
Learning Probabilistic Models for Visual Motion

by

David Alexander Ross

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2008 by David Alexander Ross

Abstract

Learning Probabilistic Models for Visual Motion

David Alexander Ross

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2008

A fundamental goal of computer vision is the ability to analyze motion. This can

range from the simple task of locating or tracking a single rigid object as it moves

across an image plane, to recovering the full pose parameters of a collection of nonrigid

objects interacting in a scene. The current state of computer vision research, as with the

preponderance of challenges that comprise “artificial intelligence”, is that the abilities

of humans can only be matched in very narrow domains by carefully and specifically

engineered systems.

The key to broadening the applicability of these successful systems is to imbue them

with the flexibility to handle new inputs, and to adapt automatically without the manual

intervention of human engineers. In this research we attempt to address this challenge

by proposing solutions to motion analysis tasks that are based on machine learning.

We begin by addressing the challenge of tracking a rigid object in video, presenting

two complementary approaches. First we explore the problem of learning a particular

choice of appearance model—principal components analysis (PCA)—from a very limited

set of training data. However, PCA is far from the only appearance model available. This

raises the question: given a new tracking task, how should one select the most-appropriate

models of appearance and dynamics? Our second approach proposes a data-driven solu-

tion to this problem, allowing the choice of models, along with their parameters, to be

learned from a labelled video sequence.

ii

Next we consider motion analysis at a higher-level of organization. Given a set of

trajectories obtained by tracking various feature points, how can we discover the under-

lying non-rigid structure of the object or objects? We propose a solution that models

the observed sequence in terms of probabilistic “stick figures”, under the assumption

that the relative joint angles between sticks can change over time, but their lengths and

connectivities are fixed. We demonstrate the ability to recover the invariant structure

and the pose of articulated objects from a number of challenging datasets.

iii

Acknowledgements

This thesis could not have been completed without the invaluable contributions of my

advisor Richard Zemel, and my collaborators Jongwoo Lim, Ruei-Sung Lin, Edward

Meeds, Simon Osindero, Sam Roweis, Daniel Tarlow, and Ming-Hsuan Yang.

Additional assistance with experiments and figures was provided by Thomas El-

Maraghi, Bohyung Han, Allan Jepson, Volodymyr Mnih, Fabian Wauthier, and Karolina

Büchner.

The motion capture data used in this project was provided by the Biomotion Lab,

Queen’s University, Canada, and the Carnegie Mellon University Motion Capture Database

http://mocap.cs.cmu.edu/ (created with funding from NSF EIA-0196217).

Work presented in this thesis was supported in part by the Government of Canada,

through a Canada Graduate Scholarship, and by an internship at Honda Research Insti-

tute, USA.

iv

Contents

1 Introduction 1

1.1 Visual Tracking . 2

1.1.1 Incremental Learning of Appearance 3

1.1.2 Tracking with Learned Combinations of Discriminative Features . 4

1.2 Learning Articulated Structure and Motion 5

1.3 Organization . 6

2 Incremental Learning for Robust Visual Tracking 8

2.1 Introduction . 9

2.2 Related Work and Motivation . 11

2.3 Incremental Learning for Tracking . 15

2.3.1 Incremental Update of Eigenbasis and Mean 15

2.3.2 Sequential Inference Model . 22

2.3.3 Summary of the tracking algorithm 25

2.4 Implementation and Experiments . 25

2.4.1 Experimental Results . 27

2.4.2 Qualitative Comparison . 32

2.4.3 Quantitative Analysis . 35

2.4.4 Discussion . 38

2.5 Conclusions and Future Work . 39

v

3 Combining Discriminative Features 41

3.1 Introduction . 41

3.2 Model . 43

3.3 Inference . 47

3.3.1 Inferring State X given Switches U,V 48

3.3.2 Inferring Switches U,V given State X 51

3.4 Learning . 51

3.5 Related Work . 53

3.6 A visual tracking application . 55

3.6.1 Tracking a basketball . 56

3.6.2 Results . 58

3.6.3 Dealing with missing observations 59

3.7 Discussion . 60

4 Learning Articulated Structure and Motion 65

4.1 Introduction . 65

4.2 Related Work . 68

4.2.1 Articulated Structure From Motion 69

4.2.2 Geometric Analysis of Motion Capture Data 76

4.2.3 Learning a Graphical Model Structure 78

4.3 Model . 79

4.4 Learning . 85

4.4.1 Learning the model parameters 86

4.4.2 Learning the skeletal structure . 89

4.5 Experimental Results and Analysis . 93

4.5.1 Setting Precision Parameters During Learning 94

4.5.2 Excavator . 96

4.5.3 Giraffe . 99

vi

4.5.4 2D Human . 99

4.5.5 Synthetic Ring . 102

4.5.6 3D Human . 102

4.5.7 Related Methods . 105

4.6 Discussion . 111

5 Discussion and Future Directions 113

5.1 Remaining Challenges . 114

5.1.1 Incremental Tracking . 114

5.1.2 Combining Discriminative Features 114

5.1.3 Learning Skeletons . 115

5.1.4 Learning to Analyze Visual Motion 116

A The Multivariate Gaussian Probability Distribution 117

A.1 Parametrization and Multiplication . 117

A.2 Marginalization . 119

A.3 Conditioning . 120

A.4 Expectation of a Quadratic . 121

A.5 Completing the Square . 122

B Combining Discriminative Features Derivation 123

B.1 Linear Dynamics with Gaussian Noise . 124

B.1.1 Inference . 125

B.1.2 Learning . 130

B.1.3 Partition Function . 131

B.2 The Robust, Non-Gaussian Case . 133

C Learning Articulated Structure From Motion: EM Algorithm 137

C.1 Derivation of Objective Function . 137

vii

C.2 EM Updates . 141

C.3 Accounting for Missing Data . 147

Bibliography 149

viii

Chapter 1

Introduction

Computer vision considers the challenge of creating programs which process sensory

input—in this case patterns of light acquired by cameras—and from from it develop a

semantic understanding of the visible world. As it provides a mechanism for translating

the physical to the conceptual, computer vision falls clearly in the field of artificial in-

telligence: building working models with capabilities equalling or surpassing those of the

human mind.

A fundamental component of computer vision is the ability to analyze motion. This

can range from the simple task of locating or tracking a single rigid object as it moves

across an image plane, to recovering the full pose parameters of a collection of nonrigid

objects interacting in a scene.

The current state of computer vision research, as with all challenges that comprise

the field of artificial intelligence, is that the abilities of humans can only be matched

in very narrow domains by carefully and specifically engineered systems. For example,

numerous programs exist which can track a human face as it moves in a video. However

many of these have difficulty coping with dramatic changes in lighting, appearance and

pose, or handling partial or total occlusions of the target. At this point there exists no

universal solution capable of dealing with the full range of variability to which humans

1

Chapter 1. Introduction 2

are accustomed.

Similarly, systems exist which can recover, to some extent, the full three-dimensional

pose of a human body from video as it moves. However these predominantly employ a

mathematical model of the human body, describing its configuration and range of motion,

which must be painstakingly constructed by experts. The requirement of such a model

limits the applicability of the system to new but related challenges, for example recovery

of the 3D pose of a giraffe.

The key to broadening the applicability of these successful systems is to imbue them

with the flexibility to handle new inputs, and to adapt automatically without the manual

intervention of human engineers. In this research we attempt to address this challenge

by proposing solutions to the aforementioned motion analysis tasks that are based on

machine learning.

Machine learning is the study of programs which adapt their behaviour and perfor-

mance based on the analysis of observed data, such as instances of the task that needs to

be performed (e.g. images of the face that is to be tracked). Our focus in this work will

be on probabilistic learning techniques, which fit statistical models to the data, then solve

the task by performing inferences using the model. The advantage of the probabilistic

approach is that it provides a principled way to account for noise in the observations and

uncertainty in the state of the world. The learning techniques appearing in this work are

varied; we extend existing methods where applicable, and develop new approaches when

necessary.

1.1 Visual Tracking

The first problem we address is the challenge of tracking a rigid object in video. Using

the popular probabilistic state-space model framework, tracking is commonly divided

into modelling the target’s appearance, allowing it to be detected in each video frame,

Chapter 1. Introduction 3

and modelling its dynamics, enabling predictions to be made regarding its motion in

subsequent frames. Thus, creating a tracker involves selecting specific types of appearance

and dynamics models, as well as fitting these models to the available data.

The first approach we explore deals with the problem of learning a particular choice

of appearance model—principal components analysis (PCA)—from a very limited set

of training data. However, PCA is far from the only appearance model available. This

raises the question: given a new tracking task, how should one select the most appropriate

appearance and dynamics models? Our second approach proposes a data-driven solution

to this problem, allowing the choice of models, along with their parameters, to be learned

from a labelled video sequence.

1.1.1 Incremental Learning of Appearance

PCA is a widely used appearance model, due to its ability to cope with changes in

lighting, as well as other variability in the appearance of the target. To fit a PCA model,

training images depicting the full range of possible variation (or as much as possible) are

required, and therefore detailed knowledge of the target’s appearance must be available

before tracking begins. However, often when tracking, the only information available

is the target’s location, and thus appearance, in the first frame of the video. To deal

with this, we propose to learn the PCA model incrementally, online and efficiently, while

tracking. This works has been presented in (Ross et al., 2004), (Lim et al., 2005b), and

(Ross et al., 2008a).

The contributions of this project include:

• A new incremental algorithm for learning PCA that is exact, correctly updates the

subspace’s mean, is efficient in terms of time and space (update requirements are

constant, irrespective of the number of observations seen so far), faster than its

competitors, and includes an optional “forgetting factor” that leads to measurable

improvements in tracking performance.

Chapter 1. Introduction 4

• A very short proof that illustrates, when the forgetting factor is used, the objective

function that is being optimized.

• A tracking algorithm that, by incorporating incremental PCA, allows the popular

eigentracking approach to be used when a dataset of training images is not available

prior to tracking.

• Qualitative and quantitative experimental results that the resulting tracker is com-

petitive with the state of the art.

1.1.2 Tracking with Learned Combinations of Discriminative

Features

For our second approach we propose a new model for the probabilistic estimation of

continuous state variables from a sequence of observations, and demonstrate how it can

be applied to tracking the position of an object in video. This mapping is modeled

as a product of dynamics experts (features relating the state at adjacent time-steps)

and observation experts (features relating the state to the image sequence). Individual

features are flexible in that they can switch on or off at each time-step depending on their

inferred relevance (or on additional side information), and discriminative in that they

need not model the full generative likelihood of the data. When trained conditionally,

this permits the inclusion of a broad range of rich features (for example, features relying

on observations from multiple time-steps), and allows the relevance of features to be

learned from labeled sequences. This approach was initially presented in (Ross et al.,

2006).

The contributions of this project include:

• A new discriminative learning model for continuous vector-valued sequences. This

provides a novel way to apply the ideas behind the Conditional Random Field to

continuous variables, and Products of Experts to conditional probabilistic models.

Chapter 1. Introduction 5

• The ability to learn which dynamics and appearance features (models) are appro-

priate for a given task, and to switch features on and off dynamically based on their

estimated reliability. The result is a tracker that is more reliable than any of its

constituent appearance and dynamics models.

• A tracking algorithm which is able to track through total occlusions of the target.

1.2 Learning Articulated Structure and Motion

Although the ability to track a single rigid object serves as a key basic operation, in prac-

tice many interesting objects are not rigid. For example, humans can be more accurately

modelled as articulated skeletons, consisting of a number of rigid body parts connected by

joints. Performing motion analysis at this higher level of organization provides a number

of advantages. First, connectivity allows the location of a missing part to be inferred even

when it cannot be seen, permitting pose estimates to be made robustly, even in presence

of partial occlusion and tracking failures. Moreover, sequences of actions are often more

easily described by the angles between adjoining body parts, thereby facilitating activity

recognition and other related tasks. Recognizing this, the second problem we address is

the recovery of three-dimensional skeletal structure, from the observed locations of a set

of feature points tracked in the 2D image plane. This consists of simultaneously learning

the time invariant structure (grouping of features into rigid parts, and the connectiv-

ity between parts), and estimating the pose (motion parameters or joint angles) of the

skeleton in each frame.

We model the observed sequence in terms of probabilistic “stick figure” objects, un-

der the assumption that the relative joint angles between sticks can change over time,

but their lengths and connectivities are fixed. We formulate the problem in a single

probabilistic model that includes multiple sub-components: associating the features with

particular sticks, determining the proper number of sticks, and finding which sticks are

Chapter 1. Introduction 6

physically joined. The model is fit to the observations using a combination of greedy

learning and resampling for the structure, and expectation-maximization for the remain-

ing parameters. We test the algorithm on challenging datasets of 2D projections of

optical human motion capture and feature trajectories from real videos. This work has

been presented in (Ross et al., 2007) and (Ross et al., 2008b), and is a follow-up to

Multiple Cause Factor Analysis (Ross and Zemel, 2006).

The contribution of this project is a robust algorithm for recovering skeletons from

feature point trajectories, with a number of advantages over existing state-of-the-art

approaches including:

• The ability to recover 3D structure from 2D feature trajectories, on a variety of

challenging datasets, and in the presence of occluded training data.

• An explicit (joint probability) objective function that is optimized.

• A quantitative method for evaluating performance, based on predicting the loca-

tions of held-out observations, in the presence of realistic occlusions.

• The ability to trivially extend the algorithm to the case of 3D observations as well.

1.3 Organization

The remainder of the thesis is organized around three main chapters, one for each of

the aforementioned projects, followed by a discussion and supplemental material. Chap-

ter 2, Incremental Learning for Visual Tracking, begins with work on tracking using an

incrementally trained PCA appearance model, Chapter 3 covers the work on Combining

Discriminative Features to Infer Complex Trajectories, and Chapter 4 on Learning Ar-

ticulated Structure and Motion. Concluding remarks and suggestions for future research

are presented in Chapter 5.

Chapter 1. Introduction 7

The main text of this thesis is supported by three appendices and a collection of videos

displaying additional experimental results. The first appendix, Appendix A, describes the

Multivariate Gaussian probability distribution, presenting identities that are employed

a number of times in this work. The second, Appendix B, gives a detailed derivation

of inference for the Combining Discriminative Features model. Finally, Appendix C

derives the updates used by the expectation-maximization algorithm in Chapter 4. The

accompanying videos, as well as Matlab source code for all of the projects presented in

this work, are available online at http://www.cs.toronto.edu/∼dross/phd/.

Chapter 2

Incremental Learning for Robust

Visual Tracking

Visual tracking is concerned with locating and following a target object in a constantly

changing stream of images. While most existing algorithms are able to track objects well

in controlled environments, they usually fail in the presence of significant variation of

the object’s appearance or surrounding illumination. One reason for such failures is that

many algorithms employ fixed appearance models of the target. Such models are trained

using only appearance data available before tracking begins, which in practice limits the

range of appearances that are modelled, and ignores the large volume of information (such

as shape changes or specific lighting conditions) that becomes available during tracking.

In this chapter, we present a tracking method that incrementally learns a low-dimensional

subspace representation, efficiently adapting online to changes in the appearance of the

target. The model update, based on incremental algorithms for principal component

analysis, includes two important features: a method for correctly updating the sample

mean, and a forgetting factor to ensure less modelling power is expended fitting older

observations. Both of these features contribute measurably to improving overall track-

ing performance. Numerous experiments demonstrate the effectiveness of the proposed

8

Chapter 2. Incremental Learning for Robust Visual Tracking 9

tracking algorithm in indoor and outdoor environments where the target objects undergo

large changes in pose, scale, and illumination.

2.1 Introduction

Visual tracking essentially deals with non-stationary data, as the appearances of both

the target object and the background change over time. Most existing algorithms are

able to track objects, either previously viewed or not, in short durations and in well

controlled environments. However these algorithms usually fail to observe the object

motion or have significant drift after some period of time, due to drastic change in the

object’s appearance or large lighting variation in its surroundings. Although such sit-

uations can be ameliorated with recourse to richer representations, effective prediction

schemes or combination, most algorithms typically operate on the premise that the model

of the target object does not change drastically over time. Examples abound, ranging

from representation methods based on view-based appearance models (Black and Jepson,

1996), contours (Isard and Blake, 1996), parametric templates of geometry and illumi-

nation (Hager and Belhumeur, 1996), integration of shape and color (Birchfield, 1998),

mixture models (Black et al., 1998), 3D models (La Cascia and Sclaroff, 1999), exemplars

(Toyama and Blake, 2001), foreground/background models (Harville, 2002), templates

with updating (Matthews et al., 2004), prediction schemes using particle filters (Isard

and Blake, 1996), joint probabilistic data association filters (Rasmussen and Hager, 1998),

kernel-based filters (Comaniciu et al., 2003; Georgescu et al., 2004), support vector ma-

chines (Avidan, 2001; Williams et al., 2003) and variational inference (Vermaak et al.,

2003). These algorithms usually build or learn a model of the target object first and then

use it for tracking, without adapting the model to account for changes in the appear-

ance of the object (e.g. large variation of pose or facial expression) or the surroundings

(e.g. lighting variation). Furthermore, it is assumed that all images are acquired with a

Chapter 2. Incremental Learning for Robust Visual Tracking 10

stationary camera. Such an approach, in our experience, leads to a brittle tracker that

works well only under carefully controlled conditions.

The chief challenge of visual tracking can be attributed to the difficulty in handling the

appearance variability of a target object. Intrinsic appearance variability includes pose

variation and shape deformation,whereas extrinsic illumination change, camera motion,

camera viewpoint, and occlusions inevitably cause large appearance variation. Due to

the nature of the tracking problem, it is imperative for a robust algorithm to model such

appearance variation.

In this chapter we propose a method that, during visual tracking, efficiently learns and

updates a low dimensional subspace representation of the target object. The advantages

of this adaptive subspace representation are several fold. The subspace representation

provides a compact notion of the “thing” being tracked rather than treating the target

as a set of independent pixels, i.e. “stuff” (Adelson and Bergen, 1991), and facilitates

object recognition. An efficient incremental method continually updates the subspace

model to reflect changes in appearance caused by intrinsic and extrinsic factors, thereby

facilitating the tracking process. Incrementally updating the subspace removes the offline

learning phase required by other eigentrackers, allowing one to track objects for which a

database of training images is not even available. To estimate the locations of the target

objects in consecutive frames, we use a sampling algorithm with likelihood estimates,

which is in contrast to other tracking methods that usually solve complex optimization

problems using gradient descent. Furthermore, while numerous algorithms operate under

the assumption that there there is no camera motion, our method is able to track objects

without this constraint.

The remaining part of this chapter is organized as follows. We begin, in the next

section, by reviewing the most relevant algorithms that motivated this work. The details

of our algorithm are described in Section 2.3, where we propose an efficient incremental

subspace method with a mean update and forgetting factor, followed by an effective

Chapter 2. Incremental Learning for Robust Visual Tracking 11

tracking algorithm. The results of numerous experiments and performance evaluation are

presented in Section 2.4. We conclude this chapter with remarks on potential extensions

for future work. The data, source code, and videos corresponding to this work can all be

found at http://www.cs.toronto.edu/∼dross/phd/.

2.2 Related Work and Motivation

There is a rich literature in visual tracking, and writing a comprehensive survey on this

topic would be a daunting project in and of itself. In this section we review only the most

relevant visual tracking work, focusing on algorithms that operate directly on grayscale

images. We contrast our method with these methods in terms of their representation

scheme, target prediction approach, and their ability to handle changes in illumination

as well as appearance.

Visual tracking problems have conventionally been formulated as prediction tasks

within which fixed templates and optical flow techniques are utilized to estimate the

motion of a target object (Lucas and Kanade, 1981). Such approaches do not take the

appearance variability into consideration, and thus perform well only over short periods

of time. To enhance the robustness of such object trackers, Black and Jepson proposed

an algorithm using a pre-trained view-based eigenbasis representation and a robust error

norm (Black and Jepson, 1996). Instead of relying on the brightness constancy principal

assumed in optical flow techniques, they advocated the use of a subspace constancy

assumption for motion estimation. Although their algorithm demonstrated excellent

empirical results, it entailed learning a set of view-based eigenbases before the tracking

task began. To achieve robust visual tracking with this method, it is imperative to

collect a large set of training images covering the range of possible appearance variation

(including viewing angles and illumination) from which to construct the eigenbasis, as

this representation, once learned, is not updated.

Chapter 2. Incremental Learning for Robust Visual Tracking 12

Observing that low-dimensional linear subspaces are able to effectively model image

variation due to illumination (Belhumeur and Kreigman, 1997), Hager and Belhumeur

developed a tracking algorithm to handle the appearance variation caused by illumi-

nation and pose change using parametric models (Hager and Belhumeur, 1996). Their

method extends a gradient-based optical flow algorithm by incorporating low-dimensional

representations (Belhumeur and Kreigman, 1997) for object tracking under varying il-

lumination conditions. Before tracking begins, a set of illumination bases needs to be

constructed at a fixed pose in order to account for changes in appearance due to lighting

variation. However, this basis does not attempt to account for changes in pose such as

out-of-plane rotations.

Realizing the limitations of having a single (unimodal or Gaussian) hypothesis of tar-

get location at each time-step—as produced by the Kalman filter and its relatives—Isard

and Blake introduced particle filters to visual tracking and presented the Condensation

algorithm for contour tracking in which multiple plausible interpretations are propagated

over time (Isard and Blake, 1996). This probabilistic approach has demonstrated success

in tracking the outline of target objects in clutter. However, the representation scheme

employed (curves or splines) ignores the internal appearance of the target, and is not

updated to account for variations in its appearance, due to pose or illumination change.

Instead, Condensation can be paired with alternative appearance models. For example

Khan et al. (2004) have combined a variant of Condensation (Rao-Blackwellized particle

filtering) with an eigentracker, significantly improving the performance of eigentracking

in cluttered scenes.

Supervised discriminative methods for classification and regression have also been

exploited to solve visual tracking problems. For example, Avidan (2001) developed a

tracking algorithm that employs the support vector machine (SVM) classifier within a

optic flow framework (Avidan, 2001). Avidan modified the conventional use of the SVM

classification score to instead predict target location, by computing image gradients as

Chapter 2. Incremental Learning for Robust Visual Tracking 13

is done in optical flow algorithms. Although this algorithm has demonstrated success in

tracking specific objects, such as cars from a mounted camera in a moving vehicle, signif-

icant effort is required in training a SVM. Along similar lines, Williams et al. developed

a method in which an SVM-based regressor was used for tracking (Williams et al., 2003).

Instead of relying on optical flow to predict object location, they learned a perturbation

function of spatial in-plane displacements between frames, thereby predicting the most

likely object location. As a result of training the regressor on in-plane image motion, this

method is not effective in tracking objects with out-of-plane movements.

Mixture models have been studied as alternatives to linear representations, to better

account for appearance change in motion estimation. Black et al. (1998) identified four

possible factors causing appearance change, fitting them with a mixture model which was

then used to estimate image motion. A more elaborate mixture model fit via an online

EM algorithm was recently proposed by Jepson et al. (2003), in which three components

were used to model the responses of wavelet filters, and thereby account for appearance

variation during tracking. Their method is able to handle variations in pose, illumination

and expression. However, their appearance model treats pixels within the target region

independently (ignoring their covariance) and thus does not have notion of the “thing”

being tracked. This can result in modelling background rather than the foreground,

thereby failing to track the target object(Jepson et al., 2003).

Attempts to improve the classic Lucas-Kanade tracker (Lucas and Kanade, 1981) with

updates was recently made by Matthews et al. (2004). They developed a template update

method for visual tracking, which employs an active appearance model (Cootes et al.,

2001) to account for image variation. Thus instead of using a fixed template, the object

appearance is modelled by a linear combination of appearance images. The tracking

problem is then formulated as a search (using gradient descent) for the affine parameters

and linear combination which minimize the difference between the target object and the

current appearance model. The newly tracked object is then used to update appearance

Chapter 2. Incremental Learning for Robust Visual Tracking 14

model, as necessary. They demonstrated good tracking results on vehicles and faces with

varying expressions. However, the authors noted that the computation cost for updating

the template increases dramatically as principal component analysis is carried out at

each update, and that their work covers the case where the visibility of the target object

does not change.

Our work is motivated in part by the prowess of subspace representations as appear-

ance models (Murase and Nayar, 1995; Belhumeur and Kreigman, 1997), the effectiveness

of particle filters (Isard and Blake, 1996), and the adaptability of online update schemes

(Jepson et al., 2003). In contrast to the eigentracking algorithm (Black and Jepson,

1996), our algorithm does not require a training phase but learns the eigenbases online

during the object tracking process. Thus our appearance model can adapt to changes in

pose, view angle, and illumination not captured by the set of training images—in fact

the need to manually collect training images prior to tracking is eliminated. Further, our

method uses a particle filter for motion parameter estimation rather than the gradient

descent method, which often gets stuck in local minima or is distracted by outliers (Black

and Jepson, 1996). Our appearance-based model provides a richer description than sim-

ple curves or splines as used in (Isard and Blake, 1996), and has a stronger notion of

the “thing” being tracked. In addition, the learned representation can be utilized for

other tasks such as object recognition. With respect to the template update method

(Cootes et al., 2001), we concurrently developed an efficient subspace update algorithm

that facilitates object tracking under varying pose and lighting conditions. Furthermore,

our algorithm is able to handle camera motion while learning compact representations

and tracking objects. In this work, an eigenbasis representation is learned directly from

pixel values corresponding to a target object in the image space. Experiments show that

good tracking results can be obtained using this representation without employing more

complicated wavelet features as in (Jepson et al., 2003), although this elaboration is still

possible and may lead to even better results. Note also that the view-based eigenbasis

Chapter 2. Incremental Learning for Robust Visual Tracking 15

representation has demonstrated its ability to model the appearance of objects in differ-

ent poses (Murase and Nayar, 1995), and under different lighting conditions (Belhumeur

and Kreigman, 1997). Consequently, the learned eigenbasis facilitates tracking objects

undergoing illumination and pose change.

2.3 Incremental Learning for Tracking

We present details of the proposed incremental learning algorithm for object tracking

in this section. First we propose an efficient method that incrementally updates an

eigenbasis as new observations arrive, which is used to learn the appearance of the target

while tracking progresses. Next we describe our approach for drawing particles in the

motion parameter space and predicting the most likely object location with the help of

the learned appearance model. Collectively, we show how these two modules work in

tandem to track objects well under varying conditions.

2.3.1 Incremental Update of Eigenbasis and Mean

The appearance of a target object may change drastically due to intrinsic and extrinsic

factors as discussed earlier. Therefore, to produce a robust tracker, it is important

to adapt the appearance model online, while tracking, to reflect these changes. The

appearance model we have chosen, a eigenbasis, is typically learned offline from a set

of training images {I1, . . . , In}, by taking computing the eigenvectors U of the sample

covariance matrix 1
n−1

∑n
i=1(Ii − Ī)(Ii − Ī)>, where Ī = 1

n

∑n
i=1 Ii is the sample mean

of the training images. Equivalently one can obtain U by computing the singular value

decomposition UΣV > of the centered data matrix [(I1 − Ī) . . . (In − Ī)], with columns

equal to the respective training images minus their mean.

Adapting the appearance model to account for novel views of the target can be

thought of as retraining the eigenbasis with an additional m images {In+1, . . . , In+m}, for

Chapter 2. Incremental Learning for Robust Visual Tracking 16

some value of m. Naively, this update could be performed by computing the singular value

decomposition U ′Σ′V ′>of the augmented (centered) data matrix [(I1− Ī ′) . . . (In+m− Ī ′)],

where Ī ′ is the average of the entire n + m training images.

Unfortunately this approach is unsatisfactory for online applications, like visual track-

ing, due to its storage and computational requirements. First, the naive approach uses

the entire set of training images for each update. If an update is made at each video

frame, then the number of images which must be retained grows linearly with the length

of the sequence. Second, the cost of computing the mean and singular value decompo-

sition grows with the number of images, so the algorithm will run ever slower as time

progresses. Instead, the requirements of our application dictate that any algorithm for

updating the mean and eigenbasis must have storage and computational requirements

that are constant, regardless of the number of images seen so far.

Numerous, more-sophisticated algorithms have been developed to efficiently update

an eigenbasis as more data arrive (Golub and Van Loan, 1996) (Hall et al., 1998) (Levy

and Lindenbaum, 2000) (Brand, 2002). However, most methods assume the sample

mean is fixed when updating the eigenbasis, or equivalently that the data is inherently

zero-mean. Neither assumption is appropriate in our application. An exception is the

method by Hall et al. (2002), which does consider the change of the mean as each new

datum arrives. Although similar to our (independently developed) algorithm, it lacks the

forgetting factor, which hurts its suitability for tracking, and has a greater computational

cost. (Both of these disadvantages are demonstrated quantitatively in Section 2.4.3.)

Hall’s algorithm is based on the notion of adding eigenspaces. As a result, some of the

additional complexity comes from computing the eigenvalue decomposition of each block

of new data as it arrives. In this respect our algorithm is simpler, since it incorporates

new data directly, without the additional step.

Here we extend one of these efficient update procedures—the Sequential Karhunen-

Loeve (SKL) algorithm of Levy and Lindenbaum (2000)—presenting a new incremental

Chapter 2. Incremental Learning for Robust Visual Tracking 17

PCA algorithm that correctly updates the eigenbasis as well as the mean, given one or

more additional training data. Our algorithm, a variation of which was first presented in

(Lim et al., 2005a), has also been applied to algorithms where the subspace mean plays

an important role. For example, it can be applied to adaptively update the between-

class and within-class covariance matrices used in Fisher linear discriminant analysis

(Lin et al., 2005). We begin with a summary of the SKL algorithm, then describe our

new incremental PCA algorithm, and follow with a discussion of a forgetting factor which

can be used to down-weight the effect of earlier observations on the PCA model.

Putting aside for the moment the problem of the sample mean, suppose we have a d×n

data matrix A = {I1, . . . , In} where each column Ii is an observation (a d-dimensional

image vector in this chapter), for which we have already computed the singular value

decomposition A = UΣV >. When a d×m matrix B of new observations is available, the

goal is to efficiently compute the SVD of the concatenation of A and B: [A B] = U ′Σ′V ′>.

Letting B̃ be the component1 of B orthogonal to U , we can express the concatenation of

A and B in a partitioned form as follows:

[
A B

]
=

[
U B̃

]Σ U>B

0 B̃>B

V > 0

0 I

 . (2.1)

Let R =
[

Σ UT B
0 B̃>B

]
, which is a square matrix of size k + m, where k is the number of

singular values in Σ. The time required to compute the SVD of R, R = ŨΣ̃Ṽ >, does not

depend on n, the number of data in A. Now the SVD of [A B] can be expressed as

[
A B

]
=

([
U B̃

]
Ũ

)
Σ̃

Ṽ >

V > 0

0 I

 .

Since an incremental PCA is only interested in computing U ′ and Σ′, V ′, whose size

scales with the number of observed data, need not be computed. Thus we arrive at the

following formulation of the SKL algorithm (Levy and Lindenbaum, 2000).

1More precisely, B̃ is a matrix with orthonormal columns spanning range(B) \ range(A).

Chapter 2. Incremental Learning for Robust Visual Tracking 18

Given U and Σ from the SVD of A, compute U ′ and Σ′ from the SVD of [A B]:

1. Obtain B̃ and R by taking the QR decomposition of [UΣ B]: [U B̃]R
QR
= [UΣ B].

2. Compute the SVD of R: R
SV D
= ŨΣ̃Ṽ >.

3. Finally U ′ = [U B̃]Ũ and Σ′ = Σ̃. If the desired number of basis vectors in U ′

is less than the number of non-zero singular values, then these excess vectors and

singular values may be discarded.

The algorithm can also be made slightly faster, although somewhat more complicated,

by modifying the arrangement of calculations in Step 1. Instead of computing the QR

decomposition of [UΣ B], B̃ and R can be obtained directly as follows: B̃ = orth(B −

UU>B) and R =
[

Σ U>B
0 B̃(B−UU>B)

]
, where orth() performs orthogonalization, perhaps via

QR. This reorganization, which follows from (2.1), avoids performing QR on the entire

matrix [UΣ B] (note that the columns corresponding to U are already orthogonal),

instead only orthogonalizing (B − UU>B), which is the component of B not already in

the subspace U .

The computational advantage of the SKL algorithm over the naive approach is that

it has space and time complexity that is constant in n, the number of training data seen

so far. Specifically each update makes use of only the k largest singular values and basis

vectors from the previous stage. This, together with the storage required for the m new

images, reduces the space complexity to O(d(k + m)), down from O(d(n + m)2) with the

naive approach. Similarly, the computational requirements are also reduced to O(dm2),

versus O(d(n+m)2) for recomputing the entire SVD. More details and complexity analysis

of the SKL algorithm are described in (Levy and Lindenbaum, 2000).

The problem with the SKL algorithm as stated above is that it makes no attempt to

account for the sample mean of the training data, which changes over time as new data

arrive. We will now show how this can be overcome. The essence of the approach is,

at each update of the eigenbasis, to augment the new training data with an additional

Chapter 2. Incremental Learning for Robust Visual Tracking 19

vector carefully chosen to correct for the time-varying mean. We begin by proving the

following lemma:

Lemma 1 Let A = [I1, I2, . . . , In], B = [In+1, In+2, . . . , In+m] be data matrices and C =

[A B] be their concatenation. Denote the means and scatter matrices of A, B, C as ĪA,

ĪB, ĪC, and SA, SB, SC respectively. It can be shown that SC = SA + SB + nm
n+m

(ĪB −

ĪA)(ĪB − ĪA)>.

In this lemma, we define a scatter matrix to be the outer product of the centered data

matrix, for example SB =
∑m

i=n+1(Ii − ĪB)(Ii − ĪB)>. Thus a scatter matrix differs from

the sample covariance matrix by only a scalar multiple SB = m cov(B).

Proof of Lemma 1: By definition, ĪC = n
n+m

ĪA + m
n+m

ĪB,

ĪA − ĪC = m
n+m

(ĪA − ĪB), ĪB − ĪC = n
n+m

(ĪB − ĪA) and,

SC =
∑n

i=1(Ii − ĪC)(Ii − ĪC)> +
∑n+m

i=n+1(Ii − ĪC)(Ii − ĪC)>

=
∑n

i=1(Ii − ĪA + ĪA − ĪC)(Ii − ĪA + ĪA − ĪC)>+∑n+m
i=m+1(Ii − ĪB + ĪB − ĪC)(Ii − ĪB + ĪB − ĪC)>

= SA + n(ĪA − ĪC)(ĪA − ĪC)> + SB + m(ĪB − ĪC)(ĪB − ĪC)>

= SA + nm2

(n+m)2
(ĪA − ĪB)(ĪA − ĪB)> + SB + n2m

(n+m)2
(ĪA − ĪB)(ĪA − ĪB)>

= SA + SB + nm
n+m

(ĪA − ĪB)(ĪA − ĪB)> �

From Lemma 1, and noting that

SB +
nm

n + m
(ĪA − ĪB)(ĪA − ĪB)>

=

[
(B − ĪB)

√
nm

n + m
(ĪB − ĪA)

] [
(B − ĪB)

√
nm

n + m
(ĪB − ĪA)

]
>,

we can see that the SVD of (C− ĪC) is equal to the SVD of the horizontal concatenation

of (A − ĪA), (B − ĪB), and one additional vector
√

nm
n+m

(ĪB − ĪA). (The slight abuse of

notation (A− ĪA) is meant as a shorthand for the matrix [(I1− ĪA) . . . (In− ĪA)].) This

motivates our new algorithm, appearing in Figure 2.1.

Chapter 2. Incremental Learning for Robust Visual Tracking 20

Let A = [I1, I2, . . . , In], B = [In+1, In+2, . . . , In+m] be data matrices and C = [A B] be

their concatenation. Denote the mean of A as ĪA =
∑n

i=1 Ii.

Given U and Σ from the SVD of (A− ĪA), as well as ĪA, n, and B, compute ĪC as well

as U ′ and Σ′ from the SVD of (C − ĪC):

1. Compute the mean vectors ĪB = 1
m

∑n+m
i=n+1 Ii, and ĪC = n

n+m
ĪA + m

n+m
ĪB.

2. Form the matrix B̂ =
[
(Im+1 − ĪB) . . . (In+m − ĪB)

√
nm

n+m
(ĪB − ĪA)

]
.

3. Compute B̃ = orth(B̂ − UU>B̂) and R =
[

Σ U>B̂
0 B̃(B̂−UU>B̂)

]
.

Note that B̃ will be one column larger than in the SKL algorithm.

4. Compute the SVD of R: R
SV D
= ŨΣ̃Ṽ >.

5. Finally U ′ = [U B̃]Ũ and Σ′ = Σ̃.

Figure 2.1: The incremental PCA algorithm with mean update.

As can be seen, this algorithm shares the favorable complexity of the SKL algorithm,

incurring only a small constant overhead to store, update, and correct for the changing

sample mean.

Forgetting Factor

In numerous vision applications it is desirable to focus more on recently acquired images

and less on earlier observations. For example, when tracking a target with a changing

appearance, it is likely that recent observations will be more indicative of its appearance

than would more distant ones. Down-weighting the contribution of earlier observations

also plays an important role in online learning. As time progresses the observation history

can become very large, to the point of overwhelming the relative contribution of each

block of new data, rendering the learner ‘blind’ to changes in the observation stream.

One way to moderate the balance between old and new observations is to incorporate

Chapter 2. Incremental Learning for Robust Visual Tracking 21

a forgetting factor in the incremental eigenbasis update, as suggested by (Levy and Lin-

denbaum, 2000). To do this, at each update the previous singular values are multiplied by

a scalar factor f ∈ [0, 1], where f = 1 indicates no forgetting is to occur. Thus at Step 3

in Figure 2.1, R =
[

fΣ U>B̂

0 B̃(B̂−UU>B̂)

]
, which is equivalent to taking the QR decomposition

of [fUΣ B̂] instead of [UΣ B̂].

Although they propose the use of a forgetting factor, Levy and Lindenbaum do not

provide any analysis as to its effect on the resulting eigenbasis. We address this with the

following lemma:

Lemma 2 A forgetting factor of f reduces the contribution of each block of data to the

overall covariance modelled by an additional factor of f 2 at each SVD update.

Proof of Lemma 2: When a forgetting factor of f is used, the incremental PCA

algorithm in Figure 2.1 computes the left singular vectors U ′ and singular values Σ′ of

the matrix [fUΣ B̂]. This is equivalent to computing the eigenvectors and (the square

roots of) the eigenvalues of [fUΣ B̂][fUΣ B̂]>. Now

[fUΣ B̂][fUΣ B̂]> = f 2UΣ2U>+ B̂B̂>

= f 2UΣV >V Σ>U>+ B̂B̂>

= f 2(A− ĪA)(A− ĪA) + B̂B̂>

= f 2SA + SB + ct,

where ct is a correction term that adjusts the mean of the eigenbasis, and SA and SB are

scatter matrices–a scalar times the covariance matrix–as defined in Lemma 1. �

Hence, after the kth update of the eigenbasis, the block of m observations added during

the jth update (j < k) will have its covariance down-weighted by a factor of f 2(k−j). The

objective of PCA is to locate a subspace of dimension k that retains as much of the data

covariance as possible (i.e. , maximizes the determinant of the projected data covariance

|U>cov(Data)U | (Jolliffe, 2002)). Therefore it is a ‘win’ for PCA to select as basis vectors

Chapter 2. Incremental Learning for Robust Visual Tracking 22

directions of large covariance in recent data, at the expense of directions favored only by

earlier data.

An important consideration not previously addressed is the effect of the forgetting

factor on the mean of the eigenbasis. Since the contribution of the previously observed

data to the covariance is decreased, it is necessary to also reduce its contribution to

the resulting mean. When a forgetting factor of f is used, we propose the following

modification to the mean update (Step 1 in Figure 2.1):

ĪC =
fn

fn + m
ĪA +

m

fn + m
ĪB

and at each update to compute the effective size of the observation history as n← fn+m.

A benefit of incorporating the forgetting factor into the mean update is that the

mean can still change in response to new observations, even as the actual number of

observations approaches infinity. Specifically, using n ← fn + m, the effective number

of observations will reach equilibrium at n = fn + m, or n = m/(1 − f). For instance,

when f = 0.95 and m = 5 new observations are included at each update, the effective

size of the observation history will approach n = 100.

2.3.2 Sequential Inference Model

The visual tracking problem is cast as an inference task in a Markov model with hidden

state variables. The state variable Xt describes the affine motion parameters (and thereby

the location) of the target at time t. Given a set of observed images It = {I1, . . . , It},

we aim to estimate the value of the hidden state variable Xt. Using Bayes’ theorem, we

have the familiar result

p(Xt| It) ∝ p(It|Xt)

∫
p(Xt|Xt−1) p(Xt−1| It−1) dXt−1. (2.2)

The tracking process is governed by the observation model p(It|Xt), where we estimate the

likelihood of Xt observing It, and the dynamical model between two states p(Xt|Xt−1).

Chapter 2. Incremental Learning for Robust Visual Tracking 23

The Condensation algorithm (Isard and Blake, 1996), based on factored sampling, ap-

proximates an arbitrary distribution of observations with a stochastically generated set

of weighted samples. We use a variant of the Condensation algorithm to model the

distribution over the object’s location, as it evolves over time.

Dynamical Model

The location of a target object in an image frame can be represented by an affine image

warp. This warp transforms the image coordinate system, centering the target within a

canonical box such as the unit square, as illustrated in Figure 2.2. In this work the state at

time t consists of the six parameters of an affine transformation Xt = (xt, yt, θt, st, αt, φt)

where xt, yt, θt, st, αt, φt, denote x, y translation, rotation angle, scale, aspect ratio, and

skew direction at time t.

Figure 2.2: The model of dynamics. A location is represented by an affine transformation

(Xt−1), which warps the coordinate system so that the target lies within the unit square.

Particles representing possible target locations Xt at time t are sampled according to

P (Xt|Xt−1), which in this case is a diagonal-covariance Gaussian centered at Xt−1.

To develop a tracker for generic applications, the dynamics between states in this

space is modelled by Brownian motion. Each parameter in Xt is modelled independently

Chapter 2. Incremental Learning for Robust Visual Tracking 24

by a Gaussian distribution around its counterpart in Xt−1, and thus the motion between

frames is itself an affine transformation. Specifically,

p(Xt|Xt−1) = N (Xt;Xt−1,Ψ) (2.3)

where Ψ is a diagonal covariance matrix whose elements are the corresponding variances

of the affine parameters, i.e. , σ2
x, σ2

y , σ2
θ , σ2

s , σ2
α, σ2

φ. These fixed parameters describe the

kind of motion expected by the tracker. More complex dynamics can be modelled, such

as first or second order dynamic systems, as well as other adaptive techniques for specific

applications (North and Blake, 1998). Like all the other applications using particle filters,

there is a trade off between the number of particles needed to be drawn (efficiency) and

how well particle filters approximate the posterior distribution (effectiveness). With

larger values in the diagonal covariance matrix Ψ and more particles, it is possible to

track the object with higher precision at the cost of increased computation. In this

project, we find a balance between these factors for efficient and effective visual tracking.

Observation Model

Since our goal is to use a representation to describe the “thing” that we are tracking,

we model image observations using a probabilistic interpretation of principal component

analysis (Roweis, 1997; Tipping and Bishop, 1999). Given an image patch It predicated

by Xt, we assume It was generated from a subspace of the target object spanned by U

and centered at µ. The probability of a sample generated from a subspace, p(It|Xt), is

governed by a Gaussian distribution:

p(It |Xt) = N (It ; µ, UU>+ εI)

where I is an identity matrix, µ is the mean, and εI term corresponds to the addi-

tive Gaussian noise in the observation process. It can be shown (Roweis, 1997) that

in the limit as ε → 0, this probability is proportional to the negative exponential

Chapter 2. Incremental Learning for Robust Visual Tracking 25

of the reprojection error or distance between It and its image on the subspace, i.e.

exp(−||(It − µ)− UU>(It − µ)||2) ∝ N (It;µ, UU>+ εI) as ε→ 0.

As written above, evaluating the probability requires inverting a d×d matrix, (UU>+

εI)−1, which can be costly. Applying the Sherman-Morrison-Woodbury formula (Pe-

tersen and Pedersen, 2008) allows the expression to be rewritten as (UU>+ εI)−1 =

ε−1(I − (1 + ε)−1UU>), which no longer requires matrix inversion. The resulting obser-

vation likelihood of It, used to weight its corresponding particle in Condensation, is

p(It |Xt) ∝ exp

(
− 1

2ε
(It − µ)>(I − (1 + ε)−1UU>)(It − µ)

)
. (2.4)

2.3.3 Summary of the tracking algorithm

We now provide a summary of the proposed tracking algorithm in Figure 2.3. At the

very beginning when the eigenbasis is empty (i.e. before the first update), our tracker

works as a template based tracker. There is a natural trade-off between update frequency

and speed of movement. Likewise, there is a trade-off between the number of particles

and granularity of movement. We will discuss these implementation issues in the next

section.

2.4 Implementation and Experiments

To evaluate empirical performance of the proposed tracker, we collected a number of

videos recorded in indoor and outdoor environments where the targets change pose in

different lighting conditions. Each video consists of 320 × 240-pixel grayscale images

recorded at 30 frames per second, unless specified otherwise. Note that there exists large

and unpredictable camera motion in the videos. For the eigenbasis representation, each

target image region is resized to a 32× 32 patch, and the number of eigenvectors used in

all experiments is set to 16, though fewer eigenvectors can also work well. The forgetting

term is empirically set to be 0.95, and the batch size for the eigenbasis update is set to 5

Chapter 2. Incremental Learning for Robust Visual Tracking 26

1. Locate the target object in the first frame, either manually or by using an auto-

mated detector, and use a single particle to indicate this location.

2. Initialize the eigenbasis U to be empty, and the mean µ to be the appearance of

the target in the first frame. The effective number of observations so far is n = 1.

3. Advance to the next frame. Draw particles from the particle filter, according to

the dynamical model.

4. For each particle, extract the corresponding window from the current frame, and

calculate its weight, which is its likelihood under the observation model given by

(2.4).

5. Store the image window corresponding to the most likely particle. When the

desired number of new images have been accumulated, perform an incremental

update (with a forgetting factor) of the eigenbasis, mean, and effective number of

observations. In our experiments, the update is performed every fifth frame.

6. Go to step 3.

Figure 2.3: A summary of the proposed tracking algorithm.

Chapter 2. Incremental Learning for Robust Visual Tracking 27

as a trade-off between computational efficiency and effectiveness of modelling appearance

change during fast motion. Implemented in MATLAB with MEX, our algorithm runs

at 7.5 frames per second with 600 particles on a standard 2.8 GHz computer. Here we

present selected tracking results, with more tracking results as well as videos available at

http://www.cs.toronto.edu/∼dross/phd/. Note that the results can be better viewed on

high resolution displays or color printouts. Sample code and data sets are also available

at the aforementioned website.

We begin by showing the results of our tracker on several sequences, then compare

it qualitatively to two other state-of-the-art trackers. Next we evaluate and compare

the trackers’ quantitative performance, and empirically demonstrate the accuracy of our

incremental PCA algorithm. We conclude with a discussion of the experimental results.

2.4.1 Experimental Results

We first tested our algorithm using a challenging video studied in (Jepson et al., 2003).

The image sequence was downsampled by one-half, retaining only every other frame.

Figure 2.4 shows the empirical results using our proposed method, where the first row of

each panel shows the tracked objects (enclosed with rectangles) and the second row shows

(from left to right) the subspace center, tracked image patch, residue, and reconstructed

image using current eigenbasis. The red window shows the maximum a posteriori estimate

of the particle filter, and green windows show the other particles whose weights are above

a threshold. The eigenbasis images of the current subspace are shown in the third row of

each panel (sorted according to their eigenvalues). Note that our method is able to track

the target undergoing pose (#46, #185, #344, #376, #481), expression (#277, #398),

and lighting (#344, #440) variation. Further, our method is able to track the target

with temporary occlusion (#104) and structured appearance change such as glasses (#6,

#185). Compared with the results reported in (Jepson et al., 2003), our method is able to

efficiently learn a compact representation while tracking the target object without using

Chapter 2. Incremental Learning for Robust Visual Tracking 28

wavelets. All the eigenbases are constructed automatically from scratch and constantly

updated to model the appearance of the target object, while it undergoes intrinsic and

extrinsic changes. The eigenbases capture the appearance details of the target in different

pose, expression, and with or without glasses,

Figure 2.4: Our method is able to track a human face undergoing pose, expression,

appearance, and lighting change, as well as partial occlusion. The red window shows the

maximum a posteriori estimate of the particle filter, and the green windows show the

other particles with significant weight. Below the current video frame are four images

that depict (from left to right) the mean of the eigenbasis, the current window selected

by the tracker, the reprojection error, and the reconstruction of this window using the

current eigenbasis. Finally, at the bottom are shown the eigenbasis images of the current

subspace (sorted in decreasing order according to their eigenvalues). For the full result

please refer to the accompanying video.

The second image sequence, shown in Figure 2.5, contains an animal doll moving

in different pose, scale, and lighting conditions. Once initialized in the first frame, our

algorithm is able to track the target object as it experiences large pose change (#65,

Chapter 2. Incremental Learning for Robust Visual Tracking 29

#272, #364, #521, #550, #609), a cluttered background (#65, #450, #521, #609),

scale change (#65, #225), and lighting variation (#225, #364, #450, #609). Notice

that the non-convex target object is localized within a rectangular window, and thus it

inevitably contains some background pixels in its appearance representation. The results

also show that our algorithm faithfully models the appearance of an arbitrary object, as

shown in eigenbases and reconstructed images, in the presence of noisy background pixels.

Nevertheless, our tracker eventually fails after frame 614 as a result of a combination of

drastic pose and illumination change. Since the proposed algorithm is not limited to

rectangular patches when specifying a region of interest for tracking, better results can

be expected with more compact enclosing windows for specific targets.

Figure 2.5: Our method is also able to track this animal doll for 614 frames, depite the

effects of significant appearance variation resulting from a strong directional light source.

(For a key to all of the various sub-figures, please refer to the caption of Figure 2.4.)

Figure 2.6 shows the tracking results using a challenging sequence, recorded at 15

frames per second with a moving digital camera, in which a person moves from a dark

Chapter 2. Incremental Learning for Robust Visual Tracking 30

room toward a bright area while changing his pose, moving underneath spotlights, chang-

ing facial expressions and taking off his glasses. Notice that there is also a large scale

variation in the target relative to the camera. Even with the significant camera motion

and low frame rate (which makes the motions between frames more significant, as when

tracking fast-moving objects), our algorithm is able to track the target throughout the se-

quence, experiencing only temporary drifts. In contrast, most gradient or contour based

trackers are not expected to perform well due to the large lighting variation, cast shad-

ows, and unknown camera motion. With the use of a particle filter, our tracker is able

to recover from temporary drifts due to a sudden and large pose change (between frames

#166 and #167 in the accompanying video). Furthermore, the eigenbasis is constructed

from scratch and is updated to reflect the appearance variation of the target object.

Figure 2.6: A person moves from a dark to a bright area, undergoing large lighting and

pose changes. The images in the second row show the current sample mean, tracked

region, reconstructed image, and the reconstruction error respectively. The third and

fourth rows show the top 10 principal eigenvectors.

We recorded a sequence to evaluate our tracker in outdoor environments, where light-

Chapter 2. Incremental Learning for Robust Visual Tracking 31

ing conditions often change drastically. In it, a person walks underneath a trellis covered

by vines, resulting in a significant variation in appearance due to cast shadows. As shown

in Figure 2.7, the cast shadows change the appearance of the target face significantly

(#96, #155, #170, #180, #223, #278). Furthermore, the pose and lighting varia-

tion combined with a low frame rate (15 fps) makes the tracking task rather challenging

(#198, #303). Nevertheless, our algorithm is able track the target fairly accurately and

robustly. In this sequence the forgetting term plays an important role, down-weighting

the previously seen face images and focusing on the most recent ones, as the object

appearance changes drastically.

Figure 2.7: A person moves underneath a trellis with large illumination change and cast

shadows while changing his pose. More results can be found in the project web page.

Figure 2.8 shows the results of tracking a moving vehicle, as it passes beneath a

bridge and under trees. Although there is a sudden illumination change (#12, #184,

#192, #232) in the scene, our tracker is able to track the target well. Our algorithm

is also able to track objects in low resolution images, such as the sequence of a vehicle

driving at night, shown in Figure 2.9. Despite the small size of the target relative to the

Chapter 2. Incremental Learning for Robust Visual Tracking 32

image, and the difficult illumination conditions, our algorithm is able to track the vehicle

well.

Figure 2.8: A vehicle moving underneath an overpass and trees. Our algorithm is able

to track the target despite the large illumination variation.

2.4.2 Qualitative Comparison

As a qualitative benchmark, we ran two state-of-the-art algorithms, the WSL (Jepson

et al., 2003) and Mean Shift (Comaniciu et al., 2003) trackers, on four of the sequences.

The results are depicted in Figure 2.10. As can be seen in the figure (and corresponding

videos), our method provides comparable performance to the WSL tracker. In the case of

the first “Dudek” sequence, it is able to do so despite using a tighter target window around

the face. However in the “animal doll” and “trellis”, sequences, the WSL tracker proves

to be more robust, continuing to track after our method fails. In both cases the targets

experience drastic non-uniform changes in illumination from directed light sources. The

WSL tracker gains a distinct advantage in these cases, based on its use of wavelet phase

Chapter 2. Incremental Learning for Robust Visual Tracking 33

Figure 2.9: A vehicle moving in the night time with large illumination changes. Our

algorithm is able to track the target when the images have low resolution and contrast.

features as an input representation. (It is possible that the performance of our tracker

could also be improved by using a similar representation.) Further, our method not only

tracks a target object, it also learns a compact low-dimensional representation which can

be used for other applications such as recognition.

On the other hand, the Mean Shift tracker performs poorly, experiencing significant

drift off the target objects. This can be attributed to the appearance model of the Mean

Shift tracker, based on histograms of pixel intensities, which does not adapt over time,

and is not sufficiently discriminative on these grayscale-only sequences. We expect that

variants of the Mean Shift tracker using more sophisticated representations or adaptive

multi-component models (Georgescu et al., 2004), would show improved performance.

Chapter 2. Incremental Learning for Robust Visual Tracking 34

Figure 2.10: A comparison of our tracker (indicated with a yellow box) with the WSL

(Jepson et al., 2003) (shown in highlighted ellipse) and the Mean Shift (Comaniciu et al.,

2003) (depicted by a green dashed box) on four video sequences.

Chapter 2. Incremental Learning for Robust Visual Tracking 35

2.4.3 Quantitative Analysis

To evaluate the tracking precision quantitatively, we tested the ability of our algorithm to

consistently track seven facial feature points in the “Dudek” sequence. We compare our

results with the manually labelled “ground truth” locations of the features, as initially

presented in (Jepson et al., 2003).

To obtain estimates of the feature locations, we began by tracking the face, obtaining

a sequence of similarity transformations approximately describing its motion from one

frame to the next. For this image sequence, we used slightly larger variances, more

particles (4000), and a forgetting factor of 0.99. Given the locations of the facial features

in the first frame, we applied the sequence of transformations to these points, obtaining

at each frame an estimate of where the features lay. Representative tracking results are

shown in Figure 2.11, with red x’s used to indicate our estimates of the feature locations,

and yellow x’s for the ground-truth positions.

Finally we computed the root mean square (RMS) error between the estimated lo-

cations of the features and the ground-truth. The error is plotted for each frame in

Figure 2.12. For most frames our tracking results match the ground truth well, the

largest errors occurring during brief occlusions or fast pose changes. The average RMS

error of our method is 5.07 pixels per feature per frame, which is slightly better than the

error of 5.2 pixels reported for the WSL tracker in (Jepson et al., 2003). In contrast, the

Mean Shift tracker described in Section 2.4.2 has an average error of 48.7 pixels. Note

that the errors in most frames are rather small and the errors in a few frames contribute

most to the average RMS error.

Comparing the ability to track labeled features also allows us to quantitatively assess

the contribution of the correct mean update and forgetting factor in our incremental

algorithm to overall tracking performance. First, we re-ran the tracker without incre-

mentally adapting the mean of the eigenbasis. The resulting average error increased to

5.86 pixels per feature per frame. Next, we removed the forgetting factor from the algo-

Chapter 2. Incremental Learning for Robust Visual Tracking 36

rithm (while using the correct mean update) and re-ran the tracker. This caused an even

larger increase in error, to 7.70 pixels. Substituting our incremental algorithm with that

of Hall et al. (2002), which lacks the forgetting factor, also produced an error of 7.70.

These results demonstrate that the mean update and, particularly, the forgetting factor

provide a measurable boost to tracking performance.

Figure 2.11: A person undergoing large pose, expression, appearance, and lighting change,

as well as partial occlusions. The yellow crosses denote the ground truth data and the

red crosses represent our tracking results.

To demonstrate the effectiveness of the proposed eigenbasis update algorithm in mod-

elling object appearance, we compare the reconstruction results of our method to the

conventional PCA algorithm, and to the incremental algorithm of Hall et al. (2002). For

a fair comparison we do not use the forgetting factor in this experiment, so that the

reconstruction error of each input image is treated equally by all algorithms. Unlike con-

Chapter 2. Incremental Learning for Robust Visual Tracking 37

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

frame

R
M

S
 e

rr
or

Figure 2.12: The RMS error at tracking feature points, for each frame in the “Dudek”

sequence. The abrupt increases in error occur when there is temporary occlusion or

motion blur.

ventional PCA, which constructs a subspace using all the frames in the video (i.e. batch

processing), the incremental algorithms—Hall’s and our own—update the subspace pe-

riodically as frames arrive. For this experiment, as with the tracker, we update the basis

every five frames. At any given time the incremental algorithms retain only the top few

eigenvectors, thereby providing an efficient method with a compact representation.

We used the “animal doll” sequence for experiments, extracting images of the target

object from the first 605 frames of the sequence to use as training data. A selection

of these images are depicted in the first row of Figure 2.13. The conventional batch

PCA algorithm, our algorithm, and that of Hall et al. were used to construct bases

consisting of 16 top eigenvectors. For both incremental algorithms this entailed 121

incremental updates, retaining only the top 16 eigenvectors after each update. When the

learned bases were used to reconstruct the training images, batch PCA incurred a RMS

reconstruction error of 7.93×10−2 per pixel, whereas the error of our algorithm was only

slightly higher, at 8.03×10−2. The reconstructed images using the batch PCA algorithm

and our algorithm are shown in rows 2 and 4 of Figure 2.13 respectively, and rows 3 and

Chapter 2. Incremental Learning for Robust Visual Tracking 38

5 contain the corresponding residue images.

In comparison, Hall’s algorithm achieved the same reconstruction error as our own,

8.03×10−2, however its runtime, averaged over 100 repetitions, was 38% greater than

that of our algorithm. (The results of Hall’s algorithm are not included in the figure

since, when the forgetting factor is not used, they are visually indistinguishable from our

own.) The batch PCA algorithm takes on average 6 times longer than our incremental

algorithm, even after we rearrange the computation to calculate the eigenvectors of the

Gram matrix (X>X) rather than the covariance matrix (XX>), as described in (Murase

and Nayar, 1995).

Thus, from these experiments we can conclude that our incremental eigenbasis up-

date method is able to effectively model the object appearance without losing detailed

information, at a cost appreciably less than that of Hall et al.’s algorithm.

23 72 97 103 143 169 189 205 220 236 264 276 355 388 399 522 524 561 581 59723 72 97 103 143 169 189 205 220 236 264 276 355 388 399 522 524 561 581 59723 72 97 103 143 169 189 205 220 236 264 276 355 388 399 522 524 561 581 59723 72 97 103 143 169 189 205 220 236 264 276 355 388 399 522 524 561 581 59723 72 97 103 143 169 189 205 220 236 264 276 355 388 399 522 524 561 581 59723 72 97 103 143 169 189 205 220 236 264 276 355 388 399 522 524 561 581 59723 72 97 103 143 169 189 205 220 236 264 276 355 388 399 522 524 561 581 597

Figure 2.13: The first row shows a selection of test images. The second and fourth rows

show the reconstructions of these images using the conventional batch algorithm and our

incremental algorithm, respectively. Their corresponding residues are presented in the

third and fifth rows.

2.4.4 Discussion

The robust tracking performance of our algorithm can be attributed to several factors.

One reason is that our incremental eigenbasis learning approach exploits the local linear-

Chapter 2. Incremental Learning for Robust Visual Tracking 39

ity of appearance manifold for matching targets in consecutive frames. It is well known

that the appearance of an object undergoing pose change can be modelled well with

a view-based representation (Murase and Nayar, 1995). Meanwhile at fixed pose, the

appearance of an object in different illumination conditions can be approximated well

by a low dimensional subspace (Belhumeur and Kreigman, 1997). Our empirical results

show that these variations can be learned online without any prior training, and that

the changes caused by cast and attached shadows can still be approximated by a linear

subspace to limited extent. Consequently the appearance of an object undergoing illumi-

nation and pose variation can be approximated by a local subspace within a short span

of time, which in turns facilitates the tracking task. Notice that at any time instant, it

suffices to use an eigenbasis to account for appearance variation if the object motion or

illumination change is not instantly drastic. This work demonstrates that a tracker based

on the idea of an incremental eigenbasis update can be both efficient and perform well

empirically when the appearance change is gradual. A few additional failure cases for

this algorithm can be seen at project the web site, mentioned earlier. Typically, failures

happen when there is a combination of fast pose change and drastic illumination change.

In this project we do not directly address the partial occlusion problem. Empirical

results show that temporary and partial occlusions can be handled by our method through

constant update of the eigenbasis and the robust error norm. Nevertheless situations arise

where we may have prior knowledge of the object being tracked, and can exploit such

information for better occlusion handling.

2.5 Conclusions and Future Work

We have presented an appearance-based tracker that incrementally learns a low dimen-

sional eigenbasis representation for robust object tracking while the target undergo pose,

illumination and appearance changes. Whereas most algorithms operate on the premise

Chapter 2. Incremental Learning for Robust Visual Tracking 40

that the object appearance or ambient environment lighting conditions do not change

as time progresses, our method adapts the model representation to reflect appearance

variation of the target, thereby facilitating the tracking task. In contrast to the existing

incremental subspace methods, our eigenbasis update method updates the mean and

eigenbasis accurately and efficiently, and thereby learns to faithfully model the appear-

ance of the target being tracked. Our experiments demonstrate the effectiveness of the

proposed tracker in indoor and outdoor environments where the target objects undergo

large pose and lighting changes.

Although our tracker performs well, it occasionally drifts from the target object. With

the help of particle filters, the tracker often recovers from drifts in the next few frames

when a new set of samples is drawn. For specific applications, better mechanisms to

handle drifts could further enhance robustness of the proposed algorithm. The current

dynamical model in our sampling method is based on a Gaussian distribution, but for

certain specific applications the dynamics could be learned from exemplars for more

efficient parameter estimation. Our algorithm can also be extended to construct a set

of eigenbases for modelling nonlinear aspects of appearance variation more precisely and

automatically. We aim to address these issues in our future work.

Chapter 3

Combining Discriminative Features

to Infer Complex Trajectories

In this chapter we propose a new model for the probabilistic estimation of continuous

state variables from a sequence of observations, such as tracking the position of an object

in video. This mapping is modeled as a product of dynamics experts (features relating

the state at adjacent time-steps) and observation experts (features relating the state to

the image sequence). Individual features are flexible in that they can switch on or off at

each time-step depending on their inferred relevance (or on additional side information),

and discriminative in that they need not model the full generative likelihood of the data.

When trained conditionally, this permits the inclusion of a broad range of rich features,

such as features relying on observations from multiple time-steps. Furthermore, the

relevance of these features can be learned from labelled sequences.

3.1 Introduction

Many real-world problems involve estimating a time series of continuous state vectors

from a sequence of high-dimensional observations. Examples include inferring a trajec-

tory of stock values based on the evolution of various economic indicators; tracking a

41

Chapter 3. Combining Discriminative Features 42

patient’s vital health signs through a myriad of symptoms; and tracking the trajectory

of a moving object in video. A standard probabilistic approach is to fit the observations

with a generative state-space model (SSM). These models propose that the state is a

latent variable which evolves over time, and at each step is responsible for generating

a noisy observation. State estimates are obtained from observations by inverting the

probability model via Bayes’ rule. A canonical example of a SSM is the Kalman filter,

which models both the state dynamics and observations as linear functions of the state,

corrupted by Gaussian noise, which leads to a Gaussian posterior distribution over the

state at any time. Extensions to the Kalman filter allow for non-linearities in the state

dynamics and observation functions, and for multi-modal posterior state distributions.

Although highly successful, SSMs suffer some disadvantages. First, for computational

tractability, SSMs usually assume that observations are conditionally independent of each

other given the state. Thus the estimate of the state at a particular time can directly

depend only on the observations at that same time (and the previous state), precluding

the direct inclusion of evidence derived from observations across a range of time. Second,

the relationship between state and observation at every time-step in an SSM is mediated

through a single, identical likelihood function, which must generate the entire high-

dimensional observation given only the value of the state. Crafting such a likelihood

can be challenging, since it requires the ability to accurately model all aspects of the

observation, including those that are irrelevant with respect to predicting the state.

An alternative approach, which we pursue here, is to directly model the conditional

(posterior) distribution of the states given the observations. We propose fitting the

posterior with a weighted log-linear combination of dynamics features (relating states

at different time-steps) and observation features (relating the state to the observation

sequence). Features are discriminative, leveraged to predict the state from the observa-

tions, thus avoiding the problem of explaining the high-dimensional observations faced by

generative likelihoods. Using a conditional model also removes the need to assume inde-

Chapter 3. Combining Discriminative Features 43

pendence of observations, hence each feature may incorporate evidence from any number

of observations. Additionally, a wide variety of observation features may be combined

and the system can learn, through supervised training, which features are relevant for

any given task. Our system also includes the ability at each time-step to switch between

different dynamics features, and to selectively shut off unreliable observation features.

A canonical application of this approach involves tracking a moving object in a video

as it follows a complicated trajectory. Consider watching a basketball game, and focusing

simply on trying to follow the ball. Generating a full description of the scene, including

the complex interaction of all the players, based on the ball position at any time is hope-

less. However, obtaining a estimate of the ball’s location from the image is considerably

easier, as features such as colour and shape can be highly discriminative. In addition,

understanding the basic dynamics of the ball motion can be useful in tracking it even as

it disappears behind some players.

We begin in Section 3.2 with a detailed description of our model, followed by details

on inference and learning (Section 3.3). We relate our model to similar approaches in

Section 3.5. Finally, in Section 3.6, we apply our model to a realistic tracking problem—

estimating the position of a basketball in a video—using a number of different dynamics

and observation features.

3.2 Model

Given a sequence of observations Y and corresponding sequence of states X, we construct

a model of the conditional distribution of X given Y. The model combines a set of

dynamics features fj(xt−1,xt) for j = 1, . . . , J , and observation features gk(xt,Y) for

k = 1, . . . , K. The basic model then combines these features to provide a description of

the conditional distribution:

P(X|Y) ∝ exp

(
T∑

t=2

J∑
j=1

fj(xt−1,xt) +
T∑

t=1

K∑
k=1

gk(xt,Y)

)
.

Chapter 3. Combining Discriminative Features 44

In our model, both the dynamics and observation features can be viewed as functions

that predict the state xt. That is, associated with each dynamics feature fj(xt−1,xt)

is a function φj(xt−1), which predicts the state at time t given the state at time t − 1.

Each fj then computes the distance between xt and its predicted value φj(xt−1), which

is scaled by a learned parameter αj. Similarly, each observation feature gk(xt,Y) has

an associated function γk(Y, t), predicting xt from observations, and a scaling parameter

βk:

fj(xt−1,xt) = −1

2
(xt − φj(xt−1))

>αj (xt − φj(xt−1))

gk(xt,Y) = −1

2
(xt − γk(Y, t)) >βk (xt − γk(Y, t)) .

The range of possible functions φj() and γk() is broad, including any off-the-shelf

method of predicting the state from other states or observations. In this work we will

restrict our attention to linear functions for the dynamics:

φj(xt−1) = Tjxt−1 + dj.

For example, in describing the motion of object in two dimensions, xt can include a pair

of components for its position, velocity, and acceleration, and (Tj,dj) could correspond

to constant-velocity and no acceleration, or constant acceleration.

When including a large number of features, it is likely that at any given time, some

of them give very poor predictions, and their contributions should be disregarded. This

problem can be addressed by making the set of features flexible: at each time-step features

can be turned off (meaning that their prediction will not be included in the state estimate)

based on their inferred relevance. This is accomplished through the introduction of hidden

binary switch variables, ujt and vkt, one for each feature at each time-step.

Obtaining an accurate estimate of the state therefore is highly dependent on appropri-

ately setting the switches, to only include the relevant features in the state representation.

One piece of information potentially relevant to determining the switches involves evalu-

Chapter 3. Combining Discriminative Features 45

Table 3.1: A summary of notation

X = [x1 . . .xT] state sequence

Y = [y1 . . .yT] observation sequence

fj(xt−1,xt) jth dynamics feature function,

αj its parameter

φj(xt−1) its prediction function φj(xt−1) = Tjxt−1 + dj

Tj its linear dynamics model (matrix)

dj its linear dynamics model (translation vector)

ujt binary switch on dynamics

Fj(Y, t) dynamics switch potential

gk(xt,Y) kth observation feature function,

βk its parameter

γk(Y, t) its prediction function

vkt binary switches on observations

Gk(Y, t) observation switch potential

Chapter 3. Combining Discriminative Features 46

ating the agreement between the feature predictions; intuitively a feature making a very

divergent prediction can be switched off. Often, there is additional information available

in the observations to suggest which dynamics/observation features might be relevant.

This side information is captured by including learned potential functions for each switch,

Fj and Gk, which again can be off-the-shelf classifiers, trained discriminatively in the same

framework.

Putting these together, we arrive at the following log-probability of X given Y:

L = log
∑
u,v

exp

(∑
t,j

fj(xt−1,xt)ujt +
∑
t,k

gk(xt,Y)vkt

+
∑
t,j

Fj(Y, t)ujt +
∑
t,k

Gk(Y, t)vkt

)
− log Z(Y) (3.1)

where Z(Y) is the distribution’s normalizing function, or partition function. The nota-

tion used in this equation is detailed in Table 3.1, and the corresponding factor graph

illustrated in Figure 3.1. Essentially, the log probability of the state sequence X given

the observation sequence Y is a linear combination of four probability potentials. The

dynamics features, fj(xt−1,xt), each assess the probability that the state begins at xt−1

at time t−1 and moves to xt at time t. Similarly, the observation features, gk(xt,Y), each

assess the probability that the state at time t is xt, given the collection of observations

Y. Finally the switch potential Fj(Y, t) assess the probability that dynamics feature fj

is giving an accurate estimate for the transition from time t− 1 to time t, and Gk(Y, t)

that the observation feature gk is giving a reliable estimate at time t.

Note that because the switches are hidden, when we integrate over our uncertainty

for the switches we effectively get a mixture-of-Gaussian prediction for the posterior

state distribution at time t, which allows us to elegantly capture multimodality. Further,

during inference, the posterior distribution over switches will capture the probability that

a given feature is going to be of use at that point in the sequence.

The non-switching or “non-flexible” version of this model—where ujt and vkt are

fixed constant—is an interesting special case. Because the dynamics and observation

Chapter 3. Combining Discriminative Features 47

features are quadratic in X, the resulting conditional distribution is Gaussian. This

provides some advantages: exact inference, partition function, and gradient computations

can be done efficiently, and learning (with respect to αj and βj) becomes a convex

problem. Practically, however, there are two considerable disadvantages. First, because

the Gaussian is unimodal, the resulting state distribution will be unimodal at all time-

steps; this can lead to an inability to recover from errors in the state prediction. Second,

the prediction is no longer robust, which means that only dynamic features which are

all simultaneously applicable can be included, and observation features must be always

accurate.

g

xtxt−1

g

f

GG

F

Y

tv

tu

t−1v

Figure 3.1: Factor graph of the model for two time-steps.

3.3 Inference

Given a sequence of observations, inferring the corresponding state sequence consists of

computing the probability distribution P(X|Y). Performing this calculation directly is

infeasible, unfortunately, since it requires marginalization over all possible joint settings

of the hidden variables, ujt and vkt, and there are hidden variables for each time-step.

However, several variational and approximation schemes readily apply to this formula-

tion. Here we focus on a particular MCMC method that exploits special structure in the

Chapter 3. Combining Discriminative Features 48

model to allow efficient approximate inference.

Given the hidden variables, the state sequence X forms an (undirected) linear-Gaussian

Markov chain, thus P(X|U,V,Y) can be readily computed. Similarly, given the state se-

quence, the switches are conditionally independent, so inference of P(U,V|X,Y) is easy.

From these facts, we arrive at a simple Gibbs sampling method for drawing samples from

P(X,U,V|Y).

1. Obtain an initial estimate Û, V̂ of the switch variables. For example, these can be

based on the side-information provided by features Fj and Gk.

2. Infer P(X|Û, V̂,Y), a Gaussian in X, and draw from it a state sequence sample

X̂.

3. Infer P(U,V|X̂,Y), and from it draw samples of the switches Û and V̂.

4. Goto 2, and repeat this sampling procedure for the desired number of iterations.

We now present a message-passing scheme for inferring the state given the switches,

followed by a pair of simple equations for inferring the switches given the state. Each

iteration of this scheme (and of learning) has a computational cost that scales linearly in

the length of the sequence and the number of observation and dynamics features, but, like

Kalman smoothing, scales cubically in the dimensionality of the state. A full derivation

of this algorithm is presented in Appendix B.

3.3.1 Inferring State X given Switches U,V

Given the switches and observations, the belief propagation algorithm can be used to

exactly compute the marginal P(xt|U,V,Y) and pairwise marginal P(xt−1,xt|U,V,Y)

distributions. These can be used to draw samples of the state sequence, as well as to

compute the expectations (3.2) which will be required for learning. Note that because

Chapter 3. Combining Discriminative Features 49

the features are quadratic in X, the marginals and pairwise marginals will be Gaussian

distributions.

Inference using belief propagation requires a two-phase message passing schedule,

much like the Kalman smoother; messages are passed forward, from the beginning of

the state sequence to the end, and backward in the opposite direction. Each message

consists of a Gaussian distribution, with mean vector µ and precision matrix τ (which,

for notational convenience, we will use in place of the inverse covariance matrix). As in

Kalman smoothing, the messages can be written recursively, each in terms of the message

preceding it. This algorithm differs from Kalman smoothing only in the additional book-

keeping required to accommodate varying switched dynamics between each time-step,

and products of switched observation features. Message passing can be broken into four

steps: forward prediction of xt given xt−1, forward correction to incorporate observation

features at time t, backward prediction of xt given xt+1, and backward correction.

We first define a number of terms which will appear several times in the message-

passing equations. Note that because they depend on the switches, these terms must be

recomputed at each time-step.

A =
∑

j

αjujt B =
∑

k

βkvkt

αT =
∑

j

αjTjujt TαT =
∑

j

Tj
>αjTjujt

αd =
∑

j

αjdjujt Tαd =
∑

j

Tjαjdjujt

y′t =
∑

k

βkγk(Y, t)vkt

The first phase begins with an initial estimate of the state at time-step 1, such as

N (x1|
∑

k gk(x1,Y)vk1,
∑

k βkvk1). For each subsequent time-step, we compute a pre-

dicted estimate N (xt|µt|t−1, τt|t−1) of the state based on our estimate for the previous

time-step, and a corrected esimate N (xt|µf
t , τ

f
t) which incorporates information from

gk(xt,Y). These forward updates are:

Chapter 3. Combining Discriminative Features 50

Forward Prediction:

τt|t−1 = A− αT (TαT + τ f
t−1)

−1αT>

µt|t−1 = (τt|t−1)
−1[αT (TαT + τ f

t−1)
−1(τ f

t−1µ
f
t−1 − Tαd) + αd]

Incorporating Evidence (forward correction):

τ f
t = τt|t−1 + B

µf
t = (τ f

t)−1(τt|t−1µt|t−1 + y′t)

The second phase begins with our corrected estimate of the final state obtained from the

forward passN (xT |µf
T , τ f

T) and works backwards, computing predictedN (xt|µt|t+1, τt|t+1)

and corrected N (xt|µb
t , τ

b
t) estimates.

Backward Prediction:

τt|t+1 = TαT − αT>(A + τ b
t+1)

−1αT

µt|t+1 = (τt|t+1)
−1[αT>(A + τ b

t+1)
−1(τ b

t+1µ
b
t+1 + αd)− Tαd]

Backward Correction:

τ b
t = τt|t+1 + B

µb
t = (τ b

t)−1(τt|t+1µt|t+1 + y′t)

Finally, the marginal distribution of xt, N (xt|µt, τt) can be obtained by multiplying all

messages coming into it:

τt = τt|t−1 + B + τt|t+1

µt = (τt)
−1(τt|t−1µt|t−1 + y′t + τt|t+1µt|t+1).

The pairwise marginal distribution is obtained by multiplying together the forward mes-

sage into xt−1, the backward message into xt, and an additional factor arising from

the dynamics features. The resulting mean is simply the concatenation of the marginal

means, (µt−1,µt), and the precision is sum of the precisions from the messages and

dynamics factor

τt−1,t =

τt−1|t−2 + B + TαT −αT>

−αT A + B + τt|t+1

 .

Chapter 3. Combining Discriminative Features 51

3.3.2 Inferring Switches U,V given State X

As mentioned above, given the state sequence the switch variables are independent, thus

P(U,V|X,Y) factorizes into a product of simple distributions.

The posteriors of the observation switches vkt are independent Bernoulli distributions,

with probability

P(vkt = 1) = σ (gk(xt,Y) + Gk(Y, t))

where σ() is the logistic function σ(x) = 1/(1 + e−x). The posterior distribution of the

dynamics switches ujt at each time-step is Multinomial—a discrete choice over J options.

The probability that switch j is on at time t is

P(ujt = 1) =
exp(fj(xt−1,xt) + Fj(Y, t))∑
j′ exp(fj′(xt−1,xt) + Fj′(Y, t))

.

3.4 Learning

The parameters of the feature functions, αj and βk, can be learned using an application

of the Contrastive Divergence algorithm (Hinton, 2002). Contrastive Divergence is an ap-

proximate gradient descent in parameter space, used in undirected graphical models with

intractable partition functions. Specifically, analytic differentiation of the log-likelihood,

(3.1), with respect to αj and βk results in the following expressions:

∂L
∂αj

=EP(U,V|X,Y)

[∑
t

(xt − φj(xt−1))(xt − φj(xt−1))
>ujt

]

− EP(X,U,V|Y)

[∑
t

(xt − φj(xt−1))(xt − φj(xt−1))
>ujt

]
,

∂L
∂βk

=EP(U,V|X,Y)

[∑
t

(xt − γk(Y, t))(xt − γk(Y, t))>vkt

]

− EP(X,U,V|Y)

[∑
t

(xt − γk(Y, t))(xt − γk(Y, t))>vkt

]
.

(3.2)

Thus, the gradient of the log-probability with respect to αj is the difference between

two expectations. The first expectation, known as the positive phase, computes the

Chapter 3. Combining Discriminative Features 52

expectation of
∑

t(xt − φj(xt−1))(xt − φj(xt−1))
>ujt given the observation sequence Y

and corresponding ground truth state sequence X. (This quantity can be thought of

as the uncentered second moment (covariance) of the error made by predictor φj, in

cases where it is switched on.) As was seen in Section 3.3.2, the switch variables are

conditionally independent given X and Y, so their expected values are readily obtained,

and the resulting expectation is simply
∑

t(xt − φj(xt−1))(xt − φj(xt−1))
>E[ujt|X,Y].

The second expectation, known as the negative phase, computes the expected value

of the same quantity, but this time given only the observations Y. This is the same com-

putation required during inference, as described in Section 3.3, and is likewise infeasible.

To deal with this, Contrastive Divergence proposes an approximation very much like the

one used for inference, but that makes use of the ground truth labels X, which are avail-

able at training time. Specifically, samples of U, V and X given Y are drawn according

the the following procedure, and are then used to obtain an approximate Monte Carlo

estimate of the negative phase expectation.

1. Obtain an initial estimate Û, V̂ of the switch variables by sampling from P(U,V|X,Y).

Note that this makes use of the ground truth state sequence, X, which is not avail-

able during standard test-time inference.

2. Infer P(X|Û, V̂,Y), a Gaussian in X, and sample from it a state sequence X̂.

3. Infer P(U,V|X̂,Y), and from it draw samples of the switches Û and V̂. Note that

this time the state sequence sample obtained in Step 2 is used instead of the ground

truth X.

4. Goto 2, and repeat this sampling procedure for the desired number of iterations.

To obtain an unbiased sample, the above procedure must be run in theory for an infinite

number of iterations, or in practice for enough iterations that it is computationally in-

feasible. However, Contrastive Divergence notes that a reasonable approximation can be

Chapter 3. Combining Discriminative Features 53

obtained using a biased sample, obtained after only a very small number of iterations.

In practice we use two iterations, and obtain 100 samples to approximate the negative

phase expectation.

Computing the gradient for βk can be done analogously. A full derivation of the the

learning algorithm is presented in Appendix B.

In is interesting to note that, although Contrastive Divergence is typically used for

unsupervised learning, here we apply it to a supervised learning problem. To connect

our approach to the more-common unsupervised learning case, the ground-truth state

sequences X can be thought of as the observed data, the switches U,V as the hidden

variables, and the observations Y as a set of fixed parameters or biases in an unsupervised

model.

3.5 Related Work

Our approach is closely related to previous work on Conditional Random Fields (CRFs)

(Lafferty et al., 2001), Products-of-Experts (PoE’s) (Hinton, 2002), and energy-based

models (Teh et al., 2003), and in some ways can be considered a variant or extension

of these frameworks. However, typically CRFs are concerned with discrete states and

include simple, discrete features (such as delta-function indicator-variables). In contrast

our model works with a combination of continuous and discrete state, incorporates un-

observed latent variables during training and testing, and employs continuous-valued

feature functions. Some of these elements have been used individually in other mod-

els proposed recently, such as (Quattoni et al., 2005; Sudderth et al., 2005), but to our

knowledge the particular combination of these elements is novel to the model presented

here. Likewise, PoE’s or energy-based models have been predominantly applied to un-

supervised modelling the full joint density, rather than the conditional posterior as in

our case. Within this class of models, our work has some commonalities with exponen-

Chapter 3. Combining Discriminative Features 54

tial family harmoniums (Welling et al., 2005), where we use Bernoulli/Multinomial and

Gaussian layers, with the extension in our model that this distribution is conditioned on a

set of observation features, and that the Gaussians units have a linear chain dependency.

Our work also bears some similarities to the Fields-of-Experts (Roth and Black, 2005),

in the sense that we learn an undirected, translation-invariant dependency structure.

Our model draws additional inspiration from several approaches in the general se-

quential state estimation literature and it shares some commonalities with models based

around switching state space models (switching-SSMs) (Ghahramani and Hinton, 2000).

As with our work, these generative models employ a set of switches that select between

distinct state-transition functions, as well as having switch-dependent emission distri-

butions. Switching-SSMs typically couple the switch states through time in a directed

Markov chain; although we currently do not do this, it would be a computationally feasi-

ble extension to our model. In relation to switching-SSMs, our model is able to leverage

the usual advantages of discriminative training in conditional models — namely that

the switch variable can be set up to have a rather rich dependency on the observation

sequence without incurring extra difficulties with inference or tractability. Our model

differs from switching-SSMs in another important way: SSMs fit the joint probability of

state and observations1, whereas our model disregards the observation density, instead

fitting only the conditional probability of state given observations.

With respect to the particular application to object tracking, a number of models

employing CRF-style approaches have recently been suggested, including (Sminchisescu

et al., 2005; Taycher et al., 2005). While our approach shares some of the same modelling

philosophies as these approaches, including employing a variety of features, discriminative

training, and dynamic models, the overall form and components of our approach is signif-

1When the ground truth state sequence is available during training—the supervised learning case—
SSMs are fit to the joint probability of state and observations. In contrast, when only the observation
sequence is available—unsupervised learning, for example via expectation-maximization—SSMs are fit
to the probability distribution of the observations only.

Chapter 3. Combining Discriminative Features 55

icantly different. Also from the broader tracking literature there are several approaches

that have some aspects in common with our work. In particular, (Collins et al., 2005)

shares the notion that it is advantageous to have a candidate pool of mechanisms to esti-

mate the object position, and to swap these in and out based on their local performance

and consistency. However, this model has no explicit representation of dynamics, and is

restricted to simpler features than those in our framework. In a similar vein, (Forsyth

and Ponce, 2002) suggests an approach that employs a Kalman filter in conjunction with

“gated” observations. Lastly, we note that (Isard and Blake, 1998) use particle filtering

and a switching dynamics model to follow a simple bouncing ball, which influenced our

choice of an illustrative experiment using a bouncing ball in a more realistic setting.

3.6 A visual tracking application

As a test of our model, we apply it to the problem of tracking the position of a basketball

in video. Here, we show that by combining several different simple (and often unreliable)

observation and dynamics features, we can obtain a reliable tracker.

In this setting the observations are a sequence of grayscale images. For the state at

time t we use a 6-dimensional vector encoding the position, velocity, and acceleration

of the ball. Augmenting the state-space with velocity and acceleration is a standard

transformation (Forsyth and Ponce, 2002), allowing higher-order dynamics to be modeled

using features that only look at pairs of temporally adjacent states. Training data consists

of a sequence of images, as well as the ground truth locations of the target object (with

velocity and acceleration computed via finite differencing).

In our tracker, we include eight different observation features. The first six are based

on small template images. Given an observation image, each template is compared

(efficiently, using convolution) to all possible sub-patches in the image, and γk(Y, t)

returns the location of the most similar patch based on sum-of-squares distance. The

Chapter 3. Combining Discriminative Features 56

next feature uses a 3-component principal components analysis (PCA) subspace. Again,

the subspace is applied to all areas of the current image, and γk() returns the location

of the image patch with lowest sum-of-squares reconstruction error. The final feature

is based on temporally-local background subtraction. It takes five observation images

(the current, two proceeding, and two following images), computes the mean image, and

returns the point in the current image that differs most from this mean (after Gaussian

blur of the difference image). As expected, this feature can work well when there is only

one rapidly moving object, but can be very unreliable when there is any other motion

(including camera motion) in the image. None of these features are able to estimate the

velocity or acceleration, thus for these dimensions of the state the φk()’s always predict

zero. Note that in our model it is perfectly acceptable for a feature to consider only a

subset of the state dimensions.

For each of these observation features we include side-information to help determine

the values of the switches. For the template and PCA features, we compute the sum-

of-squares error of the best-matching image patch, and for the background subtraction

feature, we compute the maximum squared difference between the current and mean

images. Each switch potential Gk takes a (different) linear combination of these values

and returns the result. Thus each Gk can be thought of as a logistic regression classifier,

attempting to determine the observation switches vkt using only information from the

observation images.

Four dynamics features are included, each using a linear predictor of xt from xt−1.

We do not include any side-information for the dynamics, thus Fj is simply a constant

bias.

3.6.1 Tracking a basketball

The video data for this evaluation consisted of four video sequences, totalling around

8400 frames, for which the ground truth location of the basketball was obtained by hand.

Chapter 3. Combining Discriminative Features 57

We trained two separate trackers to evaluate performance during weak and strong gen-

eralization scenarios. In the first experiment we used one sequence (referred to as Simon,

1796 frames) containing a single player bouncing, throwing and dribbling a basketball.

The tracker was trained using the first 500 frames (as well as the corresponding ground

truth points) and tested on the remaining frames. In the second experiment we used three

sequences in which players pass a basketball by rolling (roll, 1556 frames), bouncing

(bounce, 1897 frames), and by both rolling and bouncing (roll+bounce, 3126 frames).

Here the tracker was trained on the first 500 frames of roll and bounce, and tested on

the held-out roll and bounce frames (weak generalization), as well as on the previously

unseen roll+bounce sequence (strong generalization).

To train the template features, we extracted 19×19-pixel image patches of the basket-

ball from the training images. The first five templates were obtained by running K-means

clustering on the patches, while the sixth was simply one of the training patches (we chose

the last image). The PCA model was also fit using these training patches. The linear

parameters of the switch potentials Gk were fit using logistic regression. Although they

can often correctly locate the basketball, none of the features is always “on the ball”.

The reliability of each observation feature (the frequency with which it predicts a loca-

tion within 5 pixels of the basketball) is given in Table 3.2. The most reliable feature

is PCA (0.81), and the “background subtraction” feature (0.08) is the least. Included

also in Table 3.2 is a measure of how accurately the tracker switches these observation

features on or off during the test sequence. As can be seen, switching is very accurate for

all features except background subtraction. Closer investigation reveals that although

the tracker seems to be erroneously switching this unreliable feature on, in reality it has

learned to permanently ignore the feature by assigning it very little weight (1/35th the

weight assigned to the PCA feature).

To train the dynamics features (Tj and dj), in the first experiment we hand-segmented

the ground-truth states from the training data into four regimes: flying (the basketball in

Chapter 3. Combining Discriminative Features 58

Table 3.2: Reliability of the observation features on the Simon sequence.

Feature Fraction of frames in which feature ...

correctly locates the ball. is correctly switched on/off.

K-means 1 0.34 0.98

K-means 2 0.53 1.00

K-means 3 0.61 1.00

K-means 4 0.63 0.96

K-means 5 0.63 1.00

Last training patch 0.33 0.98

PCA 0.81 1.00

Background Subtraction 0.08 0.29

free-flight), holding (the basketball in the hands of the player), bouncing off the ground,

and bouncing off the wall. The parameters of each φj() were chosen to minimize ‖xt −

(Tjxt−1 + dj)‖ for the set of corresponding ground-truth states. Segmenting the data

can be time consuming, so in the second experiment we used manually chosen dynamics

features, corresponding to flight, rolling, bouncing, and holding.

Finally, the feature precisions αj and βk, as well as the logistic regression parameters,

were refined using 300 iterations of Contrastive Divergence learning. Given the learned

model, we track the basketball by applying 20 iterations of the inference method described

in Section 3.3, producing an estimate of the state sequence and the switches.

3.6.2 Results

To quantitatively assess the trackers’ performance, for each of the test sequences we

computed an error rate defined to be the fraction of frames in which the predicted state

Chapter 3. Combining Discriminative Features 59

was more than 5 pixels away from the true location of the basketball. As a baseline, we

also attempted to track the sequences using an SSM, specifically a Kalman filter fit to

the training data. We experimented with including different subsets of the observations

features , as well as including/not including velocity and acceleration in the state, but

in all cases the Kalman filter performed very poorly. For further comparison, we applied

the incremental visual tracker (IVT) presented earlier in Chapter 2.

The result of tracking the Simon sequence is shown in Figure 3.2. As can be seen the

basketball is tracked well throughout the sequence. Although the tracker loses the ball

briefly on four occasions, it quickly recovers. The error rate of the tracker was 0.1196,

versus 0.7229 for the Kalman filter. The IVT was able to track the first part of the

sequence without error, but it lost track of the ball after 688 frames and was unable to

recover, resulting in an error rate of 0.613.

The results of the second experiment are shown in Figure 3.3. The error rates for

the tracker were 0.0208 on roll, 0.0766 on bounce, and 0.1004 on roll+bounce. The

corresponding rates for the Kalman filter were 0.8333, 0.9434, and 0.9697. The IVT

tracked the first 700 frames of roll, 125 frames of bounce, and 730 frames of roll+bounce

before failing, giving error rates of 0.37, 0.919, and 0.767. The discrepancy in error rates

between the three trackers highlights the difficulty in choosing an appropriate metric

for quantitatively comparing tracking results. However, we feel that fraction of time

“on-the-ball” seems the most appropriate measure for this application.

3.6.3 Dealing with missing observations

To test our model’s ability to deal with missing observations, and the quality of the

learned dynamics features, we conducted two experiments.

First, we modified the Simon sequence so that all observation features would be off for

20 consecutive frames, while the ball is in free flight. Occlusion is a notoriously difficult

problem for tracking, as state-of-the-art trackers perform simple diffusion until telltale

Chapter 3. Combining Discriminative Features 60

observations enable the tracker to locate the object (Jepson et al., 2001). The result can

be seen in Figure 3.2 (lower-right image). The model is able to successfully track through

the 20-frame (98-pixel displacement) simulated occlusion. Note that the uncertainty in

the state estimate (indicated by blue circles of one standard deviation) grows during the

missing observations, peaking at the middle of the occlusion.

Second, we applied the tracker trained on the roll+bounce sequences to a previously-

unseen video in which the basketball passes twice behind a bin, and is completely occluded

for approximately 15 frames each time. As can be seen in Figure 3.4, the ball was

successfully tracked through both occlusions. Note that this test video is particularly

challenging since the ball bounces off the ground while it is occluded. Admittedly, the

inferred trajectory during occlusion does not recover the true location of the ball’s bounce,

however the tracker does posit a plausible trajectory based on its knowledge of the ball’s

typical dynamics.

3.7 Discussion

We have presented a novel framework for inferring complex trajectories from high-

dimensional and noisy data. One of the key advantages of our approach is that we

have complete flexibility about the observation and dynamics features that we use in our

model. The discriminative learning procedure can appropriately weight the confidence

of different predictors, as well as integrating these predictions over time with a versatile

dynamics model, and learning to effectively gate in and out different features based on

their inferred accuracy and relevance. Although the features used in this work are rela-

tively simple, we still obtain impressive results. One exciting prospect is the possibility

of using rather more powerful predictors in combination — for instance one could use

as observation features the outputs from state-of-the-art object detectors, or even other

trackers. We could also use information from multiple frames (for example estimated

Chapter 3. Combining Discriminative Features 61

optical flow) to help make predictions.

Our model can also readily be extended by improving the side information that con-

strains the inference of which features to use. Our current model does not utilize side

information to help select the dynamics switches; some interactions could be used here

to improve performance. Also, the switches are conditionally independent at each time-

step. Whilst it might not be practical to couple all the observation switches over time, it

seems feasible to take the multinomial switches controlling the dynamics and couple them

in a linear Markov chain. Inference (for smoothing) would then consist of a forwards-

backwards pass of belief propagation for both the continuous state and the dynamics

switches, whilst the observation switches would remain conditionally independent given

the continuous state.

One of the main drawbacks of our approach is that we require a fully labelled sequence

to train on, and in certain applications such data (and in sufficient quantities to constrain

all the parameters of the model without encountering problems with overfitting) may be

hard to come by. A simple way around this would be to bootstrap from other tracking

methods, using them to provide an initial labelling of sequences for training and using

human intervention only on the more challenging segments.

In addition to incorporating more powerful features, there are a number of other

interesting directions in which this work may be taken. One area that we have started to

explore is the performance of different inference algorithms. The dependency structure of

our model allows for a relatively efficient MCMC procedure for obtaining samples from

the conditional posterior. Other (approximate) inference methods such as variational

approximations, particle filtering or non-parametric belief propagation may also be of

use in our model, particularly for real-time or online/filtering applications.

Another interesting direction for this work might be the inclusion of multi-modal

observations and multi-sensory fusion for inference of state. The features we use need

not entirely constrain the state, and one of the strengths of our model is that it is able

Chapter 3. Combining Discriminative Features 62

to combine many weak predictors to give a single good estimate of state. As a example

relative to the experiments presented here, one could imagine a simple auditory cue as

being rather useful in inferring the occurrence of a bounce — potentially allowing us to

deal with changes in behaviour even when the ball is visually occluded.

Moving beyond the scope of tracking applications considered here, the general ideas

behind our model seem to hold promise for a wide range of applications — examples

under consideration include articulated body recovery, prediction of financial time series,

and flexible combination of stereoscopic depth predictions.

Chapter 3. Combining Discriminative Features 63

Figure 3.2: Tracking a basketball (Simon sequence). The full video is available at http:

//www.cs.toronto.edu/∼dross/phd/. The location of the ball, as predicted by the model,

is given in blue. The locations predicted by the eight observations are drawn as yellow

boxes (if the corresponding switch is 1) or as red circles (if the switch is 0). The ball is

successfully tracked during fast motion (frame 594), when bouncing off the ground (607)

and the wall (636), and when dribbled by the player (825). The model does lose track of

the ball when it is occluded (1088), but quickly recovers when the ball becomes visible

again (1106). The dynamics allow the ball to be tracked even when all observation

features’ predictions are erroneous (and one bad feature is on!) (1214). The model

can also cope with motion of the camera (1393). (MISSING DATA: lower right) The

basketball is successfully tracked through a 20-frame (98 pixel displacement) simulated

occlusion.

Chapter 3. Combining Discriminative Features 64

Figure 3.3: Results on the roll, bounce, and roll+bounce sequences. The full videos

are available at http://www.cs.toronto.edu/∼dross/phd/.

Figure 3.4: The basketball is successfully tracked as it passes behind a bin, first when it

is thrown from left to right (frames 90–107), and then a second time as is is thrown back

from right to left (frames 163–183).

Chapter 4

Learning Articulated Structure and

Motion

Humans demonstrate a remarkable ability to parse complicated motion sequences into

their constituent structures and motions. We investigate this problem, attempting to

learn the structure of one or more articulated objects, given a time series of two-dimensional

feature positions. We model the observed sequence in terms of “stick figure” objects, un-

der the assumption that the relative joint angles between sticks can change over time,

but their lengths and connectivities are fixed. The problem is formulated as a single

probabilistic model that includes multiple sub-components: associating the features with

particular sticks, determining the proper number of sticks, and finding which sticks are

physically joined. We test the algorithm on challenging datasets of 2D projections of

optical human motion capture and feature trajectories from real videos.

4.1 Introduction

An important aspect of analyzing dynamic scenes involves segmenting the scene into

separate moving objects and constructing detailed models of each object’s motion. For

scenes represented by trajectories of features on the objects, structure-from-motion meth-

65

Chapter 4. Learning Articulated Structure and Motion 66

ods are capable of grouping the features and inferring the object poses when the features

belong to multiple independently moving rigid objects. Recently, however, research has

been increasingly devoted to more complicated versions of this problem, when the moving

objects are articulated and non-rigid.

In this chapter we investigate the problem, attempting to learn the structure of an

articulated object while simultaneously inferring its pose at each frame of the sequence,

given a time series of feature positions. We propose a single probabilistic model for

describing the observed sequence in terms of one or more “stick figure” objects. We

define a “stick figure” as a collection of line segments (bones or sticks) joined at their

endpoints. The structure of a stick figure—the number and lengths of the component

sticks, the association of each feature point with exactly one stick, and the connectivity

of the sticks—is assumed to be temporally invariant, while the angles (at joints) between

the sticks are allowed to change over time. We begin with no information about the

figures in a sequence, as the model parameters and structure are all learned. An example

of a stick figure learned by applying our model to 2D feature observations from a video

of a walking giraffe is shown in Figure 4.1.

Learned models of skeletal structure have many possible uses. For example, detailed,

manually constructed skeletal models are often a key component in full-body tracking

algorithms. The ability to learn skeletal structure could help to automate the process,

potentially producing models more flexible and accurate than those constructed manually.

Additionally, skeletons are necessary for converting feature point positions into joint

angles, a standard way to encode motion for animation. Furthermore, knowledge of the

skeleton can be used to improve the reliability of optical motion capture, permitting

disambiguation of marker correspondence and occlusion (Herda et al., 2001). Finally, a

learned skeleton might be used as a rough prior on shape to help guide image segmentation

(Bray et al., 2006).

In the following section we discuss other recent approaches to modelling articulated

Chapter 4. Learning Articulated Structure and Motion 67

Figure 4.1: Four frames from a video of a walking giraffe, with the articulated skeleton

learned by our model superimposed. Each black line represents a stick, and each white

circle a joint between sticks. The tracked features, which serve as the only input, are

shown as coloured markers. Features associated with the same stick are assigned markers

of the same colour and shape.

Chapter 4. Learning Articulated Structure and Motion 68

Figure 4.2: A point light display of a human, in four different poses.

figures from tracked feature points. In Section 4.3 we formulate the problem as a prob-

abilistic model, and in Section 4.4 we propose an algorithm for learning the model from

data. Learning proceeds in a stage-wise fashion, building up the structure incrementally

to maximize the joint probability of the model variables.

In Section 4.5 we test the algorithm on a range of datasets. In the final section we

describe assumptions and limitations of the approach, and discuss future work.

4.2 Related Work

Humans demonstrate a remarkable ability to parse complicated motion sequences, even

from apparently sparse streams of information. One field where this is readily apparent

is in the study of human response to point light displays. A point light display (PLD),

as depicted in Figure 4.2, is constructed by attaching a number of point light sources to

an object, then recording (only) the positions of these lights as the object moves. The

canonical example is to instrument a human’s limbs and body with lights, then to record

their positions as he or she performs motions such as walking, running, or swinging a golf

club. PLDs have received considerable attention in psychology research (e.g. Johansson,

1973) due to one remarkable property. Despite the apparently limited information they

Chapter 4. Learning Articulated Structure and Motion 69

contain, biological motion depicted in PLDs is almost instantly recognizable by humans.

From a PLD of a person or animal, humans are able to understand the structure of the

display (how the lights are connected via the performer’s underlying skeleton), and the

motions that are performed.

Point light displays are also common in several domains of computer science research.

The field of motion capture, in essence, is the study of recording and analyzing PLDs. In

computer animation, PLDs obtained via motion capture are used to animate synthetic

character models. Finally, in computer vision many applications choose to represent

digital images sequences in terms of feature point trajectories. When the original image

data is discarded, the feature points locations are equivalent to a PLD.

What follows is a discussion of three recent approaches to modelling articulated fig-

ures from tracked feature points. Each of these approaches addresses the problem from

a different viewpoint: the first as structure from motion, the second as geometrical con-

straints in motion capture data, and the third as learning the structure of a probabilistic

graphical model.

4.2.1 Articulated Structure From Motion

The first work we will consider is “Automatic Kinematic Chain Building from Feature

Trajectories of Articulated Objects” by Yan and Pollefeys (2006b). The premise of this

work is to extend standard solutions for the structure from motion (SFM) problem to

handle articulated objects. Given a set of feature points observed at a number of frames,

the goal of SFM is to recover the structure—the time-invariant relative 3D positions

of the points—while simultaneously solving for the motion—the per-frame pose of the

object(s) relative to the camera—that produced the observations. Generally, the input

for SFM is assumed to be two-dimensional observations (image coordinates) of points

on an inherently three-dimensional object. However most algorithms, including the ones

presented here, work equally well given 3D inputs.

Chapter 4. Learning Articulated Structure and Motion 70

When the trajectories come from one rigid object (or equivalently, the scene is static

and only the camera moves), Tomasi and Kanade (1992) have shown that structure

and motion can recovered by using the singular value decomposition (SVD) to obtain a

low-rank factorization of the matrix of feature point trajectories.

Suppose we are given a matrix W where each column contains the x and y image

coordinates of one of the observed points, at all time frames. Thus, given P points

and F frames, the size of W is 2F × P (or 3F × P for three-dimensional observations).

Considering the generative process that produced the observations (and disregarding

noise), W is the product of a motion matrix and a structure matrix,

W = MS,

both of which are rank 4. The structure S is a 4 × P matrix containing the time-

invariant (homogeneous) 3D coordinates of the points. At each frame f , the observations

are produced by applying a rigid-body motion—a rotation Rf and a translation tf—to

S, and projecting the points onto the image plane:xf,1 . . . xf,P

yf,1 . . . yf,P

 =

1 0 0

0 1 0

[Rf tf

]
S.

Hence, M is formed by stacking the first two rows of each of these F motion matrices.

From W, M and S can be recovered by taking the singular value decomposition1:

W = UΣV> ⇒ M = UΣ
1
2 S = Σ

1
2V>.

In practice, feature trajectories will be contaminated by noise, giving W a rank larger

than 4. In this case Tomasi and Kanade suggest retaining only the columns of U,Σ

and V corresponding to the four largest singular values, which is the optimal rank-4

approximation to W (under squared error).

1In most cases, although the columns of U and V span the correct subspaces, they are actually linear
transformations of the columns of M and S respectively. That is M = UΣ

1
2 A and S = A−1Σ

1
2 V>, for

some unknown invertible A. This can be corrected by solving, via nonlinear optimization, for the A that
satisfies the constraints on the rotational components of M: Mi,1:3Mi,1:3

>= 1 and Mi,1:3Mi+1,1:3
>= 0

Chapter 4. Learning Articulated Structure and Motion 71

Despite the elegance and popularity of this solution, Tomasi and Kanade (1992)

assume a rather unrealistic camera model—scaled orthography—for the projection of

three-dimensional points down to two dimensions. As such, this does not represent

a complete solution to rigid-body SFM.2 However, when the input consists of three-

dimensional points (e.g. obtained from a motion capture system), scaled orthography is

perfectly reasonable assumption.

Multibody SFM

Recovering structure and motion when the scene contains multiple objects moving inde-

pendently is more challenging. Consider the case in which the point trajectories arise

from two independent rigid objects. If the columns of W are sorted so that all points from

object 1 come first, and the points from object 2 come second, the low-rank factorization

can be written as follows:

W = MS =

[
M1 M2

]S1 0

0 S2

 . (4.1)

In this case the ranks of the motion and structure matrices (and hence, of W) have

increased to 8, or 4× the number of objects. If the grouping of point trajectories into

objects was known, the structure and motion of each object, Mi and Si, could be recov-

ered independently, using the method described earlier. The problem now becomes, how

to group the points?

The solution proposed by Costeira and Kanade (1996, 1998) involves considering what

they term the shape-interaction matrix, Q ≡ VV>. When the columns of W are correctly

2Solutions based on the more-realistic projective camera, perhaps using the above method as an
initialization, can be obtained via an algorithm for bundle adjustment (Hartley and Zisserman, 2003).

Chapter 4. Learning Articulated Structure and Motion 72

sorted, as in (4.1), Q assumes a distinctive block-diagonal structure3

Q ≡ VV>= S>Σ−1S =

S1
>Σ−1

1 S1 0

0 S2
>Σ−1

2 S2

 ,

where V and Σ again arise from the SVD of W. Regardless of the sorting of the points,

Qi,j is nonzero if points i and j are part of the same rigid object, and 0 otherwise. The

shape-interaction matrix has the advantage of being invariant to object motion, image

scale, and choice of coordinate system.

Costeira and Kanade suggest that grouping point trajectories can now be accom-

plished by reordering the points to make Q block-diagonal. This problem, however, is

NP-complete, thus the greedy algorithm they propose obtains only sub-optimal solutions.

Interestingly, Q can be interpreted as a pairwise affinity matrix. In fact, VV> is sim-

ply a weighted version of the inner product matrix W>W. This interpretation suggests

that other ways of normalizing the shape-interaction matrix are possible, and that points

could be grouped by any clustering algorithm which takes as input an affinity matrix,

such as spectral clustering (Shi and Malik, 2000; Culverhouse and Wang, 2003; Weiss,

1999).

The primary disadvantage to this approach is that the shape-interaction matrix is

highly sensitive to noise in the observations (Gruber and Weiss, 2004). First of all, in

the presence of noise Qi,j is no longer zero when i and j come from different objects.

Furthermore, computing Q requires knowing the rank of W, which is the number of

columns of V retained after the SVD. (Note that if we retain all columns of V, then

Q = VV>= I.) In the simplest case, this rank is 4× the number of objects, but it can

be less when an object does not express all its degrees of mobility. Noise makes the rank

of W difficult to determine, requiring an often-unreliable analysis of the eigenspectrum.

3VV> is also block-diagonal if we allow V> to more generally be an invertible linear transformation
of the true structure: S = A−1Σ

1
2 V> (Costeira and Kanade, 1998).

Chapter 4. Learning Articulated Structure and Motion 73

Probabilistic SFM

Gruber and Weiss (2003) have noted that the approach of Tomasi and Kanade can be

reinterpreted as a probabilistic graphical model, specifically factor analysis. In factor

analysis, each observed data vector is generated by taking a linear combination of a set

of basis vectors, and adding diagonal-covariance Gaussian noise. In the context of single-

body SFM each row wi of W, the x or y coordinates of all feature points in one frame,

is generated by taking a linear combination mi of the rows of S. Including a standard

Gaussian prior on the rows of the motion matrix produced the following model:

wi = miS + ni, where

ni ∼ N (0, diag(ψi))

mi ∼ N (0, I).

Structure and motion can be recovered by fitting the model using the standard Expectation-

Maximization (EM) algorithm for factor analysis (Ghahramani and Hinton, 1996a). An

advantage of this formulation is that missing observations can be dealt with easily; setting

the corresponding variances to∞ has the effect of eliminating them from the calculations

(Gruber and Weiss, 2003).

Another key innovation of the Gruber and Weiss approach is to assume temporal

coherence of motions. This allows them to take advantage of the fact, when estimating

motions, that motions for adjacent frames should be similar. In the graphical model,

temporal coherence is incorporated easily through the use of a Markov chain prior (a

Kalman filter) over the latent motion variables. The result is closely related to the EM

algorithm for learning linear dynamical systems (Ghahramani and Hinton, 1996b).

Multibody factorization

The probabilistic approach has also been extended to handle multiple independent rigid

objects (Gruber and Weiss, 2004). Structure and motion are modeled in much the same

Chapter 4. Learning Articulated Structure and Motion 74

way as (Costeira and Kanade, 1996): one independent factor analyzer of dimension 4 for

each object. However, the approach of Gruber and Weiss to grouping point trajectories

is quite different.

Instead of grouping points by clustering a pairwise affinity matrix, Gruber and Weiss

incorporate additional discrete latent variables that assign each of the points to one of

the motions. With this addition, the grouping, together with the structures and motions,

can be estimated jointly using EM. This provides a distinct advantage over the method

of Costeira and Kanade which, once it has grouped the points, is unable to reestimate

the grouping based on subsequent information. Although fitting with EM often leads to

local minima, in the presence of noise it outperforms Costeira and Kanade.

The core of this model is the same as Multiple Cause Factor Analysis (Ross and Zemel,

2006), independently proposed for simultaneous segmentation and appearance modelling

of images.

Articulated Structures

The motion of an articulated object can be described as a collection of rigid motions,

one per part, with the added constraint that the motions of connected parts must be

spatially coherent. Yan and Pollefeys (2005a) have shown that this constraint causes the

motion subspaces of two connected objects to intersect, making them linearly dependent.

In particular, for each pair of connected parts, the motion subspaces share one dimension

(translation) if they are joined at a point and two dimensions (translation and one angle

of rotation) if they are joined at an axis of rotation. As a result of this dependence, the

method of Costeira and Kanade (1996) for grouping points is no longer applicable.

To illustrate this, consider two parts that are connected by a rotational joint. Without

loss of generality the shape matrices of the objects, S1 and S2 (dropping the homogeneous

coordinate) can be adjusted to place this joint at the origin. Now, because the objects

are connected at the joint, at each frame the translation components of their motions

Chapter 4. Learning Articulated Structure and Motion 75

must be identical. Thus the ranks of W, M, and S have been reduced to at most 7 (Yan

and Pollefeys, 2005a,b).

W = MS =

[
R1 R2 t

]
S1 0

0 S2

1 1

From this equation, we can see that the off-diagonal blocks of the shape interaction

matrix, VV>= S>Σ−1S, are no longer zero, so clustering it will not effect the grouping

of point trajectories.

Recognizing this, Yan and Pollefeys (2006a,b) propose an alternative affinity matrix

to use for grouping points, and an approach for recovering the full articulated structure

and motion of the sequence. Their method consists of four key steps: (1) segmenting the

feature point trajectories into a number of rigid parts, (2) computing an affinity measure

indicating the likelihood that each pair of parts is connected by a joint, (3) obtaining a

spanning tree that connects parts while maximizing affinity, and finally (4) solving for

the locations of joints.

When specifying the affinity between a pair of features, instead of relying on the dot

product (angle) between rows vi and vj of V, they suggest that a more robust measure

could be obtained by comparing the subspace spanned by vi and its nearest neighbors

with that of vj and its neighbors. Given these two subspaces, they compute the principal

angles θ1, . . . , θm between them, and define the affinity between i and j to be

exp

(
−
∑

n

sin2(θn)

)
.

The affinity is used as input for spectral clustering (Shi and Malik, 2000), thereby pro-

ducing a grouping of feature point trajectories.

Principal angles are also used as a basis for learning the articulated structure. Noting

that the four-dimensional motions (and hence shape subspaces) of parts connected by an

articulated joint will have at least one dimension in common, at least one of the principal

Chapter 4. Learning Articulated Structure and Motion 76

angles between the parts should be zero. Using minimum principal angle as an edge

weight, Yan and Pollefeys set up a fully connected graph and solve for the articulated

structure by finding the minimum spanning tree. The method can be extend this to

finding multiple articulated objects in a scene simply by disallowing edges with weight

exceeding a manually specified threshold.

Finally, the locations of the joints can be obtained from the intersections of the motion

subspaces of connected parts, as described in (Yan and Pollefeys, 2005a)

Due to the reliance on estimating subspaces, this method requires each body part

to have at least as many feature points as the dimensionality of its motion subspace.

(In practice, segmenting two independent objects requires at least five points per object,

using at least three neighbors to estimate the local subspace, in the noise-free case.)

One drawback of this algorithm is its sequential nature. Each step requires the esti-

mation of a number of quantities: the rank of motion subspaces, the choice of neighbours,

the number of clusters, the grouping of points, etc. Each of these choices must be made

without access to information obtained from later stages of processing, and since there

is no provision for reestimating the values, any mistake is likely to result in poor overall

performance.

4.2.2 Geometric Analysis of Motion Capture Data

When observations are the 3D world locations of feature points, rather than 2D pro-

jections, the geometry of recovering 3D skeletal structure becomes easier. Based on a

simple analysis of the distance between feature points, and following roughly the same

four steps as Yan and Pollefeys (2006b), Kirk et al. (2005) are able to automatically

recover skeletal structure from motion capture data. This is an improvement upon ex-

isting methods of fitting a skeleton to motion capture data (e.g. Silaghi et al., 1998;

Abdel-Malek et al., 2004), which often require a user to manually associate markers with

positions on a generic human skeleton.

Chapter 4. Learning Articulated Structure and Motion 77

The key property motivating the approach of Kirk et al. (2005) is, if two feature

points are attached to the same rigid body part, then the distance between these points

is constant. Furthermore, if two body parts are connected by a rotational joint, then

the distances between the joint and the points belonging to both parts should also be

constant. Feature points are grouped, to obtain body parts, by computing the standard

deviation of the distance between each pair of points and using that as the (negative or

inverse) affinity matrix for spectral clustering (Ng et al., 2002). The number of body

parts is chosen manually, or again by analysis of the eigenspectrum.

When determining the skeletal connectivity of the body parts, Kirk et al. define a

joint cost, which is the average variance in the distance from a putative joint to each of

the points in the two parts it connects. Joint costs are computed for each pair of body

parts. Evaluating the joint cost requires non-linear conjugate gradient minimization, but

also returns the optimal joint location at each frame. Note that joint locations can be

estimated as long as one stick has at least two observed markers and the other stick has

at least one. Finally, the skeletal structure is obtained by running a minimum spanning

tree algorithm, using the joint costs as edge weights.

This method has a few drawbacks. First, it is only able to work on 3D observations–

none of the distance constraints it relies upon apply when points are projected into

2D. Second, like (Yan and Pollefeys, 2006b), it consists of a sequence of steps without

feedback or reestimation. Finally, beyond computing the positions of joints in each

frame, the method does not produce a time-invariant model of structure or a set of

motion parameters. As such, filling in missing observations or computing joint angles

would require further processing.

One further caveat regarding this method is that, contrary to the images included in

the paper (Kirk et al., 2005), its output is not actually a “stick figure”—a collection of

line segments (bones or sticks) joined at their endpoints. Instead, in the learned graph,

parts of the body are nodes and joints are edges, which is a more-difficult structure to

Chapter 4. Learning Articulated Structure and Motion 78

visualize.

4.2.3 Learning a Graphical Model Structure

Another approach to the analysis of PLDs is to model the relationships between feature

point locations with a probabilistic graphical model. In this setting, recovering the

skeleton is a matter of learning the graph structure and parameters of the model. This

is the approach taken by Song et al. (2001, 2003), with a goal of automatically detecting

human motion in cluttered scenes.

Treating each frame as an independent, identically distributed sample, Song et al.

construct a model in which each variable node represents the position and velocity of

one of the observed points. No latent variables are included, instead each feature point

is treated as a unique part of the body. This presumes a much sparser set of features

than (Yan and Pollefeys, 2006b) and (Kirk et al., 2005), which require each part to give

rise to multiple feature point trajectories. The set of graphs considered is restricted to a

particular class, decomposable triangulated graphs, in which all cliques are of size three.

The limitation placed on the structure ensures that, although these graphs are more

complicated than trees, efficient exact inference is still possible. The clique potentials,

over triplets of nodes, are multivariate Gaussian distributions over the velocities and

relative positions of the parts.

The maximum likelihood (ML) graph is the one that minimizes the empirical entropy

of each feature point given its parents. Unfortunately no tractable algorithm exists for

computing the ML graph, so Song et al. propose the following approximate greedy

algorithm. Assuming all nodes are initially disconnected, choose the first edge in the

graph by connecting the nodes B and C that minimize the joint entropy h(B, C). Then,

for all possible ways of choosing an pair of connected parents (B, C) already in the graph,

find the child A that minimizes the conditional entropy h(A|B, C) and connect it to the

graph. Continue connecting child nodes to the graph until it has reached the desired size,

Chapter 4. Learning Articulated Structure and Motion 79

or the entropy of the best putative child exceeds a threshold. The cost of this algorithm

is O(n4), where n is the number of feature points.

Note that if the class of graphical models considered is restricted to trees, the graph

structure can be found efficiently, by calculating the mutual information between each

pair of body parts and solving for the maximum spanning tree (Taycher et al., 2002; Song

et al., 2003).

Song et al. further extend their approach to handle cluttered scenes, obtained by

automatically tracking features in video. Since the results of tracking are invariably

noisy, this requires solving the correspondence problem at each frame (identifying which

feature points are body parts, which come from the background, and which body parts are

occluded). Learning can now be accomplished via an EM-like algorithm, which alternates

optimizing the feature correspondence with learning the graphical model structure and

parameters.

Although the authors are able to show some interesting results, this approach has a

number of drawbacks. First, learned models are specific to the 3D position and orien-

tation of the subject, accounting only for invariance to translation parallel to the image

plane. Thus a model trained on a person walking from left to right is unable to detect

a person walking from right to left (Song et al., 2003). Secondly, a single time-invariant

model is learned on the data from all frames, thereby confounding structure and motion.

Instead of trying to model these two latent factors separately, the presence of motion

serves only to increase uncertainty in the graphical model.

4.3 Model

Here we formulate a probabilistic graphical model for sequences generated from articu-

lated skeletons. By fitting this model to a set of feature point trajectories (the observed

locations of a set of features across time), we are able to parse the sequence into one

Chapter 4. Learning Articulated Structure and Motion 80

or more articulated skeletons and recover the corresponding motion parameters for each

frame. The observations are assumed to be 2D, whether tracked from video or projected

from 3D motion capture, and the goal is to learn skeletons that capture the full 3D struc-

ture. Fitting the model is performed entirely via unsupervised learning; the only inputs

are the observed trajectories, with manually tuned parameters restricted to a small set

of thresholds on Gaussian variances.

The observations for this model are the locations wf
p of feature points p in frames f .

A discrete latent variable R assigns each point to one of S sticks. Each stick s consists

of a set of time-invariant 3D local coordinates Ls, describing the relative positions of all

points belonging to the stick. Ls is mapped to the observed world coordinate system

by a different motion matrix Mf
s at every frame f (see Figure 4.3). For example, in a

noiseless system, where rp,1 = 1, indicating that point p has been assigned to stick 1,

Mf
1 l1,p = wf

p .

If all of the sticks are unconnected and move independently, then this model essen-

tially describes multibody SFM (Costeira and Kanade, 1998; Gruber and Weiss, 2004),

or equivalently an instance of Multiple Cause Factor Analysis (Ross and Zemel, 2006).

However, for an articulated structure, with connections between sticks, the stick motion

variables are not independent (Yan and Pollefeys, 2006a). Allowing connectivity between

sticks makes the problems of describing the constraints between motions and inferring

motions from the observations considerably more difficult.

To deal with this complexity, we introduce variables to model the connectivity between

sticks, and the (unobserved) locations of stick endpoints and joints in each frame. Every

stick has two endpoints, each of which is assigned to exactly one vertex. Each vertex can

correspond to one or more stick endpoints (vertices assigned two or more endpoints are

joints). We will let ki specify the coordinates of endpoint i relative to the local coordinate

system of its stick, s(i), and vf
j and ef

i represent the world coordinate location of vertex

j and endpoint i in frame f , respectively. Again, in a noiseless system, ef
i = Mf

s(i)ki for

Chapter 4. Learning Articulated Structure and Motion 81

Figure 4.3: The generative process for the observed feature positions, and the imputed

positions of the stick endpoints. For each stick, the relative positions of its feature points

and endpoints are represented in a time-invariant local coordinate system (left). For

each frame in the sequence (right), motion variables attempt to fit the observed feature

positions (e.g. wf
P) by mapping local coordinates to world coordinates, while maintaining

structural cohesion by mapping stick endpoints to inferred vertex (joint) locations.

Chapter 4. Learning Articulated Structure and Motion 82

every frame f . Noting the similarity between the ef
i variables and the observed feature

positions wf
p , these endpoint locations can be interpreted as a set of pseudo-observations,

inferred from the data rather than directly observed.

Vertices are used to enforce a key constraint: for all the sticks that share a given

vertex, the motion matrices should map their local endpoint locations to a consistent

world coordinate. This restricts the range of possible motions to only those resulting in

appropriately connected figures. For example, in Figure 4.3, endpoint 2 (of stick 1), is

connected to endpoint 4 (of stick 2); both are assigned to vertex 2. Thus in every frame

f both endpoints should map to the same world location, the location of the knee joint,

i.e. vf
2 = ef

2 = ef
4 .

The utility of introducing these additional variables is that, given the vertices V and

endpoints E, the problem of estimating the motions and local geometries (M and L)

factorizes into S independent structure-from-motion problems, one for each stick. Latent

variable gi,j = 1 indicates that endpoint i is assigned to vertex j; hence G indirectly

describes the connectivity between sticks. The assumed generative process for the feature

observations and the vertex and endpoint pseudo-observations is shown in Figure 4.3, and

the corresponding probabilistic model is shown in Figure 4.4.

The complete joint probability of the model can be decomposed into a product of

two likelihood terms, one for the true feature observations W and the second for the

endpoint pseudo-observations E, and priors over the remaining variables in the model:

P = P(W|M,L,R)P(E|M,K,V,φ,G) (4.2)

P(V)P(φ)P(M)P(L)P(K)P(R)P(G)

Assuming isotropic Gaussian noise with precision (inverse variance) τw, the likelihood

function is

P(W|M,L,R) =
∏
f,p,s

N (wf
p |Mf

s ls,p, τ
−1
w I)rp,s (4.3)

where rp,s is a binary variable equal to 1 if and only if point p has been assigned to stick

Chapter 4. Learning Articulated Structure and Motion 83

M
u
lt
ib

o
d
y
 S

F
M

A
rt

ic
u
la

te
d
 J

o
in

ts

Frame f+1Frame fTime Invariant

s = 1:S

j = 1:J

i = 1:2S

p = 1:P

r

 i

p

L

g

s

f+1
M

fw

 jφ

s

f

p

M

w f+1

s

ik

f+1
iee

f
v j

i

f+1
vj

p

f

Figure 4.4: The graphical model. The bottom half shows the model for independent

multibody SFM; the top half describes the vertices v and endpoints e, which account for

motion dependencies introduced by the articulated joints.

Chapter 4. Learning Articulated Structure and Motion 84

s. This distribution captures the constraint that for feature point p, its predicted world

location, based on the motion matrix and its location in the local coordinate system for

the stick to which it belongs (rp,s = 1), should match its observed world location. Note

that dealing with missing observations is simply a matter of removing the corresponding

factors from this likelihood expression.4

Each motion variable consists of a 2× 3 rotation matrix Rf
s and a 2× 1 translation

vector tf
s : Mf

s ≡ [Rf
s tf

s]. The motion prior P(M) is uniform, with the stipulation that

all rotations be orthogonal: Rf
sR

f
s
>= I.

We define the missing-data likelihood of an endpoint location as the product of two

Gaussians, based on the predictions of the appropriate vertex and stick:

P(E|M,K,V,φ,G) ∝ (4.4)∏
f,i

N (ef
i |M

f
s(i)ki, τ

−1
m I)

∏
f,i,j

N (ef
i |v

f
j , φ

−1
j I)gi,j

Here τm is the precision of the isotropic Gaussian noise on the endpoint locations with

respect to the stick, and gi,j is a binary variable equal to 1 if and only if endpoint i has

been assigned to vertex j. The second Gaussian in this product captures the requirement

that endpoints belonging to the same vertex should be coincident. Instead of making this

a hard constraint, connectivity is softly enforced, allowing the model to accommodate a

certain degree of non-rigidity in the underlying structure, as illustrated by the mismatch

between endpoint and vertex positions in Figure 4.3. The vertex precision variables φj

capture the degree of “play” in the joints, and are assigned Gamma prior distributions:

P(φ) =
∏

j

Gamma(φj|αj, βj). (4.5)

The prior on the vertex locations incorporates a temporal smoothness constraint, with

4This likelihood is applicable if the observations wf
p are 2D or 3D. In the 2D case, we assume an

affine camera projection. However, it would be possible to extend this to a projective camera by making
the mean depend non-linearly on Mf

s ls,p.

Chapter 4. Learning Articulated Structure and Motion 85

precision τt:

P(V) =
∏
f,j

N (vf
j |v

f−1
j , τ−1

t I) (4.6)

The priors for feature and endpoint locations in the local coordinate frames, L and K,

are zero-mean Gaussians, with isotropic precision τp.

P(L) =
∏
s,p

N (ls,p|0, τ−1
p I) P(K) =

∏
i

N (ki|0, τ−1
p I)

Finally, the priors for the variables defining the structure of the skeleton, R and G, are

multinomial. Each point p selects exactly one stick s (enforced mathematically by the

constraint
∑

s rp,s = 1) with prior probability cs, and each endpoint i selects one vertex

j (similarly
∑

j gi,j = 1) with probability dj:

P(R) =
∏
p,s

(cs)
rp,s P(G) =

∏
i,j

(dj)
gi,j .

4.4 Learning

Given a set of observed feature point trajectories, we propose to fit this model in an

entirely unsupervised fashion, by maximum likelihood learning. Conceptually, we divide

learning into two challenges: recovering the skeletal structure of the model, and given a

structure, fitting the model’s remaining parameters. Structure learning involves grouping

the observed trajectories into a number of rigid sticks, including determining the number

of sticks, as well as determining the connectivity between them. Parameter learning

involves determining the local geometries and motions of each stick, as well as imputing

the locations of the stick endpoints and joints — all while respecting the connectivity

constraints imposed by the structure.

Both learning tasks seek to optimize the same objective function—the expected com-

plete log-likelihood of the data given the model—using different, albeit related, ap-

proaches. Given a structure, parameters are learned using the standard variational

expectation-maximization algorithm. Structure learning is formulated as an “outer loop”

Chapter 4. Learning Articulated Structure and Motion 86

of learning: beginning with a fully disjoint multibody SFM solution, we incrementally

merge stick endpoints, at each step greedily choosing the merge that maximizes the ob-

jective. Finally the expected complete log-likelihood can be used for model comparison

and selection.

A summary of the proposed learning algorithm is provided in Figure 4.4.2.

4.4.1 Learning the model parameters

Given a particular model structure, indicated by a specific setting of R and G, the re-

maining model parameters are fit using the variational expectation-maximization (EM)

algorithm (Neal and Hinton, 1998; Dempster et al., 1977). This well-known algorithm

takes an iterative approach to learning: beginning with an initial setting of the param-

eters, each parameter is updated in turn, by choosing the value that maximizes the

expected complete log-likelihood objective function, given the values (or expectations) of

the other parameters.

The objective function—also known as the negative Free Energy (Neal and Hinton,

1998)—is formed by assuming a fully factorized variational posterior distribution Q over

a subset of the model parameters, then computing the expectation of the model’s log

probability (4.2) with respect to Q, plus an entropy term:

L = EQ[log P]− EQ[log Q]. (4.7)

For this model, we define Q over the variables V, E, and φ, involved in the world-

coordinate locations of the joints. The variational posterior for vf
j is a multivariate

Gaussian with mean parameter µ(vf
j) and precision parameter τ(vf

j), for ef
i is also a

Gaussian with mean µ(ef
i) and precision τ(ef

i), and for φ is a Gamma distribution with

Chapter 4. Learning Articulated Structure and Motion 87

parameters α(φj) and β(φj):

Q = Q(V) Q(E) Q(φ)

Q(V) =
∏
f,j

N (vf
j |µ(vf

j), τ(vf
j)−1)

Q(E) =
∏
f,i

N (ef
i |µ(ef

i), τ(ef
i)
−1)

Q(φ) =
∏

j

Gamma(φj|α(φj), β(φj)).

The EM update equations are obtained by differentiating the objective function L, with

respect to each parameter, and solving for the maximum given the other parameters.

We now present the parameter updates, with detailed derivation of L and the updates

appearing in Appendix C. As a reminder, the constants appearing these equations denote:

Do the dimensionality of the observations, generally 2 but 3 will also work; F the number

of observation frames; J the number of vertices; P the number of data points; S the

number of sticks.

τ−1
w =

∑
f,p,s rp,s‖wf

p −Mf
s ls,p‖2

FPDo

τ−1
m =

∑
f,i ‖µ(ef

i)−Mf
s(i)ki‖2

2FSDo

+

∑
f,i τ(ef

i)
−1

2FS

τ−1
t =

∑F
f=2

∑
j ‖µ(vf

j)− µ(vf−1
j)‖2

(F − 1)JDo

+

∑
f,j τ(vf

j)−1

(F − 1)J
2h(f)

µ(ef
i) =

τmMf
s(i)ki +

∑
j gi,j

α(φj)

β(φj)
µ(vf

j)

τm +
∑

j gi,j
α(φj)

β(φj)

τ(ef
i) =

∑
j

gi,j
α(φj)

β(φj)
+ τm

µ(vf
j) =

α(φj)

β(φj)

∑
i gi,jµ(ef

i) + [f > 1]τtµ(vf−1
j) + [f < F]τtµ(vf+1

j)

α(φj)

β(φj)

∑
i gi,j + τt2h(f)

τ(vf
j) =

α(φj)

β(φj)

∑
i

gi,j + τt2
h(f)

Chapter 4. Learning Articulated Structure and Motion 88

α(φj) = αj +
FDo

2

∑
i

gi,j

β(φj) = βj +
1

2

∑
f,i

gi,j‖µ(ef
i)− µ(vf

j)‖2 +
Do

2

∑
f,i

gi,j[(τ(ef
i))

−1 + (τ(vf
j))−1]

αj = α(φj)

βj = β(φj)

The update for the motion matrices is slightly more challenging due to the orthogo-

nality constraint on the rotations. A straightforward approach is to separate the rotation

and translation components of the motion and to solve for each individually. The update

for translation is obtained simply via differentiation:

Mf
s =

[
Rf

s tf
s

]
ts,f =

(
τw

∑
p

rp,s(w
f
p −Rf

s ls,p) + τm

∑
{i|s(i)=s}

(µ(ef
i)−Mf

sks,i)
)
/
(
τw

∑
p

rp,s + 2τm

)
To deal with the orthogonality constraint on Rf

s , its update can be posed as an orthogonal

Procrustes problem (Golub and Van Loan, 1996; Viklands, 2006). Given matrices A and

B, the goal of orthogonal Procrustes is to obtain the matrix R that minimizes ‖A−RB‖2,

subject to the constraint that the rows of R form an orthonormal basis. Computing the

most likely rotation involves maximizing the likelihood of the observations (4.3) and of the

endpoints (4.4), which can be written as the minimization of
∑

p ‖(wf
p − ts,f)−Rf

s ls,p‖2

and
∑

{i|s(i)=s} ‖(µ(ef
i) − ts,f) −Rf

sks,i‖2 respectively. Concatenating the two problems

together, weighted by their respective precisions, allows the update of Rf
s to be written

as a single orthogonal Procrustes problem argminRf
s
‖A−Rf

sB‖2, where

A =

[[√
τw rp,s(w

f
p − ts,f)

]
p=1..P

[√
τm (µ(ef

i)− ts,f)
]
{i|s(i)=s}

]
B =

[[√
τw rp,sls,p

]
p=1..P

[√
τm ki

]
{i|s(i)=s}

]
.

The solution is to compute the singular value decomposition of BA> SV D
= UΣV>, and

let R = VIm×nU
>, where m and n are the numbers of rows in A and B respectively.

Chapter 4. Learning Articulated Structure and Motion 89

Given Rf
s and tf

s , the updates for the local coordinates are:

ls,p =
(∑

f

Rf
s
>Rf

s +
τp

τw

I
)−1
∑

f

Rf
s
>(wf

p − ts,f)

ki =
(∑

f

Rf
s(i)

>Rf
s(i) +

τp

τm

I
)−1
∑

f

Rf
s(i)

>(µ(ef
i)− tf

s(i))

The final issue to address for EM learning is initialization. Many ways to initial-

ize the parameters are possible; here we settle on one simple method that produces

satisfactory results. The motions and local coordinates, M and L, are initialized by

solving SFM independently for each stick (Tomasi and Kanade, 1992). The vertex loca-

tions are initialized by averaging the observations of all sticks participating in the joint:

µ(vf
j) = (

∑
i,p gi,j rp,s(i) w

f
p)/(

∑
i,p gi,j rp,s(i)). The endpoints are initially coincident with

their corresponding vertices, µ(ef
i) =

∑
j gi,j µ(vf

j), and the Ks by averaging the back-

projected endpoint locations: ki = 1
F

∑
f Rf

s(i)
>(µ(ef

i) − tf
s(i)). All precision parameters

are initialized to constant values, as discussed in Section 4.5.1.

4.4.2 Learning the skeletal structure

Structure learning in this model entails estimating the assignments of feature points to

sticks (including the number of sticks), and the connectivity of sticks, expressed via the

assignments of stick endpoints to vertices. The space of possible structures is enormous.

We therefore adopt an incremental approach to structure learning: beginning with a fully

disconnected multibody-SFM model, we greedily add joints between sticks by merging

vertices. After each merge the model parameters are updated via EM, and the assign-

ments of observations to sticks are resampled. After performing the desired number of

merges, model selection—that is, choosing the optimal number of joints—is guided by

comparing the expected complete log-likelihood of each model.

The first step in structure learning involves hypothesizing an assignment of each ob-

served feature trajectories to a stick. This is accomplished by clustering the trajectories

using the Affinity Propagation algorithm of Frey and Dueck (2007). Affinity propagation

Chapter 4. Learning Articulated Structure and Motion 90

takes as input an affinity matrix, for which we supply the affinity measure from Yan and

Pollefeys (2006a,b) as presented in Section 4.2.1 (or for 3D data, Kirk et al. (2005) dis-

cussed in 4.2.2). During EM parameter learning, the stick assignments R are resampled

every 10 iterations using the posterior probability distribution

P(rp,s) ∝ cs exp

(
−αw

2

∑
f

‖wf
p −Mf

s ls,p‖2
)

s.t.
∑

s′

rp,s′ = 1.

Instead of relying only on information available before model fitting begins (Costeira

and Kanade, 1998; Kirk et al., 2005; Yan and Pollefeys, 2006b), resampling of stick

assignments allows model probability to be improved by leveraging current best estimates

of the model parameters.

The second step of structure learning involves determining which sticks endpoints

are joined together. As discussed earlier, connectivity is captured by assigning stick

endpoints to vertices; each endpoint must be associated to one vertex, and vertices with

two or more endpoints act as articulated joints. (Valid configurations include only cases

in which endpoints of a given stick are assigned to different vertices.) We employ an

incremental greedy scheme for inferring this graphical structure G, beginning from an

initial structure that contains no joints between sticks. Thus, in terms of the model, we

start with J = 2S vertices, one per stick-endpoint, so gi,j = 1 if and only if j = i. Given

this initial structure, parameters are fit using variational EM.

A joint between sticks is introduced by merging together a pair of vertices. The

choice of vertices to merge is guided by our objective function L. At each stage of

merging we consider all valid pairs of vertices, putatively joining them and estimating

(via 20 iterations of EM) the change in log-likelihood if this merge were accepted. The

merge with the highest log-likelihood is performed, by modifying G accordingly, and

the model parameters are re-optimized with 200 additional iterations of EM, including

resampling of the stick assignments R. This process is repeated until no valid merges

remain, or the desired maximum number of merges has been reached.

Chapter 4. Learning Articulated Structure and Motion 91

Computational Cost

By examining the updates presented in Section 4.4.1, in can be seen that the cost of

each iteration of EM parameter learning scales linearly in the following quantities: F

the number of frames, J the number of joints, P the number of observed feature point

trajectories, and S the number of sticks. (Note that since the number of rows in A and

B are fixed, each orthogonal Procrustes update of Rf
s has a cost that is linear in P—the

initial multiplication AB>—in addition to a constant-cost SVD and final multiplication.)

Each stage of greedy merging requires computing the expected log-likelihood for all

of the possible pairs of vertices to be merged. The number of possible merges scales with

O(J2), which, since J = 2S during the first stage, can be as high as 4S2. In practice,

however, it is possible to reduce the number that must be considered. Savings can be

obtained by noting the symmetry of the merge operation, reducing the number of unique

merges by a factor of two, as well as by disallowing self-merges between the two endpoints

of a stick. A less obvious savings can be realized by avoiding duplication when merging

with a stick that has two free endpoints, since the change in probability from merging

to either of these otherwise unconstrained endpoints will be identical. During the initial

stage, when the structure contains no joints, this reduces the number of unique merges

by an additional factor of four. During later stages, there are fewer possible merges

to consider since J , the number of vertices, decreases by one for each stage, and our

previously mentioned restriction—that the endpoints of a stick cannot be assigned to the

same vertex—eliminates a greater proportion of potential merges.

In our experiments these optimizations are sufficient to yield acceptable runtimes,

however given much larger models the number of possible merges could be reduced to

O(J) by allowing each stick to merge with only a fixed number (e.g. five) of its near-

est neighbors. It may also be possible to achieve further savings through caching—

approximating the expected change in log-likelihood of a merge with its value from the

previous stage, without recomputing (Ross et al., 2007).

Chapter 4. Learning Articulated Structure and Motion 92

1. Obtain an initial grouping R by clustering the observed trajectories using

Affinity propagation. Initialize G to a fully disconnected structure.

2. Optimize the parameters M, L, K, V, φ, E, using 200 iterations of the

variational EM updates, resampling R every 10 iterations.

3. For all vertex-pair merges, estimate gain resulting from the proposed struc-

ture by updating the parameters with 20 EM iterations and noting the

change in expected log-probability.

4. Choose the merge with the largest gain, modifying G accordingly. Re-

optimize parameters using another 200 EM iterations, resampling R every

10th.

5. Go to Step 3 and repeat. Exit when there are no more valid merges, or

the maximum number of merges has been reached.

Figure 4.5: A summary of the learning algorithm

Chapter 4. Learning Articulated Structure and Motion 93

4.5 Experimental Results and Analysis

We now present results of the proposed algorithm on a range of different feature point

trajectory datasets. This includes data obtained by automatically tracking features in

video, from optical motion capture (both 2D and 3D), as well as a challenging artificially

generated sequence. In each experiment a model was learned on the first 70% of the se-

quence frames, with the remaining 30% held out as a test set used to measure the model’s

performance. Learning was performed using the algorithm summarized in Figure 4.4.2,

with greedy merging continuing (generally) until no valid merges remained. After each

stage of merging, we saved the learned model and corresponding expected complete log-

likelihood—the objective function learning maximizes. The likelihoods were plotted for

comparison, and used to select the optimal model.

The learned model’s performance was evaluated based on its ability to impute (re-

construct) the locations of missing observations. For each test sequence we generated

a set of missing observations by simulating an occluder that sweeps across the scene,

obscuring points as it passes. We augmented this set with an additional 5% of the ob-

servations chosen to be “missing at random”, to simulate drop-outs and measurement

errors, resulting in a overall occlusion rate of 10-15%. The learned model was fit to the

un-occluded points of the test sequence, and used to predict the location of the missing

points. Performance was measured by computing the root-mean-squared error between

the predictions and the locations of the heldout points. We compared the performance of

our model against similar prediction errors made by single-body and multibody structure

from motion models.

This section begins with a brief analysis of the effect of precision parameters during

learning, followed by experimental results on five datasets: a video of an excavator, a

video of a walking giraffe, 2D feature trajectories obtained from human motion capture,

an synthetic dataset of a jointed ring, and an additional set of human motion data in

3D. Finally we conclude with a brief comparison against two related methods (Yan and

Chapter 4. Learning Articulated Structure and Motion 94

Pollefeys, 2006b; Kirk et al., 2005).

4.5.1 Setting Precision Parameters During Learning

As presented, the model contains a number of precision parameters to be determined

during learning: τw, τm, τt, τp, τ(vf
j), τ(ef

i), as well as the parameters of the prior

distribution on the joint prior, αj and βj. In practice, simply initializing these precisions

to arbitrary values and allowing them to adapt freely during EM leads to poor results.

Some of the precisions—particularly αw, αm, τ(vf
j), and τ(ef

i)—tend to grow unbounded,

thus we have found it useful to specify a maximum precision of 50 (a standard trick

during EM). In contrast, the joint precisions φj (given by α(φj)/β(φj)) tend towards

relatively small values, resulting in a model that has very little cohesion in the joints.

To counteract this we specify a very strong prior on φj encouraging it towards large

values: αj = 2 × 105 × maximum precision and βj = 105, resulting in an expected

value of 2 × maximum precision with limited variance. When fitting the motion of a

stick, assuming other precisions saturate at the maximum, this means that keeping an

endpoint near its vertex is at least twice as important as keeping a feature point near its

observed location.

In our experiments, we have found temporal smoothing of the vertices, governed by

precision τt to be a disadvantage during learning. Particularly at the beginning, when the

structure contains no joints, smoothing causes the unconnected vertices and endpoints

to drift away from the actual observations at each frame, towards their temporal mean.

Thus, in all of the following experiments we disable smoothing during learning. However,

when measuring test performance it’s not uncommon for one or more adjacent sticks to

be entirely occluded during a frame. When this happens, smoothed locations of the

vertices provide the only source of information about the location of the stick, and thus

temporal smoothing is essential for limiting test error. When measuring test performance,

therefore, we enable smoothing and set τt = 2000.

Chapter 4. Learning Articulated Structure and Motion 95

Finally, the precisions play an important role in determining the optimal number of

joints. During model selection we seek the model with the largest expected complete log-

likelihood, hoping that this will include as many plausible joints as possible. However

most terms in this objective function favour a disconnected model, with more vertices

and fewer joints. To understand this, consider the problem of estimating the motion of

an unconnected stick. Since there are no constraints on the vertices, they can be trivially

placed to be coincident with endpoints, thus the motion variable needs only focus on

maximizing the probability of the observations. However when two sticks are joined

together, perfect placement of the vertices is generally not possible, requiring modelling

compromises that introduce slight reductions in observation probability. The one term

in the objective function that does not decrease as merges are performed is the entropy

of the vertices EQ(V)[log Q(V)].

Assuming each precision parameter in Q(v) is equal to the maximum precision, p, this

entropy is (FJDo/2) log(2πe/p). If p is greater than 2πe ≈ 17.08, then the differential

entropy is negative5. The result is that decreasing the number of vertices J causes the

log-likelihood to increase. In effect a fixed cost of (FDo/2) log(2πe/p) is paid for each

vertex in the model, giving us the desired bias towards connectivity. Plots of the relevant

log-likelihood terms are included for the datasets presented below.

When applying the approach to new datasets, in practice the quality of the learned

solution can sometimes be dependent of the value of the maximum precision parameter.

Using the above analysis as a guide, a parameter search over a coarse range of values

from approximately 18 to 50 can be helpful for obtaining the best possible results.

5Although unintuitive, negative differential entropies are perfectly acceptable (Cover and Thomas,
1991).

Chapter 4. Learning Articulated Structure and Motion 96

4.5.2 Excavator

Our first dataset consisted of a video clip of an excavator. We used a Kanade-Lucas-

Tomasi tracker (Shi and Tomasi, 1994) with manual clean-up to obtain 35 feature tra-

jectories across 176 frames. Our algorithm processed the data in 4 minutes on a 2.8

GHz processor. The learned model at each stage of greedy merging is depicted in Fig-

ure 4.6. The optimal structure was chosen by comparing the log-likelihood at each stage,

as plotted in Figure 4.7 (left). The four most significant terms comprising this objective

function are plotted individually in Figure 4.7 (right). As can be seen, joining sticks

adds additional constraints that reduce the expected probability of the observations (top

left), the endpoints given vertices (top right), and the endpoints given Mk (bottom left).

In contrast the vertex entropy term (bottom right) acts as a per-vertex penalty, which

decreases as we merge vertices, favoring more highly connected models. Figure 4.7 (bot-

tom) shows that the system’s prediction error for occluded data was significantly better

than either multibody or single-body SFM.

As can be seen in Figure 4.6, the model does a good job at recovering the structure—

the grouping and connectivity—of the observed trajectories. The reconstruction shows

some deviation between the inferred locations of the joints and their intuitive positions.

Nevertheless, the model is fully able to capture the range of motion exhibited by the

excavator’s arm.

Using the excavator data, we also examined the model’s robustness to learning with

occlusions in the training data. When the occlusion scheme described earlier was em-

ployed to generate a training set with missing observations, and the learning algorithm

was applied to this data, it was still able to recover the correct structure. Similarly,

when training observations were randomly withheld during training, rather than using

structured occlusion, the correct structure was reliably recovered with up to 75% of the

training observations missing.

Chapter 4. Learning Articulated Structure and Motion 97

Figure 4.6: Excavator Data: Shown at the top are the models learned in each of the five

successive stages of greedy learning. Reconstructions of the observed markers are shown

with different symbols depending on their stick assignments. The locations of vertices

are shown as black o’s, and black lines are drawn to connect each stick’s pair of vertices.

At the bottom, the selected model (stage 3) is used to reconstruct the observed feature

trajectories, and the results are superimposed over the corresponding frames of the input

video.

Chapter 4. Learning Articulated Structure and Motion 98

0 1 2 3 4
2800

3000

3200

3400

3600

3800

4000

E[logprob]

0 1 2 3 4

6600

6800

7000

7200

7400

7600

7800

E[log N(W|ML)]

0 1 2 3 4
−2000

−1800

−1600

−1400

−1200

−1000

−800

E[log N(E|V)]

0 1 2 3 4

200

400

600

800

1000

1200

1400

E[log N(E|MK)]

0 1 2 3 4

−1400

−1200

−1000

−800

−600

−400

−200

H(Q(v))

multibody articulated single body
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Excavator − Occluder

R
M

S
 e

rr
or

train
test

Figure 4.7: Excavator Log-likelihood and Error. At the top-left we see that stage 3

of merging produces the model with the highest log-probability. At the top-right are

individual plots of the four most significant terms comprising the log probability. At the

bottom, we can see that the learned model exhibits less reconstruction error than either

single or multibody SFM models.

Chapter 4. Learning Articulated Structure and Motion 99

4.5.3 Giraffe

Our second dataset consisted of a video of a walking giraffe. As before features were

tracked, producing 60 trajectories across 128 frames. Merging results are depicted in

Figure 4.8. Using the objective function to guide model selection (Figure 4.9), the best

structure corresponded to stage 10, and this model is shown superimposed over the

original video in Figure 4.1, appearing at the start of this chapter.

4.5.4 2D Human

Our third dataset consisted of optical human motion capture data (courtesy of the Biomo-

tion Lab, Queen’s University, Canada), which we projected from 3D to 2D using an

isometric projection. The data contained 53 features, tracked across a 1018-frame range-

of-motion exercise (training data), and 318 frames of running on an inclined plane (test

data). The structures learned during greedy merging are shown in Figure 4.10, of which

stage 11 most closely matches human intuition.

By examining the plots in Figure 4.11, it can be noted that the expected log-likelihood

of the various models forms a plateau, roughly between stages 8 and 11, rather than a

sharp peak as seen for the Excavator data. Although stage 11 is not actually the most

likely model (stage 8 is slightly higher), the log-likelihood decreases rapidly after stage 11.

This suggests that having too many joints—and thereby hampering the ability of sticks

to move so as to fit the observations—is a bigger disadvantage to the model than simply

having too few joints. Theoretically it may be possible to encourage a global maximum in

log-likelihood at stage 11 by simply increasing the maximum precision (thereby penalizing

stage 8 which has more vertices). However, recognizing our preference for models with

as many plausible joints as possible, selecting the stage at the edge of the plateau—stage

11—seems a reasonable choice.

Again, the articulated model achieved a lower test error than either SFM or multibody

Chapter 4. Learning Articulated Structure and Motion 100

Figure 4.8: Giraffe structures learned during greedy merging. Stage 10 has the highest

expected log-likelihood.

Chapter 4. Learning Articulated Structure and Motion 101

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

−2060

−2040

−2020

−2000

−1980

−1960

−1940

−1920

E[logprob]

0 5 10 15

5440

5460

5480

5500

5520

5540

5560

5580

5600
E[log N(W|ML)]

0 5 10 15
−4520

−4500

−4480

−4460

−4440

−4420

−4400

−4380

−4360

E[log N(E|V)]

0 5 10 15

−20

0

20

40

60

80

100

120

E[log N(E|MK)]

0 5 10 15
−150

−100

−50

0

H(Q(v))

multibody articulated single body
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Giraffe − Occluder

R
M

S
 e

rr
or

train

test

Figure 4.9: Giraffe Log-likelihood and Error.

Chapter 4. Learning Articulated Structure and Motion 102

SFM.

4.5.5 Synthetic Ring

In order to evaluate the performance of the model on data which contains significant out-

of-plane motion, we created a challenging synthetic dataset which depicting a segmented

ring deforming in space. The generated sequence consisted of 100 features across 300

frames, to which independent Gaussian noise of standard deviation 0.05 was added. (For

comparison, each stick was approximately 0.5 units wide and 5 units long.) Six frames

from the sequence are depicted in Figure 4.12.

The models learned for the successive stages of merging are shown in Figure 4.13. The

sharp downturn in log-likelihood between stages 8 and 9, shown in Figure 4.14, suggests

selecting stage 8 as the best model. (Note that although stage 0, which is equivalent to

multibody SFM, has a higher expected log-probability, stage 8 has the lower test error.)

Unlike methods based on spanning trees, our approach was able to recover the correct

closed ring structure.

Interestingly, all of the learned structures chose to group the feature points into eight

sticks, three more than were in the true grouping used to generate the data, as illustrated

in the bottom-right of Figure 4.13. Examination of the results show that these extra

groups arise from splitting three of the true sticks each into a pair sticks connected by

a joint. Although the learned structure is an over-segmentation of the ground truth

structure, it still provides a perfectly acceptable model of the data.

4.5.6 3D Human

Although recovering 3D structure from 3D observations is much simpler than from 2D

data, it also receives attention in the literature. As mentioned previously, our model

easily extends to 3D observations, so we include an additional experiment demonstrating

this ability. Here we trained our model on optical human motion capture data obtained

Chapter 4. Learning Articulated Structure and Motion 103

Figure 4.10: 2D Human structures learned during greedy merging, of which stage 11

most closely matches human intuition.

Chapter 4. Learning Articulated Structure and Motion 104

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x 10
4 E[logprob]

0 5 10 15

6

6.5

7

7.5

8

8.5

9

9.5

10

x 10
4 E[log N(W|ML)]

0 5 10 15

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

x 10
4 E[log N(E|V)]

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4 E[log N(E|MK)]

0 5 10 15
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

4 H(Q(v))

multibody articulated single body
0

0.2

0.4

0.6

0.8

1

1.2

1.4
2D Human − Occluder

R
M

S
 e

rr
or

train

test

Figure 4.11: 2D Human Log-likelihood and Error.

Chapter 4. Learning Articulated Structure and Motion 105

Figure 4.12: Synthetic Ring Data: Six frames selected from a synthetic data sequence

depicting the motion of a 5-segmented ring. The ring undergoes significant out-of-plane

motion.

from the Carnegie Mellon University Motion Capture Database. The data consisted of

174 feature points tracked across 732 frames (downsampled by a factor of three from the

original framerate). The results of greedy merging are shown in Figure 4.15, and the

corresponding log-likelihoods in Figure 4.16. Since learning from 3D observations is an

easier problem, the most likely structure—stage 15—is visually more appealing than the

structure learned earlier on the 2D human data.

4.5.7 Related Methods

Finally, as an additional qualitative comparison, we re-implemented the methods of Yan

and Pollefeys (2006b) and Kirk et al. (2005), and ran them on a selection of the datasets.

The method of Yan and Pollefeys was trained on the Giraffe and 2D Human datasets,

and the resulting structures are shown in Figure 4.17, at the top-left and top-right re-

spectively. (The performance of the method is sensitive to the values of manually tuned

Chapter 4. Learning Articulated Structure and Motion 106

Figure 4.13: Synthetic Ring Structures learned during greedy merging, of which stage 8

is the best. In comparison to the ground-truth structure, shown in the lower-right, the

learned model over-segments the data into 8 sticks, rather than 5. However, since this

involves splitting three of the true sticks in half, the learned model still provides a good

fit to the data.

Chapter 4. Learning Articulated Structure and Motion 107

0 1 2 3 4 5 6 7 8 9 10

−2000

−1000

0

1000

2000

3000

4000

5000

6000

7000
E[logprob]

0 2 4 6 8 10

1.4

1.6

1.8

2

2.2
x 10

4 E[log N(W|ML)]

0 2 4 6 8 10

−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

E[log N(E|V)]

0 2 4 6 8 10

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

E[log N(E|MK)]

0 2 4 6 8 10
−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

H(Q(v))

multibody articulated single body
0

0.5

1

1.5
Ring − Occluder

R
M

S
 e

rr
or

train

test

Figure 4.14: Synthetic Ring Log-likelihood and Error. The sharp downturn in log-

likelihood at stage 9 suggests selecting the structure learned during stage 8.

Chapter 4. Learning Articulated Structure and Motion 108

Figure 4.15: 3D Human structures learned during greedy merging. Stage 15 has the

highest log-likelihood.

Chapter 4. Learning Articulated Structure and Motion 109

0 5 10 15 20

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75
x 10

5 E[log N(W|ML)]

0 5 10 15 20

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

x 10
4 E[log N(E|V)]

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

x 10
4 E[log N(E|MK)]

0 5 10 15 20

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

4 H(Q(v))

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

x 10
5 E[logprob]

Figure 4.16: 3D Human Log-likelihood.

parameters. In each case we searched over a small range of parameter values and se-

lected the resulting structure that was most visually appealing.) A weakness of the Yan

and Pollefeys method is that it chooses to connect sticks based on the degree of linear-

dependence between their motions, rather than the ability to identify a consistent joint

between them. As a result, it twice connects fore- and hind-leg segments which move in

phase as the giraffe walks, despite the implausibility of a joint between them.

As described earlier, the method of Kirk et al. is designed to work on 3D optical

motion capture data, thus we trained it on the 3D Human dataset used in Section 4.5.6,

as well as the on 3D feature locations that gave rise to the 2D Human dataset from Sec-

tion 4.5.4. In the original paper, Kirk et al. focus on fitting their model to “calibration”

sequences, in which the actor fully flexes each of his individual joints. Indeed, as shown

in Figure 4.17, lower-right, the method does a good job at recovering the structure from

the range-of-motion sequence. (For comparison, the results of our method trained on the

2D-projection of the same sequence is shown in Figure 4.10.) In contrast, on the other

3D Human sequence which depicts walking and sitting rather than range-of-motion ex-

ercises, Kirk’s method fares much more poorly (Figure 4.17 lower-left, c.f. our method

Figure 4.15).

Chapter 4. Learning Articulated Structure and Motion 110

Figure 4.17: A comparison of results by related methods. The Yan and Pollefeys (2006b)

method was trained on 2D feature locations from the giraffe video and the 2D Human

motion capture sets (top row), while the Kirk et al. (2005) method was trained on 3D

feature locations from the two datasets of human motion capture (bottom row) .

Chapter 4. Learning Articulated Structure and Motion 111

4.6 Discussion

We have demonstrated a single coherent model that can learn the structures and motion

of articulated skeletons. This model can be applied to a variety of structures, requiring

no input beyond the observed feature trajectories, and a minimum of manually adjusted

precision parameters.

Our model makes a number of contributions to the state of the art. First, it is based

optimizing a single global objective function, which details how all aspects of learning—

grouping, connectivity, and parameter fitting—contribute to the overall quality of the

model. Having this objective function permits iteration between updates of the structure

and parameters, allowing information obtained from one stage to assist learning in the

other. Moreover, the value of the objective function proves useful for model selection,

determining the optimal number of joints. Also, the noise in our generative model plays

an important role, allowing a degree of non-rigidity in the motion with respect to the

learned skeleton. This not only allows a feature point to move in relation to its associated

stick, but also permits complexity in the joints, as the stick endpoints joined at a vertex

need not coincide exactly. In addition we presented a method for quantitative comparison,

based on imputing the locations of occluded observations, and were able to demonstrate

that our model performs measurably better than single-body or multibody structure from

motion.

To obtain good results, the model requires a certain density of features, in particular

because the affinity matrix used for initialization (Yan and Pollefeys, 2006a) requires

at least 4 points per stick. In addition, the flexibility of learned models is limited to

the degrees of freedom visible in the training data; if a joint is not exercised, then the

body parts it connects cannot be distinguished. Finally, our model requires that the

observations arise from a scene containing roughly articulated figures; it would be a poor

model of an octopus, for example.

An important direction for future study is the ability of learned skeletal structures

Chapter 4. Learning Articulated Structure and Motion 112

to generalize: applying them to new motions not seen during training, and to related

sequences, such as using a model trained on one giraffe to parse the motion of another.

Chapter 5

Discussion and Future Directions

In this work we have described three projects that develop machine learning tools and

apply them to the analysis of visual motion. In each, we took a challenging task which

typically involved expert manual intervention, and presented a method by which the task

could be solved automatically through the probabilistic modelling of data, resulting in

systems that are more flexible and useful. First, we automated the collection of data

required for training the appearance model of a visual tracker. This system leveraged a

novel algorithm for learning PCA incrementally, incorporating new views of the target as

they are acquired during tracking. Second, we demonstrated a technique for automating

the selection of appearance and dynamics models best suited for a given tracking task.

This relied on a new discriminative framework which, based on labelled sequences of the

target, was able to robustly combine a number of weak models to produce a reliable

tracker. Finally, we proposed a new model for automatically recovering the articulated

skeletal structure—as well as its parameters and motion—from tracked feature points.

The model can be fit in an entirely unsupervised fashion, automating the painstaking

manual construction typically required in motion capture and tracking applications.

These projects have made a number of material contributions, but also suggest many

directions where future research is required.

113

Chapter 5. Discussion and Future Directions 114

5.1 Remaining Challenges

5.1.1 Incremental Tracking

The proposed algorithm is able to track target objects through sequences of moderate

duration. However, in practise it is limited by the fact that when it fails for more than

a very brief interval, it is generally unable to recover the target. Part of this problem

stems from the strategy used to incrementally update the appearance model. Currently,

at each frame we simply select the maximum a posteriori subwindow and use it to re-fit

the PCA model. An important remaining challenge is how to optimally make use of

estimated uncertainty in the target’s position during these updates. This could range

from simply disregarding training subwindows when the positional uncertainty is too

high, or the appearance likelihood is too low, to more-sophisticated schemes that weight

the contribution of a new exemplar based on the degree of uncertainty. Furthermore,

the tracker could be made more robust through the addition of a mechanism to detect

when it has lost track of the target, and to broaden its field of search until the target is

recovered.

5.1.2 Combining Discriminative Features

Although this project presents a promising probabilistic framework for modelling trajec-

tories, the tracking experiments included currently constitute only a proof-of-concept.

Further work, such as proper handling of scale and rotation, would be required to ap-

ply this tracker to more-interesting videos. Another limitation to the tracker’s general

applicability is the requirement of labelled training video. Obtaining the ground truth

location of the target (4 parameters per frame) can be time-consuming, so it would be

ideal if learning could be performed on partially labelled data. A final challenge is to

modify the framework to allow a more-general set of features, such as higher-order or

non-parametric dynamics, and incrementally adaptive appearance models.

Chapter 5. Discussion and Future Directions 115

5.1.3 Learning Skeletons

This project presents a model that is able to approximate skeletal structure, as well as

parameters and motion, from a set of tracked feature point trajectories. Although it is

robust to significant occlusion and missing data, it requires that the input trajectories

be tracked somewhat more reliably than is possible with an off-the-shelf Kanade-Lucas-

Tomasi feature tracker. One advantage of having an accurate articulated model of a

non-rigid body is that it permits the locations of unobserved body features to be esti-

mated. As such, if an articulated model of the target were available a priori, it could be

leveraged to significantly improve feature tracking performance. This suggests an impor-

tant direction for future research: perhaps performance of both tracking and articulated

structure learning could be improved by integrating the two tasks.

Another disadvantage of the model is its determination to recover a single best struc-

ture. Since an articulated stick figure is at best an approximation—at a finer level of

detail the human body, for example, exhibits signifiantly more non-rigidity—capturing

the uncertainty in the stick figure’s structure might produce a more-accurate model.

Some preliminary work along these lines, applying nonparametric Bayesian methods

for learning tree structures, appears in (Meeds et al., 2008). This approach proposes

to represent uncertainty in the structure and model parameters via samples from the

posterior distribution given the observation sequence. Despite the theoretical advantages

the approach presents a number of implementation challenges, including the difficulty

of developing a Markov chain Monte Carlo method which can reliably simulate samples

from the posterior, as well as the need to manually tune a large number of unintuitive

hyper-parameters. In practice, it has been difficult to use this approach to recover even

2D articulated structure from 2-dimensional planar motion, and applying it to the chal-

lenging sequences presented in Chapter 4 does not seem feasible at this point.

Chapter 5. Discussion and Future Directions 116

5.1.4 Learning to Analyze Visual Motion

Finally, when considering the general problem of building computer models to analyze

and understand visual motion, the work here represents only a small step. Rather than

simply automating individual parts of hand-built vision systems, the ultimate goal is to

develop end-to-end learning systems that map directly from raw inputs to semantic rep-

resentations. Such approaches, with limited opportunity to benefit from expert domain

knowledge, might seem to be at a disadvantage. However the current ubiquity of digital

cameras provides a limitless source of data, and the growth of computer power continues

unabated. Thus developing scalable automated algorithms is the key to building new

computer systems with increased flexibility and coverage.

Appendix A

The Multivariate Gaussian

Probability Distribution

A.1 Parametrization and Multiplication

Throughout this work we model the probability of real vector-valued random variables,

x ∈ RD, using the multivariate Gaussian (or Normal) distribution. The probability

density of such a variable is written as a function of two parameters, most commonly the

mean vector µ ∈ RD and the positive-definite covariance matrix Σ ∈ RD×D. Since these

two parameters are the first and second moments of the distribution, this is known as

the moment parametrization. The resulting density function is

N (x|µ,Σ) = (2π)−
D
2 |Σ|−

1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

A well-known fact about Gaussian distributions is that the product of a number of

Gaussians, each with its own mean and covariance, is proportional to another Gaussian.

Many of facts presented in this appendix are described in much greater detail by Jordan (200X).
Regrettably, at this time Jordan’s excellent book is available only as an unpublished manuscript. Other
sources for this information include (Roweis, 1999a,b; Petersen and Pedersen, 2008).

117

Appendix A. The Multivariate Gaussian Probability Distribution 118

Algebraically:

∏
i

N (x|µi,Σi) ∝ N (x|µ,Σ)

where Σ =

(∑
i

Σ−1
i

)−1

and µ = Σ

(∑
i

Σ−1
i µk

)

Deriving this result can be cumbersome, since it involves expanding the quadratic

inside the exponential of each Gaussian, summing the quadratics, and then completing

the square of the result (see Completing the Square, Section A.5). Furthermore, imple-

menting this product operation can be computationally expensive, due to the number of

matrix inverses required.

Consider however the following alternative. Suppose the quadratic term appearing in

the exponential were expanded, and this parametrization of the density function was used

instead. Then multiplying Gaussians would be a simple matter of adding the quadratics,

no expanding and completing the square required. The resulting density function would

look as follows:

N (x|ν, τ) = exp

(
−1

2
x>τx + x>ν + c

)
.

where c = −1
2
(D log(2π)−|τ |+ν>τν) is a normalization constant. This parametrization

of the Gaussian density is known as the canonical parametrization, and is characterized

by a precision matrix τ , and a scaled-mean vector ν. As expected, in this form the

product operation is trivial:

∏
i

N (x|νi, τi) ∝ N (x|ν, τ) where τ =
∑

i

τi and ν =
∑

i

νi

The relationship between the canonical parameters and the moments is quite simple;

conversion between the two forms can be achieved using the following identities:

Σ = τ−1 and µ = τ−1ν.

Appendix A. The Multivariate Gaussian Probability Distribution 119

A.2 Marginalization

Another important operation performed on multivariate random variables is marginal-

ization. Suppose we have a multivariate Gaussian random variable x, whose elements

can be partitioned into to sub-vectors x1 and x2. Using block matrix notation, in the

moment parametrization this can be expressed as

N (x|µ,Σ) ≡ N

x1

x2

 |
µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22

 . (A.1)

The goal of marginalization is, given the probability density of x, to compute the

density of x2 irrespective of x1. This “marginal” density is obtained by integrating x1

out of the “joint” density: P(x2) =
∫

P (x1,x2)dx1. (The marginal probability of x1 can

be obtained analogously.)

In the moment parametrization, marginalization is trivial. The marginal density of

x2 is simply a multivariate Gaussian with mean µ2 and covariance Σ22 (Petersen and

Pedersen, 2008):

∫
N

x1

x2

 |
µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22

 dx1 = N (x2|µ2,Σ22).

In the canonical parametrization, however, this operation is significantly more challeng-

ing. In fact, the simplest way to obtain the marginal precision and scaled-mean is to

convert from the canonical to moment parametrization, take the marginal mean and co-

variance, and covert them back to canonical form. Suppose our Gaussian density can be

partitioned as follows:

N (x|ν, τ) ≡ N

x1

x2

 |
ν1

ν2

 ,

τ11 τ12

τ21 τ22

 (A.2)

To obtain the marginal precision we must first invert the (joint) precision matrix, using

Appendix A. The Multivariate Gaussian Probability Distribution 120

identities for inverting block matrices:τ11 τ12

τ21 τ22

−1

=

τ−1
11 + τ−1

11 τ12P
−1τ21τ

−1
11 −τ−1

11 τ21P
−1

−P−1τ21τ
−1
11 P−1

 , (A.3)

where P = τ22−τ21τ
−1
11 τ12 is the Schur complement (Petersen and Pedersen, 2008). Thus

the marginal precision for x2 is P. The marginal scaled-mean is obtained by multiplying

the scaled-mean (ν1,ν2) by the inverse precision (A.3), selecting the corresponding rows,

then multiplying by the precision P:

P

0 0

0 1

τ11 τ12

τ21 τ22

−1 ν1

ν2

 = P(−P−1τ21τ
−1
11 ν1 + P−1ν2) = ν2 − τ21τ

−1
11 ν1

Putting this all together, the marginal density of x2 is∫
N

x1

x2

 |
ν1

ν2

 ,

τ11 τ12

τ21 τ22

 dx1 = N (x2| ν2 − τ21τ

−1
11 ν1, τ22 − τ21τ

−1
11 τ12).

A.3 Conditioning

The third operation we will consider is conditioning. Given the aforementioned partition

of Gaussian random variable x into x1 and x2, the goal of conditioning is to compute the

conditional probability P(x1|x2) of x1 given a particular value of x2. (The conditional

probability of x2 given x1 can be obtained analogously.)

Unlike marginalization, conditioning is much simpler in the canonical parametriza-

tion. Beginning with the partitioned form of the canonical density, equation (A.2), the

conditional density of x1 is also a Gaussian P(x1|x2) = N (x1|ν1−τ12x2, τ11). This result

can be obtained by simply rearranging the terms inside the exponential

−1

2

x1

x2

>τ11 τ12

τ21 τ22

x1

x2

+

x1

x2

>ν1

ν2

= −1

2
(x1

>τ11x1 + 2x1
>τ12x2 + x2

>τ22x2) + x1
>ν1 + x2

>ν2

= −1

2
x1

>τ11x1 + x1
>(ν1 − τ12x2) + terms constant in x1.

Appendix A. The Multivariate Gaussian Probability Distribution 121

The identity for conditioning in the moment parametrization can be obtained by

converting the canonical result. Assume we begin with a moment-parametrization density

written in block form, as in equation (A.1). The joint covariance can be inverted using

another identity for block matricesΣ11 Σ12

Σ21 Σ22

−1

=

 C−1 −C−1Σ12Σ
−1
22

−Σ−1
22 Σ21C

−1 Σ22 −Σ21Σ
−1
11 Σ12

where C = Σ11 − Σ12Σ

−1
22 Σ21 (Petersen and Pedersen, 2008). Since the conditional

precision is equal to the τ11 block of the joint precision, we can see that the conditional

covariance is C.

To convert the conditional scaled-mean ν1 − τ12x2 to the conditional mean we must

solve for ν1 and τ12. From the block-inversion of the covariance, we note that τ12 =

−C−1Σ12Σ
−1
22 and

ν1 =

1 0

0 0

Σ11 Σ12

Σ21 Σ22

−1 µ1

µ2

 = C−1(µ1 −Σ1,2Σ
−1
2,2µ2).

Putting these together, we note the conditional mean is

C(ν1 − τ12x2) = CC−1(µ1 −Σ12Σ
−1
22 µ2) + CC−1Σ12Σ

−1
22 x2

= µ1 + Σ12Σ
−1
22 (x2 − µ2).

Therefore, in the moment parametrization, the conditional density of x1 given x2 is

P(x1|x2) = N (x1|µ1 + Σ12Σ
−1
22 (x2 − µ2), Σ11 −Σ12Σ

−1
22 Σ21).

A.4 Expectation of a Quadratic

The final operation we will consider is computing the expected value of a quadratic form,

(x − y)>(x − y), when variable x is distributed according to a multivariate Gaussian

Appendix A. The Multivariate Gaussian Probability Distribution 122

N (x|µ,Σ). The result of this operation is (Roweis, 1999b; Petersen and Pedersen, 2008):

E[(x− y)>(x− y)] =

∫
N (x|µ,Σ)(x− y)>(x− y)dx

= (µ− y)>(µ− y) + tr(Σ).

A.5 Completing the Square

When discussing the product of Gaussian densities, we noted that the derivation relies

on Completing the Square. Although well known in scalar terms, this identity can also

be applied to quadratics that contain vector-valued variables:∑
i

(x− µi)
>Σ−1

i (x− µi)

= (x− µ)>Σ−1(x− µ) − µ>Σ−1µ +
∑

i

µi
>Σ−1

i µi

where Σ ≡ (
∑

i Σ
−1
i)−1 and µ ≡ Σ(

∑
i Σ

−1
i µi). The proof of this result is as follows:∑

i

(x− µi)
>Σ−1

i (x− µi)

= x>

(∑
i

Σ−1
i

)
x− 2x>

(∑
i

Σ−1
i µi

)
+
∑

i

µi
>Σ−1

i µi

= x>Σ−1x− 2x>Σ−1µ+
∑

i

µi
>Σ−1

i µi

= (x− µ) >Σ−1 (x− µ)− µ>Σ−1µ+
∑

i

µi
>Σ−1

i µi.

Appendix B

Combining Discriminative Features

Derivation: Inference and Learning

In this appendix we derive the inference and learning algorithms for the Combining Dis-

criminative Features model described in Chapter 3. We begin by deriving exact inference

and learning for the simpler linear-Gaussian case, in which all features are active. Then

we extend this solution to the more-interesting non-linear case by introducing switching

variables, and derive approximate inference and learning algorithms.

The training data is a set of N sequences pairs, {(Xn,Yn)}Nn=1, where Xn and Yn

are the state sequence and observation sequence respectively, and from this we con-

struct a model of the conditional distribution of X given Y. This differs from generative

approaches, which model X|Y indirectly by first specifying a prior over X, fitting a likeli-

hood distribution Y|X, and applying Bayes’ rule. The conditional distribution is formed

by taking a log-linear combination of features. The features are fj and gk, which are

linearly related to weights αj and βk respectively. The observation features gk relate the

state at a single time-step to the observations, while the dynamics features fj involve

pairs of states at adjacent time-steps, capturing the evolution of the sequence. Finally,

the distribution is normalized by the partition function Z(Y):

123

Appendix B. Combining Discriminative Features Derivation 124

P(Xn|Yn) =
1

Z(Yn)
exp

(∑
t=2

>
J∑

j=1

fj(x
n
t−1,x

n
t) +

∑
t=1

>
K∑

k=1

gk(x
n
t ,Y

n)

)
.

B.1 Linear Dynamics with Gaussian Noise

xtxt−1 f

g g

Y

Figure B.1: The factor graph of the linear Gaussian model.

In the non-switching case exact inference, and therefore exact learning, is possible. All

dynamics features propose that the state at any time is a linear function of the previous

state, plus Gaussian noise. That is xt = Tjxt−1+dj+N (0,αj) for some transition matrix

Tj, translation dj, and precision1. As presented in Chapter 3, the feature functions used

are

fj(xt−1,xt) = −1

2
(xt − φj(xt−1))

>αj (xt − φj(xt−1))

gk(xt,Y) = −1

2
(xt − γk(Y, t)) >βk (xt − γk(Y, t)) ,

where φj(xt−1) predicts the state at time t using a linear dynamics φj(xt−1) = Tjxt−1+dj,

and γk(Y, t) is a prediction of the state at time t obtained by considering any or all of

the observations.

1Throughout this appendix, except where noted, we will parametrize the Gaussian distribution using
the canonical parametrization, as described in Appendix A. Thus N (x|ν, τ) has a precision matrix τ ,
which is simply the inverse of the covariance matrix τ = Σ−1, and a mean given by τ−1ν.

Appendix B. Combining Discriminative Features Derivation 125

B.1.1 Inference

Inference in this model is the process of computing the probability distribution over

the state sequence X given an observation sequence Y, P(X|Y). Since all features are

quadratic functions in X, the resulting distribution is Gaussian, and exact inference

can be performed efficiently using the belief propagation algorithm (Jordan, 200X). In-

ference in this model is closely linked, and in some ways equivalent, to the Kalman

smoother (Rauch et al., 1965). Inference via BP allows us to: (1) compute the marginal

P(xt|Y) and pairwise marginal P(xt−1,xt|Y) distributions, required for learning, (2)

draw samples from the distribution, and (3) compute the mode, or most-probably state

sequence, argmaxX P(X|Y).

Implementing belief propagation requires recursively computing three types of mes-

sage: mt−1,t(xt), which passes information from xt−1 to xt; mt+1,t(xt) which sends infor-

mation in the reverse direction; and mt(xt) which sends information to xt from the ob-

servations. In addition to these messages we compute two intermediate results: fwd(xt)

and bwd(xt). These correspond respectively to the forward-filtered estimate of xt, rely-

ing only on evidence provided from observation features at time t and earlier, and the

backward-filtered estimate of xt, relying on observation features from time t and later.

Before deriving the messages, we make note of a useful fact. Consider the contribution

to the conditional probability made by the pairwise dynamics features,

Ψ(xt−1,xt) = exp

(
−1

2

J∑
j=1

(xt −Tjxt−1 − dj)
>αj (xt −Tjxt−1 − dj)

)
.

By expanding the quadratic and collecting terms, we see that this factor is a product

of Gaussian distributions, and thus is proportional to a single Gaussian, expressed in

canonical parametrization:

Ψ(xt−1,xt) ∝ exp

−1

2

xt−1

xt

>TαT −αT>

−αT A

xt−1

xt

+

xt−1

xt

>−Tαd

αd

 .

Appendix B. Combining Discriminative Features Derivation 126

(Details on products of Gaussians and the canonical parametrization are included in

Appendix A.) The above expression makes use of the following shorthand symbols which,

for the linear-Gaussian case, need not be recomputed at each time-step:

A =
∑

j

αj αT =
∑

j

αjTj

TαT =
∑

j

Tj
>αjTj αd =

∑
j

αjdj

Tαd =
∑

j

Tjαjdj.

Forward Message Passing (Filtering)

The forward propagation of the state estimates, useful for online tracking, is related to

Kalman filtering. To predict xt given the observation features γk(Y, 1 : t− 1), the prior

(corrected) state estimate of xt−1|γk(Y, 1 : t−1), fwd(xt−1), must be combined with the

dynamics factor Ψ(xt−1,xt). Since both factors are Gaussian in (xt−1,xt), computing the

message can be performed by multiplying the two Gaussians and marginalizing out xt−1.

mt−1,t(xt) ∝
∫

xt−1

Ψ(xt−1,xt)fwd(xt−1)dxt−1

∝
∫

xt−1

N

xt−1

xt

 |
−Tαd

αd

 ,

TαT −αT>

−αT A

×

N

xt−1

xt

 |
µf

t−1

0

 ,

τ f
t−1 0

0 0

 dxt−1.

Upon performing the multiplication and marginalization (details of these operations are

found in Appendix A), the resulting message, the prediction of xt|γk(Y, 1 : t− 1), is also

a Gaussian mt−1,t(xt) = N
(
xt|νt|t−1, τt|t−1

)
, where:

τt|t−1 = A− αT (TαT + τ f
t−1)

−1αT>

νt|t−1 = αT (TαT + τ f
t−1)

−1(τ f
t−1µ

f
t−1 − Tαd) + αd.

This expression for τt|t−1 has the potential to exhibit numerical instabilities, since it

is the difference between two positive semi-definite matrices, which is not guaranteed to

Appendix B. Combining Discriminative Features Derivation 127

produce a positive semi-definite result (Welling, “The Kalman Filter”). An equivalent

alternative expression for τt|t−1, related by the Sherman-Morrison-Woodbury formula

(Petersen and Pedersen, 2008) is

τt|t−1 = (A−1 + A−1αT (TαT + τ f
t−1 − αT>A−1αT)−1αT>A−1)−1.

Despite incurring additional computational cost, in practice this expression produces a

more numerically reliable result.

Incorporating Evidence

Updating the state estimate to include information from the observation features is a

simple matter of combining mt−1,t(xt) with the message sent from the observations, which

will be denoted as mt(xt). The message from the observation features to the hidden state

is a product of K Gaussian distributions, each of the formN (xt|βkγk(Y, t),βk). Thus the

resulting message is also Gaussian, of the form mt(xt) = N (xt|y′t,B), with B =
∑K

k=1 βk

and y′t = (
∑K

k=1 βkγk(Y, t)).

Combining the forward message with the message from the observations is again a

simple product of Gaussians: fwd(xt) ∝ mt−1,t(xt) mt(xt) = N
(
xt|µf

t , τ
f
t

)
, where:

τ f
t = τt|t−1 + B

νf
t = νt|t−1 + y′t.

Appendix B. Combining Discriminative Features Derivation 128

Backward message passing (Smoothing)

The backward propagation of the state estimate can be performed analogously. The

backward prediction of xt given γk(Y, t + 1 : T), mt+1,t(xt), can be expressed as

mt+1,t(xt) ∝
∫

xt+1

Ψ(xt,xt+1)bwd(xt+1)dxt+1

∝
∫

xt+1

N

 xt

xt+1

 |
−Tαd

αd

 ,

TαT −αT>

−αT A

×

N

 xt

xt+1

 |
 0

µb
t+1

 ,

0 0

0 τ b
t+1

 dxt+1.

The resulting message is mt+1,t(xt) = N
(
xt|νt|t+1, τt|t+1

)
, where

τt|t+1 = TαT − αT>(A + τ b
t+1)

−1αT

νt|t+1 = αT>(A + τ b
t+1)

−1(τ b
t+1µ

b
t+1 + αd)− Tαd.

As with forward prediction, an equivalent alternative expression for the prediction that

avoids taking the difference of positive definite matrices is

τt|t+1 = ((TαT)−1 + (TαT)−1αT>(A + τ b
t+1 − αT (TαT)−1αT>)−1αT (TαT)−1)−1.

Incorporating evidence from the observations uses the same message computed for the

forward pass. This gives, as a corrected backward prediction: bwd(xt) ∝ mt,t+1(xt) mt(xt) =

N
(
xt|νb

t , τ
b
t

)
where

τ b
t = τt|t+1 + B

νb
t = νt|t+1 + y′t.

Marginals, Pairwise Marginals, and Mode

The marginal distributions, P(xt|Y), required for learning, can be computed by multi-

plying together all messages coming into xt. This is a Gaussian product N (νt, τt) ∝

Appendix B. Combining Discriminative Features Derivation 129

mt−1,t(xt) mt(xt) mt+1,t(xt), with

τt = τt|t−1 + B + τt|t+1

νt = νt|t−1 + y′t + νt|t+1,

or in moment parametrization,

Σt = (τt|t−1 + B + τt|t+1)
−1

µt = Σt(νt|t−1 + y′t + νt|t+1).

Similarly, the pairwise marginal for (xt,xt+1) can be computed by combining all messages

coming into the pair (forward, backward, and observation), along with the dynamics

factor:

mt−2,t−1(xt−1) mt−1(xt−1) Ψ(xt−1,xt) mt,t+1(xt) mt(xt)

= fwd(xt−1) Ψ(xt−1,xt) bwd(xt+1).

The mean of the pairwise marginal is simply the concatenation of the marginal means,

(µt−1,µt). The pairwise marginal precision is sum of the precisions from the messages

and dynamics factor

τpair(t−1,t) =

B 0

0 0

+

τt−1|t−2 0

0 0

+

TαT −αT>

−αT A

+

0 0

0 τt|t+1

+

0 0

0 B

 .

The marginal cross covariance, Σt−1,t = E[(xt−1 − µt−1)(xt − µt)
>] can be obtained by

inverting the pairwise marginal precision and selecting the upper-right block of the result.

Since the distribution of X given Y is Gaussian, the mode, or most likely sequence

µ ≡ argmaxX P(X|Y), is simply the concatenation of marginal means: µ = (µ1, . . . ,µT).

Sampling

After performing inference to obtain the marginals and pairwise marginals, drawing a

sample from P(X|Y) is a simple iterative procedure. First, begin by drawing a sample

of the state at time T from its marginal:

x̂t ∼ N (νt, τT).

Appendix B. Combining Discriminative Features Derivation 130

Then for each time t, starting at T − 1 and working backwards, draw a sample x̂t from

the conditional distribution P(xt|x̂t+1), given the sample that was just drawn for time

t + 1. The conditional can easily be obtained from the pairwise marginal distribution

P(xt,xt+1|Y) using the conditioning formula presented in Appendix A.3:

x̂t|x̂t+1 ∼ N (νt − τt,t+1x̂t+1, τt,t).

A similar forward sampling procedure can also be derived, beginning with a sample from

P(x1) and employing P(xt|x̂t−1).

B.1.2 Learning

Given a set of N labelled sequences, learning the αj and βk parameters in this model is

accomplished via gradient ascent on the log-likelihood:

L =
N∑

n=1

(∑
t=2

>
J∑

j=1

−1

2

(
xn

t −Tjx
n
t−1

) >αj

(
xn

t −Tjx
n
t−1

)
+
∑
t=1

>
K∑

k=1

−1

2
(xn

t − γk(Y
n, t)) >βk (xn

t − γk(Y
n, t))− log Z(Yn)

)

=
N∑

n=1

(J∑
j=1

tr
(
Fn

jαj

)
+

K∑
k=1

tr (Gn
kβk)− log Z(Yn)

)
,

where we define shorthands Fn
j and Gn

k as

Fn
j = −1

2

∑
t=2

>(xn
t −Tjx

n
t−1

) (
xn

t −Tjx
n
t−1

) >,
Gn

k = −1

2

∑
t=1

>(xn
t − γk(Y

n, t)) (xn
t − γk(Y

n, t)) >.

Taking derivatives gives us:

∂L
∂αj

=
N∑

n=1

(
Fn

j − EP(X|Yn)

[
Fn

j

])
=

N∑
n=1

(
Fn

j +
1

2

∑
t=2

>EP(xn
t−1,xn

t |Yn)

[(
xn

t −Tjx
n
t−1

) (
xn

t −Tjx
n
t−1

) >]) ,

Appendix B. Combining Discriminative Features Derivation 131

∂L
∂βk

=
N∑

n=1

(
Gn

k − EP(X|Yn) [Gn
k]
)

=
N∑

n=1

(
Gn

k +
1

2

∑
t=1

>EP(xn
t |Yn)

[
(xn

t − γk(Y
n, t)) (xn

t − γk(Y
n, t)) >

])
.

The expectation term in ∂L
∂αj

expands to

∑
t=2

>(E[xn
t x

n
t
>]−TjE[xn

t−1x
n
t
>]− E[xn

t x
n
t−1

>]Tj
>+ TjE[xn

t−1x
n
t−1

>]Tj
>)

=
∑
t=2

>
((

Σn
t + µn

t µ
n
t
>)−Tj

(
Σn

t−1,t + µn
t−1µ

n
t
>)

−
(
Σn

t−1,t + µn
t−1µ

n
t
>) >Tj

>+ Tj

(
Σn

t−1 + µn
t−1µ

n
t−1

>)Tj
>
)

.

Similarly, the expectation term in ∂L
∂βk

expands to

∑
t=1

>(E[xn
t x

n
t
>]− γk(Y

n, t)E[xn
t]>− E[xn

t]γk(Y
n, t)>+ γk(Y

n, t)γk(Y
n, t)>

)
=
∑
t=1

>((Σn
t + µn

t µ
n
t
>)− γk(Y

n, t)µn
t
>− µn

t γk(Y
n, t)>+ γk(Y

n, t)γk(Y
n, t)>

)
.

B.1.3 Partition Function

Here we show how to compute the partition function Z(Y). Note that this calculation

is not used in the Combining Discriminative Features model, since it becomes compu-

tationally intractable once switching variables are introduced. Nonetheless, efficiently

evaluating the partition function for the non-switching case is still an interesting prob-

lem.

To begin with, it helps to consider the easier case of computing the normalization

constant of a product of unnormalized Gaussians:

f(x) = exp

(
−1

2

∑
i

(x− µi)
>τi(x− µi)

)
.

Appendix B. Combining Discriminative Features Derivation 132

By completing the square (see Appendix A.5), f(x) can be rewritten as a single unnor-

malized Gaussian times an additional factor that is constant in x:

f(x) = exp

(
−1

2
(x− µ)>τ (x− µ)

)
exp

(
−1

2

(∑
i

µi
>τiµi − µ>τµ

))
,

where τ =
∑

i τi and µ = (τ−1)(
∑

i τiµi). Integration is now straightforward:∫
X

f(x)dx = (2π)
d
2 |τ |−

1
2 exp

(
−1

2

(∑
i

µi
>τiµi − µ>τµ

))
.

Computing the partition function can be done analogously. After completing the square,

Z(Y) can be written as:

Z(Y) =

∫
X

exp

(
−1

2
(X− µ)>P(X− µ)

)
dX

exp

(
−1

2

(∑
t,k

γk(Y, t)>βkγk(Y, t)− µ>Pµ

))

= (2π)
DT
2 |P|−

1
2 exp

(
−1

2

(∑
t,k

γk(Y, t)>βkγk(Y, t)− µ>Pµ

))
,

where X = (x1, . . . ,xT) is a concatenation of the state variables, and the joint mean

µ = (µ1, . . . ,µT) is a concatenation of the marginal means. P, the joint precision, is

formed by summing the contributions to the precision from each of the factors in the

energy function (as in the Product of Gaussians operation described in Appendix A). It

takes the following block-tridiagonal form:

V−1
0 + TαT + B −αT>

−αT TαT + A + B −αT>

−αT TαT + A + B −αT>

...

−αT A + B

.

Due to the size of of P, DT ×DT , this method for evaluating the partition function can

be very expensive.

Another more efficient method uses the Markov property to factorize the conditional

probability into P(X|Y) = P(x1|Y)P(x2|x1,Y) . . . P(xT |xT−1,Y). Each factor can be

Appendix B. Combining Discriminative Features Derivation 133

expessed as P(xt|xt−1,Y) = P(xt−1,xt|Y)/P(xt−1|Y), which has a normalization con-

stant of (2π)
D
2 |Σpair(t−1,t)|

1
2 |Σt−1|−

1
2 . (Σt is the D×D marginal covariance and Σpair(t−1,t)

the 2D× 2D pairwise marginal covariance, which are computed during inference.) Thus

the partition function can be evaluated as:

log Z(Y) =
TD

2
log 2π +

1

2

∑
t=2

>log |Σt−1,t| −
1

2

T−1∑
t=2

log |Σt|

−1

2

∑
t,k

γk(Y, t)>βkγk(Y, t) +
1

2
µ>Pµ.

Furthermore, noting the sparse pattern of P, we can can reexpress µ>Pµ as:

µ1
>(TαT + B)µ1 +

T−1∑
t=2

µt
>(TαT + A + B)µt + µT

>(A + B)µT − 2
∑
t=2

>µt
>αTµt−1.

B.2 The Robust, Non-Gaussian Case

The previous approach used Gaussian distributions to model all sources of measurement

error and noise. This choice, although permitting exact inference and gradient compu-

tations, restricts the distributions over the state to be unimodal at all time steps. The

product of two Gaussians is a Gaussian, thus when we multiplicatively combine two dis-

parate predictions, the result is a weighted average of the two. Instead, it makes more

sense for the result to be a bimodal distribution. This can be achieved in a number of

ways, such as by using product of ‘robust’ or ‘heavy-tailed’ error distributions like the

“uniGauss” (an unnormalized mixture of a uniform and a Gaussian distribution, Hinton,

1999), or by using a mixture of Gaussians. The difficulty with the robust approach is

that computing the partition function and gradient is no longer computationally feasible,

requiring us to employ approximate Contrastive Divergence learning (Hinton, 2000).

The uniGauss model is obtained from the linear-Gaussian model by adding new un-

observed binary variables, u and v, as illustrated in Figure B.3. Each binary variable is

a switch which indicates whether or not the corresponding Gaussian feature should be

Appendix B. Combining Discriminative Features Derivation 134

Figure B.2: The product of two Gaussians is another unimodal Gaussian (left), while

the product of two robust uniGauss distributions with different means (middle) and a

mixture of two Gaussians (right) are both bimodal.

included in the resulting joint distribution. Variable un
jt = 1 indicates that the jth dy-

namics feature from xn
t−1 to xn

t should be included, and vn
kt = 1 that the kth observation

feature at time t should be included. Each observation switch is allowed to take on a

value independently of the other switches, producing a product of uniGauss distributions

(Hinton, 2000). In contrast, we constrain the dynamics switches so that exactly one is

active at each time-step t: ∀t
∑

j ujt = 1. This acts as a mixture of Gaussians, and

ensures that even during occlusions, when all observation features are off, we still have a

prediction for the state xt.

g

xtxt−1

g

f

GG

F

Y

tv

tu

t−1v

Figure B.3: The factor graph of the robust Combining Discriminative Features model.

Switching variables can themselves be conditioned on the values of various feature

functions, called switch potentials. We introduce two additional sets of features: Fj(Y
n, t),

Appendix B. Combining Discriminative Features Derivation 135

which affect the probability of the dynamics switches un
jt, and Gk(Y

n, t), which affect the

observation switches vn
kt. Each is a linear combination of a set of observation features

and a learned parameter vector:

Fj(Y
n, t) = rj(Y

n, t)>ρj

Gk(Y
n, t) = sk(Y

n, t)>ηk.

The resulting log-probability, equivalent to (3.1), is

L =
N∑

n=1

(
log
∑
U,V

exp

(∑
j

tr(Fn
jαj) +

∑
k

tr(Gn
kβk) +

∑
j

Rn
j
>ρj +

∑
k

Sn
k
>ηk

)
− log Z(Yn)

)
,

using the shorthand notation:

Fn
j = −1

2

∑
t=2

>(xn
t −Tjx

n
t−1

) (
xn

t −Tjx
n
t−1

) >un
jt

Gn
k = −1

2

∑
t=1

>(xn
t − γk(Y

n, t)) (xn
t − γk(Y

n, t)) >vn
kt

Rn
j =

∑
t=2

>rj(Y
n, t)un

jt Sn
k =

∑
t=1

>sk(Y
n, t)vn

kt.

The gradients are needed for learning parameters are:

∂L
∂αj

=
N∑

n=1

(
EU|Xn,Yn

[
Fn

j

]
− EX,U,V|Yn

[
Fn

j

])

∂L
∂βk

=
N∑

n=1

(
EV|Xn,Yn [Gn

k]− EX,U,V|Yn [Gn
k]
)

∂L
∂ρj

=
N∑

n=1

(
EU|Xn,Yn

[
Rn

j

]
− EX,U,V|Yn

[
Rn

j

])

∂L
∂ηj

=
N∑

n=1

(
EV|Xn,Yn [Sn

k]− EX,U,V|Yn [Sn
k]
)
.

Appendix B. Combining Discriminative Features Derivation 136

Positive Phase

Here we need to compute the expectation over U and V, given the fully observed train-

ing data Xn and Yn, of the features: EU,V|Xn,Yn [feature]. This expectation can be

performed exactly, since the u’s and v’s are conditionally independent given X and Y.

All that needs to be done is to compute the probability (expected values) ûn
jt and v̂n

kt of

U and V, and substitute them in place of u and v in the computation of the features

Fn
j , Gn

k , Rn
j , and Sn

k .

ûn
jt = sigmoid(fj(x

n
t−1,x

n
t ,αj) + rj(Y

n, t)>ρj)

v̂n
kt = sigmoid(gk(x

n
t ,Y

n,βk) + sk(Y
n, t)>ηk).

Negative Phase

Here we have to compute the expectations of the features with respect to X,U,V|Yn.

In the robust model, this expectation cannot be computed exactly, and is computation-

ally expensive to approximate. As described in Section 3.4 of Chapter 3, Contrastive

Divergence is used to obtain biased samples of X,U,V given Yn.

Appendix C

Learning Articulated Structure

From Motion: EM Algorithm

C.1 Derivation of Objective Function

Notation

Do dimensionality of observations (2 or 3)

Dl dimensionality of local coordinate systems (3)

P number of observed feature points

F number of observed frames

J number of vertices

S number of sticks

i indexes the endpoints, two for each stick

s(i) the stick to which endpoint i belongs, s(i) ≡ d i
2
e

Γ() the Gamma function (Weisstein, b; Beal, 2003)

Ψ() the Digamma function (Weisstein, a; Beal, 2003)

137

Appendix C. Learning Articulated Structure From Motion: EM Algorithm138

Joint Probability of Model:

P = P(W|M,L,R) P(E|M,K,V,φ,G)

P(V) P(φ) P(M) P(L) P(K) P(R) P(G)

Variational Posterior

Q = Q(V) Q(E) Q(φ)

Q(V) =
∏
f,j

N (vf
j |µ(vf

j), τ(vf
j))

Q(E) =
∏
f,i

N (ef
i |µ(ef

i), τ(ef
i))

Q(φ) =
∏

j

Gamma(φj|α(φj), β(φj))

Expected Complete Log-Probability (Negative Free Energy):

EM learning of the model parameters seeks to maximize the following objective function:

L = EQ[log P]− EQ[log Q]. (C.1)

We now derive each of the individual terms appearing in the objective function, then

bring them together, presenting L in full detail (equation C.2). When evaluating the

following expectations, we make use of the Expectation of a Quadratic identity, introduced

in Appendix A.4, and the formula for the expectation of the log of a Gamma random

variable (Beal, 2003).

Observation Likelihood

EQ [log P(W|M,L,R)]

= EQ

[∑
f,p,s

rp,s

(
−τw

2
‖wf

p −Mf
s ls,p‖2 +

Do

2
log(τw)− Do

2
log(2π)

)]

= −τw

2

∑
f,p,s

‖wf
p −Mf

s ls,p‖2 +
FPDo

2
log(τw)− FPDo

2
log(2π)

Appendix C. Learning Articulated Structure From Motion: EM Algorithm139

Pseudo-Observation Likelihood

The pseudo-observation likelihood, P(E|M,K,M,φ,G) consists of two factors.

EQ

[
log
∏
f,i

N (ef
i |M

f
s(i)ki, τ

−1
m I)

]

= EQ

[∑
f,i

(
−τm

2
‖ef

i −Mf
s(i)ki‖2 +

Dl

2
log(τm)− Dl

2
log(2π)

)]

= −τm

2

∑
f,i

(
‖µ(ef

i)−Mf
s(i)ki‖2 + Dlτ(ef

i)
−1
)

+ FSDl log(τm)− FSDl log(2π)

EQ

[
log
∏
f,i,j

N (ef
i |v

f
j , φ

−1
j I)gi,j

]

= EQ

[∑
f,i,j

gi,j

(
−φj

2
‖ef

i − vf
j ‖2 +

Dl

2
log(φj)−

Dl

2
log(2π)

)]

= −1

2

∑
f,i,j

gi,j
α(φj)

β(φj)

(
‖µ(ef

i)− µ(vf
j)‖2 + Dl(τ(ef

i)
−1 + τ(vf

j)−1)
)

+
FDl

2

∑
i,j

gi,j (Ψ(α(φj))− log β(φj))− FSDl log(2π)

Smoothing Factor

EQ [log P(V)] = EQ

[∑
j

F∑
f=2

(
−τt

2
‖vf

j − vf−1
j ‖2 − Dl

2
log(2π) +

Dl

2
log(τt)

)]

= −τt

2

∑
j

F∑
f=2

(
‖vf

j − vf−1
j ‖2 + Dl(τ(vf−1

j)−1 + τ(vf
j)−1)

)
− (F − 1)JDl

2
log(2π) +

(F − 1)JDl

2
log(τt)

Joint Precisions

EQ [log P(φ)] = EQ

[
log
∏

j

Gamma(φj|αj, βj)

]

= EQ

[∑
j

(αj log βj + (αj − 1) log φj − βjφj − log Γ(αj)

]

= −
∑

j

βj
α(φj)

β(φj)
+
∑

j

(αj − 1)(Ψ(α(φj))− log β(φj))) +
∑

j

αj log βj

∑
j

log Γ(αj)

Appendix C. Learning Articulated Structure From Motion: EM Algorithm140

Structure Priors

EQ [log P(R)] =
∑
p,s

rp,s log cS EQ [log P(G)] =
∑
i,j

gi,j log cj

Entropy Terms

Entropy of N (x|µ, τ−1ID×D): H(x) = −D/2 log τ + D/2 log(2πe)

Entropy of Gamma(φ|α, β): H(φ) = α− log β + log Γ(α) + (1− α)Ψ(α)

EQ [log Q(V)] = −Dl

2

∑
f,j

log τ(vf
j) +

FJDl

2
log(2πe)

EQ [log Q(E)] = −Dl

2

∑
f,i

log τ(ef
i) + FSDl log(2πe)

EQ [log Q(φ)] =
∑

j

(α(φj)− log β(φj) + log Γ(α(φj)) + (1− α(φj))Ψ(α(φj)))

Adding the above terms together, we arrive at the following expression for the

Appendix C. Learning Articulated Structure From Motion: EM Algorithm141

Expected Complete Log-Likelihood objective function, (C.1):

L =− τw

2

∑
f,p,s

rp,s‖wf
p −Mf

s ls,p‖2 +
FPDo

2
log τw −

FPDo

2
log(2π) (C.2)

− 1

2

∑
f,i,j

gi,j
α(φj)

β(φj)

(
‖µ(ef

i)− µ(vf
j)‖2 −Do(τ(ef

i)
−1 + τ(vf

j)−1)
)

+
FDo

2

∑
i,j

(Ψ(α(φj))− log β(φj))− FSDo log(2π)

− τm

2

∑
f,i

‖µ(ef
i)−Mf

s(i)ki‖2 −
Do

2
τm

∑
f,i

τ(ef
i)
−1 + FSDo log(τm)− FSDo log(2π)

− τt

2

F∑
f=2

∑
j

‖µ(vf
j)− µ(vf−1

j)‖2 − Do

2
τt

∑
f,j

τ(vf
j)−12h(f) +

(F − 1)JDo

2
log(τt)

− (F − 1)JDo

2
log(2π)

−
∑

j

βj
α(φj)

β(φj)
+
∑

j

(αj − 1)(Ψ(α(φj))− log β(φj)) +
∑

j

αj log βj −
∑

j

log Γ(αj)

− Do

2

∑
f,j

log τ(vf
j) +

FJDo

2
log(2πe)− Do

2

∑
f,i

log τ(ef
i) + FSDo log(2πe)

+
∑

j

α(φj)−
∑

j

log βj +
∑

j

log Γ(α(φj)) +
∑

j

(1− α(φj))Ψ(α(φj))

− τp

2

∑
s,p

rs,p‖ls,p‖2 +
PDo

2
log τp −

τp

2

∑
i

‖ki‖2 + SDo log τp

where h(f) = 1 if 1 < f < F and 0 otherwise, and s(i) is simply the index of the stick

to which endpoint i belongs.

C.2 EM Updates

The EM updates for model are obtained by maximizing the objective function (C.2)

with respect to each parameter. Included below are the gradients of L (which can be

obtained using the formulas in Petersen and Pedersen, 2008) and the resulting

parameter updates. Also included, for completeness, are EM updates for the structure

variables, R and G.

Appendix C. Learning Articulated Structure From Motion: EM Algorithm142

Update of τw

∂L
∂τ−1

w

= −1

2

∑
f,p,s

rp,s‖wf
p −Mf

s ls,p‖2 +
FPDo

2
τ−1
w

τ−1
w =

∑
f,p,s rp,s‖wf

p −Mf
s ls,p‖2

FPDo

Update of τm

∂L
∂τ−1

m

= −1

2

∑
f,i

‖µ(ef
i)−Mf

s(i)ki‖2 −
Do

2

∑
f,i

τ(ef
i)
−1 + FSDoτ

−1
m

τ−1
m =

∑
f,i ‖µ(ef

i)−Mf
s(i)ki‖2

2FSDo

+

∑
f,i τ(ef

i)
−1

2FS

Update of τw if we define τm ≡ τw

∂L
∂τ−1

w

=− 1

2

∑
f,p,s

rp,s‖wf
p −Mf

s ls,p‖2 +
FPDo

2
τ−1
w

− 1

2

∑
f,i

‖µ(ef
i)−Mf

s(i)ki‖2 −
Do

2

∑
f,i

τ(ef
i)
−1 + FSDoτ

−1
m

τ−1
w =

∑
f,p,s rp,s‖wf

p −Mf
s ls,p‖2 +

∑
f,i ‖µ(ef

i)−Mf
s(i)ki‖2 + Do

∑
f,i τ(ef

i)
−1

F (P + 2S)Do

Update of τt

∂L
∂τ−1

t

= −1

2

F∑
f=2

∑
j

‖µ(vf
j)− µ(vf−1

j)‖2 − Do

2

∑
f,j

τ(vf
j)2h(f) +

(F − 1)JDo

2
τ−1
t

τ−1
t =

∑F
f=2

∑
j ‖µ(vf

j)− µ(vf−1
j)‖2

(F − 1)JDo

+

∑
f,j τ(vf

j)−1

(F − 1)J
2h(f)

Update of Mf
s

∂L
∂Mf

s

= −τw

2

∑
p

rp,s

(
− 2wf

p ls,p
>+ 2Mf

s ls,pls,p
>
)
− τm

2

∑
{i|s(i)=s}

(
− 2µ(ef

i)ks,i
>+ 2Mf

sks,iks,i
>
)

Mf
s =

(
τw

∑
f

rp,sls,pls,p
>+ τm

∑
{i|s(i)=s}

ks(i)ks(i)
>
)−1(

τw

∑
p

rp,sw
f
p ls,p

>+ τm

∑
{i|s(i)=s}

µ(ef
i)ks(i)

>
)

Appendix C. Learning Articulated Structure From Motion: EM Algorithm143

However this doesn’t enforce orthogonality of the rotation part of Mf
s . Instead split the

motion matrix Mf
s into a rotation matrix and a translation vector Mf

s = [Rf
s ts,f],

and solve for each of them independently.

∂L
∂ts,f

= −τw

2

∑
p

rp,s

(
2ts,f − 2(wf

p −Rf
s ls,p)

)
− τm

2

∑
{i|s(i)=s}

(
2tf

s(i) − 2(µ(ef
i)−Mf

sks,i)
)

ts,f =
(
τw

∑
p

rp,s(w
f
p −Rf

s ls,p) + τm

∑
{i|s(i)=s}

(µ(ef
i)−Mf

sks,i)
)
/
(
τw

∑
p

rp,s + 2τm

)
Another reasonable update for ts,f is:

ts,f =
(√

τw

∑
p

rp,sw
f
p +
√

τm

∑
{i|s(i)=s}

µ(ef
i)
)
/
(√

τw

∑
p

rp,s + 2
√

τm

)
To solve for Rf

s we can rewrite it as an orthogonal Procrustes problem (Golub and Van

Loan, 1996; Viklands, 2006). First collect all the terms of L that involve rotation:

L = −τw

2

∑
f,p,s

rp,s‖(wf
p − ts,f)−Rf

s ls,p‖2 −
τm

2

∑
f,i

‖(µ(ef
i)− ts,f)−Rf

sks,i‖2.

Now to obtain the optimal Rf
s , we must the problem argminRf

s
‖A−Rf

sB‖2, where

A =

[[√
τw rp,s(w

f
p − ts,f)

]
p=1..P

[√
τm (µ(ef

i)− ts,f)
]
{i|s(i)=s}

]
B =

[[√
τw rp,sls,p

]
p=1..P

[√
τm ki

]
{i|s(i)=s}

]
.

Update of ls,p

∂L
∂ls,p

= −τw

2

∑
f

(−2Mf
s
>wf

p + 2Mf
s
>Mf

s ls,p)− τpls,p

ls,p =
(∑

f

Mf
s
>Mf

s +
τp

τw

I
)−1
∑

f

Mf
s
>wf

p

However, the above update doesn’t require that the last coordinate of ls,p, a

homogeneous vector, must always be one. To take care of this the relevant terms of the

expected logprob can be rewritten as:

L = −1

2
τw

∑
f,p,s

rp,s

∥∥∥∥∥∥∥wf
p −

[
Rf

s ts,f

]ls,p
1

∥∥∥∥∥∥∥

2

−1

2
τp

∑
s,p

rs,p‖ls,p‖2+terms constant wrt ls,p

Appendix C. Learning Articulated Structure From Motion: EM Algorithm144

where ls,p is now a 3-vector, and Mf
s is separated into its rotation component Rf

s and

translation vector ts,f . The resulting update becomes:

∂L
∂ls,p

= −τw

2

∑
f

(−2Rf
s
>(wf

p − ts,f) + 2Rf
s
>Rf

s ls,p)− τpls,p

ls,p =
(∑

f

Rf
s
>Rf

s +
τp

τw

I
)−1
∑

f

Rf
s
>(wf

p − ts,f)

Update of ki

∂L
∂ki

= −τm

2

∑
f

2
(
Mf

s(i)
>Mf

s(i)ki −Mf
s(i)

>µ(ef
i)
)
− τpki

ki =
(∑

f

Mf
s(i)

>Mf
s(i) +

τp

τm

I
)−1
∑

f

Mf
s(i)

>µ(ef
i)

As with ls,p, when homogeneity of ki is enforced, the update becomes

ki =
(∑

f

Rf
s(i)

>Rf
s(i) +

τp

τm

I
)−1
∑

f

Rf
s(i)

>(µ(ef
i)− tf

s(i))

Update of µ(ef
i)

∂L
∂µ(ef

i)
= −1

2

∑
j

gi,j
α(φj)

β(φj)
2(µ(ef

i)− µ(vf
j))− 1

2
τm2(µ(ef

i)−Mf
s(i)ki)

µ(ef
i) =

τmMf
s(i)ki +

∑
j gi,j

α(φj)

β(φj)
µ(vf

j)

τm +
∑

j gi,j
α(φj)

β(φj)

Update of τ(ef
i)

∂L
∂τ(ef

i)
−1

= −Do

2

∑
j

gi,j
α(φj)

β(φj)
− Do

2
τm +

Do

2
τ(ef

i)
−1

τ(ef
i) =

∑
j

gi,j
α(φj)

β(φj)
+ τm

Appendix C. Learning Articulated Structure From Motion: EM Algorithm145

Update of µ(vf
j)

∂L
∂µ(vf

j)
=− 1

2

∑
i

gi,j
α(φj)

β(φj)
(2µ(vf

j)− 2µ(ef
i))

− [f > 1]
τt

2
(2µ(vf

j)− 2µ(vf−1
j))− [f < F]

τt

2
(2µ(vf

j)− 2µ(vf+1
j))

µ(vf
j) =

α(φj)

β(φj)

∑
i gi,jµ(ef

i) + [f > 1]τtµ(vf−1
j) + [f < F]τtµ(vf+1

j)

α(φj)

β(φj)

∑
i gi,j + τt2h(f)

Update of τ(vf
j)

∂L
∂τ(vf

j)−1
= −Do

2

∑
i

gi,j
α(φj)

β(φj)
− Do

2
τt2

h(f) +
Do

2
τ(vf

j)−1

τ(vf
j) =

α(φj)

β(φj)

∑
i

gi,j + τt2
h(f)

Joint Precisions

Each joint has a precision φj ∼ Gamma(αj, βj). The Gamma prior and likelihood are

conjugate, thus the posterior distribution over φj (conditioning on all data/variables) is

also Gamma (Gelman et al., 2003), with parameters

α(φj) = αj +
FDo

2

∑
i

gi,j

β(φj) = βj +
1

2

∑
f,i

gi,j‖µ(ef
i)− µ(vf

j)‖2 +
Do

2

∑
f,i

gi,j[(τ(ef
i))

−1 + (τ(vf
j))−1]

The M-step updates of the αj and βj parameters are simply:

αj = α(φj) βj = β(φj)

Appendix C. Learning Articulated Structure From Motion: EM Algorithm146

Update of cp,s

To enforce the requirement that ∀p
∑

s cp,s = 1, we must include the terms∑
p λc

p(
∑

s cp,s − 1) in the expected log-probability, where λc
p are Lagrange Multipliers.

∂L
∂cp,s

= −rp,s

cp,s

+ λc
p

cp,s =
rp,s∑
s′ rp,s′

Update of di,j

To enforce the requirement that ∀i
∑

j di,j = 1, we must include the term∑
i λ

d
i (
∑

j di,j − 1) in the expected log-probability, where λd
i are Lagrange Multipliers.

∂L
∂di,j

=
gi,j

di,j

+ λd
i

di,j =
gi,j∑
j′ gi,j′

Update of rp,s

To enforce the requirement that ∀p
∑

s rp,s = 1, we must include the terms∑
p λr

p(
∑

s rp,s − 1) in the expected log-probability, where λr
p are Lagrange Multipliers.

∂L
∂rp,s

= −1

2
τw

∑
f

‖wf
p −Mf

s ls,p‖2 + log cp,s − log rp,s − 1 + λr
p

E[rp,s] ∝ cp,s exp

(
−τw

2

∑
f

‖wf
p −Mf

s ls,p‖2
)

s.t.
∑

s′

rp,s′ = 1

Appendix C. Learning Articulated Structure From Motion: EM Algorithm147

Update of gi,j

To enforce the requirement that ∀i
∑

j gi,j = 1, we must include the term∑
i λ

g
i (
∑

j gi,j − 1) in the expected log-probability, where λg
i are Lagrange Multipliers.

∂L
∂gi,j

=− 1

2

α(φj)

β(φj)

∑
f

(
‖µ(ef

i)− µ(vf
j)‖2 −Do(τ(ef

i)
−1 + τ(vf

j)−1)
)

+
FDo

2
(Ψ(α(φj))− log β(φj)) + log di,j − 1− log gi,j + λg

i

E[gi,j] ∝ exp

(
−1

2

α(φj)

β(φj)

∑
f

(
‖µ(ef

i)− µ(vf
j)‖2 −Do(τ(ef

i)
−1 + τ(vf

j)−1)
))

× exp

(
FDo

2
Ψ(α(φj))

)
β(φj)

−FDo/2 di,j s.t.
∑

j′

gi,j′ = 1

C.3 Accounting for Missing Data

To account for missing observations, we introduce a set of binary mask variables mf,p,

which indicate with a 1 if marker p is visible in frame f , or a 0 if it is not. Including the

mask variables change the observation likelihood terms of the objective function (C.2)

from

−1

2
τw

∑
f,p,s

rp,s‖wf
p −Mf

s ls,p‖2 +
FPDo

2
log τw −

FPDo

2
log(2π)

to

−1

2
τw

∑
f,p,s

mf,prp,s‖wf
p −Mf

s ls,p‖2 +
(
∑

f,p mf,p)Do

2
log τw −

(
∑

f,p mf,p)Do

2
log(2π).

This results in four minor changes to the EM updates, as detailed below.

Update of τw

τ−1
w =

∑
f,p,s mf,prp,s‖wf

p −Mf
s ls,p‖2

(
∑

f,p mf,p)Do

Appendix C. Learning Articulated Structure From Motion: EM Algorithm148

Update of Mf
s

Mf
s =
(
τw

∑
f

mf,prp,sls,pls,p
>+ τm

∑
{i|s(i)=s}

ks(i)ks(i)
>
)−1

×
(
τw

∑
p

mf,prp,sw
f
p ls,p

>+ τm

∑
{i|s(i)=s}

µ(ef
i)ks(i)

>
)

The alternative updates for Rf
s and tf

s are

ts,f =
(
τw

∑
p

mf,p rp,s(w
f
p −Rf

s ls,p) + τm

∑
{i|s(i)=s}

(µ(ef
i)−Mf

sks,i)
)−1

×
(
τw

∑
p

mf,p rp,s + 2τm

)
and again solving the orthogonal Procrustes problem argminRf

s
‖A−Rf

sB‖2, where

A =

[[√
τw mf,p rp,s(w

f
p − ts,f)

]
p=1..P

[√
τm (µ(ef

i)− ts,f)
]
{i|s(i)=s}

]
B =

[[√
τw mf,p rp,s ls,p

]
p=1..P

[√
τm ki

]
{i|s(i)=s}

]
.

Update of ls,p

ls,p =

(∑
f

mf,p Rf
s
>Rf

s +
τp

τw

I

)−1∑
f

mf,p Rf
s
>(wf

p − ts,f)

Update of rp,s

rp,s ∝ cp,s exp

(
−τw

2

∑
f

mf,p‖wf
p −Mf

s ls,p‖2
)

s.t.
∑

s′

rp,s′ = 1

Bibliography

K. Abdel-Malek, J. Arora, S. Beck, M. Bhatti, J. Carroll, T. Cook, S. Dasgupta,

N. Grosland, R. Han, H. Kim, J. Lu, C. Swan, A. Williams, and J. Yang. Digital

human modeling and virtual reality for FCS. Technical Report VSR-04.02, The

Virtual Soldier Research (VSR) Program, Center for Computer-Aided Design,

College of Engineering, The University of Iowa, October 2004.

Edward H. Adelson and James R. Bergen. The plenoptic function and the elements of

early vision. In M. Landy and J. A. Movshon, editors, Computational Models of

Visual Processing, pages 1–20. MIT Press, 1991.

Shai Avidan. Support vector tracking. In Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), volume 1, pages 184–191, 2001.

Matthew J. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD

thesis, The Gatsby Computational Neuroscience Unit, University College London,

2003.

Peter Belhumeur and D. Kreigman. What is the set of images of an object under all

possible lighting conditions. In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), volume 1, pages 270–277, 1997.

Stan Birchfield. Elliptical head tracking using intensity gradient and color histograms.

In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 232–37, 1998.

149

BIBLIOGRAPHY 150

Michael J. Black and Allan D. Jepson. Eigentracking: Robust matching and tracking of

articulated objects using view-based representation. In B. Buxton and R. Cipolla,

editors, Proceedings of the Fourth European Conference on Computer Vision

(ECCV), LNCS 1064, pages 329–342. Springer Verlag, 1996.

Michael J. Black, David J. Fleet, and Yaser Yacoob. A framework for modeling

appearance change in image sequence. In Proceedings of the International Conference

on Computer Vision (ICCV), pages 660–667, 1998.

Matthew Brand. Incremental singular value decomposition of uncertain data with

missing values. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors,

Proceedings of the Seventh European Conference on Vision, volume 4 of LNCS 2350,

pages 707–720. Springer Verlag, 2002.

M. Bray, P. Kohli, and P. Torr. Posecut: Simultaneous segmentation and 3d pose

estimation of humans using dynamic graph-cuts. In ECCV (2), pages 642–655, 2006.

Robert Collins, Yanxi Liu, and Marius Leordeanu. On-line selection of discriminative

tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(10):1631 – 1643, October 2005.

Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based object tracking.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):564–577,

2003.

T. Cootes, G. Edwards, and C. Taylor. Active appearance models. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 23(6):681–685, 2001.

J. Costeira and T. Kanade. A multi-body factorization method for motion analysis. In

Image Understanding Workshop, pages 1013–1026, 1996.

BIBLIOGRAPHY 151

J. P. Costeira and T. Kanade. A multibody factorization method for independently

moving-objects. International Journal of Computer Vision, 29(3):159–179,

September 1998.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.

Wiley-Interscience, 1991.

P.F. Culverhouse and H. Wang. Robust motion segmentation by spectral clustering. In

British Machine Vision Conference, pages 639–648, 2003.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society, 39:1–38, 1977.

David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice

Hall, 2002.

B.J. Frey and D. Dueck. Clustering by passing messages between data points. Science,

315:972–976, February 2007.

A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data Analysis.

Chapman & Hall, 2nd edition, 2003.

B. Georgescu, D. Comaniciu, T. X. Han, and X. S. Zhou. Multi-model

component-based tracking using robust information fusion. In 2nd Workshop on

Statistical Methods in Video Processing, May 2004.

Z. Ghahramani and G.E. Hinton. The EM algorithm for mixtures of factor analyzers.

Technical Report CRG-TR-96-1, University of Toronto, 1996a.

Z. Ghahramani and G.E. Hinton. Parameter estimation for linear dynamical systems.

Technical Report CRG-TR-96-2, University of Toronto, 1996b.

Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching

state-space models. Neural Computation, 12(4):831–864, 2000.

BIBLIOGRAPHY 152

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins

University Press, 1996.

Amit Gruber and Yair Weiss. Factorization with uncertainty and missing data:

Exploiting temporal coherence. In Sebastian Thrun, Lawrence K. Saul, and Bernhard

Schölkopf, editors, Advances in Neural Information Processing Systems (NIPS). MIT

Press, 2003. ISBN 0-262-20152-6.

Amit Gruber and Yair Weiss. Multibody factorization with uncertainty and missing

data using the EM algorithm. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 707–714, 2004.

Greg Hager and Peter Belhumeur. Real-time tracking of image regions with changes in

geometry and illumination. In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 403–410, 1996.

Peter Hall, David Marshall, and Ralph Martin. Incremental eigenanalysis for

classification. In Proceedings of British Machine Vision Conference, pages 286–295,

1998.

Peter Hall, David Marshall, and Ralph Martin. Adding and subtracting eigenspaces

with eigenvalue decomposition and singular value decomposition. Image and Vision

Computing, 20(13-14):1009–1016, 2002.

R. Hartley and A. Zisserman. Multiple View Geometry. Cambridge University Press,

2003.

Michael Harville. A framework for high-level feedback to adaptive, per-pixel mixture of

Gaussian background models. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen,

editors, Proceedings of the Seventh European Conference on Vision, volume 4 of

LNCS 2352, pages 531–542. Springer Verlag, 2002.

BIBLIOGRAPHY 153

L. Herda, P. Fua, R. Plankers, R. Boulic, and D. Thalmann. Using skeleton-based

tracking to increase the reliability of optical motion capture. Human Movement

Science Journal, 20(3):313–341, 2001.

G. E. Hinton. Training products of experts by minimizing contrastive divergence.

Neural Computation, 14(8):1771–1800, 2002.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence.

Technical Report GCNU TR 2000-004, Gatsby Computational Neuroscience Unit,

2000.

Geoffrey E. Hinton. Products of experts. In Proceedings of the Ninth International

Conference on Artificial Neural Networks, volume 1, pages 1–9, 1999.

Michael Isard and Andrew Blake. Contour tracking by stochastic propagation of

conditional density. In B. Buxton and R. Cipolla, editors, Proceedings of the Fourth

European Conference on Computer Vision (ECCV), volume 2 of LNCS 1064, pages

343–356. Springer Verlag, 1996.

Michael Isard and Andrew Blake. A mixed-state Condensation tracker with automatic

model-switching. In Proceedings of the International Conference on Computer Vision

(ICCV), 1998.

Allan D. Jepson, David J. Fleet, and Thomas F. El-Maraghi. Robust online appearance

models for visual tracking. In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), volume 1, pages 415–422, 2001.

Allan D. Jepson, David J. Fleet, and Thomas F. El-Maraghi. Robust online appearance

models for visual tracking. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25(10):1296–1311, October 2003.

BIBLIOGRAPHY 154

G. Johansson. Visual perception of biological motion and a model for its analysis.

Perception and Psychophysics, 14:201–211, 1973.

I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 2002.

Michael I. Jordan. An Introduction to Probabilistic Graphical Models. 200X.

Zia Khan, Tucker Balch, and Frank Dellaert. A Rao-Blackwellized particle filter for

eigentracking. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2004.

Adam G. Kirk, James F. O’Brien, and David A. Forsyth. Skeletal parameter estimation

from optical motion capture data. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2005. ISBN

0-7695-2372-2.

Marco La Cascia and Stan Sclaroff. Fast, reliable head tracking under varying

illumination. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), volume 1, pages 604–608, 1999.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In International

Conference on Machine Learning (ICML), 2001.

Avraham Levy and Michael Lindenbaum. Sequential Karhunen-Loeve basis extraction

and its application to images. IEEE Transactions on Image Processing, 9(8):

1371–1374, 2000.

Jongwoo Lim, David Ross, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental learning

for visual tracking. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural

Information Processing Systems (NIPS), pages 793–800. MIT Press, 2005a.

(Acceptance rate: 207/822, 25.18%).

BIBLIOGRAPHY 155

Jongwoo Lim, David A. Ross, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental

learning for visual tracking. In Lawrence K. Saul, Yair Weiss, and Léon Bottou,

editors, NIPS 17. MIT Press, Cambridge, MA, 2005b.

Ruei-Sung Lin, David Ross, Jongwoo Lim, and Ming-Hsuan Yang. Adaptive

discriminative generative model and its applications. In L. Saul, Y. Weiss, and

L. Bottou, editors, Advances in Neural Information Processing Systems (NIPS),

pages 801–808. MIT Press, 2005. (Acceptance rate: 207/822, 25.18%).

B.D. Lucas and T. Kanade. An iterative image registration technique with an

application to stereo vision. In Proceedings of International Joint Conference on

Intelligence, pages 674–679, 1981.

Iain Matthews, Takahiro Ishikawa, and Simon Baker. The template update problem.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6):810–815,

2004.

Edward Meeds, David A. Ross, Richard S. Zemel, and Sam Roweis. Learning

stick-figure models using nonparametric bayesian priors over trees. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

H. Murase and S. Nayar. Visual learning and recognition of 3d objects from

appearance. International Journal of Computer Vision, 14(1):5–24, 1995.

R. Neal and G. Hinton. A view of the em algorithm that justifies incremental, sparse,

and other variants. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer,

1998.

A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an

algorithm. In Advances in Neural Information Processing Systems (NIPS), 2002.

BIBLIOGRAPHY 156

Ben North and Andrew Blake. Learning dynamical models using

expectation-maximization. In Proceedings of the International Conference on

Computer Vision (ICCV), pages 384–389, 1998.

Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook, February

16 2008. http://matrixcookbook.com.

Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional random fields for

object recognition. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, NIPS

17, pages 1097–1104. MIT Press, Cambridge, MA, 2005.

Christopher Rasmussen and Gregory Hager. Joint probabilistic techniques for tracking

multi-part objects. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 16–21, 1998.

H.E. Rauch, F. Tung, and C.T. Striebel. Maximum likelihood estimates of linear

dynamical systems. AIAA Journal, 3(8):1445–1450, 1965.

David A. Ross and Richard S. Zemel. Learning parts-based representations of data.

Journal of Machine Learning Research, 7:2369–2397, Nov 2006.

David A. Ross, Jongwoo Lim, and Ming-Hsuan Yang. Adaptive probabilistic visual

tracking with incremental subspace update. In T. Pajdla and J. Matas, editors, Proc.

Eighth European Conference on Computer Vision (ECCV 2004), volume 2, pages

470–482. Springer, 2004.

David A. Ross, Simon Osindero, and Richard S. Zemel. Combining discriminative

features to infer complex trajectories. In Proceedings of the Twenty-Third

International Conference on Machine Learning, 2006.

David A. Ross, Daniel Tarlow, and Richard S. Zemel. Learning articulated skeletons

from motion. In Workshop on Dynamical Vision at ICCV, 2007.

BIBLIOGRAPHY 157

David A. Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental

learning for robust visual tracking. International Journal of Computer Vision, 77

(1–3), May 2008a. Special Issue on Machine Learning for Vision.

David A. Ross, Daniel Tarlow, and Richard S. Zemel. Unsupervised learning of

skeletons from motion. In Submitted for review, 2008b.

S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2005.

Sam Roweis. EM algorithms for PCA and SPCA. In Michael I. Jordan, Michael J.

Kearns, and Sara A. Solla, editors, Advances in Neural Information Processing

Systems 10, pages 626–632. MIT Press, 1997.

Sam T. Roweis. Gaussian identities.

http://www.cs.toronto.edu/∼roweis/notes/gaussid.pdf, July 1999a.

Sam T. Roweis. Matrix identities.

http://www.cs.toronto.edu/∼roweis/notes/matrixid.pdf, June 1999b.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8):888–905, August 2000.

Jianbo Shi and Carlo Tomasi. Good features to track. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 593–600,

1994.

M. C. Silaghi, R.Plankers, R.Boulic, P.Fua, and D.Thalmann. Local and global skeleton

fitting techniques for optical motion capture , modeling and motion capture

techniques for virtual environments. In Lecture Notes in Artificial Intelligence,

volume 1537, pages 26–40. Springer, 1998.

BIBLIOGRAPHY 158

C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Discrimintative density

propagation for 3d human motion estimation. In Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2005.

Y. Song, L. Goncalves, and P. Perona. Unsupervised learning of human motion. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 25(7):814–827, July 2003.

Yang Song, Luis Goncalves, and Pietro Perona. Learning probabilistic structure for

human motion detection. In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 771–777. IEEE Computer Society, 2001.

ISBN 0-7695-1272-0.

Erik B. Sudderth, Michael I. Mandel, William T. Freeman, and Alan S. Willsky.

Distributed occlusion reasoning for tracking with nonparametric belief propagation.

In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, NIPS 17, pages

1369–1376. MIT Press, Cambridge, MA, 2005.

Leonid Taycher, John W. Fisher III, and Trevor Darrell. Recovering articulated model

topology from observed rigid motion. In Suzanna Becker, Sebastian Thrun, and

Klaus Obermayer, editors, Advances in Neural Information Processing Systems

(NIPS), pages 1311–1318. MIT Press, 2002.

Leonid Taycher, Gregory Shakhnarovich, David Demirdjian, and Trevor Darrell.

Condition random people: Tracking humans wth crfs and grid filters. Technical

Report 2005-079, MIT-CSAIL, December 2005.

Y.W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-based models for sparse

overcomplete representations. Journal of Machine Learning Research, 4:1235–1260,

Dec 2003.

Michael E. Tipping and Christopher M. Bishop. Probabilistic principal component

analysis. Journal of the Royal Statistical Society, Series B, 61(3):611–622, 1999.

BIBLIOGRAPHY 159

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

a factorization method. International Journal of Computer Vision, 9:137–154, 1992.

Kentaro Toyama and Andrew Blake. Probabilistic tracking in metric space. In

Proceedings of the International Conference on Computer Vision (ICCV), pages

50–57, 2001.

Jaco Vermaak, Neil Lawrence, and Patrick Perez. Variational inference for visual

tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), volume 1, pages 773–780, 2003.

Thomas Viklands. Algorithms for the Weighted Orthogonal Procrustes Problem and

Other Least Squares Problems. PhD thesis, Ume University, Ume, Sweden, 2006.

Y. Weiss. Segmentation using eigenvectors: a unifying view. In Proceedings of the

International Conference on Computer Vision (ICCV), 1999.

Eric W. Weisstein. Digamma function. From MathWorld–A Wolfram Web Resource., a.

http://mathworld.wolfram.com/DigammaFunction.html.

Eric W. Weisstein. Gamma function. From MathWorld–A Wolfram Web Resource., b.

http://mathworld.wolfram.com/GammaFunction.html.

M. Welling. The Kalman Filter.

http://www.ics.uci.edu/∼welling/classnotes/papers class/KF.ps.gz.

Max Welling, Michal Rosen-Zvi, and Geoffrey Hinton. Exponential family harmoniums

with an application to information retrieval. In Lawrence K. Saul, Yair Weiss, and

Léon Bottou, editors, NIPS 17, pages 1481–1488. MIT Press, Cambridge, MA, 2005.

Oliver Williams, Andrew Blake, and Roberto Cipolla. A sparse probabilistic learning

algorithms for real-time tracking. In Proceedings of the International Conference on

Computer Vision (ICCV), volume 1, pages 353–360, 2003.

BIBLIOGRAPHY 160

Jingyu Yan and Marc Pollefeys. Factorization-based approach to articulated motion

recovery. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2005a.

Jingyu Yan and Marc Pollefeys. Articulated motion segmentation using ransac with

priors. In (ICCV) Workshop on Dynamical Vision (ICCV), 2005b.

Jingyu Yan and Marc Pollefeys. A general framework for motion segmentation:

Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In

Computer Vision - ECCV 2006, 9th European Conference on Computer Vision,

Graz, Austria, May 7-13, 2006, Proceedings, Part III, 2006a.

Jingyu Yan and Marc Pollefeys. Automatic kinematic chain building from feature

trajectories of articulated objects. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2006b.

