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Summary
• New-ish model class for continuous-time generative 

models: 

• Neural net dynamics and likelihoods 

• Well-defined model, tractable marginal likelihood 
estimates 

• 2020:  Adjoint sensitivity method for SDEs. 

• O(1) training memory cost, adaptive compute 

• 2021: Asymptotically-zero variance gradient estimator 

• Exploring this model class: Time series, BNNs, multi-scale



Motivation: Irregularly-timed datasets

• Most patient data, business data irregularly sampled through time. 

• Most large parametric models in ML are discrete time: RNNs, HMMs, DKFs 

• How to handle these data without binning?



Ordinary Differential Equations
• Vector-valued z changes in time 

• Time-derivative:

z

t z(t + h) = z(t) + hf(z, t)
• Euler approximates with small steps:

+

• Initial-value problem: given          , find:



Autoregressive continuous-time
Standard RNN: ODE-RNN:



Limitations of RNN-based models
• Hidden state h represents 

model's belief about system's 
future, not the same thing as 
system state. 

• Not a well-defined generative 
model. 

• No explicit use of Bayes' rule, 
just makes predictions (but 
robust to mis-specification!)



Latent variable models
• Kalman Filters, Hidden Markov Models, Deep Markov Models 

• specify p(z), p(x|z) 

• Can integrate out z however you want! 

• Recognition net can give approx. posterior
https://pyro.ai/examples/dmm.html

p(x) = ∫ p(x |z)p(z)dz

[Krishnan, Shalit & Sontag '15]

https://pyro.ai/examples/dmm.html


• z(t) is state of system at time t 

• Need to approximate posterior 
p(z_t0 | x_t1… ) 

• Well-defined state at all times, 
dynamics separate from inference

ODE latent-variable model

zt0
zt1 ztNzti

ODE Solve(zt0 , f, ✓f , t0, ..., tN )

x̂t0 x̂t1 x̂ti x̂tN





Physionet: Predictive accuracy



Limitations of Latent ODEs

• Deterministic dynamics! 

• State size grows with 
sequence length 

• Special time t0

zt0
zt1 ztNzti

ODE Solve(zt0 , f, ✓f , t0, ..., tN )

x̂t0 x̂t1 x̂ti x̂tN



Stochastic transition dynamics
• Nonlinear latent variable with 

noise at each step: 

• Could add more steps between 
observations. 

• Infinitesimal limit some sort of 
stochastic ODE…?

zt+1 = zt + fθ(zt) + ϵ

https://pyro.ai/examples/dmm.html

https://pyro.ai/examples/dmm.html


Stochastic Differential Equations
dz
dt

= f(z(t)) + ϵ“ ”

dz = f(z(t))dt + σ(z(t))dB(t)

• Implicit distribution over functions.

Drift Diffusion



What are SDEs good for?
• natural fit for many small, unobserved interactions: 

• motion of molecules in a liquid 

• allele frequencies in a gene pool 

• prices in a market 

• Interactions don’t need to be Gaussian if CLT kicks in 

• Let’s put neural nets in SDE dynamics and fit to data!

dz = fθ(z(t))dt + σθ(z(t))dB(t)



How to fit ODE params?

• Don’t backprop through solver:  High memory cost, numerical error 

• Alexey Radul: Approximate the derivative, don’t differentiate the 
approximation!

∂L
∂θ

= ?

L(θ)



Continuous-time Backpropagation

∂L
∂zt

=
∂L

∂zt+1

∂f(zt, θ)
∂zt

∂L
∂θ

= ∑
t

∂L
∂zt

∂f(zt, θ)
∂θ

Standard Backprop:

∂
∂t

∂L
∂z(t)

=
∂L

∂z(t)
∂f(z(t), θ)

∂z

∂L
∂θ

= ∫
t0

t1

∂L
∂z(t)

∂f(z(t), θ)
∂θ

dt

Adjoint sensitivities: 
(Pontryagin et al., 1962):• Can build adjoint dynamics with autodiff, 

compute gradients with second ODE 
solve: 

def f_aug([z, a, d], t):
return [f, -a*df/dz, -a*df/dθ)

[z0, dL/dz(t0), dL/dθ] = 
ODESolve(f_aug,  
[z(t1), dL/dz(t1), 0], t1, t0)



O(1) Memory Gradients

• No need to store activations, 
just run dynamics backwards 
from output. 

• Easy to run ODE backwards, 
just run negate dynamics and 
time: 

• back_f(z, t) = -f(z, -t)

Adjoint State
State



• Final algorithm for ODE grads: 
Solve one big augmented 
system backwards in time. 

• Mostly worked out by 
Pontryagin (1961)



Why not repeat same trick?

• If an SDE is just “an ODE with noise”, why 
not use same adjoint method? 

• "Unfortunately, there is no straightforward 
way to port this construction to SDEs." - 
Tzen & Raginsky (2019) 

• (alternative: Rough path theory. ask later)



What is “running an SDE backwards”?
• Me: Let’s just slap negative signs on 

everything and hope for the best 

• Xuechen Li and Leonard Wong: What 
does that even mean? 

• Much later: Nvm that’s correct. 

• Builds on Kunita (2019) dz = − f(z(−t))dt + σ(z(−t))dB(−t)



Need to store noise
• Reparameterization trick: Use 

same noise from forward pass 
on reverse pass 

• Infinite reparameterization 
trick: Use same Brownian 
motion sample on forward 
and reverse passes. 

• Need to sample entire 
function



Virtual Brownian Tree

• Can ‘zoom in’ arbitrarily close at any point. 

• O(1) memory, O(log(1/eps)) time 

•  splittable random seed ensures all entire sample is consistent







Time and memory cost

• Time more like O(L) when dynamics are expensive 

• Can now fit large SDE models by gradient descent!



Latent-variable model

• Can handle arbitrary likelihoods.  Infinite-dimensional VAE.



Latent SDE Model

• Generative model (decoder) defined implicitly by: 

• an SDE 

• A likelihood (noise model) p(x_t | z_t)

dzp = fθ(z(t))dt + σθ(z(t))dB(t)



Variational inference
• Recognition model (encoder) takes in data, outputs: 

• Distribution over initial state q(z0 | x1.. xN) 

• Params of SDE defining approximate posterior

dzq = fϕ(z(t))dt + σθ(z(t))dB′ (t)

• Like Neural Processes, but actually a 
well-defined probabilistic model



Variational inference
• To optimize ELBO, need unbiased estimate of KL divergence between 

•                             prior: 

• approximate posterior:

dzp = fθ(z(t))dt + σθ(z(t))dB(t)

dzq = fϕ(z(t))dt + σθ(z(t))dB′ (t)

u(t) =
fθ(z(t)) − fϕ(z(t))

σθ(z(t))

2

2



1D Latent SDE

• Ornstein-Uhlenbeck prior, 
Laplace likelihood 

• Posterior SDE steers 
sample paths to data



Latent SDEs: 
An unexplored model class

• Define implicit prior + posterior over functions 

• Define observation likelihoods.  Anything 
differentiable wrt latent state (e.g. text models!) 

• Train everything with stochastic variational inference. 

• Can use adaptive-step SDE solvers. 

• Should scale to millions of params, huge states.   
Can use adaptive Milstein solver (only diagonal 
noise).



GPs vs Markov SDEs

• mean and kernel funcs 

• Not closed over 
marginal transforms. 
  exp(f(x) ~ GP) 
    not a GP 

• Multi-dim input fine

• Drift and diffusion funcs 

• Closed over marginal 
transforms. 
  exp(f(x) ~ SDE) 
    still an SDE 

• Only single-dim input



Early latent SDE results: Mocap
• 50D data, 6D latent space, sharing dynamics and recognition params 

across time series (11000 params)



SVI Gradient variance
• Sticking the landing [Roeder, Wu, Duvenaud, NIPS 2017] 

SVI gradient estimator whose variance goes to zero as q(z) -> p(z|x)



• New for ICML 2021: We extended 
"Sticking the Landing" to SDEs 

• Reminder: Approx posterior can be 
arbitrarily close to true posterior!

SVI Gradient variance



Takeaway
• Large SDE-based latent-variable models now 

practical-ish 

• Should handle real irregularly-sampled time series! 

• Can condition on time of observations 

• Can answer any query, not just forward prediction 

• In practice, start with an RNN! 

• Code:  https://github.com/google-research/torchsde

https://github.com/google-research/torchsde


Next steps
• Modeling: 

• Multi-timescale SDE - skip low-level details 

• Jump processes, SPDEs 

• Applications: 

• Population genetics, finance, 
epidemiology?  User traces?  Let's talk! 

• Infinitely deep Bayesian neural networks



Building an infinitely-deep BNN
• Start with a ResNet:

ht+ϵ = ht + ϵfh(ht, wt)
• Take limit as eps -> 0, number of layers 

grows. 

• Given a process over weights, 
activations h follow a random ODE: 

dht = fh(ht, wt)



Building an infinitely-deep BNN
• Prior on weights is a OU process

dwt = − wtdt + dBt

• Define approximate posterior on weights:

dwt = fw(wt, ϕ)dt + dBt

• Likelihood depends on activation at time 1:

p(y |x, w) = 𝒩(y |h1, w)



Building an infinitely-deep BNN
• Can sample weights from approx posterior and 

evaluate network output in one SDE solve:

d [wt

ht] = [fw(wt, ϕ)
fh(ht, wt)] dt + [I

0] dBt

• Start h_0 at input to neural network x. 

• h_1 is output of neural network

https://files.slack.com/files-pri/TAC4QK3L3-F01MBM7EHCH/download/predictive.png
https://files.slack.com/files-pri/TAC4QK3L3-F01MBM7EHCH/download/predictive.png
https://files.slack.com/files-pri/TAC4QK3L3-F01MBM7EHCH/download/predictive.png
https://files.slack.com/files-pri/TAC4QK3L3-F01MBM7EHCH/download/predictive.png


What are SDEs good for?Training an infinitely-deep BNN



Practical Advantages (in theory)
• Continuous-time formulation allows 

use of adaptive SDE solvers. 

• Can adjust adaptive solver 
tolerance at test time, trades off 
speed vs precision 

• Arbitrarily-flexible approx posterior 
with no O(D^3) scaling. 

• (True scaling unknown!?)



At least scales to CIFAR10



• Conjecture: Infinitesimal time limit of Markov models give SDE with variable dependence  
same as parents in graph.

Multi-Scale Continuous-time



Example: Infant Electrocardiograms

• Jointly compute 
p(ECG of time N, ECG 
of time N + 10000)


• Phase of ECG in 
between are irrelevant, 
heart size is sufficient 
statistic



Example: Infant Electrocardiograms



Example: Infant Electrocardiograms



Example: Infant Electrocardiograms



Example: Infant Electrocardiograms



Hope #1: Low levels Mix Fast

• Away from observations, fine-grained details usually uncorrelated given 
high-level properties.  I.e. conditional independence of fine given coarse


• E.g. in some GPs, we mix back to prior away from data


• Not always true (e.g. in computers) but that situation is always hard



Skipping over irrelevant details
• Expensive part is simulation of finer levels


• Away from data, these variables have KL of 0 
given coarse grained trajectories!



Skipping over irrelevant details
• Expensive part of ELBO is detailed simulation 

of finer levels away from data


• But these variables have KL of 0 given coarse 
grained trajectories!



Skipping over irrelevant details
• Expensive part of ELBO is detailed simulation 

of finer levels away from data


• But these variables have KL of 0 given coarse 
grained trajectories!



Skipping over irrelevant details
• Expensive part of ELBO is detailed simulation 

of finer levels away from data


• But these variables have KL of 0 given coarse 
grained trajectories!



Refinement: Auxiliary Variables
• Why are there extraneous coarse-grained variables in our model?


• Should only exist in approximation.


• E.g. In Ising model, temperature isn't a separate variable in model


• Answer: Put only fine-grained variables in model p, both sets in approx q


• Standard trick in variational inference (auxiliary vars in variational dist)


• Can have as many time scales as we want.



Unsolved Problems
• How to estimate marginals to sample from when we ``fade back in''


• How to regularize approx. posterior dynamics to be fast to mix?

Learning Differential Equations that are 
Easy to Solve 

Jacob Kelly*, Jesse Bettencourt*, Matthew 
Johnson, David Duvenaud



Thanks!

Xuechen Li, Winnie Xu, Leonard Wong, Ricky Chen, Yulia Rubanova, 
David Duvenaud

brain



Connections to BNN theory

• "Liberty or Depth" (Farquhar, Smith, Gal, 2020):  Infinite depth 
mean-field gives arbitrarily good predictive posteriors? 

• Mean-field (Brownian motion) sufficient in SDEs for arbitrary 
expressiveness. But true and approximate posterior not Gaussian.

dz = f(z(t))dt + σ(z(t))dB(t)



Putting it all together:
• Break model into coarse (slow) and fine (fast) vars.


• When sampling:


• Recognition nets look at local data and give 
posterior over coarse and fine variables


• Sample entire coarse trajectory (only using 
approximate dynamics, never real ones!)


• Sample fine trajectory starting just before and 
ending just after areas with data


• Gives (almost) unbiased estimates of ELBO and 
predicted trajectories



Poisson Process 
Likelihoods

• Model p(obs, time)  
instead of p(obs | time) 

• Non-intervention model 

• E.g. hurricanes



Achieving the dream

• Jointly learn true fine-grained expensive model and flexible approximation 
strategy from raw fine-grained data.


• Auxiliary coarse-grained variables might be interpretable


• Can combine high-level and low-level info automatically?



Example: Infant Electrocardiograms



Example: Infant Electrocardiograms



Dex: a typed array language built for speed
def map (f : a->b) (xs : n=>a) : n=>b =
  for i. f x.i

Flexibility 
● Ragged and sparse arrays 
● Algebraic data types (e.g. Value|NaN|Missing) 

Correctness 
● Dependent types for compile-time debugging (e.g. 

shape checking) 
● Composable, zero-cost abstractions 

(e.g. run on any vector space) 

Performance 
● Fast nested loops + gradients (e.g. CTC loss) 
● CPU, GPU, TPU backends, JAX interop 

Ray tracer written in Dex 
google-research.github.io/dex-lang/raytrace.html

https://google-research.github.io/dex-lang/raytrace.html


• Tzen + Raginski: Deep LVMs 
become SDEs in the limit.  
Variational inf framework.  Forward-
mode autodiff. 

• Peluchetti + Favaro: Worked out 
SDE corresponding to infinitely-
deep convnets with uncertain 
weights 

• Jia + Benson: Added countably 
many discrete jumps to latent ODEs

Related work 1



• Thomas Ryder, Andrew Golightly, A Stephen 
Mc-Gough, and Dennis Prangle.  Black-box 
variational inference for stochastic differential 
equations. 

• Pashupati  Hegde,  Markus  Heinonen,  Harri 
Lähdesmäki, and Samuel Kaski. Deep learning 
with differential gaussian process flows. 

• Markus Heinonen, Cagatay Yildiz, Henrik Man-
nerström, Jukka Intosalmi, and Harri 
Lähdesmäki. Learning unknown ODE models 
with gaussian processes. 

• C. Garcıa, A. Otero, P. Felix, J. Presedo, and D. 
Marquez. Nonparametric estimation of 
stochastic differential equations with sparse 
Gaussian processes.

Related work 2
• All use Euler discretizations.  

Not clear what limiting 
algorithm is (e.g. enforces 
invariants?), and not 
memory-efficient. 

• Not even going to discuss 
methods that require solving 
a PDE - not scalable. 

• We want to use adaptive, 
(high-order?) SDE solvers.



Limitations
• SDE solvers generally lower-order convergence 

than ODE solvers 

• (e.g. Milstein order 1 vs RK4) 

• Non-diagonal noise requires Levy areas 

• Diagonal noise requires funny parameterization 

• Need jump-style noise?  (e.g. hit by a car) 

• Only one input dimension (unlike GPs)



From “Handbook of Statistics”, Mubayi et al, 2019.   
Line means "can be used to construct", but not "contains"

SDEs vs GPs

• Distinct sets of 
priors over 
functions 

• Easy to 
construct non-
Gaussian SDE



Mujoco: State versus Belief states

• States are more 
interpretable than 
belief states 

• True dynamics 
are deterministic



• Can do VAE-style inference with an RNN encoder 

An ODE latent-variable model



Latent variable models

• Can use a neural net to guess optimal 
variational params from data 

• Structure of recognition net an 
implementation detail 

• Only there to speed things up. 

• Just needs to output a normalized 
distribution over z

https://pyro.ai/examples/dmm.html

https://pyro.ai/examples/dmm.html


Multi-scale RNNs: 2016



Multi-scale Markov models: 2020



Problems with Discrete Time
• Need to choose discretizations, 

mixing times without gradients


• Probably want state-dependent 
step sizes


• Finest scale determined by sampling 
rate


• Can't apply to irregularly sampled 
data easily

Exact
Euler
Adaptive Solver


