
Latent Stochastic Differential Equations

Xuechen Li, Leonard Wong, Ricky Chen, David Duvenaud
 University of Toronto, Vector Institute,

Google Brain Toronto

brain

Summary
• New-ish model class for continuous-time generative

models:

• Neural net dynamics and likelihoods

• Well-defined model, tractable marginal likelihood
estimates

• 2020: Adjoint sensitivity method for SDEs.

• O(1) training memory cost, adaptive compute

• 2021: Asymptotically-zero variance gradient estimator

• Exploring this model class: Time series, BNNs, multi-scale

Motivation: Irregularly-timed datasets

• Most patient data, business data irregularly sampled through time.

• Most large parametric models in ML are discrete time: RNNs, HMMs, DKFs

• How to handle these data without binning?

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t z(t + h) = z(t) + hf(z, t)
• Euler approximates with small steps:

+

• Initial-value problem: given , find:

Autoregressive continuous-time
Standard RNN: ODE-RNN:

Limitations of RNN-based models
• Hidden state h represents

model's belief about system's
future, not the same thing as
system state.

• Not a well-defined generative
model.

• No explicit use of Bayes' rule,
just makes predictions (but
robust to mis-specification!)

Latent variable models
• Kalman Filters, Hidden Markov Models, Deep Markov Models

• specify p(z), p(x|z)

• Can integrate out z however you want!

• Recognition net can give approx. posterior
https://pyro.ai/examples/dmm.html

p(x) = ∫ p(x |z)p(z)dz

[Krishnan, Shalit & Sontag '15]

https://pyro.ai/examples/dmm.html

• z(t) is state of system at time t

• Need to approximate posterior
p(z_t0 | x_t1…)

• Well-defined state at all times,
dynamics separate from inference

ODE latent-variable model

zt0
zt1 ztNzti

ODE Solve(zt0 , f, ✓f , t0, ..., tN)

x̂t0 x̂t1 x̂ti x̂tN

Physionet: Predictive accuracy

Limitations of Latent ODEs

• Deterministic dynamics!

• State size grows with
sequence length

• Special time t0

zt0
zt1 ztNzti

ODE Solve(zt0 , f, ✓f , t0, ..., tN)

x̂t0 x̂t1 x̂ti x̂tN

Stochastic transition dynamics
• Nonlinear latent variable with

noise at each step:

• Could add more steps between
observations.

• Infinitesimal limit some sort of
stochastic ODE…?

zt+1 = zt + fθ(zt) + ϵ

https://pyro.ai/examples/dmm.html

https://pyro.ai/examples/dmm.html

Stochastic Differential Equations
dz
dt

= f(z(t)) + ϵ“ ”

dz = f(z(t))dt + σ(z(t))dB(t)

• Implicit distribution over functions.

Drift Diffusion

What are SDEs good for?
• natural fit for many small, unobserved interactions:

• motion of molecules in a liquid

• allele frequencies in a gene pool

• prices in a market

• Interactions don’t need to be Gaussian if CLT kicks in

• Let’s put neural nets in SDE dynamics and fit to data!

dz = fθ(z(t))dt + σθ(z(t))dB(t)

How to fit ODE params?

• Don’t backprop through solver: High memory cost, numerical error

• Alexey Radul: Approximate the derivative, don’t differentiate the
approximation!

∂L
∂θ

= ?

L(θ)

Continuous-time Backpropagation

∂L
∂zt

=
∂L

∂zt+1

∂f(zt, θ)
∂zt

∂L
∂θ

= ∑
t

∂L
∂zt

∂f(zt, θ)
∂θ

Standard Backprop:

∂
∂t

∂L
∂z(t)

=
∂L

∂z(t)
∂f(z(t), θ)

∂z

∂L
∂θ

= ∫
t0

t1

∂L
∂z(t)

∂f(z(t), θ)
∂θ

dt

Adjoint sensitivities:
(Pontryagin et al., 1962):• Can build adjoint dynamics with autodiff,

compute gradients with second ODE
solve:

def f_aug([z, a, d], t):
return [f, -a*df/dz, -a*df/dθ)

[z0, dL/dz(t0), dL/dθ] =
ODESolve(f_aug,  
[z(t1), dL/dz(t1), 0], t1, t0)

O(1) Memory Gradients

• No need to store activations,
just run dynamics backwards
from output.

• Easy to run ODE backwards,
just run negate dynamics and
time:

• back_f(z, t) = -f(z, -t)

Adjoint State
State

• Final algorithm for ODE grads:
Solve one big augmented
system backwards in time.

• Mostly worked out by
Pontryagin (1961)

Why not repeat same trick?

• If an SDE is just “an ODE with noise”, why
not use same adjoint method?

• "Unfortunately, there is no straightforward
way to port this construction to SDEs." -
Tzen & Raginsky (2019)

• (alternative: Rough path theory. ask later)

What is “running an SDE backwards”?
• Me: Let’s just slap negative signs on

everything and hope for the best

• Xuechen Li and Leonard Wong: What
does that even mean?

• Much later: Nvm that’s correct.

• Builds on Kunita (2019) dz = − f(z(−t))dt + σ(z(−t))dB(−t)

Need to store noise
• Reparameterization trick: Use

same noise from forward pass
on reverse pass

• Infinite reparameterization
trick: Use same Brownian
motion sample on forward
and reverse passes.

• Need to sample entire
function

Virtual Brownian Tree

• Can ‘zoom in’ arbitrarily close at any point.

• O(1) memory, O(log(1/eps)) time

• splittable random seed ensures all entire sample is consistent

Time and memory cost

• Time more like O(L) when dynamics are expensive

• Can now fit large SDE models by gradient descent!

Latent-variable model

• Can handle arbitrary likelihoods. Infinite-dimensional VAE.

Latent SDE Model

• Generative model (decoder) defined implicitly by:

• an SDE

• A likelihood (noise model) p(x_t | z_t)

dzp = fθ(z(t))dt + σθ(z(t))dB(t)

Variational inference
• Recognition model (encoder) takes in data, outputs:

• Distribution over initial state q(z0 | x1.. xN)

• Params of SDE defining approximate posterior

dzq = fϕ(z(t))dt + σθ(z(t))dB′ (t)

• Like Neural Processes, but actually a
well-defined probabilistic model

Variational inference
• To optimize ELBO, need unbiased estimate of KL divergence between

• prior:

• approximate posterior:

dzp = fθ(z(t))dt + σθ(z(t))dB(t)

dzq = fϕ(z(t))dt + σθ(z(t))dB′ (t)

u(t) =
fθ(z(t)) − fϕ(z(t))

σθ(z(t))

2

2

1D Latent SDE

• Ornstein-Uhlenbeck prior,
Laplace likelihood

• Posterior SDE steers
sample paths to data

Latent SDEs:
An unexplored model class

• Define implicit prior + posterior over functions

• Define observation likelihoods. Anything
differentiable wrt latent state (e.g. text models!)

• Train everything with stochastic variational inference.

• Can use adaptive-step SDE solvers.

• Should scale to millions of params, huge states.
Can use adaptive Milstein solver (only diagonal
noise).

GPs vs Markov SDEs

• mean and kernel funcs

• Not closed over
marginal transforms.
 exp(f(x) ~ GP)
 not a GP

• Multi-dim input fine

• Drift and diffusion funcs

• Closed over marginal
transforms.
 exp(f(x) ~ SDE)
 still an SDE

• Only single-dim input

Early latent SDE results: Mocap
• 50D data, 6D latent space, sharing dynamics and recognition params

across time series (11000 params)

SVI Gradient variance
• Sticking the landing [Roeder, Wu, Duvenaud, NIPS 2017]

SVI gradient estimator whose variance goes to zero as q(z) -> p(z|x)

• New for ICML 2021: We extended
"Sticking the Landing" to SDEs

• Reminder: Approx posterior can be
arbitrarily close to true posterior!

SVI Gradient variance

Takeaway
• Large SDE-based latent-variable models now

practical-ish

• Should handle real irregularly-sampled time series!

• Can condition on time of observations

• Can answer any query, not just forward prediction

• In practice, start with an RNN!

• Code: https://github.com/google-research/torchsde

https://github.com/google-research/torchsde

Next steps
• Modeling:

• Multi-timescale SDE - skip low-level details

• Jump processes, SPDEs

• Applications:

• Population genetics, finance,
epidemiology? User traces? Let's talk!

• Infinitely deep Bayesian neural networks

Building an infinitely-deep BNN
• Start with a ResNet:

ht+ϵ = ht + ϵfh(ht, wt)
• Take limit as eps -> 0, number of layers

grows.

• Given a process over weights,
activations h follow a random ODE:

dht = fh(ht, wt)

Building an infinitely-deep BNN
• Prior on weights is a OU process

dwt = − wtdt + dBt

• Define approximate posterior on weights:

dwt = fw(wt, ϕ)dt + dBt

• Likelihood depends on activation at time 1:

p(y |x, w) = 𝒩(y |h1, w)

Building an infinitely-deep BNN
• Can sample weights from approx posterior and

evaluate network output in one SDE solve:

d [wt

ht] = [fw(wt, ϕ)
fh(ht, wt)] dt + [I

0] dBt

• Start h_0 at input to neural network x.

• h_1 is output of neural network

https://files.slack.com/files-pri/TAC4QK3L3-F01MBM7EHCH/download/predictive.png
https://files.slack.com/files-pri/TAC4QK3L3-F01MBM7EHCH/download/predictive.png
https://files.slack.com/files-pri/TAC4QK3L3-F01MBM7EHCH/download/predictive.png
https://files.slack.com/files-pri/TAC4QK3L3-F01MBM7EHCH/download/predictive.png

What are SDEs good for?Training an infinitely-deep BNN

Practical Advantages (in theory)
• Continuous-time formulation allows

use of adaptive SDE solvers.

• Can adjust adaptive solver
tolerance at test time, trades off
speed vs precision

• Arbitrarily-flexible approx posterior
with no O(D^3) scaling.

• (True scaling unknown!?)

At least scales to CIFAR10

• Conjecture: Infinitesimal time limit of Markov models give SDE with variable dependence
same as parents in graph.

Multi-Scale Continuous-time

Example: Infant Electrocardiograms

• Jointly compute
p(ECG of time N, ECG
of time N + 10000)

• Phase of ECG in
between are irrelevant,
heart size is sufficient
statistic

Example: Infant Electrocardiograms

Example: Infant Electrocardiograms

Example: Infant Electrocardiograms

Example: Infant Electrocardiograms

Hope #1: Low levels Mix Fast

• Away from observations, fine-grained details usually uncorrelated given
high-level properties. I.e. conditional independence of fine given coarse

• E.g. in some GPs, we mix back to prior away from data

• Not always true (e.g. in computers) but that situation is always hard

Skipping over irrelevant details
• Expensive part is simulation of finer levels

• Away from data, these variables have KL of 0
given coarse grained trajectories!

Skipping over irrelevant details
• Expensive part of ELBO is detailed simulation

of finer levels away from data

• But these variables have KL of 0 given coarse
grained trajectories!

Skipping over irrelevant details
• Expensive part of ELBO is detailed simulation

of finer levels away from data

• But these variables have KL of 0 given coarse
grained trajectories!

Skipping over irrelevant details
• Expensive part of ELBO is detailed simulation

of finer levels away from data

• But these variables have KL of 0 given coarse
grained trajectories!

Refinement: Auxiliary Variables
• Why are there extraneous coarse-grained variables in our model?

• Should only exist in approximation.

• E.g. In Ising model, temperature isn't a separate variable in model

• Answer: Put only fine-grained variables in model p, both sets in approx q

• Standard trick in variational inference (auxiliary vars in variational dist)

• Can have as many time scales as we want.

Unsolved Problems
• How to estimate marginals to sample from when we ``fade back in''

• How to regularize approx. posterior dynamics to be fast to mix?

Learning Differential Equations that are
Easy to Solve

Jacob Kelly*, Jesse Bettencourt*, Matthew
Johnson, David Duvenaud

Thanks!

Xuechen Li, Winnie Xu, Leonard Wong, Ricky Chen, Yulia Rubanova,
David Duvenaud

brain

Connections to BNN theory

• "Liberty or Depth" (Farquhar, Smith, Gal, 2020): Infinite depth
mean-field gives arbitrarily good predictive posteriors?

• Mean-field (Brownian motion) sufficient in SDEs for arbitrary
expressiveness. But true and approximate posterior not Gaussian.

dz = f(z(t))dt + σ(z(t))dB(t)

Putting it all together:
• Break model into coarse (slow) and fine (fast) vars.

• When sampling:

• Recognition nets look at local data and give
posterior over coarse and fine variables

• Sample entire coarse trajectory (only using
approximate dynamics, never real ones!)

• Sample fine trajectory starting just before and
ending just after areas with data

• Gives (almost) unbiased estimates of ELBO and
predicted trajectories

Poisson Process
Likelihoods

• Model p(obs, time)
instead of p(obs | time)

• Non-intervention model

• E.g. hurricanes

Achieving the dream

• Jointly learn true fine-grained expensive model and flexible approximation
strategy from raw fine-grained data.

• Auxiliary coarse-grained variables might be interpretable

• Can combine high-level and low-level info automatically?

Example: Infant Electrocardiograms

Example: Infant Electrocardiograms

Dex: a typed array language built for speed
def map (f : a->b) (xs : n=>a) : n=>b =
 for i. f x.i

Flexibility
● Ragged and sparse arrays
● Algebraic data types (e.g. Value|NaN|Missing)

Correctness
● Dependent types for compile-time debugging (e.g.

shape checking)
● Composable, zero-cost abstractions

(e.g. run on any vector space)

Performance
● Fast nested loops + gradients (e.g. CTC loss)
● CPU, GPU, TPU backends, JAX interop

Ray tracer written in Dex
google-research.github.io/dex-lang/raytrace.html

https://google-research.github.io/dex-lang/raytrace.html

• Tzen + Raginski: Deep LVMs
become SDEs in the limit.
Variational inf framework. Forward-
mode autodiff.

• Peluchetti + Favaro: Worked out
SDE corresponding to infinitely-
deep convnets with uncertain
weights

• Jia + Benson: Added countably
many discrete jumps to latent ODEs

Related work 1

• Thomas Ryder, Andrew Golightly, A Stephen
Mc-Gough, and Dennis Prangle. Black-box
variational inference for stochastic differential
equations.

• Pashupati Hegde, Markus Heinonen, Harri
Lähdesmäki, and Samuel Kaski. Deep learning
with differential gaussian process flows.

• Markus Heinonen, Cagatay Yildiz, Henrik Man-
nerström, Jukka Intosalmi, and Harri
Lähdesmäki. Learning unknown ODE models
with gaussian processes.

• C. Garcıa, A. Otero, P. Felix, J. Presedo, and D.
Marquez. Nonparametric estimation of
stochastic differential equations with sparse
Gaussian processes.

Related work 2
• All use Euler discretizations.

Not clear what limiting
algorithm is (e.g. enforces
invariants?), and not
memory-efficient.

• Not even going to discuss
methods that require solving
a PDE - not scalable.

• We want to use adaptive,
(high-order?) SDE solvers.

Limitations
• SDE solvers generally lower-order convergence

than ODE solvers

• (e.g. Milstein order 1 vs RK4)

• Non-diagonal noise requires Levy areas

• Diagonal noise requires funny parameterization

• Need jump-style noise? (e.g. hit by a car)

• Only one input dimension (unlike GPs)

From “Handbook of Statistics”, Mubayi et al, 2019.
Line means "can be used to construct", but not "contains"

SDEs vs GPs

• Distinct sets of
priors over
functions

• Easy to
construct non-
Gaussian SDE

Mujoco: State versus Belief states

• States are more
interpretable than
belief states

• True dynamics
are deterministic

• Can do VAE-style inference with an RNN encoder

An ODE latent-variable model

Latent variable models

• Can use a neural net to guess optimal
variational params from data

• Structure of recognition net an
implementation detail

• Only there to speed things up.

• Just needs to output a normalized
distribution over z

https://pyro.ai/examples/dmm.html

https://pyro.ai/examples/dmm.html

Multi-scale RNNs: 2016

Multi-scale Markov models: 2020

Problems with Discrete Time
• Need to choose discretizations,

mixing times without gradients

• Probably want state-dependent
step sizes

• Finest scale determined by sampling
rate

• Can't apply to irregularly sampled
data easily

Exact
Euler
Adaptive Solver

