Incremental Subspace Tracking ECCV 2004

David Ross, Jongwoo Lim (UCSD), Ming-Hsuan Yang (HRI)

January 19, 2004

Introduction

\triangleright an approach to tracking (approximately rigid) objects:

- construct a model of the appearance of the tracked object
- at each frame, search for patch that agrees most closely with the model
\triangleright appearance of object being tracked can change: pose, new views, lighting change
\triangleright offline: limited to the range of appearances you build in to the model, or range of training examples that you can acquire in advance
\triangleright online: must be able to adapt efficiently
\triangleright extremes: template tracker, two-view tracker

Motivation

\triangleright Eigen Tracking (Black \& Jepson) build an eigenspace model of the object from training images
\triangleright fails when subjected to new views, environmental conditions
\triangleright adapt basis to better match object (e.g. identity) and conditions (e.g. lighting) in test sequence
\triangleright even better: learn eigenspace models on-the-fly, requiring no training images a priori

Incremental PCA

\triangleright idea: given additional data, update a PCA basis without recomputing the whole thing

- Levy \& Lindenbaum 2000, Brand 2002
\triangleright based on partitioned SVD (R-SVD) in Golub \& Van Loan
\triangleright speed up over recomputing full PCA/SVD at each step
\triangleright block update: faster computationally, adapts more slowly to change in target object (can be good or bad)

I-PCA: Partitioned SVD

\triangleright given data matricies $X=U S V^{T}$ and new data Y
\triangleright decompose Y into $Y=U L+J K$
\triangleright SVD of $[X Y]$ can be written as

$$
\left[\begin{array}{ll}
X & Y
\end{array}\right]=\left[\begin{array}{ll}
U & J
\end{array}\right]\left[\begin{array}{ll}
S & L \\
0 & K
\end{array}\right]\left[\begin{array}{cc}
V & 0 \\
0 & I
\end{array}\right]^{T}
$$

\triangleright take SVD of middle matrix $\left[\begin{array}{cc}S & L \\ 0 & K\end{array}\right]=U^{\prime} S^{\prime} V^{\prime T}$
\triangleright then SVD of $[X Y]=U^{\prime \prime} S^{\prime \prime} V^{\prime \prime T}$, where

$$
U^{\prime \prime}=\left[\begin{array}{ll}
U & J
\end{array}\right] U^{\prime} \quad S^{\prime \prime}=S^{\prime} \quad V^{\prime \prime}=\left[\begin{array}{ll}
V & 0 \\
0 & I
\end{array}\right] V^{\prime}
$$

I-PCA: Partitioned SVD

$$
\begin{aligned}
\triangleright\left[\begin{array}{ll}
X & Y
\end{array}\right] & =\left[\begin{array}{ll}
U & J
\end{array}\right]\left[\begin{array}{cc}
S & L \\
0 & K
\end{array}\right]\left[\begin{array}{cc}
V & 0 \\
0 & I
\end{array}\right]^{T} \\
& =\left[\begin{array}{ll}
U & J
\end{array}\right] U^{\prime} S^{\prime} V^{\prime T}\left[\begin{array}{cc}
V & 0 \\
0 & I
\end{array}\right]^{T}
\end{aligned}
$$

\triangleright visually ...

I-PCA: Algorithm

\triangleright given old data $X=U S V^{T}$ and new data Y
\triangleright obtain subspace of Y orthogonal to U :
$Q R\left(\left[\begin{array}{ll}U S & Y\end{array}\right]\right)=\left[\begin{array}{ll}U & J\end{array}\right] \tilde{S}$
\triangleright compute SVD of $S V D(\tilde{S})=U^{\prime} S^{\prime} V^{\prime T}$ (in only $O\left((K+B)^{3}\right)$) operations)
\triangleright drop unwanted columns and singular values from U^{\prime} and S^{\prime}
$\triangleright U^{\prime \prime}=\left[\begin{array}{ll}U & J\end{array}\right] U^{\prime}$, and $S^{\prime \prime}=S^{\prime}$

Comparison of Costs

\triangleright Data $=M \times N$, \# PC's $=K$, block size $=B$
\triangleright Regular PCA/SVD: $O\left(M N^{2}\right)$
\triangleright Incremental PCA:

- per update: $O\left(M \max (B, K)^{2}\right)$
- total: $O(M N K)$ (like EMPCA) for high-dimensional, low-rank matricies, this is effectively linear time

Updating Mean (Ruei-Sung Lin)

\triangleright algorithm assumes zero- (or fixed-) mean data
\triangleright easy to track a non-stationary mean

$$
\mu_{\text {new }}=\left(N_{x} \mu_{x}+N_{y} \mu_{y}\right) /\left(N_{x}+N_{y}\right)
$$

\triangleright but changes to mean result in changes to basis as well
$\triangleright S_{x y}=S_{x}+S_{y}+\frac{N_{x} N_{y}}{N_{x}+N_{y}}\left(\mu_{x}-\mu_{y}\right)\left(\mu_{x}-\mu_{y}\right)^{T}$
\triangleright use as new data $\left[Y-\mu_{y} \sqrt{\frac{N_{x} N_{y}}{N_{x}+N_{y}}}\left(\mu_{x}-\mu_{y}\right)\right]$
\triangleright some justification for not subtracting mean at all ...

Forgetting Factor

\triangleright desirable in tracking, apply to both variance and mean
\triangleright forgetting factor f between 0 and 1
\triangleright change first step to $Q R\left(\left[\begin{array}{ll}f U S & Y\end{array}\right]\right)=\left[\begin{array}{ll}U & J\end{array}\right] \tilde{S}$
\triangleright a forgetting factor of f reduces the contribution of each old block of data to the overall variance by an additional factor f^{2} at each update
\triangleright at stage n, taking covariance of:

$$
\left[\begin{array}{llllll}
f^{n-1} X_{1} & f^{n-2} X_{2} & \ldots & f^{2} X_{n-2} & f X_{n-1} & X_{n}
\end{array}\right]
$$

\triangleright similar concern is required for the mean

$$
\begin{aligned}
& \mu_{\text {new }}=\left(f N_{x} \mu_{x}+N_{y} \mu_{y}\right) /\left(f N_{x}+N_{y}\right) \\
& N_{\text {new }}=f N_{x}+N_{y}
\end{aligned}
$$

How accurate is the approximation?

\triangleright exact* if (1) all eigenvectors are retained at each stage and (2) no forgetting
\triangleright negligible difference if only K eigenvectors retained per stage

Estimating Motion Parameters

\triangleright location L represented as a similarity (or affine) transformation (picture)
\triangleright given L_{0} prior over $L_{1} \quad p\left(L_{1} \mid L_{0}\right)=$ $N\left(x_{1} ; x_{0}, \sigma_{x}^{2}\right) N\left(y_{1} ; y_{0}, \sigma_{y}^{2}\right) N\left(r_{1} ; r_{0}, \sigma_{r}^{2}\right) N\left(s_{1} ; s_{0}, \sigma_{s}^{2}\right)$
\triangleright observation model $p\left(F_{1} \mid L_{1}\right)=p\left(\operatorname{patch}\left(F_{1}, L_{1}\right) \mid\right.$ PPCA model $)$
\triangleright goal is MAP location $p\left(L_{1} \mid F_{1}, L_{0}\right)$ estimated using sampling
\triangleright approximate posterior with a Gaussian around MAP (same form as the prior)

Tracking Algorithm

1. Initialization: locate target object in first frame (manually or with a detector), initialize eigenbasis if none provided
2. Locate object in subsequent frame:
\triangleright sample transformations from prior
\triangleright obtain image patches based on samples
\triangleright compute probability of each patch under PPCA object model
\triangleright obtain MAP sample
3. Incrementally update eigenbasis (block update)
4. Go to step 2

Experimental Results

\triangleright runs at >6 frames/sec on my laptop (when \#samples = 100)
\triangleright David: motion \& pose
\triangleright Ming-Light: illumination \& scale
\triangleright Dog: no initial basis
\triangleright Mushiake: adapting to rapid pose change

Experimental Results 2

\triangleright newer version: incorporates condensation, iterative masking scheme

Tracking Result 1

This sequence includes:

- Large pose variation
- Small illumination variation
- Partial Occlusion
- Appearance changes
(glass, expression)
- Camera motion

Future Work

\triangleright how to properly deal with condensation (carry around \#-of-samples PCA bases, integrate over locations, ...?)
\triangleright uncertainty in data added to the model (parts of data examples, and even whole examples)

ASIMO

Honda Research Institute Mountain View, California

