ists, and it can be computed efficiently. We conjecture that a
EF-2 partition may always exists for any k.

Finally, in Section 5, we consider a classical variation of
our model, where the only requirement is to create k non-
empty groups but the groups can be of arbitrary sizes. We
study both the core and envy-freeness in this case and pro-
vide several tight approximation bounds.

Related Work
Our work can be viewed as a hedonic game with symmet-
ric, binary, and additively separable preferences, and with
the restriction that the partition produced have exactly k
almost equal-sized parts. Hedonic games with restrictions
on the number of groups have been studied before, but un-
der other objectives, such as swap stability (Bilò, Monaco,
and Moscardelli 2022), Pareto optimality (Cseh, Fleiner, and
Harján 2019), and an alternative variant of the core (Sless
et al. 2018). As noted in the introduction, our model is a
generalization of the stable roommates problem of partition-
ing 2n agents into n pairs, where the widely studied notion
of stability coincides with the core. In this problem, with
asymmetric preferences a solution in the core does not al-
ways exist — unlike in the bipartite version, referred to as
the stable marriage problem, in which it is guaranteed to
exist (Gale and Shapley 1962) — but can be found in poly-
nomial time when it does (Irving 1985). When preferences
are symmetric, however, a solution in the core always exists
and can be found efficiently; for instance, one can repeatedly
match and remove a pair of agents with the highest utility.
The three-dimensional version of this problem — partition-
ing 3n agents into groups of size 3 each — has also received
significant attention. In this case, even with symmetric addi-
tive preferences, a solution in the core may not exist (Arkin
et al. 2009), and checking whether it does is NP-hard (Chen

2That is, an agent with utility u must receive utility more than
αu+ β after deviating.

and Roy 2021). However, if we further restrict the prefer-
ences to be binary, then McKay and Manlove (2021) show
that a solution in the core always exists and can be found
efficiently. Our problem can be seen as a multidimensional
generalization of the roommate problem with symmetric bi-
nary additive preferences.

Envy-freeness has been studied recently in the hedonic
games literature (Peters 2016; Barrot and Yokoo 2019),
again with possibly negative utilities. Another concept sim-
ilar to envy-freeness is Nash-stability (Bogomolnaia and
Jackson 2002; Olsen, Bækgaard, and Tambo 2012), which
requires that no agent be happier by joining another part
(rather than by swapping places with an agent in another
part).3 In our graph theoretic framework, this is equivalent
to asking that each node have at least as many neighbors
in its own part as in any other part. This has been studied
extensively in graph theory using terms such as satisfactory
partitions (Bazgan, Tuza, and Vanderpooten 2010), friendly
partitions (Aharoni, Milner, and Prikry 1990), and internal
partitions (Ban and Linial 2016), but under only the restric-
tion that each part is non-empty. This problem is also studied
in the case where the parts are required to be of almost the
same size (Bazgan, Tuza, and Vanderpooten 2010). How-
ever, since such partitions do not always exist, this litera-
ture primarily focuses on the computational complexity of
checking the existence of such partitions and approximating
the most satisfactory partitions.

Instead, our focus is on providing worst-case guarantees
on the necessary violation of envy-freeness, as is commonly
done in the literature on fair resource allocation (Lipton et al.
2004; Caragiannis et al. 2019; Aziz et al. 2019). We make a
connection to discrepancy theory (Chen et al. 2014) to estab-
lish an O(

√
n) bound. In discrepancy theory, the goal is to

distribute each agent’s friends as evenly as possible between
the parts, so that not only does an agent not have many more
friends in another part than her own part, she also does not
have many more friends in her own part than in any other
part. The latter restriction, a flipped version of the satis-
factory partition problem, has also been studied separately
as the co-satisfactory or unfriendly partition problem (Aha-
roni, Milner, and Prikry 1990). Manurangsi and Suksom-
pong (2021) use discrepancy theory in a similar problem
with n agents partitioned into k groups, but with the agents
having utilities over goods being allocated to the groups, not
over the other agents.

2 Preliminaries
For t ∈ N, let [t] = {0, . . . , t−1}. We consider a set V = [n]
of agents who are members of a social network. The net-
work is represented by an undirected graph G(V,E), where
the agents are the nodes and an edge (i, i′) ∈ E indicates
friendship between agents i and i′. This induces the util-
ity function of agent i, denoted ui : V → {0, 1}, where
ui(i

′) = 1 if (i, i′) ∈ E and 0 otherwise. Let NG(i) denote
the set of neighbors of agent i in G, i.e., NG(i) = {i′ ∈ V :

3The two differ only when the other part consists entirely of the
agent’s friends.
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Figure 1: An instance, that consists of Kn/2+2 (blue nodes) and n/2 − 2 isolated agents (white nodes), where core and envy-
freeness are incompatible.

(i, i′) ∈ E}. We refer to dG(i) = |NG(i)| as the degree of
agent i. We omit G when it is clear from the context.

A k-partition of V is given by X = (X0, . . . , Xk−1),
where Xj ∩ Xj′ = ∅ for all distinct j, j′ ∈ [k]; Xj 6= ∅
for all j ∈ [k]; and ∪j∈[k]Xj = V . We may refer to an
individual group Xj as a part. With slight abuse of notation,
we denote byX(i) the partXj to which agent i belongs (i.e.,
i ∈ Xj). We assume that n > k, so a k-partition exists. A
k-partition is called balanced if bn/kc 6 |Xj | 6 dn/ke for
all j ∈ [k], and called imbalanced otherwise. Hereinafter,
whenever we refer to a k-partition, we mean a balanced k-
partition, unless explicitly specified otherwise. The utility
of agent i for S ⊆ V is denoted by, with slight abuse of
notation, ui(S). We assume that utilities are additive, i.e.,
ui(S) =

∑
i′∈S ui(i

′) = |S ∩N(i)|.
In this work, we focus on two fairness criteria. The first

one is the core which, informally, requires that there be no
group of agents (coalition) of size bn/kc 6 |S| 6 dn/ke
such that every agent in the coalition prefers to be in that
coalition than in her own part; such a coalition is called
“blocking”.
Definition 1. Fix α > 1 and β > 0. A coalition S ⊆ V is
called (α, β)-blocking for a k-partition X if

ui(S) > α · ui(X(i)) + β

for every i ∈ S. A k-partition X is said to be in the (α, β)-
core if there is no (α, β)-blocking coalition S with bn/kc 6
|S| 6 dn/ke. When α = 1 and β = 0, we simply use the
terms blocking coalition, and core.

Another fairness criterion we focus on is envy-freeness.
Definition 2. For r > 0, a k-partition X is called envy-free
up to r, denoted EFr or EF-r, if, for every pair of agents
i, i′ ∈ V , ui(X(i)) > ui(X(i′) ∪ {i} \ {i′}) − r. When
r = 0, we simply refer to this as envy-freeness (EF).

For the proof techniques we plan to use, we need the fol-
lowing additional terminology. The cut size of a k-partition
X , denoted cut(X), is the number of edges between its dif-
ferent parts, i.e., cut(X) = |{(i, i′) ∈ E : X(i) 6= X(i′)}|.
A k-partition with the smallest cut size is called a min k-cut.
Note that

cut(X) =
∑
i∈V

(|N(i)|−ui(X(i))) = 2|E|−
∑
i∈V

ui(X(i)).

Hence, min k-cut also maximizes the social welfare among
all k-partitions. Some of our results show that such solutions
also satisfy good approximations of the core. Give disjoint
sets of nodes A and B, E(A,B) denotes the set of edges
with one endpoint in A and the other in B.

Let us also introduce standard graph theory terminology.
We denote byKn,Kn1,n2 andKn1,n2,n3 the complete undi-
rected graph of n vertices; the complete bipartite graph with
n1 and n2 vertices on the two sides; and the complete tri-
partite graph with n1, n2, and n3 vertices on the three sides,
respectively.

Core vs. Envy-freeness
While both core and envy-freeness are notions of fairness,
they are quite different desiderata and incompatible with
each other in general. In fact, in our setting, there are in-
stances in which every partition in the core achieves the
worst possible approximation with respect to envy-freeness,
and every envy-free partition achieves the worst possible ap-
proximation with respect to the core.

To see that, consider a graph that consists of the clique
Kn

2 +2 and n
2 − 2 isolated nodes, where n is a multiple of 4

and k = 2. The only 2-partitions in the core are the ones in
which n

2 nodes from the clique form one group, say X0, and
the remaining nodes form the other group, say X1. On the
other hand, the only envy-free 2-partitions are the ones in
which each group contains n

4 + 1 nodes of the clique along
with n

4 − 1 isolated nodes. These two types of partitions are
illustrated in Figure 1.

Intuitively, the two partitions are complete opposites of
each other: the former divides the clique as unequally as
possible between the two groups, while the latter divides the
clique exactly equally. It can be checked that each type of
partition achieves the worst approximation to the other fair-
ness notion among all partitions. The decision of which of
the two notions (and correspondingly, partitions) is more de-
sirable depends on the application at hand. Hence, we study
both these notions separately in this paper.

3 Core
In this section, we study k-partitions in the (approximate)
core. We start from the important case that k = 2, which has
received particular attention in the literature on satisfactory



partitions (Bazgan, Tuza, and Vanderpooten 2010). First, we
point out an interesting open question:
Open Question 1. Does every graph admit a 2-partition in
the core?

While the existence of 2-partitions in the core is unsettled,
we show that the (2, 0)-core is always non-empty, and in
particular, contains every min 2-cut.
Theorem 1. For k = 2, a min 2-cut is in the (2, 0)-core.

Proof. Let X = (X0, X1) be a min 2-cut. Suppose for con-
tradiction that there exists a (2, 0)-blocking coalition S of
size dn/2e or bn/2c. Let X∗0 = X0 ∩ S and X∗1 = X1 ∩ S.

For each agent i ∈ X∗0 , i ∈ S implies ui(S) > 2 ·ui(X0),
which in turn implies |N(i) ∩X∗1 | > 2 · |N(i) ∩X0 \X∗0 |.
Summing over all i ∈ X∗0 , we obtain

E(X∗0 , X
∗
1 ) > 2 · E(X∗0 , X0 \X∗0 ).

Similarly, for each agent i ∈ X∗1 , we have |N(i)∩X∗0 | >
2 · |N(i) ∩X1 \X∗1 |. Summing over all i ∈ X∗1 , we get

E(X∗0 , X
∗
1 ) > 2 · E(X∗1 , X1 \X∗1 ).

Combining the two equations, we have

E(X∗0 , X
∗
1 ) > 2 ·max{E(X∗0 , X0 \X∗0 ),

E(X∗1 , X1 \X∗1 )}
> E(X∗0 , X0 \X∗0 ) + E(X∗1 , X1 \X∗1 ). (1)

Now, consider the 2-partition X ′ = (S, V \ S). We will
show that cut(X) > cut(X ′), which will contradict X be-
ing a min 2-cut. We have

cut(X) = E(X0, X1)

= E(X∗0 , X
∗
1 ) + E(X∗0 , X1 \X∗1 )

+ E(X∗1 , X0 \X∗0 ) + E(X0 \X∗0 , X1 \X∗1 )

> E(X∗0 , X
∗
1 ) + E(X∗0 , X1 \X∗1 )

+ E(X∗1 , X0 \X∗0 )

> E(X∗0 , X0 \X∗0 ) + E(X∗1 , X1 \X∗1 )

+ E(X∗0 , X1 \X∗1 ) + E(X∗1 , X0 \X∗0 )

= cut(X ′),

where the strict inequality uses Equation (1). This is the de-
sired contradiction.

While Theorem 1 is a strong existential result, it does
not come with an efficient algorithm as finding a min 2-
cut (also known as the minimum bisection problem) is NP-
hard (Garey and Johnson 1979). This leads to our next open
problem:
Open Question 2. Can a 2-partition in the (2, 0)-core be
computed in polynomial time?

As a slight remedy, we will later show that at least a 2-
partition in the (3, 0)-core can be computed efficiently.

Next, we focus on k > 3 and show that the core can be
empty in this case.
Theorem 2. When k > 3, there exists an instance in which
no k-partition is in the (α, 0)-core for any α > 1, and also
there exists an instance in which no k-partition is in the
(1, β)-core for β < k/2− 2.

Proof. Fix k > 3. For the first claim, consider a cycle with
n = k + 1 > 4 nodes. Fix an arbitrary k-partition X . Note
that X must consist of one part with two nodes and k − 1
parts with a single node each. Without loss of generality, let
X0 be the part with |X0| = 2. Note that in a cycle of length
at least 4, the size of the smallest maximal matching is at
least 2. Hence, there must exist agents i, i′ /∈ X0 that are
connected by an edge. Since the coalition {i, i′} is allowed
to deviate, they can both go from receiving utility 0 to re-
ceiving utility 1, implying that X is not in the (α, 0)-core
for any α > 0.

For the second claim, consider the graph G formed by
k+1 disjoint cliques of size k−1 each, denotedC0, . . . , Ck.
Hence, n = k2− 1. Let X be any k-partition of G. First, we
claim that there exists `∗ ∈ [k + 1] such that |C`∗ ∩Xj | 6
(k + 1)/2 for all j ∈ [k]. If this is not true, then for every
` ∈ [k + 1], there exists at least one j` ∈ [k] with |C` ∩
Xj` | > (k+1)/2. Note that such j` must be unique. Further,
because |Xj | 6 dn/ke 6 k + 1 for all j ∈ [k], we must
have j` 6= j`′ for distinct `, `′ ∈ [k + 1]. However, this is
not possible as there are k+ 1 cliques but only k parts. Now,
for every agent i ∈ C`∗ , we have ui(X(i)) 6 (k − 1)/2.
On the other hand, C`∗ is a feasible deviating coalition as
|C`∗ | = k− 1 = bn/kc. Further, for every i ∈ C`∗ , we have
ui(C`∗) = k − 2 > ui(X(i)) + (k − 3)/2. Hence, C`∗ is a
(1, k/2− 2)-blocking coalition, as desired.

While above we show that the core can be empty when
k > 3 , these examples are somewhat unsatisfactory as they
crucially rely on n not being divisible by k, which leads to
another interesting open question:

Open Question 3. Does every graph with n nodes admit a
k-partition in the core, if k divides n?

When n < k2 + k, note that any deviating coalition has
size at most dn/ke 6 k + 1, which means that no agent
can improve her utility by an additive factor of more than k
when deviating. Hence, every k-partition is trivially in the
(1, k)-core.

Proposition 1. When n < k2 +k, every k-partition is in the
(1, k)-core.

From Theorem 2, we know that one cannot obtain a purely
multiplicative guarantee of the form (α, 0)-core for any α >
1 and cannot obtain an additive guarantee of the form (1, β)-
core for any β 6 k/2− 2. Thus, we conclude that the guar-
antee in Proposition 1 is asymptotically tight with respect to
these two ways of approximation when n < k2 + k.

Next, we consider the case of n > k2 + k. Interestingly,
while a purely multiplicative approximation of the core can-
not be guaranteed in general, we show that this is possible
when we know n > k2 + k. Specifically, the next result
shows that a k-partition in the (2k − 1, 0)-core always ex-
ists and can be found in polynomial time, if n > k2 + k.
In this case, we in fact show that every min k-cut is in the
(2k − 1, 0)-core, but we can also use a local search pro-
cedure, presented as Algorithm 1, to obtain the same ap-
proximation guarantee efficiently. At a high level, the algo-
rithm works as follows. It starts from an arbitrary k-partition
and draws a directed edge from agent i to agent i′, with



Algorithm 1: Local Min-Cut

1: X ← an arbitrary k-partition
2: while true do
3: Build a directed graph G′ = (V ′, E′) with V ′ = V

and E′ = {(i, i′) : ui(X(i′)) > ui(X(i)) + 1}
4: if there is a cycle (i0, i1, . . . , is−1, i0) in G′ then
5: for ` ∈ [s] do
6: X(i`)← X(i`) \ {i`}
7: X(i{`+1 mod s})← X(i{`+1 mod s}) ∪ {i`}
8: end for
9: else if ∃(i, i′) s.t. ui′(X(i′)) = 0 and ui(X(i′)) >

ui(X(i)) then
10: if (i, i′) /∈ E or ui(X(i′)) > ui(X(i)) + 1 then
11: X(i)← X(i) ∪ {i′} \ {i}
12: X(i′)← X(i′) ∪ {i} \ {i′}
13: end if
14: else
15: break
16: end if
17: end while
18: return X

X(i) 6= X(i′), if i envies i′ by more than one. If there exists
a directed cycle, say (i0, i1, . . . , is−1, i0), it shifts the agents
along the cycle, i.e., i0 is moved to X(i1), i1 is moved to
X(i2) and so on, while is−1 is moved to X(i0). Then, it up-
dates the directed edges and continues eliminating cycles in
this fashion. When there are no cycles left, it searches for
pairs of agents, i and i′, with X(i) 6= X(i′), such that i′ has
zero utility for her group and a positive utility for i’s group,
i envies i′, and the envy is by more than one if i and i′ are
not neighbors. If such a pair exists, it swaps i and i′. Then,
the algorithm updates the directed edges, search for cycles
or such pairs, and eliminates them until until no cycles or
such pairs are left. Throughout the procedure, the cut size
strictly decreases, and we establish that the approximation
guarantee holds at any local minimum.

Theorem 3. When n > k2 + k, every min k-cut is in the
(2k − 1, 0)-core, and Algorithm 1 returns a k-partition in
the (2k − 1, 0)-core in polynomial time.

Proof. First, we show that Algorithm 1 terminates in poly-
nomial time by arguing that cut(X) strictly decreases in ev-
ery iteration of the while loop. If we find a cycle in Line 4,
then during the cyclic shift of nodes along this cycle, each
node gains at least 1 utility. Since the social welfare strictly
increases, cut(X) strictly decreases. Similarly, if we find
two agents i and i′ such that i′ has no neighbors inX(i′) but
i has at least two more neighbors inX(i′) than inX(i), then
swapping i and i′ also strictly decreases the cut size. Fur-
ther, if i′ is not a neighbor of i, then we only need i to have
at least one more neighbor in X(i′) than in X(i). Hence, in
any case, cut(X) strictly reduces in every iteration of the
while loop, resulting in termination in polynomial time.

Let X be either a min k-cut or the output of Algorithm 1.
Suppose for contradiction that there is a (2k−1, 0)-blocking
coalition S of size dn/ke or bn/kc. We first show the follow-

ing lemma.

Lemma 1. For i ∈ S, if ui(S ∩ Xj) 6 ui(X(i)) + 1 for
each j ∈ [k], then ui(X(i)) = 0.

Proof. Suppose there exists i ∈ S with ui(S ∩ Xj) 6
ui(X(i)) + 1 for each j ∈ [k] but ui(X(i)) > 1. Then,

ui(S) =
∑
j∈[k] ui(S ∩Xj)

6 (k − 1)(ui(X(i)) + 1) + ui(X(i))

6 2(k − 1) · ui(X(i)) + ui(X(i))

= (2k − 1) · ui(X(i)),

which contradicts S being a (2k − 1, 0)-blocking coalition.

Suppose that there exists i ∈ S such that ui(S ∩ Xj) >
ui(X(i)) + 1 for some j ∈ [k]. Let G′ be the directed graph
constructed from X according to Line 3 of Algorithm 1.
Then, there must be an edge from i to every node in Xj

in G′, as ui(X(i)) + 1 < ui(S ∩ Xj) 6 ui(Xj). Further,
since ui(S ∩ Xj) > 0, S ∩ Xj 6= ∅. Hence, i has an edge
to some node in S in G′. Note that there can be no cycle in
G′: if X is the output of Algorithm 1, this would contradict
the while loop terminating, and if X is a min k-cut, a cyclic
shift of nodes like in Algorithm 1 would reduce the cut size,
which would be a contradiction. Since there is no cycle in
G′, consider the longest path in G′ starting at i and only
containing nodes in S. Suppose it is (i, i1, . . . , it, i

′). Then,
i′ must satisfy the condition of Lemma 1, otherwise by the
same reasoning as before, there would exist j′ ∈ [k] such
that S ∩Xj′ 6= ∅ and i′ has edges to all nodes in Xj′ in G′.
This would either lead to a cycle or a longer path in G′ start-
ing at i and only containing nodes in S, which is a contra-
diction. Since i′ satisfies the condition of Lemma 1, we have
ui′(X(i′)) = 0. We also have uit(X(i′)) > uit(X(it)) + 1.
If X is returned by Algorithm 1, we get a contradiction be-
cause Algorithm 1 would have continued by swapping it and
i′ in Line 9. If X is a min k-cut, then swapping it and i′
would reduce the cut size, which would also be a contradic-
tion.

We have established that all i ∈ S satisfy the condition
from Lemma 1. Hence, ui(X(i)) = 0 for all i ∈ S. How-
ever, since n > k2+k, we have |S| > bn/kc > k+1, which
implies that there exist i1, i2 ∈ S with X(i1) = X(i2),
which contradicts ui1(X(i1)) = ui2(X(i2)) = 0. Hence,
there is no such (2k − 1, 0)-blocking coalition S.

In the proof of Lemma 1, note that if we assumed the
deviating coalition S to be a (k, k − 1)-blocking coalition,
then we would obtain a contradiction regardless of whether
ui(X(i)) = 0 or ui(X(i)) > 1. Since the next part of the
proof, which establishes that all i ∈ S must satisfy the con-
dition of Lemma 1, does not assume n > k2 + k, we have
that Algorithm 1 always finds a solution in the (k, k − 1)-
core. In particular, for k = 2, we can efficiently guarantee
(3, 1)-core. Recall that Theorem 1 provides a slightly better
guarantee of (2, 0)-core, but not in polynomial time.
Corollary 1. For k = 2, Algorithm 1 returns a 2-partition
in the (3, 1)-core in polynomial time.



While it is an open question whether Algorithm 1 pro-
vides the best possible guarantee, we show, using an intri-
cate instance, that our approximation analysis of min k-cuts
in Theorem 3 is almost tight from a multiplicative point of
view. Missing proofs can be found in the appendix.
Theorem 4. For k > 3, there exists an instance with n >
k2 + k in which some min k-cut is not in the (α, 0)-core for
α < 2k − 2.

4 Envy-Freeness
We now turn our attention to finding k-partitions that are
(approximate) envy-free. We start by showing that EF1 can-
not always be guaranteed.
Theorem 5. Even when k = 2, a 2-partition that is EF1
does not always exist.

Proof. Consider theK3,3,3 graph which consists of three set
of three nodes each, denoted by C1 = {c11, c12, c13}, C2 =
{c21, c22, c23} and C3 = {c31, c32, c33}, respectively, and
every node of each set is adjacent to every node in the other
two sets.

For the sake of contradiction, assume that X = (X0, X1)
is a partition of the graph that is EF1. Since the graph is
6-regular, we can see that |X0| > 4 and |X1| > 4, as if
an agent i is assigned to a part with only at most two of
its neighbours, then the other four of its neighbours are as-
signed to the other part along with an agent i′ which is not
neighbour of i, and then i envies i′ for more than one agent.
Without loss of generality, we assume that |X0| = 4. If X0

contains three nodes of the same set, then we can easily see
that this partition is not EF1, as each of them is assigned
to the same group with at most one of its neighbours. As
there are three sets and X0 contains four agents, we see that
two agents of the same set, say c11 and c12, are assigned to
X0. Then these two agents are in the same part along with
at most two of its neighbours, while all the remaining nodes
are assigned toX1. Then, c11 and c12 envy c13 for more than
one agents, which is a contradiction.

To obtain non-trivial approximations to envy-freeness for
higher values of k, that too via partitions, we turn to the lit-
erature on discrepancy theory. Intuitively, we want to color
the elements of a set using k colors such that each pre-
determined subset has an approximately equal number of
elements of each color. Formally, we are given a universe
Ω = [n] and a set system S = {S0, . . . , Sm−1}, where
Si ⊆ [n] for each i ∈ [m]. The k-color discrepancy of a
coloring χ : Ω→ [k] on the set system S is defined as

disck(S, χ) = max
j∈[k],i∈[m]

∣∣∣∣χ−1(j) ∩ Si
∣∣− |Si|/k∣∣ .

The k-discrepancy of S is then the minimum k-color dis-
crepancy over all χ: disck(S) = minχ:Ω→[k] disck(S, χ).
A celebrated result from this literature is that disck(S) =
O(
√

n
k ln(km/n)) for any set system S and a k-coloring

achieving this bound can be computed in polynomial
time (Chen et al. 2014, Corollary 44).

In our setting, with Ω = V = [n], a k-coloring χ : Ω →
[k] induces a k-partition X given by Xj = χ−1(j) for all

j ∈ [k].4 Further, if we consider the set system S where
Si = NG(i) for each i ∈ [n] (i.e., with m = n), then we
are guaranteed that agent i can have at most 2disck(S, χ)
more neighbors in any other part than in her own part, im-
plying EF-2disck(S, χ). The above discrepancy bound then
immediately yields the existence of a k-partition that is EF-
O(
√

n
k ln k). However, this may not be balanced.

To fix this, we add another set Sn = V to our set sys-
tem; we now have m = n + 1, which does not asymp-
totically change the discrepancy bound. Now, we obtain a
k-partition X that is also approximately balanced: ||Xj | −
|Xj′ || = O(

√
n
k ln k) for all j, j′ ∈ [k]. By arbitrarily mov-

ing O(
√

n
k ln k) agents between parts, we can make it per-

fectly balanced, while only increasing the EF approximation
by O(

√
n
k ln k). Thus, we get the following.

Theorem 6. For any k > 2, a k-partition that is EF-
O(
√

n
k ln k) is guaranteed to exist and can be computed in

polynomial time.

For discrepancy, the aforementioned upper bound is
known to be almost tight: there is a lower bound of
Ω(
√
n/k) (Chen et al. 2014, Theorem 61). However, for

our “one-sided” envy-freeness guarantee, achieving a con-
stant approximation remains an open question.

Open Question 4. Does every graph admit a k-partition
that is EF2, for all k > 2?

5 Beyond Balancedness
An interesting variation of our problem is to drop the re-
quirement of balancedness and simply seek k non-empty
groups, i.e., imbalanced k-partitions. This variation was first
introduced by Gerber and Kobler (2000) and, since then, it
has been given much attention (Bazgan, Tuza, and Vander-
pooten 2010) due to its importance to real-life applications
such as clustering (Flake, Tarjan, and Tsioutsiouliklis 2004;
Shafique 2004).

In this section, we briefly consider this case and study
both the core and envy-freeness for imbalanced k-partitions.
For the core, we provide matching upper and lower bounds.
For envy-freeness, we provide a complete picture for k = 2
by making a connection to the literature on satisfactory par-
titions, and point out interesting open questions for k > 3.

Core
Recall that core requires that there be no group of agents
(coalition) such that every agent in the coalition prefers to
be in that coalition than in her own part. In general, there
is no direct correlation between the size of a coalition and
the ease with which it can be blocking.5 Hence, in the im-
balanced case, we impose the same restriction on the size of
a deviating coalition as we have on the size of a part in an
imbalanced k-partition. Note that all parts in an imbalanced

4Technically, we also need to ensure Xj 6= ∅, but this is guar-
anteed due to the discrepancy bound.

5Smaller coalitions have the advantage of only having to im-
prove the utility of fewer agents, whereas larger coalitions can in-
clude more friends of their members.



k-partition X are required to be non-empty, which implies
1 6 |Xj | 6 n − k + 1 for all j ∈ [k]; hence, we require a
deviating coalition S to also satisfy 1 6 |S| 6 n − k + 1.
This gives rise to the following variant of the core.
Definition 3. Fix α > 1 and β > 0. A coalition S ⊆ V is
called (α, β)-blocking for an imbalanced k-partition X if

ui(S) > α · ui(X(i)) + β

for every i ∈ S. An imbalanced k-partition X is said to be
in the (α, β)-imbalanced core if there is no (α, β)-blocking
coalition S with 1 6 |S| 6 n − k + 1. When α = 1 and
β = 0, we simply use the terms blocking coalition, and im-
balanced core.

Note that the differing size restrictions on the deviating
coalitions technically makes our results for the core under
imbalanced k-partitions incomparable to our results for the
core under balanced k-partitions.

We show that for any k, an imbalanced partition in the
(1, k − 2)-imbalanced core always exists and can be found
in polynomial time.
Theorem 7. When k > 2, we can find an imbalanced k-
partition in the (1, k − 2)-imbalanced core in polynomial
time, and in particular, when k = 2, we can efficiently find
an imbalanced 2-partition in the imbalanced core. More-
over, when k > 3, there exists an instance in which no im-
balanced k-partition is in the (1, β)-imbalanced core for any
β < k − 2.

Recall that in the proof of Theorem 2, we used an exam-
ple with n = k + 1 to establish that there may not exist any
(balanced) k-partitions in the (α, 0)-core for any α > 1 or
(1, β)-core for any β < k/2 − 2. Because all imbalanced
k-partitions are also balanced for n = k+ 1, the imbalanced
core becomes equivalent to the core. Hence, the negative re-
sults of Theorem 2 carry over to the imbalanced case, though
the additive lower bound in Theorem 7 is better.

This shows that the guarantee in Theorem 7 is tight in
two ways: one can hope for neither a purely multiplicative
approximation of the form (α, 0)-imbalanced core for any
α > 1, nor a better additive approximation of the form
(1, β)-imbalanced core for any β < k − 2.

Envy-Freeness
Finally, we turn our attention to envy-freeness. Luckily, the
definition of envy-freeness does not require any modification
to make it meaningful for imbalanced k-partitions.

First, we use the following result from the literature on
satisfactory partitions, restated in our framework, to estab-
lish the existence of an EF-2 imbalanced partition when
k = 2.
Theorem 8 (Stiebitz 1996, Bazgan, Tuza, and Vanderpooten
2007). Given a graph G = (V,E) and functions a, b : V →
N such that d(i) > a(i) + b(i) + 1 for every i ∈ V , there
exists an imbalanced 2-partition X = (X0, X1) of V such
that ui(X0) > a(i) for each i ∈ X0 and ui(X1) > b(i) for
all i ∈ X1, and it can be computed in polynomial time.

In our case, we use functions a(i) = b(i) =
b(d(i)− 1)/2c for all i ∈ V . Note that these satisfy the

condition d(i) > a(i) + b(i) + 1. Hence, the above result
allows us to efficiently compute a 2-partition X satisfying
ui(X(i)) > b(d(i)− 1)/2c for all i ∈ V . Since there are
only two parts, this also implies that for all i, i′ ∈ V ,
ui(X(i′))− ui(X(i)) 6 d(i)− 2 · b(d(i)− 1)/2c

6 d(i)− 2 · (d(i)− 2)/2 = 2,

which implies that X is EF-2.
Corollary 2. An imbalanced 2-partition that is EF-2 always
exists and can be computed in polynomial time.

Theorem 8 admits an extension to k > 2 parts,
but in our case, this only guarantees that ui(X(i)) >
b(d(i)− k + 1)/kc for all i ∈ V (Bazgan, Tuza, and Van-
derpooten 2007). This does not meaningfully limit the num-
ber of neighbors that agent i has in another part and, there-
fore, fails to provide a non-trivial approximation to envy-
freeness. That said, if one is interested in the slightly weaker
guarantee of proportionality (Steinhaus 1948), which, in our
setting, would require ui(X(i)) > d(i)/k, then this would
provide an additive 1-approximation.

For the satisfactory partition problem, where the goal is to
indeed minimize ui(X(i′)) − ui(X(i)), as in the equation
above, it is easy to see that an additive error of 2 is the best
possible. Consider dividing any clique with an odd number
of nodes into two parts. An agent i in the smaller part will
have at least two more neighbors in the larger part than in her
own part. However, this does not hold for envy-freeness: if i
envisions swapping places with an agent i′ from the other
part, then X(i′) ∪ {i} \ {i′} will only contain one more
neighbor of i than X(i) does. Nonetheless, notice that the
example that is used in the proof of Theorem 5 can also be
used to show that EF-1 cannot always be guaranteed even in
the imbalanced case when k = 2.

6 Discussion
In this paper, we considered the problem of partitioning n
agents into k almost equal-sized groups, when the agents
have binary preferences, induced by a social network. We
designed algorithms which approximately satisfy two ax-
iomatic fairness guarantees: the core and envy-freeness. Our
work offers a number of exciting open questions. For ex-
ample, is the core always non-empty when k = 2 or when
k divides n? Does an EF-2 partition always exist? Does an
imbalanced EF-2 partition always exist for any k?

There are two natural ways to extend our model. First,
our agents have symmetric binary preferences, but one can
consider preferences which are asymmetric and/or non-
binary. Second, our agents only have preferences over other
agents; the groups they are assigned to are apriori identi-
cal. A complementary model in the fair division literature
considers assigning resources to groups of agents (Segal-
Halevi and Suksompong 2019; Kyropoulou, Suksompong,
and Voudouris 2020; Manurangsi and Suksompong 2021),
where agents have preferences over the resources, but not
over the other agents in their group. An extension of both
models would require partitioning n agents into k groups
and then allocating resources to these groups, when agents
have preferences over both the resources being allocated and
the other agents in their group.
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Appendix
A Proof of Theorem 4

Proof. Consider a graph G which consists of two disjoint cliques of size 2k − 3 each, denoted by A1 and A2; k − 1 further
disjoint cliques of size 2k − 4 each, denote by B1, . . . , Bk−1; and another disjoint clique of size 2, denoted by C. Note that
n = 2(2k − 3) + (k − 1)(2k − 4) + 2 = 2k2 − 2k > k2 + k for k > 3. We start with the following lemma.

Lemma 2. IfX is a balanced min k-cut ofG such that for some j∗ ∈ [k], there exist V ⊆ Xj∗ and a clique V ′ ⊆ ∪j∈[k]Xj\Xj∗

with E(V ′, Xj \ V ′) = 0 for every j ∈ [k] \ j∗, E(V ′, V ) = 0, E(Xj∗ \ V, V ′) > E(Xj∗ \ V, V ), and |V | = |V ′|, then
swapping the nodes between V and V ′, using an arbitrary bijection, does not increase the cut size.

Proof. Since V ′ is a clique, we easily see that the edges with two endpoints in different parts, except for part Xj∗ are not
increased. On the other hand, as E(V ′, Xj \V ′) = 0 for any j ∈ [k]\ j∗, E(V ′, V ) = 0 and E(Xj∗ \V, V ′) > E(Xj∗ \V, V ),
we see that all the edges with one endpoint to Xj∗ and the other endpoint to another part are not increased. Hence, cut is not
increased.

Let X = (X0, ..., Xk−1) be an arbitrary balanced min k-cut of G. Suppose that the nodes of A1 are spread among different
parts. Then, there exists a part Xj1 that contains at least two nodes of A1, as 2k − 3 > k when k > 3. Let S1 = Xj1 ∩A1 and
V = Xj1 \ (S1 ∪ {i1}) where i1 is an arbitrary node in Xj1 \ S1 (such a node always exists as n/k > |A1| − 1 = 2k − 4).
Notice that S1 = A1 \ S1 is a clique such that E(S1, Xj \ S1) = 0 for any j ∈ [k] \ j1 and E(S1, V ) = 0. Moreover, notice
that |S1| = |V | as |A1| = 2k − 3 and |Xj1 | = 2k − 2. We also see that

E(S1 ∪ {i1}, Xj1 \ (S1 ∪ {i1})) =

E(S1, Xj1 \ (S1 ∪ {i1})) + E(i1, Xj1 \ (S1 ∪ {i1})) 6 0 + |V |

while

E(S1 ∪ {i1}, S1) > 2 · |S1|

as |S1| > 2 and all the agents in S1 are connected with all the agents in S1. From Lemma 2, we get that if we swap the nodes
among V and S1, using an arbitrary mapping, the cut of the partition is not increased. Hence, there exists a balanced min k-cut
in which all the nodes in A1 are assigned to the same part Xj1 . Given this partition, suppose that the nodes of A2 are spread
among different parts. Then, there exists a part Xj2 different than Xj1 that contains at least two nodes of A2, and by a similar
argument as above we conclude in a balanced min k-cut in which all the nodes in A1 are assigned to Xj1 and all the nodes in
A2 are assigned to Xj2 . Now, starting from this partition, suppose that the nodes of B1 are spread among different parts. Then,
as |B1| = 2k − 4, there exists a part Xj′1

different that Xj1 and Xj2 which contains at least two nodes from B1, when k > 2.
Hence, by the same arguments as above we can conclude in a balanced min k-cut, in which all the nodes in A1 are assigned
to Xj1 , all the nodes in A2 are assigned to Xj2 , and all the nodes in B1 are assigned to Xj′1

. By continuing this way and as
|B`| = 2k − 4 for any ` ∈ {1, ..., k − 1}, we conclude that there exists a balanced min k-cut, in which all the nodes in A1 are
assigned to Xj1 , all the nodes in A2 are assigned to Xj2 , and all the nodes in B`, for ` ∈ {1, ..., k − 3}, are assigned to Xj′`

.
Now, the last part different that Xj1 , Xj2 and Xj′`

for ` ∈ {1, ..., k − 3}, denoted by Xj′k−2
, contains at least two nodes from

Bk−2 or Bk−1. Without loss of generality, we assume that |Xj′k−2
∩ Bk−2| > 2. By doing the same arguments as before, we

find a balanced min k-cut partitionX ′ = (X ′0, ..., X
′
k−1) in which all the nodes of each cliqueA1,A2,B1,...,Bk−2 are assigned

to the same group. Let Q = A1 ∪ A2 ∪ B1 ∪ ... ∪ Bk−2. Then notice that for each j ∈ [k], |X ′j ∩ Q| > 2k − 4. Hence, the
nodes of Bk−1 and C are spread across different parts and each part contains at most two nodes of Bk−2.

Now, we can see that if C = {c1, c2} and Bk−1 = {b1, . . . , b2k−4}, then X ′′ given by X ′′0 = A1 ∪ {c1}, X ′′1 = A2 ∪ {c2},
and X ′′j+1 = Bj ∪ {b2j−1, b2j} for j ∈ {1, . . . , k − 2} is a balanced min k-cut. But then, the coalition S = C ∪ Bk−1 is a
(2k − 3, 0)-blocking coalition, as the utility of each agent in C increases by an infinite multiplicative factor when deviating
with S, while that of each agent in Bk−1 increases by a multiplicative factor of 2k − 3 when deviating with S.

B Proof of Theorem 7

Proof. We show Algorithm 2 finds a 2-partition in the imbalanced core in polynomial time, while when k > 2, the same
algorithm finds a partition in the (1, k − 2)-imbalanced core.

For contradiction, assume that there is a blocking coalition S for the k-partition X computed by Algorithm 2 with 1 6 |S| 6
n− k + 1 each of whose agents increased their utility by at least an additive factor of k − 1.

First, we suppose that G is connected. Notice that every connected graph admits a spanning tree, and that the graph stays
connected when deleting a leaf from this tree. Hence, Algorithm 2 is well-defined in this case, and we obtain the guarantee that
Xk−1 is a connected subgraph of G.



Algorithm 2: (Approximate) Imbalanced Core

1: if G is connected then
2: for r = 0, . . . , k − 2 do
3: ir ← a leaf node in a spanning tree of G \ ∪t∈[r]Xt

4: Xr ← {ir}
5: end for
6: else
7: X0 ← any connected component of G
8: for r = 1, . . . , k − 2 do
9: if V \ ∪t∈[r]Xt 6= ∅ then

10: Xr ← {i}, for an arbitrary i ∈ V \ ∪t∈[r]Xt

11: else
12: Xr ← {i}, for an arbitrary i ∈ X0

13: X0 ← X0 \ {i}
14: end if
15: end for
16: end if
17: if V \ ∪t∈[k−1]Xt 6= ∅ then
18: Xk−1 = V \ ∪t∈[k−2]Xt

19: else
20: Xk−1 = {i}, for an arbitrary i ∈ X0

21: X0 ← X0 \ {i}
22: end if
23: return X = (X0, . . . , Xk−1)

We claim that S ∩Xk−1 6= ∅ and Xk−1 \ S 6= ∅. To see the former claim, note that if |S| 6 k − 1, then ui(S) 6 k − 2 6
ui(X(i)) + k− 2 for any i ∈ S, which would be a contradiction. Hence, we must have |S| > k, which implies S ∩Xk−1 6= ∅.
To see the latter claim, note that |S| 6 n − k + 1. Also, |Xk−1| = n − k + 1. Thus, if S ⊇ Xk−1, then we would have
S = Xk−1. This would imply ui(S) = ui(X(i)) for all i ∈ S, which would again be a contradiction. Hence, we must have
Xk−1 \ S 6= ∅.

Fix i∗1 ∈ S ∩Xk−1 and i∗2 ∈ Xk−1 \ S. Because Xk−1 is a connected subgraph of G, there exists a path from i∗1 to i∗2 using
only the nodes in Xk−1. Consider the first edge of this path to travel out of S; say this edge is (i′, i′′) with i′ ∈ S ∩Xk−1 and
i′′ ∈ Xk−1 \ S. When deviating from Xk−1 to S, agent i′ loses at least one neighbor (namely i′′) from Xk−1 and may gain up
to k − 1 neighbors (the nodes in ∪r∈[k−1]Xr). This implies ui′(S) 6 ui′(Xk−1) + k − 2, which is a contradiction.

Next, suppose G is not connected. Since no connected component can contain all nodes of G, the algorithm must have
moved at most k − 2 nodes from X0 to ∪t∈{1,...,k−1}Xt. Hence, none of the agents who are in X0 in the final solution can
join coalition S as their utility cannot improve by more than an additive factor of k − 2 when doing so. Further, if there
exists i ∈ S ∩ Xk−1, then ui(S) 6 ui(Xk−1) +

∑k−2
r=1 ui(Xr) 6 ui(Xk−1) + k − 2 (as we have already established

S ∩X0 = ∅), which is again a contradiction. Hence, we must have S ⊆ ∪r∈{1,...,k−2}Xr, implying that |S| 6 k− 2. But then,
ui(S) 6 k − 3 < ui(X(i)) + k − 2 for all i ∈ S, which is again a contradiction.

For the lower bound, consider the complete graph Kn with n > k · (k−1). Let X be any k-partition of this graph. Due to the
pigeonhole principle, there exists r∗ ∈ [k] such that |Xr∗ | > n/k > k − 1. Hence, the coalition S = ∪r∈[k]\{r∗}Xj is allowed
to deviate as |S| 6 n− k + 1. Since each Xr part of this coalition is non-empty, we have ui(S) > ui(X(i)) + k − 2 for each
i ∈ S, implying that X is not in the (1, β)-core for any β < k − 2.

C Trees
In this section, we consider the special case where the network is a tree. We introduce some more graph theory terminology.
We refer to the complete bipartite graph K1,n−1 as a star and Pn denotes a path graph with n vertices.

Trees in the Balanced Core
Let us begin with 2-partitions in the core. Recall that for general graphs, we left non-emptiness of the core as an open question
and proved that every balanced min 2-cut is in the (2, 0)-core. For trees, we show that every balanced min 2-cut is in the core.
Moreover, the NP-hard problem of finding a balanced min 2-cut in general graphs is known to be polynomial-time solvable for
trees (?).
Theorem 9. When k = 2 and the network is a tree, every balanced min 2-cut is in the core. We can compute a solution in
polynomial time.



Proof. Let X = (X0, X1) be a balanced min 2-cut. For the sake of contradiction, assume that there exists a blocking coalition
S; we do not even need S to be of size dn/2e or bn/2c to derive a contradiction.

Let X∗0 = X0 ∩ S and X∗1 = X1 ∩ S. Notice that for each agent i ∈ X∗0 , we have ui(S) > ui(X0) + 1, which implies that
ui(X

∗
1 ) > ui(X0 \ S) + 1. Summing over all i ∈ X∗0 , we have that |E(X∗0 , X

∗
1 )| > |E(X∗0 , X0 \ S) + |X∗0 |.

Similarly, for each agent i ∈ X∗1 , we have ui(X∗0 ) > ui(X1 \ S) + 1. Summing over all i ∈ X∗1 , we have |E(X∗0 , X
∗
1 )| >

|E(X∗1 , X1 \ S)|+ |X∗1 |.
Adding the two equations together, and noting that |X∗0 |+ |X∗1 | = |S|, we obtain

2 · |E(X∗0 , X
∗
1 )| > E(X∗0 , X0 \ S)

+ E(X∗1 , X1 \ S) + |S|. (2)

Notice that X ′ = (S, V \ S) = (X∗0 ∪X∗1 , (X0 \ S) ∪ (X1 \ S)) is also a balanced 2-partition. Since X = (X0, X1) is a
balanced min 2-cut, we have

0 6 cut(X ′)− cut(X)

= E(X∗0 , X0 \ S) + E(X∗1 , X1 \ S)

− E(X∗0 , X
∗
1 )− E(X0 \ S,X1 \ S)

6 E(X∗0 , X0 \ S) + E(X∗1 , X1 \ S)− E(X∗0 , X
∗
1 )

6 |E(X∗0 , X
∗
1 )| − |S|,

where the final step uses Equation (2).
Hence, we have that |E(X0 ∩ S,X1 ∩ S)| > |S|. Since S is a forest, it can have at most |S| − 1 edges, which is the desired

contradiction.

For k > 4, we show that the core can be empty. In fact, we cannot hope for a multiplicative approximation guarantee of an
(α, 0)-core for any α > 1. On the other hand, if we turn to additive approximations, we show that any balanced k-partition of a
tree is naturally in the (1, 1)-core, which is the best we can hope for. We leave the case of k = 3 as an open question.

Theorem 10. Every balanced k-partition of a tree is in the (1, 1)-core. For k > 4, there exists a tree for which no balanced
k-partition is in the (α, 0)-core for any α > 1.

Proof. Let X be any k-partition of a tree. Suppose for contradiction that there exists a (1, 1)-blocking coalition S. Note that
S is a subgraph of a tree, so it must be a forest. Hence, there exists a leaf i ∈ S with ui(S) 6 1, which contradicts S being a
(1, 1)-blocking coalition.

Now, consider G = (V,E) with V = {r, a1, a2, b1, b2, . . . , bk−2} and E = {(r, a1), (r, a2), (a1, b1),∪`∈{2,...,k−2}(a2, b`)}
as shown in Figure 2 for the lower bound. Note that n = k+1. Let X be any k-partition. Note that it must consist of k−1 parts
with a single node each and one part with two nodes. Without loss of generality, assume that |X0| = 2. Like in the proof of
Theorem 2, we notice that the smallest maximal matching in this graph has two edges. Hence, there must exist agents i, i′ /∈ X0

that are connected by an edge. Since the coalition {i, i′} is allowed to deviate, agents i and i′ can go from receiving utility 0 to
utility 1, implying that the partition cannot be in (α, β)-core for any α > 1 and β < 1.

Trees in the Imbalanced Case
We show we can approximate the imbalanced core much better than we could in the general graph. In particular, now a k-
partition in the imbalanced core exists for k ∈ {2, 3} (as opposed to just for k = 2 in the general case), and for k > 3, the best
possible guarantee is the (1, 1)-imbalanced core (as opposed to the (1, k − 2)-imbalanced core in the general case).

r

a1 a2

b1 b2 . . . bk−2

Figure 2: A tree in which no k-partition is in the (α, 0)-imbalanced core for any α > 1 and k > 4.

Our techniques extend to the case of forests; we consider trees for ease of exposition.

Theorem 11. When k 6 3 and the network is a tree, a k-partition in the imbalanced core always exists and can be found in
polynomial time.



Proof. For k = 2, this follows from Theorem 7.
Let k = 3 and (i0, i1) be a pair of nodes that are the farthest apart; note that both i0 and i1 must be leaves. Let p0 and p1

be the unique neighbors of i0 and i1, respectively. Let X0 = {i0}, X1 = {i1}, and X2 = V \ {i0, i1}. Clearly, this can be
computed in polynomial time. Suppose for contradiction that this is not in the imbalanced core and S is a blocking coalition.
Note that if i ∈ S \ {i0, i1}, then i ∈ {p0, p1}, otherwise ui(X(i)) = |N(i)|, preventing i from gaining by deviating with S.

Let L be the path between i0 and i1, and |L| denote the number of edges in this path. Note that n > 3 implies |L| > 2. If
|L| = 2, then the graph is a star. It is easy to check that the center of the star (equal to both p0 and p1) cannot gain from joining
any coalition S of size at most n− 2, so there is no blocking coalition.

Next, suppose |L| > 3, so p0 and p1 are distinct. In particular, note that for each t ∈ {0, 1}, we have upt(X2) = |N(pt)|−1,
so for pt to deviate with S, we need N(pt) ⊆ S.

When |L| > 4, each pt has an adjacent node on L other than it and p1−t. Since this node is adjacent to neither i0 nor i1, it is
not in S. Hence, p0, p1 /∈ S, which implies i0, i1 /∈ S, which is a contradiction.

When |L| = 3, we have L = (i0, p0, p1, i1). If p0 and p1 have no neighbors other than each other, i0, or i1, then the tree
consists of only these four nodes; in this case, it is easy to see that the claimed partition is in the imbalanced core. Otherwise,
without loss of generality, assume that p0 has a neighbour j /∈ {i0, p1}. From the previous argument, since j is not adjacent to
i0 or i1, j /∈ S. Since upt(X2) = |N(pt)| − 1 for each t ∈ {0, 1}, this implies that p0 would not join S, which in turn implies
that p1 would not join S. Then, i0, i1 /∈ S as well, which is a contradiction. Hence, the partition is in the imbalanced core.

Finally, for k > 4, we show that the best approximation we can guarantee is the (1, 1)-imbalanced core.

Theorem 12. Every k-partition of a tree is in the (1, 1)-imbalanced core. When k > 4, there exists a tree in which no k-partition
is in the (α, β)-imbalanced core with any α > 1 and β < 1.

Proof. The proof for the positive result follows the same reasoning that we used in the proof of Theorem 10 to argue that every
balanced k-partition of a tree is in the (1, 1)-core. Since any deviating coalition S is a subgraph of the tree, there must be i ∈ S
with ui(S) 6 1. Hence S cannot be a (1, 1)-blocking coalition.

Let us turn to the negative result for k > 4. Recall that in the proof of Theorem 10, we provided an example tree in which
any balanced k-partition admits a deviating coalition of size 2 whose members go from receiving utility 0 to utility 1. Since this
example used n = k + 1, a deviating coalition of size 2 is also allowed under the imbalanced core. Hence, this example shows
the impossibility of achieving (α, 0)-imbalanced core for any α > 1.

Trees and Envy Freeness
While we proved that EF-1 cannot be achieved for general graphs (Theorem 5), every tree has a balanced EF-1 partition.

Algorithm 3: EF1 Trees

1: ∀j ∈ [k], Xj ← ∅;
Phase 1:

2: for i ∈ N do
3: Xi mod k = Xi mod k ∪ i
4: end for

Phase 2:
5: for ` = 2 to d do
6: for i ∈ N with level(i) = ` that is envious for more than one agents do
7: i′ ← an arbitrary child of i such that X(i′) = X(p(i))
8: X(i′) = X(i′) ∪ {i} \ {i′}
9: X(i) = X(i) ∪ {i′} \ {i}

10: end for
11: end for
12: return X = (X0, ..., Xk−1)

Theorem 13. For any k > 2, we can find a balanced EF-1 k-partition for every tree, in polynomial time.

Proof. We show that Algorithm 3 returns a balanced EF-1 k-partition for every tree, in polynomial time. The algorithm works
as follows. Let d denote the depth of the tree. Without loss of generality, suppose the tree is labelled as following. Agent 0 is at
level 1, agent 1 is the left most node of level 2, agent 2 is the second leftmost node of level 1, and so on, while agent n − 1 is
the rightmost node of level d. Algorithm 3 first colors the nodes of the tree in a simple round-robin fashion to obtain EF-2 (in
fact, it achieves a discrepancy bound of 2, whereby there are at most 2 more nodes of any color than of any other color), and
then makes small edits to improve its guarantee to EF-1.
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Figure 3: Instance that Algorithm 3 fails to provide weak Pareto Optimality, when k=2. Numbers illustrate the partition of
Algorithm 3 and colors illustrate an EF-1 2-partition under which all agents improve their utility.

Suppose that at Line 6 of the algorithm, when ` = level(i), i is not envious for more than one agents. Then, when ` =
level(i) + 1, a child of i may be moved to the same part with i, but no child of i that is assigned to the same part with i is
removed from it, while afterwards no neighbour of i is never moved to a different part. Hence, clearly, the partition remains
EF-1 with respect to i.

Now, suppose i is envious for more than one agents. This means that before Line 5, |X(i)∩ c(i)| = b|c(i)|/kc < |c(i, T )|/k,
and for some i′ 6∈ N(i), |X(i′)∩c(i, T )| = d|c(i, T )|/ke andX(i′) = X(p(i)). Then, i and one of her children that is assigned
to X(i′) are swapped. Hence, i is currently assigned to the same group with at least b|c(i, T )|/kc+ 1 of her neighbours while
any other part still contains at most d|c(i, T )|/ke neighbours of i. Thus, at Line 6 of the algorithm, when ` = level(i) + 1, i is
not envious for more than one agents, and by the same reasoning as above, we have that partition remains EF-1 with respect to
i until the end of the algorithm.

There are cases that while Algorithm 3 returns an EF-1 balanced k-partition X = (X1, X2), there exists an EF-1 balanced
k-partition X ′ = (X ′1, X

′
2) under which all the agents receive higher utility. In other words, the algorithm fails to provide weak

Pareto Optimality. For k > 3, simply consider the path graph P2k, while for k = 2, consider the instance shown in Figure 3.
The numbers in the nodes illustrate the part that each of them is assigned to according to Algorithm 3, and the red and blue
nodes illustrate a balanced EF1 partition in which all the agents receive higher utility.

While the above algorithm efficiently computes a balanced EF-1 k-partition, this partition is not too desirable because it
unnecessarily divides the friends of each agent between the different parts during the round-robin coloring; note that this
coloring actually achieves a discrepancy bound of 2 . More concretely, in the appendix, we provide an instance in which a
different balanced k-partition can provide strictly more utility to every agent. A more desirable partition with the same EF-1
guarantee is achieved via balanced min k-cut. While this is NP-hard to compute in general graphs even for k = 2, for trees, it
is efficiently computable when k = 2, but NP-hard when k is part of the input (?). Recall that this partition minimizes the cut
size and, hence, maximizes the social welfare.

Theorem 14. For any k > 2 and when the network is a tree, every balanced min k-cut is EF-1.

Proof. Let X = (X0, ..., Xk−1) be a balanced min-k cut. Suppose for contradiction that there exists an agent i that is envious
for more than one agents. This means that there exists Xj 6= X(i) such that Xj ∩ N(i) > X(i) ∩ N(i) + 1. Let i′ =
arg maxt∈Xj

level(t), i.e. there is no other agent in Xj that is located in a higher level than i′. Hence, there is no child of i′

in Xj . If we swap i and i′, the movement of i′ increases the number of edges that cross different parts by at most one, while
the movement of agent i decreases the number of these edges by at least two. But, then X = (X0, ..., Xk−1) would not be a
balanced min-k cut which is a contradiction.

Finally, we consider the complexity of checking if a balanced EF k-partition exists in a given tree. We show that this is
NP-hard when k is part of the input6. This is true even if the graph is a tree.

Theorem 15. Checking if a given tree admits a balanced EF k-partition is NP-complete when k is part of the input.

Proof. We reduce from the 3-Partition problem: Given 3k positive integers a1,...,a3k and A such that A/4 < ai < A/2 for
each i ∈ [3k] and

∑
i∈[3k] ai = k · A, 3-Partition instance admits a solution if the numbers can be partitioned into triples such

that each triple adds up to A. Notice that as all the integers are positive, A > 3.
Given an instance I of 3-Partition problem, we construct a tree GI = (VI , EI) as follows. For each ai, we construct a star

with root ri and 2ai − 1 leaves. Notice, that as ai-s are positive integers 2ai − 1 > 1, and thus each ri has at least one leaf
adjacent to it. Moreover, we add a star with root r∗ and 2A−1 leaves, and each ri is connected with r∗. Thus, |Vi| = 2(k+1)A.
Figure 4 shows GI given an instance I of 3-Partition problem.

6When k is a constant, the problem can be solved efficiently via dynamic programming.
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Figure 4: An example of GI given an instance I of 3-Partition problem

We show that GI admits an EF k + 1-partition if and only if I admits a solution. We denote with c(v,GI) all the children
of a node v in GI . If I admits a solution, then each ri along all of its children are assigned to the same part with some ri′ , if
ai and ai′ are assigned to the same triple under the solution of I , and X0 = {{r∗} ∪ (c(r∗, GI) \∪i∈[3k] {ri})}. Each Xj for
j ∈ {1, ..., 3k − 1} contains exactly three ri-s. We claim that X = (X0, ...Xk−1) is an EF k-partition. Indeed, each node that
has as parent some rj or r∗ is assigned to the same group with its unique neighbour, each rj is assigned to the same group with
all of its children, and as each of them has at least one child, they cannot envy any node that is assigned to the same group with
r∗, and since A > 3, r∗ does not envy any node that is assigned to the same group with three rj-s.

Now, assume that X = (X0, ..., Xk−1) is an EF k-partition. We see that there exists j ∈ [k] such that Xj = {{r∗} ∪
(c(r∗, T ) \∪i∈[3k] {ri})}, as otherwise some node in c(r∗, GI) \∪i∈[3k] ri is not assigned to the same group with r∗, and then
the only way for the partition to be EF is if no other agent is assigned to the same part with r∗, which is not possible. Similarly,
each rj should be assigned to the same group with each of its children. Thus, for each ri and ri′ that are assigned to the same
part if we assign ai and a′i to the same triple, we find a solution for I .


