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Sortition is an ancient age democratic paradigm, which has been revitalized the last decades, and is based

on the idea of choosing randomly selected representatives for decision making. The main properties that

make sortition particularly appealing are fairness — all the citizens can be selected with the same probability—

and proportional representation — a randomly selected panel probably reflects the composition of the whole

population. Taking a closer look to the second property, in high level, it requires that if a group consists 𝑥% of

the population, then 𝑥% of the panel should consist of individuals from this group. We define this intuitive

property formally, when a population lies on a representation metric, by using a notion called core. A panel is

in the core if no group of individuals is underrepresented proportional to its size. We show that uniformly

random selection of a decision panel satisfies almost ex ante core. In practice, however, it is often asked core

to be satisfied with certainty. Can we design a selection algorithm that satisfies fairness and ex post core
simultaneously? We answer this question affirmatively and present an efficient selection algorithm that is

fair and provides asymptotically optimal ex post core. Furthermore, we provide an efficient algorithm for

auditing the core of a panel, i.e. for a given panel it measures how much it violates the core. We complement

our theoretical results by conducting experiments with real data.
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1 INTRODUCTION
In the last centuries, representative democracy has become synonymous with elections. However,

this has not been the case throughout history. Since ancient Athens, the random selection of

representatives from a given population has been proposed as a means of promoting democracy and

equality [Van Reybrouck, 2016]. The core idea of randomly selecting representatives, a paradigm

known as sortition, is that equal individuals have equal chance of participation [Stone, 2011],

something that is often queried under representative democracy.

Sortition has gained significant popularity in recent years, mainly because of its use for forming

citizens assemblies, where a randomly selected panel of individuals deliberate on issues and make

recommendations. Currently, citizens assemblies are being implemented by more than 40 organi-

zations in over 25 countries [Flanigan et al., 2021a]. There are signs that the use of sortition as a

form of democracy even in a national level may be just a matter of time. For example, in Belgium,

permanent sortition bodies have been established within two regional parliaments to give citizens

a steady voice in decision making, and more local authorities in other countries are considering

adopting this practice.
1
It is also notable, the very recent use of sortition in Greece for forming

an audience panel that contributed to the selection of the actor that will represent the county in

the Eurovision Song Contest 2023.
2
This increased usage of sortition indicates that it is becoming

widely accepted and promotes it to a broader audience.

The last years, there has been a growing interest in the selection of representative panels in a

fair and transparent way within the computer scientific research community [Ebadian et al., 2022,

Flanigan et al., 2021a, 2020, 2021b]. However, the ideal method of selecting a representative panel

of size 𝑘 from a given population of size 𝑛 remains the same: select 𝑘 individuals uniformly at

random [Engelstad, 1989]. We call this simple procedure as uniform selection. As stated by Flanigan

et al. [2020], two main reasons that make this method particularly appealing are the following:

(1) Fairness: Each citizen is included in the panel with the same probability, thereby the re-

quirement of equality of participation is satisfied. In particular, each citizen is selected with

probability equal to 𝑘/𝑛.
(2) Proportional Representation: The selected panel is likely to mirror the structure of the popu-

lation in the sense that if 𝑥% of the population has some particular characteristics then in

expectation 𝑥% of the panel will consist of individuals with these characteristics. For example,

if the female share of the population is 48%, then in expectation 48% of the panel will be

females.

At a high level, uniform selection seems to achieve ex ante proportional representation as in

expectation the selected panel reflects the composition of the population. Especially, when the size

of the panel is very large, then the panel that uniform selection outputs can be ex post proportionally
representative with high probability, as a result of the Law of Large Numbers. However, practitioners

are often not satisfied with the possibility of having a panel that does not reflect the demographic

characteristics of the population [Benadè et al., 2019]. As a result, instead of choosing k individuals

uniformly at random, practitioners may sample individuals in a different way to ensure proportional

representation. For example, in the recent application related to the Eurovision Song Contest that we

mentioned above, where the goal was to form a panel of size 70, instead of sampling 70 individuals

uniformly at random, the organizers sampled 25 individuals in the 18-24 age range, 20 individuals

in the 25-34 age range, 15 members in the 35-44 age range and 10 members in the 45+ age range, in
an attempt to reflect the age representativeness of the Eurovision audience in the panel.

3

1
https://www.buergerrat.de/en/news/permanent-climate-assemblies-in-brussels-and-milan/

2
https://eurovoix.com/2022/12/19/greece-public-jury-tdecember-28/

3
https://esctoday.com/188611/greece-ert-kicks-off-the-procedure-for-eurovision-2023/
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Intuitively, proportional representation requires that any demographic group is fairly represented

in the decision panel. Defining proportional representation in a more rigorous way for a population

that is characterized by a single feature, such as age, is relatively straightforward. In contrast, for

the more general case, it presents a greater challenge. For example, consider the case that in a

population that consists of 6 individuals, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , each individual is characterized by three

binary features, 𝐴, 𝐵, 𝐶 , as given in the following table.

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝐴 1 1 0 0 0 0

𝐵 1 0 0 1 0 0

𝐶 1 0 1 0 0 0

If the goal is to select a panel of size 3, a way to enforce proportional representation, could be

to set proportional constraints over each feature. For example, since 2/3 of the population has

𝐴 = 0 and 1/3 of the population has 𝐴 = 1, we could require that the panel contains 2 individuals

with 𝐴 = 0 and 1 individual with 𝐴 = 1. Similarly, we could require that the panel contains 2

individuals with 𝐵 = 0 and 1 individual with 𝐵 = 1, and 2 individuals with 𝐶 = 0 and 1 individual

with 𝐶 = 1. Note that the panel {𝑏, 𝑐, 𝑑}, satisfies all these requirements. However, while 1/3 of the
population has 𝐴 = 𝐵 = 𝐶 = 0, there is no individual in the panel that represents this group. This

example indicates that imposing proportional constraints over individual features may not ensure

proportional representation of every group of individuals.

In this work, we aim to address the following questions:

(1) What is a formal definition of proportional representation of a population?
(2) To what extent does uniform selection satisfy proportional representation?
(3) Is it possible to design selection procedures that enhance representation guarantees while main-

taining fairness?

1.1 Proportional Representation via Core
Going back to the one-feature example, suppose that in a given population 48% are females,

50% are males and 2% self-report as non-binary. Intuitively, a panel is considered proportionally

representative if it consists of 0.48 · 𝑘 females, 0.50 · 𝑘 males and 0.02 · 𝑘 non-binary individuals.

In other words, any group of size 𝑠 deserves 𝑠/𝑛 · 𝑘 representatives in the panel. Motivated by

this example, we borrow a notion of proportional representation by recent works on multiwinner

elections and fair allocation of public goods [Aziz et al., 2017, Cheng et al., 2020, Conitzer et al., 2019,

Fain et al., 2018], called core , which captures exactly this intuition: Every 𝑆 ⊆ [𝑛] is entitled to choose
up to |𝑆 |/𝑛 · 𝑘 representatives. Note that this notion is not defined over predefined groups using

particular features, but it provides fair representation in the panel to any subset of the population.

A panel 𝑃 is called proportionally representative, or is said to be in the core, if there does not

exist a subset of the population that could choose a representative panel among themselves with

size proportional to the size of the group under which all of them feel more represented. In other

words, given a panel 𝑃 , if there is 𝑆 ⊆ [𝑛] that can find a panel 𝑃 ′ ⊆ 𝑆 with |𝑃 ′ | ≤ |𝑆 | · 𝑘/𝑛 such

that every individual in 𝑆 is better represented by 𝑃 than 𝑃 ′, then these individuals would have a

justified complaint against 𝑃 . A panel is in the core if no subset of the population has a justified

complaint against it. However, a conceptual challenge is to qualify how much a panel represents

an individual.
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1.2 Representation Metric
To overcome this challenge, we use the same approach as taken by Ebadian et al. [2022] where

it is assumed that the individuals lie in an underlying representation metric space with distance 𝑑 .

The distance between the individuals 𝑖 and 𝑗 is denoted by 𝑑 (𝑖, 𝑗). We assume that the distances

are symmetric, i.e. 𝑑 (𝑖, 𝑗) = 𝑑 ( 𝑗, 𝑖), and satisfy the triangle inequality, i.e. 𝑑 (𝑖, 𝑗) ≤ 𝑑 (𝑖, ℓ) + 𝑑 (ℓ, 𝑗).
The smaller the distance between two individuals is the better they represent each other. The

representation metric space can be constructed as a function of features that are of particular

interest for an application at hand, such as gender, age, ethnicity and education. Significantly, our

theoretical results depend only on the existence of such a metric space without further assumptions.

It still remains to measure how much an individual is represented by a panel which consists of a

number of representatives. Again, we take the same approach as was taken by Ebadian et al. [2022],

which was also taken by Caragiannis et al. [2022] in a multiwinner elections context. The cost of

an individual 𝑖 for a panel 𝑃 with parameter 𝑞 ∈ [𝑘], denoted by 𝑐𝑞 (𝑖, 𝑃 ;𝑑) and called 𝑞-cost (or

simply cost, when 𝑞 is implied from the context), is equal to the distance of 𝑖 from her 𝑞-th closest

member in the panel. We omit 𝑑 from the notation when it is clear from the context. For 𝑞 = 1, the

cost of an individual is equal to her distance from her closest representative in the panel, while for

𝑞 = 𝑘 , the cost is equal to her distance from her furthest representative in the panel. The smaller

the cost is, the more represented the individual feels from the panel.

1.3 Distributions over Panels
As mentioned above, we are particularly interested in ways of sampling panels that satisfy fairness

and proportional representation concurrently. Therefore, we focus on selection procedures that

return distributions over panels of size 𝑘 , since otherwise fairness, which is the pivotal property of

sortition, cannot be satisfied.

We denote with A𝑘,𝑞 a selection algorithm parameterized by 𝑘 and 𝑞 that takes as input the

metric 𝑑 and outputs a distribution over all panels of size 𝑘 . We say that a panel is in the support

of A𝑘,𝑞 , if it is implemented with positive probability under the distribution that A𝑘,𝑞 outputs.

We pay special attention to the uniform selection algorithm, denoted byU𝑘 , that always outputs a

uniform distribution over all the subsets of the population of size 𝑘 , independently of 𝑞.

Fairness over distributions is definded as following.

Definition 1.1 (Fairness). A selection algorithm satisfies fairness if each individual is included in

the panel with probability exactly equal to 𝑘/𝑛, i.e.

∀𝑖 ∈ [𝑛], Pr[𝑖 ∈ A𝑘,𝑞] = 𝑘/𝑛.

While above we defined core over panels, we should define core over distributions which is the

output of a selection algorithm.

1.4 Distributions in the Core and Approximate Core
Here, we define core over distributions of panels with size 𝑘 . A demanding extension of core over

distributions is to require every panel in the support of a distribution to be in the core. Then, core

is satisfied ex post, something that is often desirable in practice, as we discussed above. However,

Chen et al. [2019] and Micha and Shah [2020] show that even when 𝑞 = 1, a panel in the core is

not guaranteed to exist. Therefore, as they did, we consider a multiplicative approximation of the

core over panels, i.e. with respect to a multiplicative factor of the cost reduce that a subset of the

population can have by choosing a panel among themselves. Then, the ex post core is defined by

requiring each panel in the support of the distribution to be in the approximate multiplicative core.



, , Soroush Ebadian and Evi Micha

Before we formally define this demanding definition of the core over distributions, we introduce

the notion of 𝛼-pairwise score.

Definition 1.2 (𝛼-Pairwise Score). Given two panels 𝑃 and 𝑃 ′ with |𝑃 | ≥ 𝑞 and |𝑃 ′ | ≥ 𝑞, the

𝛼-pairwise score, with 𝛼 ≥ 1, of 𝑃 ′ over 𝑃 , is the number of individuals whose 𝑞-cost under 𝑃 is

larger than 𝛼 times their 𝑞-cost under 𝑃 ′:

𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) = |{𝑖 ∈ [𝑛] : 𝑐𝑞 (𝑖, 𝑃) > 𝛼 · 𝑐𝑞 (𝑖, 𝑃 ′)}|.

The requirement that |𝑃 | and |𝑃 ′ | are at least equal to 𝑞 comes from the fact that when the

cost is parameterized by 𝑞, the cost of an individual for a panel with size less than 𝑞 is not even

well-defined. So form now on, whenever the cost is parameterized by 𝑞, we will refer only to panels

that have a size of at least 𝑞.

Now, we are ready to define ex post 𝛼-core over distributions which requires that any panel in

the support of a distribution is in the 𝛼-core.

Definition 1.3 (Ex post 𝛼-Core). A panel 𝑃 is in the 𝛼-core if for any panel 𝑃 ′ with |𝑃 ′ | ≥ 𝑞

𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) < |𝑃 ′ | ·
𝑛

𝑘
.

A selection algorithmA𝑘,𝑞 is in the ex post 𝛼-core if every 𝑃 in the support ofA𝑘,𝑞 is in the 𝛼-core.

When 𝛼 = 1, we say that the selection algorithm is in the ex post core.

In other words, if for any 𝑃 in the support of the selection algorithm and any other panel 𝑃 ′, the
group of individuals, that reduce their cost by a factor of at least 𝛼 by picking 𝑃 ′, is not sufficiently

large to be eligible to choose 𝑃 ′, then the selection algorithm is in the ex post 𝛼-core. Above, we

mentioned that a subset of individuals may choose a panel among themselves that may represent

them better, and not any arbitrary panel. This restriction comes from the conceptual interpretation

that a panel 𝑃 ′ can be formed if all its representatives agree to be part of it and this happens if each

of them believes that is represented better from 𝑃 ′ than a given panel. However, this restriction

is not reflected in the above definition. Note, that without this requirement it is easier to find a

violation of the ex post 𝛼-core. All our negative results hold with respect to this requirement while

all our positive results hold without it, and therefore this requirement does not play an important

rule. Therefore, we omit it for clarity of the definition.

Given how demanding this definition is, it is no surprising that uniform selection fails to achieve

any bounded approximation of ex post 𝛼-core. In a high level, consider the case that in a population,

the individuals are assigned into two groups 𝐴 and 𝐵, such that any two individuals in the same

group have distance equal to 0, while any two individuals in separate groups have distance equal

to 1. Under uniform selection, while unlikely, it is possible that the selected panel contains only

individuals from group 𝐴. Then, the individuals in group 𝐵 could choose a panel among themselves

and reduce their distance from 1 to 0, meaning that 𝛼 is unbounded.

A different natural extension of core overs distributions is to require the core-like property to be

satisfied with respect to the expected cost that an individual has over a distribution.

Definition 1.4 (𝛼-Core over Expected Cost). A selection algorithm A𝑘,𝑞 is in the 𝛼-core over

expected cost (or in the core over expected cost, for 𝛼 = 1) if there is no 𝑆 ⊆ [𝑛] and a panel 𝑃 ′

with |𝑃 ′ | ≤ |𝑆 |/𝑛 · 𝑘 such that

∀𝑖 ∈ 𝑆, E𝑃∼A𝑘,𝑞
[𝑐𝑞 (𝑖, 𝑃)] > 𝛼 · 𝑐𝑞 (𝑖, 𝑃 ′).

In the appendix, we show that ex post 𝛼-core and 𝛼-core over expected cost are incomparable.

Going back to the previous example, it is not hard to see that uniform selection fails to achieve

any bounded approximation with respect to the 𝛼-core over expected cost, as well. Indeed, the
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expected cost over uniform selection of the individuals that are in group 𝐵 is a positive value, while

they are eligible to choose a panel among themselves under which their cost becomes 0. However,

this negative result still solely depends on the fact that a “bad” panel is returned with a positive

probability. So, the fact that this is an unlike event is not reflected in this definition either.

A relaxation of the demanding ex post core, inspired by Cheng et al. [2020], is to require the

core-like property to be satisfied in expectation with respect to the size of the pairwise score of

panels in the support of a distribution and any other panel.

Definition 1.5 (Ex ante 𝛼-Core). A selection algorithm A𝑘,𝑞 is in the ex ante 𝛼-core (or in the ex

ante core, for 𝛼 = 1) if for all 𝑃 ′ ⊆ [𝑛]:

E𝑃∼A𝑘,𝑞
[𝑉𝑞 (𝑃, 𝑃 ′, 𝛼)] < |𝑃 ′ | ·

𝑛

𝑘
.

The above definition says that for any panel 𝑃 ′, if for any realized panel 𝑃 , we count they number

of individuals that reduce their cost by a multiplicative factor of at least 𝛼 under 𝑃 ′, in expectation

this number is less than |𝑃 ′ | · 𝑛/𝑘 , and so in expectation they are not eligible to choose it.

It is easy to see that ex post 𝛼-core implies ex ante 𝛼-core, since if for each 𝑃 in the sup-

port of a distribution that A𝑘,𝑞 returns and each 𝑃 ′, it holds that 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) < |𝑃 ′ | · 𝑛/𝑘 , then
E𝑃∼D𝑘

[𝑉𝑞 (𝑃, 𝑃 ′, 𝛼)] < |𝑃 ′ | · 𝑛/𝑘 .

1.5 Our Results
In Section 2, we focus on the method of uniform selection. We show that for 𝑞 = 𝑘 , uniform selection

is in the ex post 2-core and 2-core over expected cost, while for any other value of 𝑞, it fails to

provide any reasonable approximation to any of these two definitions. On the positive side, for

𝑞 = 𝑘 , uniform selection is in the ex ante core, and for any other value of 𝑞, it is in the ex ante

4-core. We also show that no fair selection algorithm is in ex ante 𝛼-core, for 𝛼 < 2, which indicates

that uniform selection is asymptotically optimal among all the fair algorithms.

In Section 3, we turn our attention to the question of the existence of a selection algorithm that

is fair and also ensures that any panel that it returns is almost in the core. Since, ex post 𝛼-core

implies ex ante 𝛼-core, from Section 2 we know that no fair selection algorithm is in ex post 𝛼-core,

for 𝛼 < 2. However, we show that there exists an efficient selection algorithm, called Fair Greedy

Capture, that, as its name indicates, is fair and is in the ex post
5+
√
41

2
-core, for any value of 𝑞. For

𝑞 = 1, the guarantee of the algorithm improves to
3+
√
17

2
. In addition, we show that Fair Greedy

Capture is in the 6-core over expected cost.

In Section 4, we show that given a panel 𝑃 , we can check in polynomial time how much it violates

the core, i.e. what is the larger value of 𝛼 for which 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼 − 𝜖) ≥ |𝑃 ′ | · 𝑛/𝑘 for some panel 𝑃 ′

and arbitrary small 𝜖 .

Finally, in Section 5, we empirically evaluate the approximation of uniform selection and Fair

Greedy Capture to the ex post core on constructed metrics derived from two demographic datasets.

We notice that for large values of 𝑞, uniform selection achieves an approximation to the ex post

similar to the one that Fair Greedy Capture achieves. For smaller values of 𝑞, when the individuals

form cohesive parts, uniform selection has unbounded approximation very often. However, when

the individuals are well spread in the space, uniform selection is almost in the ex post core. Thus, the

decision of using uniform selection depends on the value of 𝑞 and the structure of the population.

1.6 Prior Work on Representation of Selection Algorithms
Ebadian et al. [2022] recently considered a very similar question with one that we ask in this work:

How do we measure the representation that a panel or a selection algorithm achieves in a rigorous

way? As we mentioned above, they also assume the existence of a representative metric space
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and use the 𝑞-cost to measure to what degree a panel represents an individual. However, they use

the social cost (sum of 𝑞-costs) to a measure how much a panel represents a given population. In

particular, under their definition, the most representative panel of a population is the one that

minimizes the social cost. In the example below, we show that this measure of representation may

fail to achieve proportional representation, though.

Example 1.6. Let 𝑛 is odd, 𝑘 = 3 and 𝑞 = 1. Assume that there are four group of individuals, 𝐴,

𝐵, 𝐶 and 𝐷 . There are exactly one individual in group 𝐴, and exactly one individual in group 𝐵,

while there are
𝑛−1
2

individuals in group 𝐶 and
𝑛−1
2

individuals in group 𝐷 . The distances between

individuals in different groups is specified in the following table.

𝐴 𝐵 𝐶 D

𝐴 0 ∞ ∞ ∞
𝐵 ∞ 0 ∞ ∞
𝐶 ∞ ∞ 0 10

𝐷 ∞ ∞ 10 0

It is not difficult to see that any panel with minimum social cost contains the single individuals in

groups 𝐴 and 𝐵 and one individual from either group 𝐵 or group 𝐶 , as otherwise the social cost

would be unbounded. This means that while the individuals in group 𝐵 form almost 50% of the

population, and similarly do the individuals in group𝐶 , in any panel with optimal social cost, either

group 𝐵 or 𝐶 is not represented at all. On the other hand, the two eccentric individuals are always

part of the panel.

1.7 Related Work
Our work is most closely related to that of Ebadian et al. [2022]. The main difference is that we

use a different notion of representation over panels or distributions. As we discussed above, their

notion fails to capture the intuition of proportional representation. Moreover, while their notion of

representation is in some cases incompatible with fairness, in this work we show that there are

selection algorithms that achieve good proportional representation and fairness simultaneously.

Another related work is that of Benadè et al. [2019]. They also focused on the fact that practitioners

in many cases do not simply choose 𝑘 individuals uniformly at random, but they sample in ways

ensuring that any realized panel is proportionally representative. However, they asked a very differ-

ent question which is how this stratifying sampling may affect the variance of the representation

of unknown groups. Moreover, they only consider the simple case where the population can be

partitioned into a number of disjoint groups which implies that the individuals are characterized

by just one feature. Nevertheless, their positive results are encouraging for our proposed sampling

procedure as well.

Another way that representation is forced in practice is by setting quotas on individual features.

For example, it might be asked in a panel of size 100, at least 40 representatives to be women and

at least 30 representatives to be college educated. However, a problem that appears in practice

is that a few people volunteer to participate in a decision panel. As a result, the representatives

are selected from this pool of volunteers which usually does not reflect the composition of the

population, since for example highly educated people are usually more willing to participate in

a decision panel than less educated people. Flanigan et al. [2021a] proposed selection algorithms

that, given a biased pool of volunteers, find distributions that maximize the minimum selection

probability of any volunteer over panels that satisfy the desired quotas. However, the vision of

a sortition based democracy relies on sampling the representatives directly from the underlying
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population [Gastil and Wright, 2019]. In this work, as Ebadian et al. [2022] and Benadè et al. [2019],

we focus on this pivotal idea of sortition. More importantly, as we discussed in the introduction,

the satisfaction of particular quotas does not necessarily ensures proportional representation, and

it is in general challenging to find a panel that satisfies a set of quotas as much as possible [Celis

et al., 2018, Lang and Skowron, 2018].

The idea of using core as a means of measuring the proportional representation that a panel of

size 𝑘 provides to a population of size 𝑛, that lies in a metric space, was first introduced by [Chen

et al., 2019], and then revisited by [Micha and Shah, 2020]. The main differences of these works

with this one is that the cost of an individual for a panel is defined as her distance from her closest

representative in the panel, i.e. by setting 𝑞 = 1 in our 𝑞-cost function, and there is no any fairness

constraint. Chen et al. [2019] show that in the general case a panel in the 𝛼-core with 𝛼 < 1.5 is

not guaranteed to exist when only individuals of the population can serve as representatives and

provide a greedy algorithm that always returns a panel in the (1 +
√
2)-core. The negative result

carry over when 𝑞 = 1, but the greedy algorithm as defined in their paper does not satisfy any

fairness constraints which is one of the main desired properties of sortition. However, we show

that by modifying the greedy algorithm appropriately, we can find distributions that are fair and

return panels that are almost in the core.

Proportional representation through core has been extensively studied in multi winner elec-

tions [Aziz et al., 2017, Fain et al., 2018, Faliszewski et al., 2017, Lackner and Skowron, 2023].

The selection of a representative panel is a special case of committee elections where the set of

candidates is the same as the set of voters. While in these works, the voters and the candidates

do not lie in a metric space, but instead the voters hold rankings over candidates, in our model,

the rankings could derive from the underlying metric space. Due to impossibility results [Cheng

et al., 2020], relaxations of the core have been studied. In this work, we consider a relaxation of the

core over distributions similar to the one that was introduced by Cheng et al. [2020]. They show

that a distribution over committees in the ex ante core always exists. However, their results hold

without the fairness constraint and, here we show that by imposing this constraint, a distribution

over panels in the ex ante 𝛼-core with 𝛼 < 2 is not guaranteed to exist.

The representation of individuals as having an ideal point in a metric space has its roots to the

spatial model of voting [Arrow, 1990, Enelow and Hinich, 1984]. This approach has been extensively

used for comparing different voting rules from a more quantitative point of view [Anshelevich

et al., 2021, Procaccia and Rosenschein, 2006]. Lastly, the idea of using 𝑞-cost as a measure of how

much a panel represents an individual was first proposed by Caragiannis et al. [2022]. However,

they, as Ebadian et al. [2022] do, use the social cost as a measurement of aggregation.

2 UNIFORM SELECTION AND CORE
In this section, we focus on the uniform selection method for selecting a panel. First, we show that

for 𝑞 = 𝑘 , uniform selection is nearly in the ex post core and core over expected cost, while for

any other case, it fails to provide any good approximation to any of them. On the positive side,

we show that uniform selection is in the ex ante 4-core, for any 𝑞, and is asymptotically optimal

among all fair selection algorithms.

2.1 Uniform Selection and Ex Post Core
We start by showing that when 𝑞 = 𝑘 , uniform selection is almost in the ex post core. This positive

result derives from the fact that when 𝑞 = 𝑘 , a given panel is not in the core if and only if all

individuals agree that there exists another panel of size 𝑘 that is more representative for all of them.
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Theorem 2.1. For 𝑞 = 𝑘 , uniform selection is in the ex post 2-core and in the 2-core over expected
cost. The former bound is tight.

All the missed proofs can be found in the appendix.

The above theorem shows that any selection algorithm is in the ex post 2-core and in the 2-core

over expected cost when 𝑞 = 𝑘 . This is because, the only property of uniform selection that is

utilized is that it returns a panel of size 𝑘 .

Next, we show that for any value of 𝑞 other than 𝑘 , uniform selection does not satisfy any

bounded approximation of the ex post core or core over expected value.

Theorem 2.2. For any 𝑞 ∈ [𝑘 − 1] and ⌊𝑛/𝑘⌋ ≥ 𝑘 , there exists an instance such that uniform
selection is not in the ex post 𝛼-core for any bounded 𝛼 , and also not in the 𝛼-core over expected cost,
for any bounded 𝛼 .

2.2 Uniform selection achieves almost Optimal Ex Ante Core
As we have shown above, except when 𝑞 = 𝑘 , uniform selection fails to provide any reasonable

guarantee to the ex post core and the core over expected cost. However, as previously noted in the

introduction, both of these definitions do not take into account the likelihood of appearance of

certain panels that are not very representative.

In this section, we turn our attention to ex ante core. First, we observe that for 𝑞 = 𝑘 , uniform

selection satisfies the ex ante core criteria.

Proposition 2.3. For 𝑞 = 𝑘 , uniform selection is in the ex ante core.

In the next theorem, we show that for any other value of 𝑞, no selection algorithm that is fair, is

guaranteed to achieve ex ante 𝛼-core with 𝛼 < 2.

Theorem 2.4. For any 𝑞 ∈ [𝑘 − 1], when 𝑛 ≥ 2𝑘2/(𝑘 − 𝑞), there exists an instance such that no
selection algorithm that is fair, is in ex ante 𝛼-core with 𝛼 < 2.

Next, we show that uniform selection achieves ex ante 4-core, and, as a result, it achieves almost

optimal ex ante core among all fair selection algorithms.

Before, we prove this result we introduce some extra notation. We denote with top𝑞 (𝑖, 𝑃) the set
of the 𝑞 closest representatives of 𝑖 in a panel 𝑃 (ties are broken arbitrarily). Moreover, we denote

with 𝐵(𝑥,𝑦), the set of individuals that are captured from a ball centered at 𝑥 with radius 𝑦, i.e.

𝐵(𝑥,𝑦) = {𝑖 ∈ [𝑛] : 𝑑 (𝑥,𝑦) ≤ 𝑟 }.
In the proof of this result, we use the following form of Chu–Vandermonde identity which we

prove in the appendix for completeness.

Definition 2.5 (Chu–Vandermonde identity). Let 𝑛, 𝑘, and 𝑟 be integers such that 0 ≤ 𝑟 ≤ 𝑘 ≤ 𝑛.

Then, the following identity holds

𝑛∑︁
𝑗=0

(
𝑗

𝑟

)
·
(
𝑛 − 𝑗

𝑘 − 𝑟

)
=

(
𝑛 + 1
𝑘 + 1

)
.

Moreover, we use the following necessary lemma.

Lemma 2.6. Let 𝑆 ⊆ [𝑛] and let 𝑃 ′ be a panel, with |𝑃 ′ | ≥ 𝑞.

(1) There exists a partition 𝑇1, . . . ,𝑇𝑚 of 𝑆 with respect to 𝑃 ′, with 𝑚 ≤ ⌊ |𝑃 ′ |/𝑞⌋, such that for
each ℓ ∈ [𝑚], there is 𝑖∗ℓ ∈ 𝑇ℓ for which it holds that 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) ≤ 𝑐𝑞 (𝑖, 𝑃 ′) and top𝑞 (𝑖, 𝑃 ′) ∩
top𝑞 (𝑖∗ℓ , 𝑃 ′) ≠ ∅, for any 𝑖 ∈ 𝑇ℓ .
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4 · 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′)

𝑖∗ℓ 𝑖ℓ𝑗

𝑑 (𝑖∗ℓ , 𝑖ℓ𝑗 )
𝑖ℓ
1

𝑖ℓ
2 𝑖ℓ

3

𝑖ℓ
4

. . .

Fig. 1. Diagram for Proof of Theorem 2.7

(2) There exists a partition 𝑇1, . . . ,𝑇𝑚 of 𝑆 with respect to 𝑃 ′, with 𝑚 ≤ ⌊ |𝑃 ′ |/𝑞⌋, such that for
each ℓ ∈ [𝑚], there is 𝑖∗ℓ ∈ 𝑇ℓ for which it holds that 𝑐𝑞 (𝑖, 𝑃 ′) ≤ 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) and top𝑞 (𝑖, 𝑃 ′) ∩
top𝑞 (𝑖∗ℓ , 𝑃 ′) ≠ ∅, for any 𝑖 ∈ 𝑇ℓ .

Proof. We start by showing the first part. We partition all individuals into𝑚 ≤ ⌊ |𝑃 ′ |/𝑞⌋ groups,
denoted by 𝑇1, . . . ,𝑇𝑚 iteratively as follows.

Suppose 𝑖∗
1
is the individual with the smallest 𝑞-cost over 𝑃 ′ (ties are broken arbitrary), i.e.

𝑖∗
1
= argmin𝑖∈[𝑛] 𝑐𝑞 (𝑖, 𝑃 ′). Then, 𝑇1 is the set of all the individuals whose 𝑞 closest representatives

from 𝑃 ′ includes at least one member of top𝑞 (𝑖∗1, 𝑃 ′), i.e.

𝑇1 = {𝑖 ∈ [𝑛] : top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗1, 𝑃 ′) ≠ ∅}.

Next, from the remaining individuals, suppose 𝑖∗
2
is the one with the smallest 𝑞-cost over 𝑃 ′, i.e.

𝑖∗
2
= argmin𝑖∈[𝑛]\𝑇1 𝑐𝑞 (𝑖, 𝑃). Construct𝑇2 from [𝑛]\𝑇1 similarly by taking all the individuals whose at

least one of their 𝑞 closest representatives in 𝑃 ′ is included in top𝑞 (𝑖∗2, 𝑃 ′). We repeat this procedure,

and in round ℓ , we find 𝑖∗ℓ ∈ [𝑛] \ (∪ℓ−1ℓ ′=1𝑇ℓ ′ ) that has the smallest cost over 𝑃 ′, and construct 𝑇ℓ

by assigning any individual in [𝑛] \ (∪ℓ−1
ℓ ′=1𝑇ℓ ′ ) whos eat least one of the 𝑞 closest representatives

belongs in top𝑞 (𝑖∗ℓ , 𝑃 ′). Note that for any ℓ1, ℓ2 ∈ [𝑚] with ℓ1 < ℓ2, top𝑞 (𝑖∗ℓ1 , 𝑃
′) ∩ top𝑞 (𝑖∗ℓ2 , 𝑃

′) = ∅,
as if at least one of the 𝑞 closest representatives of 𝑖∗ℓ2 in 𝑃 is included in top𝑞 (𝑖∗ℓ1 , 𝑃

′), then 𝑖∗ℓ2
would have been assigned to 𝑇ℓ1 and would not belong in [𝑛] \ (∪ℓ2−1

ℓ ′=1𝑇ℓ ′ ). This means that in

each round, we consider 𝑞 representatives that have not been considered before, and hence after

⌊|𝑃 ′ |/𝑞⌋ rounds, less than 𝑞 representatives in 𝑃 ′ may remain unconsidered. As a result, after at

most ⌊|𝑃 ′ |/𝑞⌋ rounds, all the individuals will have been assigned to some group, since at least one

of their 𝑞 closest representatives has been considered.

The second part follows by simply setting 𝑖∗ℓ to be equal to the individual in [𝑛] \ (∪ℓ−1
ℓ ′=1𝑇ℓ ′ ) that

has the largest cost over 𝑃 ′, i.e. 𝑖∗ℓ = argmax𝑖∈[𝑛]\(∪ℓ−1
ℓ ′=1𝑇ℓ ′ )

𝑐𝑞 (𝑖, 𝑃). All the remaining arguments

remain the same. □

Now, we are ready to prove the following theorem.
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Theorem 2.7. For any 𝑞, uniform selection is in ex ante 4-core, i.e. for any panel 𝑃 ′ with |𝑃 ′ | ≥ 𝑞

E𝑃∼U𝑘
[𝑉𝑞 (𝑃, 𝑃 ′, 4)] < |𝑃 ′ | ·

𝑛

𝑘
.

Proof. Let 𝑃 ′ be a panel, with |𝑃 ′ | ≥ 𝑞. Then, by linearity of expectation, we have that

E𝑃∼U𝑘
[𝑉𝑞 (𝑃, 𝑃 ′, 4)] =

∑︁
𝑖∈[𝑛]

Pr

𝑃∼U𝑘

[𝑐𝑞 (𝑖, 𝑃) > 4 · 𝑐𝑞 (𝑖, 𝑃 ′)] .

Let 𝑇1 . . . ,𝑇𝑚 be a partition of [𝑛] with respect to 𝑃 ′, as given in the first part of Lemma 2.6. For

each ℓ ∈ [𝑚], we reorder the individuals in𝑇ℓ in an increasing order based on their distance from 𝑖∗ℓ ,
and relabel them as 𝑖ℓ

1
, . . . , 𝑖ℓ|𝑇ℓ | . This way, 𝑖

ℓ
1
and 𝑖ℓ|𝑇ℓ | are the individuals in 𝑇ℓ that have the smallest

and the largest distance from 𝑖∗ℓ , respectively. Then, we get that

E𝑃∼U𝑘
[𝑉𝑞 (𝑃, 𝑃 ′, 4)] =

∑︁
𝑖∈[𝑛]

Pr

𝑃∼U𝑘

[𝑐𝑞 (𝑖, 𝑃) > 4 · 𝑐𝑞 (𝑖, 𝑃 ′)] =
𝑚∑︁
ℓ=1

|𝑇ℓ |∑︁
𝑗=1

Pr

𝑃∼U𝑘

[𝑐𝑞 (𝑖ℓ𝑗 , 𝑃) > 4 · 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′)] .

(1)

Now, we will bound Pr𝑃∼U𝑘
[𝑐𝑞 (𝑖ℓ𝑗 , 𝑃) > 4 ·𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′)] for each 𝑖ℓ𝑗 . For each 𝑖ℓ𝑗 , let 𝑟 ℓ𝑗 be an arbitrary

representative in top𝑞 (𝑖ℓ𝑗 , 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′). Then, we get that

𝑑 (𝑖ℓ𝑗 , 𝑖∗ℓ ) ≤ 𝑑 (𝑖ℓ𝑗 , 𝑟 ℓ𝑗 ) + 𝑑 (𝑟 ℓ𝑗 , 𝑖∗ℓ ) ≤ 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′) + 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) ≤ 2 · 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′), (2)

where the last inequality follows from the fact that 𝑖∗ℓ has the smallest cost over 𝑃 ′ among all the

individuals in 𝑇ℓ . Now, consider the ball that is centered at 𝑖ℓ𝑗 and has radius 4 · 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′). Note that
this ball contains any individual 𝑖ℓ

𝑗 ′ with 𝑗 ′ < 𝑗 . Indeed, for each 𝑖ℓ𝑗 and 𝑖
ℓ
𝑗 ′ with 𝑗 ′ < 𝑗 , we have that

𝑑 (𝑖ℓ𝑗 , 𝑖ℓ𝑗 ′ ) ≤ 𝑑 (𝑖ℓ𝑗 , 𝑖∗ℓ ) + 𝑑 (𝑖∗ℓ , 𝑖ℓ𝑗 ′ ) ≤ 2 · 𝑑 (𝑖ℓ𝑗 , 𝑖∗ℓ ) ≤ 4 · 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′),

where the second inequality follows form the fact that for each 𝑗 ′, 𝑗 ∈ [|𝑇ℓ |] with 𝑗 ′ < 𝑗 , 𝑑 (𝑖ℓ
𝑗 ′ , 𝑖
∗
ℓ ) ≤

𝑑 (𝑖ℓ𝑗 , 𝑖∗ℓ ) and the last inequality follows form Equation (2). This argument is drawn in Figure 1.

When 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃) > 4 · 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′), then we get that |𝑃 ∩ {𝑖ℓ
1
, . . . , 𝑖ℓ𝑗 }| < 𝑞, as otherwise there would

exist at least 𝑞 individuals in 𝐵(𝑖ℓ𝑗 , 4 · 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′)), and 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃) would be at most 4 · 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′). Hence,
we have that

Pr

𝑃∼U𝑘

[𝑐𝑞 (𝑖ℓ𝑗 , 𝑃) > 4 · 𝑐𝑞 (𝑖ℓ𝑗 , 𝑃 ′)] ≤ Pr

𝑃∼U𝑘

[
|𝑃 ∩ {𝑖ℓ

1
, . . . , 𝑖ℓ𝑗 }| < 𝑞

]
= Pr

𝑃∼U𝑘

[
𝑞−1⋃
𝑟=0

|𝑃 ∩ {𝑖ℓ
1
, . . . , 𝑖ℓ𝑗 }| = 𝑟

]
≤

𝑞−1∑︁
𝑟=0

Pr

𝑃∼U𝑘

[
|𝑃 ∩ {𝑖ℓ

1
, . . . , 𝑖ℓ𝑗 }| = 𝑟

]
=

𝑞−1∑︁
𝑟=0

(
𝑗
𝑟

) (𝑛− 𝑗
𝑘−𝑟

)(
𝑛
𝑘

)
where the second inequality follows from the Union Bound and the last equality follows form the

fact that uniform selection chooses 𝑘 out of 𝑛 individuals uniformly at random. Then, by returning

to Equation (1) we get that,

E𝑃∼U𝑘
[𝑉𝑞 (𝑃, 𝑃 ′, 4)] =

𝑚∑︁
ℓ=1

|𝑇ℓ |∑︁
𝑗=1

Pr

𝑃∼U𝑘

[𝑐𝑞 (𝑖ℓ𝑗 , 𝑃) > 4 · 𝑐𝑞 (𝑖 𝑗 , 𝑃 ′)]

≤
𝑚∑︁
ℓ=1

|𝑇ℓ |∑︁
𝑗=1

𝑞−1∑︁
𝑟=0

(
𝑗
𝑟

) (𝑛− 𝑗
𝑘−𝑟

)(
𝑛
𝑘

)
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ALGORITHM 1: Fair Greedy Capture

Input: Individuals [𝑛], metric 𝑑 , 𝑘 , 𝑞

Output: Panel 𝑃
𝑅 ← [𝑛];𝛿 ← 0; 𝑃 ← ∅;
while |𝑅 | ≥ ⌈𝑞 · 𝑛/𝑘⌉ do

Smoothly increase 𝛿 ;

while ∃ 𝑗 ∈ 𝑅 such that |𝐵( 𝑗, 𝛿) ∩ 𝑅 | ≥ ⌈𝑞 · 𝑛/𝑘⌉ do
𝑆 ← ⌈𝑞 · 𝑛/𝑘⌉ individuals arbitrary chosen from 𝐵( 𝑗, 𝛿);
𝑃 ← pick 𝑞 individuals from 𝑆 uniformly at random;

𝑃 ← 𝑃 ∪ 𝑃 ;
𝑅 ← 𝑅 \ 𝑆 ;

end
end
if |𝑃 | < 𝑘 then

𝑃 ← 𝑘 − |𝑃 | individuals from [𝑛] \ 𝑃 by picking 𝑖 ∈ 𝑅 with probability 𝑘/𝑛 and 𝑖 ∈ [𝑛] \ (𝑃 ∪ 𝑅) with
probability

𝑘−|𝑃 |− |𝑅 | ·𝑘/𝑛
𝑛−|𝑃 |− |𝑅 | ;

𝑃 ← 𝑃 ∪ 𝑃 ;
end

=

𝑚∑︁
ℓ=1

𝑞−1∑︁
𝑟=0

|𝑇ℓ |∑︁
𝑗=1

(
𝑗
𝑟

) (𝑛− 𝑗
𝑘−𝑟

)(
𝑛
𝑘

)
≤

𝑚∑︁
ℓ=1

𝑞−1∑︁
𝑟=0

𝑛∑︁
𝑗=0

(
𝑗
𝑟

) (𝑛− 𝑗
𝑘−𝑟

)(
𝑛
𝑘

)
(1)
=

𝑚∑︁
ℓ=1

𝑞−1∑︁
𝑟=0

(
𝑛+1
𝑘+1

)(
𝑛
𝑘

) =

𝑚∑︁
ℓ=1

𝑞−1∑︁
𝑟=0

𝑛 + 1
𝑘 + 1 =𝑚 · 𝑞 · 𝑛 + 1

𝑘 + 1 ≤ |𝑃
′ | · 𝑛

𝑘
,

where (1) follows from Chu–Vandermonde identity and the last inequality follows from the facts

that𝑚 ≤ ⌊ |𝑃 ′ |/𝑞⌋ and 𝑛+1
𝑘+1 ≤

𝑛
𝑘
. □

3 FAIRNESS AND ALMOST EX POST CORE
In the previous section, we show that while uniform selection is in the ex ante 4-core, it does not

not guarantee to return panels that have a good approximation to the core.

But what if we want to ensure that any realized panel is almost in the core? Is there a way to

achieve fairness and a good approximation to the ex post core concurrently? From the fact that ex

post 𝛼-core implies ex ante 𝛼-core and from Theorem 2.4, we get that no fair selection algorithm

can return a distribution in the ex post 𝛼-core, with 𝛼 < 2. Here, we show that there exists a fair

selection algorithm that returns a distribution in the ex post
5+
√
41

2
-core.

We revisit the Greedy Capture algorithm introduced by Chen et al. [2019]. Briefly, their algorithm

starts with an empty panel and grows a ball around any individual at the same rate. When a ball

captures at least ⌈𝑛/𝑘⌉ individuals for the first time, the center of the ball is included in the panel

and all the captured individuals are disregarded. As balls continue growing, when new individuals

are captured by balls that are centered to individuals that are previously added to the panel, they

are immediately removed. This algorithm returns a panel in the (1 +
√
2)-core, when 𝑞 = 1.

From the description above, it is clear that the Greedy Capture algorithm, as defined by Chen

et al. [2019], returns a deterministic panel. Here, we define a modification of the algorithm, called
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Fair Greedy Capture, which outputs a fair distribution over panels of size 𝑘 that is also in the ex

post
5+
√
41

2
-core, for any value of 𝑞. The algorithm starts with an empty panel 𝑃 and grows a ball

around every individual in [𝑛] at the same rate. When a ball captures ⌈𝑞 · 𝑛/𝑘⌉ individuals (if more

than ⌈𝑞 · 𝑛/𝑘⌉ individuals have been captured, it chooses exactly ⌈𝑞 · 𝑛/𝑘⌉ by arbitrarily excluding

some points on the boundary), the algorithm picks 𝑞 of them uniformly at random and includes

them in the panel 𝑃 , and disregards all the ⌈𝑞 · 𝑛/𝑘⌉ individuals. When this happens, we say that

the algorithm detects this ball. Balls continue to grow only around individuals that have not been

disregarded yet, i.e. detected balls are frozen. When less than ⌈𝑞 · 𝑛/𝑘⌉ individuals are left, but less
than 𝑘 representatives have been chosen, the algorithm chooses the remaining representatives

among the individuals that have not be included in the panel as following: selects each individual

that has not been disregarded with probability equal to 𝑘/𝑛 and allocates the remaining probability

uniformly among the individuals that have been disregarded but not selected. This can be done using

systematic sampling [Yates, 1948]. Our algorithm, Fair Greedy Capture, is given in Algorithm 1.

One basic difference between Fair Greedy Capture and Greedy Capture by Chen et al. [2019] is

that in the latter, one individual is included in the panel the first time that a ball captures ⌈𝑛/𝑘⌉
individuals, but in the former 𝑞 individuals are included in the panel the first time that a ball

captures ⌈𝑞 · 𝑛/𝑘⌉ individuals. While this modification is quite straightforward, even if we consider

the original Greedy Capture with this modification, it is significantly more challenging to prove

that this algorithm returns a panel that is almost in the core, for any 𝑞. The main difficulty comes

from the fact that when we ask if a subset of population is eligible to choose a panel 𝑃 ′ different
than a given panel 𝑃 under which all of them reduce their distance by a factor of at least 𝛼 , for

𝑞 = 1, it suffices to consider panels of size 1, while for 𝑞 > 1, we cannot restrict our attention to

panels of size 𝑞. To see that, suppose that when 𝑞 = 1, there is a panel 𝑃 ′, with |𝑃 ′ | > 1 and a

subset 𝑆 ⊆ [𝑛], with |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 such that each 𝑖 ∈ 𝑆 reduces her cost by at least a factor of

𝛼 if she is represented by 𝑃 ′ rather than a given panel 𝑃 . Then, if we partition 𝑆 into |𝑃 ′ | groups
by assigning each individual to their closest representative from 𝑃 ′, at least one of these groups
should have size at least 𝑛/𝑘 . For 𝑞 > 1, given a panel 𝑃 ′ and 𝑆 ⊆ [𝑛] of sufficient size, it does not

necessarily hold that there are 𝑞 representatives in 𝑃 ′ that are the 𝑞-closest representatives of at
least 𝑞 · 𝑛/𝑘 individuals together in 𝑆 . To put it in another way, it is possible that there exists a

subset of population that is eligible to choose a panel 𝑃 ′ with |𝑃 ′ | > 𝑞 under which all of them

reduce their distance by a factor of at least 𝛼 , but there does not exist a subset of population that

is eligible to choose a panel 𝑃 ′′ with |𝑃 ′′ | = 𝑞 under which all of them reduce their distance by a

factor of at least 𝛼 . To overcome this challenge, we use Lemma 2.6.

Before we prove that Fair Greedy Capture returns a distribution that is almost in the ex post

core and is fair, we prove the next technical lemma which shows that a form of triangle inequality

is satisfied over costs of panels.

Lemma 3.1. For any panel 𝑃 and any 𝑖, 𝑖′ ∈ [𝑛], it holds that 𝑐𝑞 (𝑖, 𝑃) ≤ 𝑑 (𝑖, 𝑖′) + 𝑐𝑞 (𝑖′, 𝑃)

Theorem 3.2. Fair Greedy Capture returns a distribution that is fair and is in the ex post 5+
√
41

2
-core.

Proof. We start by showing that the algorithm returns a fair distribution over panels of size 𝑘 .

Fairness Guarantee. Suppose that 𝑞 ·𝑛/𝑘 is an integer. Then, each individual that is disergarded in

the while loop of the algorithm is included in the panel with probability exactly 𝑘/𝑛. Now, suppose
that after the algorithm has detected 𝑡 balls, less than 𝑞 · 𝑛/𝑘 are left. Then, when the algorithm

exits the while loop we have that |𝑅 | = 𝑛 − 𝑡 · 𝑞 · 𝑛/𝑘 and 𝑘 − |𝑃 | = 𝑘 − 𝑡 · 𝑞. But since,

|𝑅 | · 𝑘/𝑛 = 𝑘 − 𝑡 · 𝑞,
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we conclude that the remaining 𝑘 −𝑡 ·𝑞 representatives are chosen uniformly among the individuals

in 𝑅. Thus, the algorithm returns a panel of size 𝑘 and each 𝑖 ∈ [𝑛] is chosen with probability 𝑘/𝑛.
Now, we focus on the case that 𝑞 · 𝑛/𝑘 is not an integer. In this case, note that in the while

loop of the algorithm, less than 𝑘 individuals are included in the panel, since 𝑞 individuals are

included in the panel every time that ⌈𝑞 · 𝑛/𝑘⌉ non-disregarded individuals are captured from a

ball. Moreover, each individual that is disregarded is chosen with probability strictly less than 𝑘/𝑛.
Now suppose that after exiting the while loop, there are individuals that have not been disregarded,

i.e. |𝑅 | > 0. First, we show that the algorithm correctly chooses another 𝑘 − |𝑃 | representatives and
outputs a panel of size 𝑘 . The algorithm would select each individual in 𝑅 with probability 𝑘/𝑛 and

allocates the remaining probability — which is equal to 𝑘 − |𝑃 | − |𝑅 | · 𝑘/𝑛 —uniformly among the

𝑛 − |𝑃 | − |𝑅 | individuals that have been disregarded but not selected in 𝑃 . To satisfy fairness for

people in 𝑅, it suffices to show that |𝑅 | · 𝑘/𝑛 < 𝑘 − |𝑃 |. Since for each individual 𝑖 ∈ [𝑛] \𝑅 we have

Pr[𝑖 ∈ 𝑃] = 𝑞/⌈𝑞 · 𝑛/𝑘⌉ < 𝑘/𝑛, then we have |𝑃 | = E[|𝑃 |] = ∑
𝑖∈[𝑛]\𝑅 Pr[𝑖 ∈ 𝑃] < (𝑛 − |𝑅 |) · 𝑘/𝑛.

Thus, 𝑘 − |𝑃 | > 𝑘 − (𝑛 − |𝑅 |) · 𝑘/𝑛 = |𝑅 | · 𝑘/𝑛. Hence, the algorithm outputs panels of size 𝑘 .

It remains to show that each individual in [𝑛] \ 𝑅, which is disregarded in the while loop, is

included in the panel with probability 𝑘/𝑛. First, note that all of them are included in the panel

with the same probability. This holds, since each is selected with probability 𝑞/⌈𝑞 · 𝑛/𝑘⌉ from the

ball that captured them in the while loop, and, when not selected in the while loop, they get an

equal chance of selection of
𝑘−|𝑃 |− |𝑅 | ·𝑘/𝑛
𝑛−|𝑅 |− |𝑃 | . Since the size of the final panel returned by the algorithm

is always 𝑘 , and by linearity of expectation, we have 𝑘 = |𝑅 | · 𝑘/𝑛 +∑𝑖∈[𝑛]\𝑅 Pr[𝑖]. By equality of

Pr[𝑖]’s, we conclude that all must be equal to 𝑘/𝑛 and each individual in [𝑛] is included in the

panel with probability 𝑘/𝑛.

Ex Post Core Guarantee. Next, we show that the distribution that the algorithm returns is in the

ex post
5+
√
41

2
-core. Let 𝑃 be any panel that the algorithm may return. Suppose for contradiction

that there exists 𝑆, 𝑃 ′ ⊆ [𝑛] with |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 , such that 𝑉𝑞 (𝑃, 𝑃 ′, (5 +
√
41)/2) ≥ |𝑃 ′ | · 𝑛/𝑘 , i.e.

∀𝑖 ∈ 𝑆, 𝑐𝑞 (𝑖, 𝑃) >
5 +
√
41

2

· 𝑐𝑞 (𝑖, 𝑃 ′).
Let 𝑇1, . . . ,𝑇𝑚 be a partition of 𝑆 with respect to 𝑃 ′, as given in the second part of Lemma 2.6. Since

𝑚 ≤ ⌊|𝑃 ′ |/𝑞⌋ and |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 , we conclude that there exists a part, say 𝑇ℓ , that has size at least
𝑞 · 𝑛/𝑘 . Since, for some 𝑖∗ℓ ∈ 𝑇ℓ , it holds that 𝑐𝑞 (𝑖, 𝑃 ′) ≤ 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) and top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′) ≠ ∅
for each 𝑖 ∈ 𝑇ℓ , we can conclude that 𝑑 (𝑖∗ℓ , 𝑖) ≤ 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) for each 𝑖 ∈ 𝑇ℓ , as following: Pick an

arbitrary representative in top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′) and denote it as 𝑟𝑖 . Then,

𝑑 (𝑖, 𝑖∗) ≤ 𝑑 (𝑖, 𝑟𝑖 ) + 𝑑 (𝑟𝑖 , 𝑖∗) ≤ 𝑐𝑞 (𝑖, 𝑃 ′) + 𝑐𝑞 (𝑖∗, 𝑃 ′) ≤ 2 · 𝑐𝑞 (𝑖∗, 𝑃 ′).
This means that there exists a ball centered at 𝑖∗ℓ that has radius 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) and captures all the

individuals in 𝑇ℓ . Since there are sufficiently many individuals in this ball, it is possible that the

algorithm detects it during its execution. If this happened, this means that there are𝑞 representatives

in 𝑃 that are located within this ball. Then, we get that the distance of 𝑖∗ℓ from her 𝑞-th closest

representative in 𝑃 is at less than or equal to the radius of the ball, which is at most 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′).
Therefore, 𝑖∗ℓ cannot reduce her distance by a multiplicative factor larger than 2 by choosing 𝑃 ′,
and we reach a contradiction. On the other hand, if the algorithm did not detect this ball during

its execution, this means that some of the individuals in 𝑇ℓ have been disregarded before the ball

centered at 𝑖∗ℓ captures sufficiently many of them. Hence, some individuals in𝑇ℓ have been captured

from a different ball with radius at most 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′). Suppose that 𝑖′ is the first individual in𝑇ℓ that
was captured from such a ball. Then, we have that, within this ball, 𝑞 representatives are selected

in 𝑃 . Hence 𝑐𝑞 (𝑖′, 𝑃) ≤ 4 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′), since the distance of 𝑖′ form any other individual in this ball is

at most equal to the diameter of the ball. We consider the minimum multiplicative improvement of
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ALGORITHM 2: Auditing Algorithm
Input: 𝑃 , Individuals [𝑛], metric 𝑑 , 𝑘 , 𝑞,

Output: 𝛼
for 𝑗 ∈ [𝑛] do

𝑃 𝑗 ← { 𝑗} ∪ 𝑞 − 1 closest neighbors of 𝑗 ;
𝛼 𝑗 ← the ⌈𝑞 · 𝑛/𝑘⌉ largest value among 𝑐𝑞 (𝑖, 𝑃)/𝑐𝑞 (𝑖, 𝑃 𝑗 );

end
𝛼 ← argmax𝑗∈[𝑛] 𝛼 𝑗

both 𝑖∗ℓ and 𝑖
′
:

min

(
𝑐𝑞 (𝑖′, 𝑃)
𝑐𝑞 (𝑖′, 𝑃 ′)

,
𝑐𝑞 (𝑖∗ℓ , 𝑃)
𝑐𝑞 (𝑖∗ℓ , 𝑃 ′)

)
≤min

(
𝑐𝑞 (𝑖′, 𝑃)
𝑐𝑞 (𝑖′, 𝑃 ′)

,
𝑑 (𝑖∗ℓ , 𝑖′) + 𝑐𝑞 (𝑖′, 𝑃)

𝑐𝑞 (𝑖∗ℓ , 𝑃 ′)

)
(by Lemma 3.1)

≤min

(
𝑐𝑞 (𝑖′, 𝑃)
𝑐𝑞 (𝑖′, 𝑃 ′)

,
𝑑 (𝑖∗ℓ , 𝑟𝑖′ ) + 𝑑 (𝑖′, 𝑟𝑖′ ) + 𝑐𝑞 (𝑖′, 𝑃)

𝑐𝑞 (𝑖∗ℓ , 𝑃 ′)

)
≤min

(
𝑐𝑞 (𝑖′, 𝑃)
𝑐𝑞 (𝑖′, 𝑃 ′)

,
𝑑 (𝑖∗ℓ , 𝑟𝑖′ ) + 𝑐𝑞 (𝑖′, 𝑃 ′) + 𝑐𝑞 (𝑖′, 𝑃)

𝑐𝑞 (𝑖∗ℓ , 𝑃 ′)

)
(as 𝑟𝑖′ ∈ top𝑞 (𝑖′, 𝑃 ′))

≤min

(
4 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′)
𝑐𝑞 (𝑖′, 𝑃 ′)

, 5 +
𝑐𝑞 (𝑖′, 𝑃 ′)
𝑐𝑞 (𝑖∗ℓ , 𝑃 ′)

)
≤max

𝑧≥0
min(4 · 𝑧, 5 + 1/𝑧) = 5 +

√
41

2

where the fourth inequality follows from the fact that 𝑑 (𝑖∗ℓ , 𝑟𝑖′ ) ≤ 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′), since 𝑟𝑖′ ∈ top𝑞 (𝑖∗ℓ , 𝑃 ′),
and the fact that 𝑐𝑞 (𝑖′, 𝑃) ≤ 4 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′). □

The above theorem shows that for any value of 𝑞, Fair Greedy Capture returns a fair distribution

in the ex post
5+
√
41

2
-core. In the next theorem, we show that when 𝑞 = 1, we can have a better a

guarantee. In particular, in this case Fair Greedy Capture returns a distribution that is in the ex

post
3+
√
17

2
-core and this is tight. This proof is quite similar with the proof of [Chen et al., 2019]

and the main difference derives from the fact that when a ball captures ⌈𝑛/𝑘⌉ individuals, we don’t
necessarily include in the panel the center of the ball, but we may include any individual within it.

The proof of the theorem is deferred to the appendix.

Theorem 3.3. For 𝑞 = 1, Fair Greedy Capture returns a fair distribution in the ex post 3+
√
17

2
-core

and there exists an instance for which this bound is tight.

From the above theorem, we know that the analysis of Fair Greedy Capture is tight for 𝑞 = 1.

Finding tight bounds for the general case is an open question.

Moreover, we show that Fair Greedy Capture is in the 6-core over expected cost.

Theorem 3.4. Fair Greedy Capture returns a distribution that is in the 6-core over expected cost.

4 AUDITING EX POST CORE
In this section, we turn our attention to the following question: Given a panel 𝑃 , how much

does it violate core, i.e. whet is the maximum value of 𝛼 such that there exists a panel 𝑃 ′ with
𝑉𝑞 (𝑃, 𝑃 ′, 𝛼 − 𝜖) ≥ |𝑃 ′ | · 𝑛/𝑘 , for arbitrary small 𝜖? This auditing question can be very useful in
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practice for measuring the proportional representation of a panel that has been formed using a

method that does not guarantee any panel to be almost in the core, such as uniform selection.

Chen et al. [2019] ask the same question for the case that the cost of an individual for a panel is

equal to her distance form her closest representative in the panel, i.e. when 𝑞 = 1. As we described

in the previous section, in this case it suffices to restrict our attention to panels of size 1 that a subset

of the population may prefer to be represented by. In other words, given a panel 𝑃 , we can simply

consider every individual as a potential representative and check if a sufficiently large subset of the

population prefers significantly this individual than 𝑃 to be their representative. Thus, we can find

the maximum 𝛼 such that there exists 𝑃 ′, with𝑉𝑞 (𝑃, 𝑃 ′, 𝛼 − 𝜖) ≥ 𝑛/𝑘 as following: For each 𝑗 ∈ [𝑛],
calculate 𝛼 𝑗 which is equal to the ⌈𝑛/𝑘⌉ largest values among {𝑐𝑞 (𝑖, 𝑃)/𝑐𝑞 (𝑖, { 𝑗})}𝑖∈[𝑛] . Then, 𝛼 is

equal to the maximum value among all 𝛼 𝑗 ’s.

For 𝑞 > 1, this question is more challenging. We show that we can approximate the value of

the maximum 𝛼 , by generalizing the above procedure as following: For each 𝑗 ∈ [𝑛], calculate 𝛼 𝑗

which is equal to the ⌈𝑛/𝑘⌉ largest value among {𝑐𝑞 (𝑖, 𝑃)/𝑐𝑞 (𝑖, 𝑃 𝑗 )}𝑖∈[𝑛] , where 𝑃 𝑗 is the panel that

contains 𝑗 and its 𝑞 − 1 closest neighbors. Then, we return the maximum value among all 𝛼 𝑗 ’s as 𝛼 .

Algorithm 2 executes this procedure. We can show that the maximum 𝛼 such that there exists a

panel 𝑃 ′ with 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼 − 𝜖) ≥ |𝑃 ′ | · 𝑛/𝑘 , for arbitrary small 𝜖 , is at most 3 · 𝛼 + 2.

Theorem 4.1. For any panel 𝑃 and 𝑞 ∈ [𝑘], if Algorithm 2 outputs 𝛼 , then 𝑃 is in the 𝛼-core with
𝛼 = 3 · 𝛼 + 2.

Algorithm 2 requires at least quadratic time with respect to 𝑛, since it considers all the individuals

along with their 𝑞 − 1 closets neighbors. In Appendix K, we show that we can find a slightly worse

approximation, by considering at most 𝑘 individuals and their 𝑞 − 1 closest centers, where these 𝑘
individuals can be found using a modification of Fair Greedy Capture.

5 EXPERIMENTS
In the worst case, we show that uniform selection fails to guarantee that any panel that it returns

is almost in the core. What happens though in the average case? Is uniform selection almost in the

ex post core in the average? How much better is Fair Greedy Capture than uniform selection with

respect to their approximations to the ex posts core, in the average case ? In this section, we aim to

answer these questions. To do that, we empirically evaluate the two algorithms, uniform selection

(Uniform) and Fair Greedy Capture (FairGreedy), using real databases.

5.1 Datasets
Following the methodology proposed by Ebadian et al. [2022], we use the same two datasets, that

they also used, as a proxy for constructing the underlying metric space. These datasets capture

characteristics of populations along multiple observable features. It is reasonable to assume that an

individual feels closer to individuals that have similar characteristics. Thus, we construct random

metric space using these data.

Adult Census Income (Adult). The first dataset we use is the Adult dataset, which is extracted from
the 1994 Current Population Survey conducted by the US Census Bureau and is made accessible

by the UCI Machine Learning Repository [Dua and Graff, 2017, Kohavi and Becker, 1996]. For

our analysis, we use the following demographic features: sex, race, workclass, marital.status,
and education.num. This dataset consists of 𝑛 = 32,561 data points, each with a sample weight

attribute (fnlwgt). By considering these five features, we identify 1513 unique data points and treat
the sum of the weights associated with each unique point as a distribution across them.
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European Social Survey (ESS) Our second dataset, European Social Survey (ESS), is a multi-

country survey conducted every two years since 2001 in Europe.
4
The survey collects data on a

wide range of topics, including attitudes towards politics and society, social values, and well-being.

We use the ESS Round 9 (2018) dataset, which covers 28 countries and contains 46,276 data points

and 1451 features. Many of the features are specific to the country, resulting in an average of

approximately 250 features per country (after removing non-demographic and country-unrelated

data). The number country-specific data points range from 781 to 2745. Additionally, each data

point has been assigned a post-stratification weight (pspwght), which we utilize as a representation

of the distribution of the data points. We concentrated on the United Kingdom data (ESS-UK) which

comprises 2204 data points.

5.2 Representation Metric Construction
In line with the work of Ebadian et al. [2022], we apply the same approach to generate synthetic

metric preferences, which are used to measure the dissimilarity between individuals based on their

feature values. Our datasets consist of two types of features: categorical features (such as sex, race,

and martial status) and continuous features (such as income and years of education). We define the

distance between individuals 𝑖 and 𝑗 with respect to feature 𝑓 as follows:

𝑑 (𝑖, 𝑗 ; 𝑓 ) ≔
{
1[𝑓 (𝑖) ≠ 𝑓 ( 𝑗)], if 𝑓 is a categorical feature;

1

max𝑖′, 𝑗 ′ | 𝑓 (𝑖′ )−𝑓 ( 𝑗 ′ ) | · |𝑓 (𝑖) − 𝑓 ( 𝑗) |, if 𝑓 is a continuous feature,

where the normalization factor for continuous features ensures that 𝑑 (𝑖, 𝑗 ; 𝑓 ) ∈ [0, 1] for all 𝑖 , 𝑗 ,
and 𝑓 , and that the distances in different features are comparable. Next, we define the distance

between two individuals as the weighted sum of the distances over different features, i.e.

𝑑 (𝑖, 𝑗) ≔
∑︁

𝑓 ∈𝐹
𝑤 𝑓 · 𝑑 (𝑖, 𝑗 ; 𝑓 ),

where the weights𝑤 𝑓 ’s are randomly generated. Each unique set of randomly generated feature

weights results in a new representation metric.

Experiment Setup. We generate 100 sets of randomly-assigned feature weights per dataset,

calculate a representation metric for each set, and report the performance metrics averaged over

1000 instances. Furthermore, given that our datasets are samples of a large population (i.e, millions)

and represented through a relatively small number of unique data points (i.e. few thousands), we

assume that each data point represents a group of at least 𝑘 people, which takes a maximum value

of 40 in our study. For each experiment, we also report the approximation to the optimal social cost

of the different algorithms which is the measure of representation used by Ebadian et al. [2022].

5.3 Evaluation Criteria
Ex Post Core Violation: Our main objective is to empirically measure the extent to which the

selection algorithms are close to the ex post core. Similar to the question we addressed in Section 4,

we aim to find the maximum value of 𝛼 that the core is violated under panels that derive from the

selection algorithms. To empirically measure ex post core violation, for each of the 100 instances,

we sample one panel from an algorithm and compute the core violation using Algorithm 2. We

note that this is not exactly equal to the worst-case core violation, but a very good approximation

of it. It is infeasible to check all panels of size 𝑘 (which can be as large as 𝑛𝑘 possibilities) and find

the one that maximizes the amount of core violation.

4
ESS Round 9: European Social Survey Round 9 Data (2018). Data file edition 3.1. Sikt - Norwegian Agency for Shared Services

in Education and Research, Norway – Data Archive and distributor of ESS data for ESS ERIC. doi:10.21338/NSD-ESS9-2018.
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Fig. 2. Ex post core violation of FairGreedy and Uniform with 𝑘 = 40
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Fig. 3. Approximation to the optimal social cost of FairGreedy and Uniform with with 𝑘 = 40

Approximation to Optimal Social Cost: Ebadian et al. [2022] use a different approach to measure

the representativeness of a panel by considering the social cost (sum of 𝑞-costs) over a panel. They

define the representativeness of an algorithm as the worst-case ratio between the social cost of the

optimal panel that minimizes the objective and the (expected) social cost obtained by the algorithm.

In their empirical analysis, they measure the average approximation to the optimal social cost of

an algorithm A over a set of instances I, defined as

1

|I |
∑︁

𝐼 ∈I
min𝑃 sc(𝑃 ; 𝐼 )
sc(A(𝐼 ); 𝐼 ) ,

where sc(𝑃 ; 𝐼 ) = ∑
𝑖∈[𝑛] 𝑐𝑞 (𝑖, 𝑃).

Since finding the optimal panel is a hard problem and the dataset and panel sizes are large, the

authors use a proxy for the minimum social cost, specifically, an implementation of the algorithm

of Kumar and Raichel [2013] for the fault-tolerant 𝑘-median problem that achieves a constant factor

approximation of the optimal objective — which is equivalent to minimizing the 𝑞-social cost. We

use the same approach and report the average approximation to the optimal social cost.

5.4 Experiment Results
Next, we present the results of our experiments for the two metrics described above. We report the

mean and the standard error of the mean for each metric, computed over 100 instances generated

based on both the Adult and ESS-UK datasets illustrated in figures 2 and 3.

Ex post Core Violation. In Adult dataset, we observe unbounded ex post core violation for Uniform
when 𝑞 ≤ 4. Specifically, for 𝑞 ∈ {1, 2, 3}, we observed unbounded core violation in 84%, 9%, and
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36% of the instances respectively. This happens since ∼8.3% of the population is mapped to a

single data point and that Uniform fails to select 𝑞 individuals from this group. When 𝑞 ≤ 3,

we have 𝑞/𝑘 ≤ 8.4%, and this cohesive group is entitled to select at least 𝑞 members of the panel

from themselves, which results in 𝑞-cost of 0 for them and an unbounded violation of the core.

However, FairGreedy captures this cohesive group and selects at least 𝑞 representatives from

them. Furthermore, we see significantly higher ex post core violation for Uniform compared to

FairGreedy for smaller values of 𝑞 (less than 12) and similar performance for larger values of 𝑞.

This is expected as FairGreedy tends to behave more similarly to Uniform as 𝑞 increases because

it selects from fewer yet larger groups (⌊𝑘/𝑞⌋ + 1 groups of size 𝑞𝑛/𝑘 to be exact).

We observe a similar pattern in ESS-UK that Uniform obtains worse ex post core violations

when 𝑞 is smaller and similar performance as FairGreedy for larger values of 𝑞. However, in

contrast to Adult, we do not observe similar unbounded violations for Uniform in ESS-UK. The

reason is that ESS-UK consists of 250 features (compared to the 5 we used from Adult) and any

data points represent at most 0.2% of the population. Thus, no group is entitled to choose enough

representatives from their own to significantly improve their cost or make it 0. The decline in

core violation for 𝑞 = 𝑘 happens as it measures the minimum improvement in cost over the

whole population, which is more demanding than lower values of 𝑞. Lastly, FairGreedy performs

consistently for all values of 𝑞 and achieves an ex post core violation less than 1.6 and 1.25 in Adult

and ESS-UK respectively.

Approximation to Optimal Social Cost. For ESS-UK, we observe a similar behaviour from both

Uniform and FairGreedy, while for Adult, FairGreedy outperforms Uniform for 𝑞 ∈ [3], which
is again due to FairGreedy capturing the cohesive group.

All considered, we observe that FairGreedy can maintain at least the same level or even better

optimal social cost approximation as Uniform would, while achieving significantly better empirical

core guarantees in the two datasets.

6 DISCUSSION
This work introduces a novel notion of proportional representation, called core, in sortition. We

show that uniform selection, under which representatives are chosen uniformly at random, achieves

almost ex ante core, but it fails to guarantee that any panel that it might return is in the core, i.e. it

is not in the ex post core. However, we present a selection algorithm, called Fair Greedy Capture,

that is almost in the ex post core and is also fair (all the individuals are selected with the same

probability). Lastly, we suggest an efficient auditing algorithm for measuring how much a given

panel violates the core.

There are many directions for future work. First, while we show that Fair Greedy Capture is

in the
5+
√
41

2
-core, we did not find a lower bound that indicates if this analysis is tight. Moreover,

we show that there is no fair algorithm that is in the ex post 𝛼-core for 𝛼 < 2. Closing the gap

between this lower bound and the bound that Fair Greedy Capture guarantees is another interesting

direction. Ebadian et al. [2022] show that while in some cases, fairness and a good approximation to

the optimal social cost are incompatible, by relaxing a bit the fairness requirement, it is possible to

find distributions that are almost fair and achieve good expected social cost. It would be interesting

to consider the trade-off between fairness and approximation to the ex post core, as well. How

much should we relax the fairness requirement to achieve ex post core for any value of 𝑞? Moreover,

Micha and Shah [2020] show that for 𝑞 = 1, Greedy Capture, that was introduced by Chen et al.

[2019], provides better guarantees for the Euclidean space. So, another interesting question is to see

if when the metric 𝑑 consists of usual distance functions such as norms 𝐿2, 𝐿1 and 𝐿∞, Fair Greedy
Capture can provide better guarantees.
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A RELATIONSHIP BETWEEN EX POST 𝛼-CORE AND 𝛼-CORE OVER EXPECTED COST
Proposition A.1. For any 𝑞 ∈ [𝑘], ex post 𝛼-core and 𝛼-core over expected cost are incomparable.

Proof. First, we show that there exists an instance and a selection algorithm that achieves ex

post core that instance, but violates 𝛼-core over expected cost for any 𝛼 ≥ 1.

Assume that 𝑛 is divisible by 𝑘 and 𝑞 is divisible by 3. Consider an instance where there are five

groups of individuals, 𝐴, 𝐵, 𝐶 , 𝐷 and 𝐸. The first three groups contain (𝑞 · 𝑛/𝑘 − 𝑞)/3 individuals
each, the fourth groups contains 𝑞 individuals and the last group contains 𝑛 − 𝑞 · 𝑛/𝑘 individuals.

The distance between individuals belonging to given groups is specified in the following table.

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴 0 2 2 1 ∞
𝐵 2 0 2 1 ∞
𝐶 2 2 0 1 ∞
𝐷 1 1 1 0 ∞
𝐸 ∞ ∞ ∞ ∞ 0

Suppose that a selection algorithm A𝑘,𝑞 returns with probability 1/3 a panel that contains 𝑞
individuals from group 𝐴 and the remaining representatives are from group 𝐸, with probability 1/3
a panel that contains 𝑞 individuals from group 𝐵 and the remaining representatives are from group

𝐸 and with probability 1/3 a panel that contains 𝑞 individuals from group 𝐶 and the remaining

representatives are from group 𝐸. All these panels are in the ex post core since there is no sufficiently

large group such that if they choose another panel, all of them reduce their distance. Now, we see

that for each 𝑖 in 𝐴 or 𝐵 or 𝐶 , it holds that

E𝑃∼A𝑘,𝑞
[𝑐𝑞 (𝑖, 𝑃)] =

2

3

· 2 = 4/3

while for each 𝑖 in 𝐷 , it holds that

E𝑃∼A𝑘,𝑞
[𝑐𝑞 (𝑖, 𝑃)] = 1.

If all the individuals in 𝐴, 𝐵, 𝐶 and 𝐷 choose a panel 𝑃 ′ that contains 𝑞 individuals from 𝐷 , then all

of them reduce their distance by a factor larger than 𝛼 .

Next, we show an instance and a selection algorithm that achieves core over expected Now,

suppose that 𝑛 > 𝑞2. Consider an instance where there are four groups of individuals, 𝐴, 𝐵, 𝐶 , 𝐷 .

The first group contains 𝑞 · 𝑛/𝑘 − 𝑞 individuals each, the second group contains 𝑞 individuals, the

third group contains 𝑞 individuals and the last group contains all the remaining individuals. The

distance between individuals belonging to given groups is specified in the following table.

𝐴 𝐵 𝐶 𝐷

𝐴 0 1 2 ∞
𝐵 1 0 1 ∞
𝐶 2 1 0 ∞
𝐷 ∞ ∞ ∞ 0

Suppose that a selection algorithm A𝑘,𝑞 returns with probability 1/2 a panel 𝑃1 that contains 𝑞
individuals from group 𝐶 and 𝑘 − 𝑞 individuals from group 𝐷 , and with the remaining probability

returns a panel 𝑃2 that contains 𝑞 individuals from group 𝑎 and 𝑘 − 𝑞 individuals from group 𝐷 .

Then, for each 𝑖 in 𝐴, we have that

E𝑃∼A𝑘,𝑞
[𝑐𝑞 (𝑖, 𝑃)] =

1

2

· 2 = 1
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while for each 𝑖 in 𝑏, we have that

E𝑃∼A𝑘,𝑞
[𝑐𝑞 (𝑖, 𝑃)] =

(
1 − 1

2

)
· 1 + 1

2

· (1 − 2) = 0.

Hence, this algorithm is in the core over expected cost. But when the algorithm returns 𝑃1, all the

individuals in 𝐴 and 𝐵 can reduce their cost by a factor of at least 𝛼 by choosing 𝑞 representatives

in 𝐵. □

B PROOF OF THEOREM 2.1
Proof. Consider a panel 𝑃 returned by uniform selection. According to Definition 1.3 of the

ex-post core, it suffices to show that for any arbitrary panel 𝑃 ′ of size 𝑘 , the 𝑞-cost of all individuals
cannot be improved by a factor of greater than 𝛼 = 2.

Let 𝑖1 and 𝑖2 be the two individuals in the population with the maximum distance between them.

Now, consider an arbitrary representative 𝑟 in panel 𝑃 ′. Without loss of generality, suppose that

𝑐𝑘 (𝑖1, 𝑃 ′) ≤ 𝑐𝑘 (𝑖2, 𝑃 ′). Then, we have
𝑐𝑘 (𝑖2, 𝑃) = max

𝑗∈𝑃
𝑑 (𝑖2, 𝑗) ≤ 𝑑 (𝑖1, 𝑖2) (by the choice of 𝑖1 and 𝑖2)

≤ 𝑑 (𝑖1, 𝑟 ) + 𝑑 (𝑟, 𝑖2) (triangle inequality)

≤ 𝑐𝑘 (𝑖1, 𝑃 ′) + 𝑐𝑘 (𝑖2, 𝑃 ′) (as 𝑟 ∈ 𝑃 ′)
≤ 2 · 𝑐𝑘 (𝑖2, 𝑃 ′).

This implies that for any panel 𝑃 inU𝑘 , 𝑉𝑞 (𝑃, 𝑃 ′, 2) < |𝑃 ′ | · 𝑛/𝑘 = 𝑛, since 𝑞-cost for 𝑖2 does not

improve by a factor of more than two. Thus, uniform selection is in the ex post 2-core. Furthermore,

this implies that we have E𝑃∼U𝑘
[𝑐𝑘 (𝑖2, 𝑃)] ≤ max𝑃∈U𝑘

𝑐𝑘 (𝑖2, 𝑃) ≤ 2 · 𝑐𝑘 (𝑖2, 𝑃 ′), which means

uniform selection is also in the 2-core over expected cost. This is because to violate 2-core over

expected cost, the 𝑞-cost of the entire population would have to improve by a factor of more than 2,

which does not hold for individual 𝑖2.

Next, we show that there exists an instance such that uniform selection is not in the ex post

𝛼-core for 𝛼 < 2. Consider the case that the individuals are assigned into three groups, 𝐴, 𝐵 and

𝐶 , with ⌊𝑘/2⌋, ⌈𝑘/2⌉, and 𝑛 − 𝑘 individuals, respectively. The distances between individuals is as

specified in the following table.

𝐴 𝐵 𝐶

𝐴 0 2 1

𝐵 2 0 1

𝐶 1 1 0

Panel 𝑃 consisting of all the 𝑘 people in groups𝐴 and 𝐵 is in the support of uniform selection. Then,

for 𝑖 ∈ 𝐴∪𝐵, 𝑐𝑘 (𝑖, 𝑃) = 2 as the 𝑘th closest representative in 𝑃 lies in the other group. For 𝑖 ∈ 𝐶 , the
𝑐𝑘 (𝑖, 𝑃) = 1. Now, consider panel 𝑃 ′ that consists of 𝑘 individuals from group 𝐶 . The 𝑞-costs of all

individuals improve by a factor of at least 2. Hence,U𝑘 violates ex post 2-core in this example. □

C PROOF OF THEOREM 2.2
Proof. Consider an instance in which there are ⌊𝑛/𝑘⌋ individuals in group 𝐴 and the remaining

individuals in group 𝐵. Suppose that the distance between two individuals in the same group is

0, and the distance between two individuals in different groups is 1. Since, ⌊𝑛/𝑘⌋ ≥ 𝑘 , uniform

selection has a non-zero probability of returning a panel where all representatives are from group𝐴.

In this scenario, for any 𝑞 ∈ [𝑘 − 1], the cost of all the individuals in group 𝐵 is equal to 1. However,

individuals in group 𝐵 are entitled to choose up to 𝑘 − 1 representatives among themselves, and
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if they do so, their cost becomes 0, resulting in an unbounded improvement in cost. Therefore,

uniform selection is not in the ex post 𝛼-core for any bounded 𝛼 .

Furthermore, individuals in group 𝐵 have positive expected costs under uniform selection, while

if they choose a panel among themselves, they would all have a cost of 0. Thus, uniform selection

is not in the 𝛼-core over expected cost for any bounded 𝛼 . □

D PROOF OF PROPOSITION 2.3
Proof. To satisfy ex ante core when 𝑞 = 𝑘 , by Definition 1.5, for any panel |𝑃 ′ | of size 𝑘 , we

should have

E𝑃∼D𝑘
[𝑉𝑞 (𝑃, 𝑃 ′, 𝛼)] < |𝑃 ′ | ·

𝑛

𝑘
= 𝑛.

Since𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) ≤ 𝑛, it suffices to show that there exists a non-zero probability that𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) < 𝑛.

Since,U𝑘 chooses any panel, including 𝑃 ′, with non-zero probability, there is a positive probability

that we realize panel 𝑃 = 𝑃 ′ for which 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) = 0 — since the 𝑞-costs do not strictly improve

for any individual. Thus, the expectation of the pairwise score is strictly less than 𝑛, satisfying the

ex ante core. □

E PROOF OF THEOREM 2.4
Proof. Consider a star graph with 𝑛 − 𝑞 leaves and an internal node. Suppose 𝑞 individuals

𝐼 = {𝑖1, . . . , 𝑖𝑞} lie on the internal node, and exactly one individual lies on each of the 𝑛 − 𝑞 leaves.

Individuals in 𝐼 have a distance of 0 from each other and a distance of 1 from [𝑛] \ 𝐼 ; and, the
distance between a pair of individuals from [𝑛] \ 𝐼 is equal to 2. These distances satisfy the triangle

inequality.

Let 𝑃 be an arbitrary panel of size 𝑘 that does not contain 𝑖1. We show that for 𝑃 ′ = 𝐼 and any

𝛼 < 2, we have that 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) ≥ 𝑛 − 𝑘. For any 𝑖 ∈ 𝐼 , it holds 𝑐𝑞 (𝑖, 𝑃) = 1 and 𝑐𝑞 (𝑖, 𝑃 ′) = 0 —

which is an unbounded improvement. For any individual 𝑖 in [𝑛] \ (𝐼 ∪ 𝑃), 𝑐𝑞 (𝑖, 𝑃) = 2 since their

𝑞th closest representative in 𝑃 would be on another leaf, while 𝑐𝑞 (𝑖, 𝑃 ′) = 1 — which yields a 2

factor improvement. Therefore, 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) ≥ |([𝑛] \ (𝐼 ∪ 𝑃)) ∪ 𝐼 | ≥ 𝑛 − |𝑃 | = 𝑛 − 𝑘 .
Under any fair selection algorithm, 𝑖1 is not included in the panel with probability 1 − 𝑘/𝑛. Thus,

we have that

E𝑃∼U𝑘
[𝑉𝑞 (𝑃, 𝑃 ′, 𝛼)] ≥ Pr[𝑖1 ∉ 𝑃] · (𝑛 − 𝑘) = (1 − 𝑘/𝑛) · (𝑛 − 𝑘) ≥ 𝑞 · 𝑛/𝑘 = |𝑃 ′ | · 𝑛/𝑘,

where the last inequality follows from the assumption that 𝑛 ≥ 2𝑘2/(𝑘 − 𝑞). □

F PROOF OF CHU–VANDERMONDE IDENTITY
Proof. We give a combinatorial argument for this identity. Suppose we want to select 𝑘 + 1

items out of a set of size 𝑛 + 1. For 𝑖 ∈ [1, 𝑛 + 1], let 𝑃𝑖 be the number of such subsets in which the

(𝑟 + 1)th picked item is item 𝑖 . As each subset is counted exactly once among 𝑃𝑖 ’s (at the position

of its (𝑟 + 1)th item), we have

∑𝑛+1
𝑖=1 𝑃𝑖 =

(
𝑛+1
𝑘+1

)
. Now, we calculate 𝑃𝑖 . Suppose the (𝑟 + 1)th item is 𝑖 .

Then, 𝑟 items should be selected from the first 𝑖 − 1 items and 𝑘 + 1 − (𝑟 + 1) = 𝑘 − 𝑟 items should

be selected from the last 𝑛 + 1 − 𝑖 items. Therefore, 𝑃𝑖 =
(
𝑖−1
𝑟

)
·
(𝑛−(𝑖−1)

𝑘−𝑟
)
. Then, we have(

𝑛 + 1
𝑘 + 1

)
=

𝑛+1∑︁
𝑖=1

𝑃𝑖 =

𝑛+1∑︁
𝑖=1

(
𝑖 − 1
𝑟

)
·
(
𝑛 − (𝑖 − 1)

𝑘 − 𝑟

)
=

𝑛∑︁
𝑗=0

(
𝑗

𝑟

)
·
(
𝑛 − 𝑗

𝑘 − 𝑟

)
. □
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G PROOF OF LEMMA 3.1
Proof. Consider a ball centered at 𝑖′ with radius 𝑐𝑞 (𝑖′, 𝑃). This ball contains at least 𝑞 represen-

tatives of 𝑃 . Hence, 𝑐𝑞 (𝑖, 𝑃) is less than or equal to the distance of 𝑖 to one of the 𝑞 representatives

that are included in 𝐵(𝑖′, 𝑐𝑞 (𝑖′, 𝑃)) which is at most 𝑑 (𝑖, 𝑖′) + 𝑐𝑞 (𝑖′, 𝑃). □

H PROOF OF THEOREM 3.3
Proof. We have already shown that Fair Greedy Capture is fair. Hence, we focus on showing its

approximation to the ex post
3+
√
17

2
-core, when 𝑞 = 1.

Let 𝑃 be any panel in the support of the distribution that algorithm returns. Suppose for contra-

diction that there exists 𝑆 ⊆ [𝑛] and a panel 𝑃 ′, with |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 , such that

∀𝑖 ∈ 𝑆, 𝑐𝑞 (𝑖, 𝑃) >
3 +
√
17

2

· 𝑐𝑞 (𝑖, 𝑃 ′).

As, we have described in Section 3, when 𝑞 = 1, we may assume without loss of generality that

|𝑃 ′ | = 1. Let 𝑃 ′ = {𝑖∗} and 𝑖′ be the individual in 𝑆 that has the largest distance from 𝑖∗. Since there
are sufficiently many individuals in the ball 𝐵(𝑖∗, 𝑑 (𝑖∗, 𝑖′)), it is possible that the algorithm detected

it during its execution. If this happened, this means that there is 1 representative in 𝑃 that is located

within this ball. Then, we get that 𝑖′ has a distance at most equal to the diameter of the ball from

her closest representative in 𝑃 which is at most 2 · 𝑑 (𝑖′, 𝑖∗). Hence, 𝑖′ cannot reduce her distance
by a multiplicative factor larger than 2 by choosing 𝑃 ′, and we arrive at a contradiction. On the

other hand, if the algorithm did not detect this ball during its execution, this means that some of

the individuals in 𝑇 have been disregarded before the ball centered at 𝑖∗ captures sufficiently many

of them. Hence, some individuals in 𝑇 have been captured from a different ball with radius at most

𝑑 (𝑖′, 𝑖∗). Suppose that 𝑖′′ is the first individual in 𝑇 that was captured from such a ball. Then, we

have that within this ball there is 1 representative in 𝑃 . Hence 𝑐𝑞 (𝑖′′, 𝑃) ≤ 2 · 𝑑 (𝑖′, 𝑖∗), since the
distance of 𝑖′′ form any other individual in this ball is at most equal to the diameter of the ball. We

consider the minimum multiplicative improvement of both 𝑖′ and 𝑖′′:

min

(
𝑐𝑞 (𝑖′, 𝑃)
𝑑 (𝑖′, 𝑖∗) ,

𝑐𝑞 (𝑖′′, 𝑃)
𝑑 (𝑖′′, 𝑖∗)

)
≤min

(
𝑑 (𝑖′, 𝑖′′) + 𝑐𝑞 (𝑖′′, 𝑃)

𝑑 (𝑖′, 𝑖∗) ,
𝑐𝑞 (𝑖′′, 𝑃)
𝑑 (𝑖′′, 𝑖∗)

)
(by Lemma 3.1)

≤min

(
𝑑 (𝑖′, 𝑖∗) + 𝑑 (𝑖∗, 𝑖′′) + 𝑐𝑞 (𝑖′′, 𝑃)

𝑑 (𝑖′, 𝑖∗) ,
𝑐𝑞 (𝑖′′, 𝑃)
𝑑 (𝑖′′, 𝑖∗)

)
≤min

(
𝑑 (𝑖′, 𝑖∗) + 𝑑 (𝑖∗, 𝑖′′) + 2 · 𝑑 (𝑖′, 𝑖∗)

𝑑 (𝑖′, 𝑖∗) ,
2 · 𝑑 (𝑖′, 𝑖∗)
𝑑 (𝑖′′, 𝑖∗)

)
(as 𝑐𝑞 (𝑖′′, 𝑃) ≤ 2 · 𝑑 (𝑖′, 𝑖∗) )

≤max

𝑧≥0
min(3 + 1/𝑧, 2 · 𝑧) = (3 +

√
17)/2.

To show that this bound is tight consider the case that 𝑛 = 28 and 𝑘 = 7. Assume that the

individuals form four isomorphic sets of 7 individuals each such that each set is sufficiently far

from all other sets. The distances between the individuals in one set are given in the table below.

Since 𝑘 = 7 and there are four isomorphic groups, there exists a group that has at most one

representative in some realized panel. Note that the algorithm first detects the balls that are

centered at 𝑎5 and have radius equal to 1− 𝜖 . Assume that when this ball was detected in the group

that has one representative in the panel, the algorithm chooses 𝑎7 to be included in the panel. Then,

in this group the individuals 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are eligible to choose 𝑎2 and all of them reduce their

distance by a multiplicative factor of at least (
√
17 + 3)/2 as 𝜖 goes to zero. □
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𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑎1 0 1 2

√
17−1
2

√
17+1
2
− 𝜖

√
17+1
2
− 𝜖

√
17+3
2
− 2 · 𝜖

𝑎2 1 0 1

√
17−3
2

√
17−1
2
− 𝜖

√
17−1
2
− 𝜖

√
17+1
2
− 2 · 𝜖

𝑎3 2 1 0

√
17−1
2

√
17+1
2
− 𝜖

√
17+1
2
− 𝜖

√
17+3
2
− 2 · 𝜖

𝑎4

√
17−1
2

√
17−3
2

√
17−1
2

0 1 − 𝜖 1 − 𝜖 2 − 2𝜖
𝑎5

√
17+1
2
− 𝜖

√
17+1
2
− 𝜖

√
17−1
2
− 𝜖 1 − 𝜖 0 0 1 − 𝜖

𝑎6

√
17+1
2
− 𝜖

√
17+1
2
− 𝜖

√
17−1
2
− 𝜖 1 − 𝜖 0 0 1 − 𝜖

𝑎7

√
17+3
2
− 2𝜖

√
17+3
2
− 2𝜖

√
17+1
2
− 2𝜖 2 − 2𝜖 1 − 𝜖 1 − 𝜖 10

I PROOF OF THEOREM 3.4
Proof. Let D𝑘,𝑞 be the distribution that Fair Greedy Capture returns. Suppose for contradiction

that there exists 𝑆 ⊆ [𝑛] and 𝑃 ′ ⊆ [𝑛], with |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 , such that

∀𝑖 ∈ 𝑆, E𝑃∼D𝑘,𝑞
[𝑐𝑞 (𝑖, 𝑃)] > 6 · 𝑐𝑞 (𝑖, 𝑃 ′) .

Let 𝑇1, . . . ,𝑇𝑚 be a partition of 𝑆 with respect to 𝑃 ′, as given in the second part of Lemma 2.6.

Since 𝑚 ≤ ⌊|𝑃 ′ |/𝑞⌋ and |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 , we conclude that there exists a part, say 𝑇ℓ , that has

size at least 𝑞 · 𝑛/𝑘 . Moreover, since, for each 𝑖 ∈ 𝑇ℓ , it holds that 𝑐𝑞 (𝑖, 𝑃 ′) ≤ 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) and
top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′) ≠ ∅ for some 𝑖∗ℓ ∈ 𝑇ℓ , we can conclude that for each 𝑖 ∈ 𝑇ℓ , 𝑑 (𝑖, 𝑖∗ℓ ) ≤
2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′), by considering a representative in top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′) and applying the triangle

inequality, i.e. 𝑑 (𝑖, 𝑖∗ℓ ) ≤ 𝑑 (𝑖, 𝑟𝑖 ) + 𝑑 (𝑟𝑖 , 𝑖∗ℓ ) ≤ 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′), where 𝑟𝑖 ∈ top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′) .
Thus, we conclude that there exists a ball centered at 𝑖∗ℓ that has radius 2·𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) and captures all

the individuals in𝑇ℓ . Since there are sufficiently many individuals in this ball, for any panel 𝑃 in the

support of D𝑘,𝑞 , we conclude that either there exist 𝑞 representatives in the ball 𝐵(𝑖∗ℓ , 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′))
(meaning that this ball was detected), or there exists an 𝑖′ in this ball that was captured from a

different ball with radius at most 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′). In the first case, we have that 𝑐𝑞 (𝑖∗ℓ , 𝑃) ≤ 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′),
while in the second case we have that

𝑐𝑞 (𝑖∗ℓ , 𝑃) ≤ 𝑑 (𝑖∗ℓ , 𝑖′) + 𝑐𝑞 (𝑖′, 𝑃) ≤ 6 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′)
where the first inequality follows from Lemma 3.1 and the second inequality follows from the

fact that 𝑖′ was captured from a ball of radius at most 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃), and hence the distance of 𝑖′

to any representative in this ball is at most 4 · 𝑐𝑞 (𝑖∗ℓ , 𝑃) and the fact that 𝑑 (𝑖∗ℓ , 𝑖′) ≤ 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′).
Hence, for any 𝑃 in the support of the algorithm, we have that 𝑐𝑞 (𝑖∗ℓ , 𝑃) ≤ 6 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′), and hence

E𝑃∼D𝑘,𝑞
𝑐𝑞 (𝑖∗ℓ , 𝑃) ≤ 6 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) which is a contradiction. □

J PROOF OF THEOREM 4.1
Proof. Suppose for contradiction that while the algorithm returns 𝛼 , there exists 𝑆 ⊆ [𝑛] and

𝑃 ′ ⊆ [𝑛], with |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 , such that

∀𝑖 ∈ 𝑆, 𝑐𝑞 (𝑖, 𝑃∗) > (3 · 𝛼 + 2) · 𝑐𝑞 (𝑖, 𝑃 ′).
First, note that if the algorithm outputs 𝛼 , this means that for every 𝑗 ∈ [𝑛], it holds that

𝑉𝑞 (𝑃, 𝑃 𝑗 , 𝛼) < |𝑃 𝑗 | · 𝑛/𝑘, (3)

as otherwise the algorithm would output a value strictly larger than 𝛼 .

Let 𝑇1, . . . ,𝑇𝑚 be a partition of 𝑆 with respect to 𝑃 ′, as given in the second part of Lemma 2.6.

Since 𝑚 ≤ ⌊|𝑃 ′ |/𝑞⌋ and |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 , we conclude that there exists a part, say 𝑇ℓ , that has

size at least 𝑞 · 𝑛/𝑘 . Moreover, since, for each 𝑖 ∈ 𝑇ℓ , it holds that 𝑐𝑞 (𝑖, 𝑃 ′) ≤ 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) and
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𝛿 ← 0; 𝑃 ← ∅;𝐶 ← ∅; 𝑁 ← [𝑛];
while 𝑁 ≠ ∅ do

Smoothly increase 𝛿 ;

while ∃ 𝑗 ∈ 𝐶 such that |𝐵( 𝑗, 𝛿) ∩ 𝑁 | ≥ 1 do
𝑊𝑗 ←𝑊𝑗 ∪ 𝐵( 𝑗, 𝛿);
𝑁 ← 𝑁 \ 𝐵( 𝑗, 𝛿);

end
while ∃ 𝑗 ∈ 𝑁 such that |𝐵( 𝑗, 𝛿) ∩ 𝑁 | ≥ ⌈𝑞 · 𝑛/𝑘⌉ do

𝑃 𝑗 ← { 𝑗} ∪ 𝑞 − 1 closest neighbors of 𝑗 ;
𝑃 ← 𝑃 ∪ 𝑃 𝑗 ;
𝐶 ← 𝐶 ∪ { 𝑗};
𝑊𝑗 ← 𝐵( 𝑗, 𝛿);
𝑁 ← 𝑁 \ 𝐵( 𝑗, 𝛿);

end
end

top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′) ≠ ∅ for some 𝑖∗ℓ ∈ 𝑇ℓ , we can conclude that for each 𝑖 ∈ 𝑇ℓ , 𝑑 (𝑖, 𝑖∗ℓ ) ≤
2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′), by considering a representative in top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′) and applying the triangle

inequality, i.e. 𝑑 (𝑖, 𝑖∗ℓ ) ≤ 𝑑 (𝑖, 𝑟𝑖 ) + 𝑑 (𝑟𝑖 , 𝑖∗ℓ ) ≤ 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′), where 𝑟𝑖 ∈ top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′). This
means there exists a ball centered at 𝑖∗ℓ that has radius 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) and captures all the individuals

in𝑇ℓ . Now, note that there exists 𝑖
′ ∈ 𝑇ℓ such that 𝛼 · 𝑐𝑞 (𝑖′, 𝑃𝑖∗ ) ≥ 𝑐𝑞 (𝑖′, 𝑃), since otherwise for each

𝑖 ∈ 𝑇ℓ would hold that 𝛼 · 𝑐𝑞 (𝑖′, 𝑃𝑖∗ ) < 𝑐𝑞 (𝑖′, 𝑃) and then 𝑉𝑞 (𝑃, 𝑃𝑖∗ , 𝛼) ≥ |𝑞 | · 𝑛/𝑘 = |𝑃𝑖∗ | · 𝑛/𝑘 which

contradicts Equation (3). Hence,

𝑐𝑞 (𝑖∗ℓ , 𝑃) ≤ 𝑑 (𝑖∗ℓ , 𝑖′) + 𝑐𝑞 (𝑖′, 𝑃) ≤ 𝑑 (𝑖∗ℓ , 𝑖′) + 𝛼 · 𝑐𝑞 (𝑖′, 𝑃𝑖∗ℓ ) ≤ 𝑑 (𝑖∗ℓ , 𝑖′) + 𝛼 · (𝑑 (𝑖∗ℓ , 𝑖′) + ·𝑐𝑞 (𝑖∗ℓ , 𝑃𝑖∗ℓ )
≤ (3 · 𝛼 + 2) · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) .

where the first and the third inequalities follows from Lemma 3.1 and the last inequality follows

from the facts that for each 𝑖 ∈ 𝑇 , 𝑑 (𝑖, 𝑖∗ℓ ) ≤ 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′), and 𝑐𝑞 (𝑖∗ℓ , 𝑃𝑖∗ℓ ) ≤ 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) for each 𝑃 ′

since 𝑃𝑖∗ℓ consists of the 𝑞 closest neighbors of 𝑖∗ℓ . □

K AUDITING USING GREEDY CAPTURE
We first find a panel 𝑃 using Algorithm 3 which will server as the means to measure the maximum

reduce to the cost that any individual in a subset of individuals can have by choosing a different

panel with size proportional to the size of the subset. This algorithm is similar to Greedy Capture

by Chen et al. [2019] with the difference that every time that a ball captures ⌈𝑞 · 𝑛/𝑘⌉ individuals,
the center along with its 𝑞 − 1 closest representatives are included in the panel. We denote with 𝑃 𝑗

the set of the 𝑞 individuals that are included in the panel when the ball that centered at 𝑗 captures

⌈𝑞 · 𝑛/𝑘⌉ individuals for first time. When this happens, 𝑗 is added to a set 𝐶 that contains all the

individuals whose ball caused to the addition of 𝑞 individuals in the panel. Lastly, we denote with

𝑊𝑗 the set that contains all the individuals that were disregarded because they were captured from

the ball centered at 𝑗 . In the theorem below, we show that if we cannot find a sufficient large subset

of some𝑊𝑗 such that the reduce of the cost for each individual in the subset is at least 𝛼 under 𝑃 𝑗 ,

then 𝑃 is in the expected (4 · 𝛼 + 6)-core.
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Theorem K.1. If for no 𝑃 𝑗 , there is 𝑆 ′ ⊆ 𝑊𝑗 with |𝑆 ′ | ≥ 𝑞 · 𝑛/𝑘 such that for each 𝑖 ∈ 𝑆 ′,
𝛼 · 𝑐𝑞 (𝑖, 𝑃 𝑗 ) < 𝑐𝑞 (𝑖, 𝑃), then for any 𝑃 ′ with |𝑃 ′ | ≥ 𝑞, we get that

𝑉𝑞 (𝑃, 𝑃 ′, 4 · 𝛼 + 6) ≤ |𝑃 ′ | · 𝑛/𝑘.

Proof. Suppose for contradiction that while for no 𝑃 𝑗 , there is 𝑆
′ ⊆𝑊𝑗 with |𝑆 ′ | ≥ 𝑞 · 𝑛/𝑘 such

that for each 𝑖 ∈ 𝑆 ′, 𝛼 · 𝑐𝑞 (𝑖, 𝑃 𝑗 ) < 𝑐𝑞 (𝑖, 𝑃), there exists 𝑆 ⊆ [𝑛] and 𝑃 ′ ⊆ [𝑛] , with |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘
and |𝑃 ′ | ≥ 𝑞, such that

∀𝑖 ∈ 𝑆, 𝑐𝑞 (𝑖, 𝑃∗) > (4 · 𝛼 + 6) · 𝑐𝑞 (𝑖, 𝑃 ′).
Let 𝑇1, . . . ,𝑇𝑚 be a partition of 𝑆 with respect to 𝑃 ′, as given in the second part of Lemma 2.6.

Since 𝑚 ≤ ⌊|𝑃 ′ |/𝑞⌋ and |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 , we conclude that there exists a part, say 𝑇ℓ , that has

size at least 𝑞 · 𝑛/𝑘 . Moreover, since, for each 𝑖 ∈ 𝑇ℓ , it holds that 𝑐𝑞 (𝑖, 𝑃 ′) ≤ 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) and
top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′) ≠ ∅ for some 𝑖∗ℓ ∈ 𝑇ℓ , we can conclude that for each 𝑖 ∈ 𝑇ℓ , 𝑑 (𝑖, 𝑖∗ℓ ) ≤
2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′), by considering a representative in top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′) and applying the triangle

inequality, i.e. 𝑑 (𝑖, 𝑖∗ℓ ) ≤ 𝑑 (𝑖, 𝑟𝑖 ) + 𝑑 (𝑟𝑖 , 𝑖∗ℓ ) ≤ 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′), where 𝑟𝑖 ∈ top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃 ′). This
means there exists a ball centered at 𝑖∗ℓ that has radius 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) and captures all the individuals

in𝑇ℓ . Since there are sufficiently many individuals in this ball, it is possible that Algorithm 3 detects

a ball centered at 𝑖∗ℓ with radius 𝑟 ≤ 2 ·𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) that contains at least 𝑞 ·𝑛/𝑘 individuals that has not

been disregarded yet. If this happened then the algorithm includes 𝑞 representatives from 𝐵(𝑖∗ℓ , 𝑟 )
in 𝑃𝑖∗ℓ and sets𝑊𝑖∗ℓ

= 𝐵(𝑖∗ℓ , 𝑟 ). Since |𝐵(𝑖∗ℓ , 𝑟 ) | ≥ 𝑞 · 𝑛/𝑘 , from the initial assumption that for no 𝑃 𝑗 ,

there is 𝑆 ′ ⊆ 𝑊𝑗 with |𝑆 ′ | ≥ 𝑞 · 𝑛/𝑘 such that for each 𝑖 ∈ 𝑆 ′, 𝛼 · 𝑐𝑞 (𝑖, 𝑃 𝑗 ) < 𝑐𝑞 (𝑖, 𝑃), we get that
there exists 𝑖′ ∈ 𝐵(𝑖∗ℓ , 𝑟 ) such that 𝑐𝑞 (𝑖′, 𝑃) ≤ 𝛼 · 𝑐𝑞 (𝑖′, 𝑃𝑖∗ℓ ). Hence,

𝑐𝑞 (𝑖∗ℓ , 𝑃) ≤ 𝑑 (𝑖∗ℓ , 𝑖′) + 𝑐𝑞 (𝑖′, 𝑃) ≤ 𝑑 (𝑖∗ℓ , 𝑖′) + 𝛼 · 𝑐𝑞 (𝑖′, 𝑃𝑖∗ℓ ) ≤ 𝑑 (𝑖∗ℓ , 𝑖′) + 𝛼 · (𝑑 (𝑖∗ℓ , 𝑖′) + ·𝑐𝑞 (𝑖∗ℓ , 𝑃𝑖∗ℓ ))
≤ 𝑟 + 𝛼 · (𝑟 + 𝑟 )
≤ (4 · 𝛼 + 2) · 𝑐𝑞 (𝑖∗ℓ , 𝑃 ′) .

On the other hand, if the algorithm did not find this ball during its execution, this means that

some of the individuals in𝑇ℓ have been disregarded before the ball centered at 𝑖
∗
ℓ captures sufficiently

many of them, which in its turn means that some individuals in 𝑇ℓ have been captured from a

different ball with radius at most 2 · 𝑐𝑞 (𝑖∗, 𝑃 ′). Suppose that 𝑖′ is the first individual in 𝑇ℓ that

was captured from a different ball centered at 𝑐 with radius 𝑟 . Since, |𝐵(𝑐, 𝑟 ) | ≥ 𝑞 · 𝑛/𝑘 , from
the assumption that for no 𝑃 𝑗 , there is 𝑆 ′ ⊆ 𝑊𝑗 with |𝑆 ′ | ≥ 𝑞 · 𝑛/𝑘 such that for each 𝑖 ∈ 𝑆 ′,

𝛼 · 𝑐𝑞 (𝑖, 𝑃 𝑗 ) < 𝑐𝑞 (𝑖, 𝑃), we know that there exists 𝑖′′ ∈ 𝐵(𝑐, 𝑟 ) such that 𝑐𝑞 (𝑖′′, 𝑃) ≤ 𝛼 · 𝑐𝑞 (𝑖′′, 𝑃ℓ ).
Hence,

𝑐𝑞 (𝑖∗ℓ , 𝑃) ≤ 𝑑 (𝑖∗ℓ , 𝑖′′) + 𝑐𝑞 (𝑖′′, 𝑃) ≤ 𝑑 (𝑖∗ℓ , 𝑖′′) + 𝛼 · 𝑐𝑞 (𝑖′′, 𝑃ℓ ) ≤ 𝑑 (𝑖∗ℓ , 𝑖′) + 𝑑 (𝑖′, 𝑖′′) + 𝛼 · 𝑐𝑞 (𝑖′′, 𝑃ℓ )
≤ 2 · 𝑐𝑞 (𝑖∗, 𝑃 ′) + 2 · 𝑟 + 𝛼 · 2 · 𝑟
≤ (4 · 𝛼 + 6) · 𝑐𝑞 (𝑖∗, 𝑃 ′).

where the fourth inequality follows from the fact that both 𝑖′ and 𝑖′′ are captured from 𝐵(𝑐, 𝑟 ), and
the fact that there are at least 𝑞 representatives in 𝐵(𝑐, 𝑟 ). □
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