
Container-based Operating System Virtualization:
A Scalable, High-performance Alternative to Hypervisors

Stephen Soltesz
Dept. of Computer Science

Princeton University
Princeton, New Jersey 08540
soltesz@cs.princeton.edu

Herbert Pötzl
Linux-VServer Maintainer

Laaben, Austria
herbert@13thfloor.at

Marc E. Fiuczynski
Dept. of Computer Science

Princeton University
Princeton, New Jersey 08540
mef@cs.princeton.edu

Andy Bavier
Dept. of Computer Science

Princeton University
Princeton, New Jersey 08540
acb@cs.princeton.edu

Larry Peterson
Dept. of Computer Science

Princeton University
Princeton, New Jersey 08540

llp@cs.princeton.edu

ABSTRACT
Hypervisors, popularized by Xen and VMware, are quickly
becoming commodity. They are appropriate for many us-
age scenarios, but there are scenarios that require system
virtualization with high degrees of both isolation and effi-

ciency. Examples include HPC clusters, the Grid, hosting
centers, and PlanetLab. We present an alternative to hy-
pervisors that is better suited to such scenarios. The ap-
proach is a synthesis of prior work on resource containers

and security containers applied to general-purpose, time-
shared operating systems. Examples of such container-based
systems include Solaris 10, Virtuozzo for Linux, and Linux-
VServer. As a representative instance of container-based
systems, this paper describes the design and implementa-
tion of Linux-VServer. In addition, it contrasts the archi-
tecture of Linux-VServer with current generations of Xen,
and shows how Linux-VServer provides comparable support
for isolation and superior system efficiency.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.4.8 [Operating Systems]: Performance—Measurements,

Operational analysis

General Terms
Performance Measurement Design

Keywords
Linux-VServer Xen virtualization container hypervisor op-
erating system alternative

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’07, March 21–23, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003 $5.00.

1. INTRODUCTION
Operating system designers face a fundamental tension be-
tween isolating applications and enabling sharing among
them—to simultaneously support the illusion that each ap-
plication has the physical machine to itself, yet let applica-
tions share objects (e.g., files, pipes) with each other. To-
day’s commodity operating systems, designed for personal
computers and adapted from earlier time-sharing systems,
typically provide a relatively weak form of isolation (the pro-
cess abstraction) with generous facilities for sharing (e.g.,
a global file system and global process ids). In contrast,
hypervisors strive to provide full isolation between virtual
machines (VMs), providing no more support for sharing be-
tween VMs than the network provides between physical ma-
chines.

The workload requirements for a given system will direct
users to the point in the design space that requires the least
trade-off. For instance, workstation operating systems gen-
erally run multiple applications on behalf of a single user,
making it natural to favor sharing over isolation. On the
other hand, hypervisors are often deployed to let a single
machine host multiple, unrelated applications, which may
run on behalf of independent organizations, as is common
when a data center consolidates multiple physical servers.
The applications in such a scenario have no need to share
information. Indeed, it is important they have no impact
on each other. For this reason, hypervisors heavily favor
full isolation over sharing. However, when each virtual ma-
chine is running the same kernel and similar operating sys-
tem distributions, the degree of isolation offered by hyper-
visors comes at the cost of efficiency relative to running all
applications on a single kernel.

A number of emerging usage scenarios—such as HPC clus-
ters, Grid, web/db/game hosting organizations, distributed
hosting (e.g., PlanetLab, Akamai, Amazon EC2)—benefit
from virtualization techniques that isolate different groups
of users and their applications from one another. What these
usage scenarios share is the need for efficient use of system
resources, either in terms of raw performance for a single
or small number of VMs, or in terms of sheer scalability of

275

concurrently active VMs.

This paper describes a virtualization approach designed to
enforce a high degree of isolation between VMs while main-
taining efficient use of system resources. The approach syn-
thesizes ideas from prior work on resource containers [2,
14] and security containers [7, 19, 12, 25] and applies it
to general-purpose, time-shared operating systems. Indeed,
variants of such container-based operating systems are in
production use today—e.g., Solaris 10 [19], Virtuozzo [23],
and Linux-VServer [11].

The paper makes two contributions. First, this is the first
thorough description of the techniques used by Linux-VServer
for an academic audience (henceforth referred to as just
“VServer”). We choose VServer as the representative in-
stance of the container-based system for several reasons: 1)
it is open source, 2) it is in production use, and 3) because we
have real data and experience from operating 700+ VServer-
enabled machines on PlanetLab [17].

Second, we contrast the architecture of VServer with a re-
cent generation of Xen, which has changed drastically since
its original design was described by Barham et al. [3]. In
terms of performance, the two solutions are equal for CPU
bound workloads, whereas for I/O centric (server) work-
loads VServer makes more efficient use of system resources
and thereby achieves better overall performance. In terms
of scalability, VServer far surpasses Xen in usage scenar-
ios where overbooking of system resources is required (e.g.,
PlanetLab, managed web hosting, etc), whereas for reser-
vation based usage scenarios involving a small number of
VMs VServer retains an advantage as it inherently avoids
duplicating operating system state.

The next section presents a motivating case for container
based systems. Section 3 presents container-based tech-
niques in further detail, and describes the design and im-
plementation of VServer. Section 4 reproduces benchmarks
that have become familiar metrics for Xen and contrasts
those with what can be achieved by VServer. Section 5
describes the kinds of interference observed between VMs.
Finally, Section 6 offers some concluding remarks.

2. MOTIVATION
Virtual machine technologies are the product of diverse groups
with different terminology. To ease the prose, we settle on
referring to the isolated execution context running on top
of the underlying system providing virtualization as a vir-

tual machine (VM), rather than a domain, container, applet,
guest, etc.. There are a variety of VM architectures ranging
from the hardware (e.g., Intel’s VT.) up the full software in-
cluding hardware abstraction layer VMs (e.g., Xen, VMware
ESX), system call layer VMs (e.g., Solaris, VServer), hosted
VMs (e.g., VMware GSX), emulators (e.g, QEMU), high-
level language VMs (e.g., Java), and application-level VMs
(e.g., Apache virtual hosting). Within this wide range, we
focus on comparing hypervisor technology that isolate VMs
at the hardware abstraction layer with container-based op-
erating system (COS) technology that isolate VMs at the
system call/ABI layer.

The remainder of this section first outlines the usage scenar-

ios of VMs to set the context within which we compare and
contrast the different approaches to virtualization. We then
make a case for container-based virtualization with these
usage scenarios.

2.1 Usage Scenarios
There are many innovative ideas that exploit VMs to secure
work environments on laptops, detect virus attacks in real-
time, determine the cause of computer break-ins, and debug
difficult to track down system failures. Today, VMs are
predominantly used by programmers to ease software devel-
opment and testing, by IT centers to consolidate dedicated
servers onto more cost effective hardware, and by traditional
hosting organizations to sell virtual private servers. Other
emerging, real-world scenarios for which people are either
considering, evaluating, or actively using VM technologies
include HPC clusters, the Grid, and distributed hosting or-
ganizations like PlanetLab and Amazon EC2. This paper
focuses on these three emerging scenarios, for which effi-
ciency is paramount.

Compute farms, as idealized by the Grid vision and typically
realized by HPC clusters, try to support many different users
(and their application’s specific software configurations) in a
batch-scheduled manner. While compute farms do not need
to run many concurrent VMs (often just one per physical
machine at a time), they are nonetheless very sensitive to
raw performance issues as they try to maximize the number
of jobs they can push through the overall system per day.
As well, experience shows that most software configuration
problems encountered on compute farms are due to incom-
patibilities of the system software provided by a specific OS
distribution, as opposed to the kernel itself. Therefore, giv-
ing users the ability to use their own distribution or special-
ized versions of system libraries in a VM would resolve this
point of pain.

In contrast to compute farms, hosting organizations tend
to run many copies of the same server software, operating
system distribution, and kernels in their mix of VMs. In for-
profit scenarios, hosting organizations seek to benefit from
an economy of scale and need to reduce the marginal cost
per customer VM. Such hosting organizations are sensitive
to issues of efficiency as they try to carefully oversubscribe
their physical infrastructure with as many VMs as possible,
without reducing overall quality of service. Unfortunately,
companies are reluctant to release just how many VMs they
operate on their hardware.

Fortunately, CoMon [24]—one of the performance-monitoring
services running on PlanetLab—publicly releases a wealth
of statistics relating to the VMs operating on PlanetLab.
PlanetLab is a non-profit consortium whose charter is to
enable planetary-scale networking and distributed systems
research at an unprecedented scale. Research organizations
join by dedicating at least two machines connected to the
Internet to PlanetLab. PlanetLab lets researchers use these
machines, and each research project is placed into a separate
VM per machine (referred to as a slice). PlanetLab supports
a workload consisting of a mix of one-off experiments and
long-running services with its slice abstraction.

CoMon classifies a VM as active on a node if it contains

276

 0

 20

 40

 60

 80

 100

05/May 05/Jul 05/Sep 05/Nov 06/Jan 06/Mar

S
lic

e
s
 w

it
h

 a
 p

ro
c
e

s
s

Min 1st Q Median 3rd Q Max

(a) Active slices, by quartile

 0

 5

 10

 15

 20

 25

 30

05/May 05/Jul 05/Sep 05/Nov 06/Jan 06/Mar

S
lic

e
s
 u

s
in

g
 >

0
.1

%
 C

P
U

Min 1st Q Median 3rd Q Max

(b) Live slices, by quartile

Figure 1: Active and live slices on PlanetLab

a process, and live if, in the last five minutes, it used at
least 0.1% (300ms) of the CPU. Figure 1 (reproduced from
[17]) shows, by quartile, the distribution of active and live
VMs across PlanetLab during the past year. Each graph
shows five lines; 25% of PlanetLab nodes have values that
fall between the first and second lines, 25% between the
second and third, and so on. We note that, in any five-
minute interval, it is not unusual to see 10-15 live VMs and
60 active VMs on PlanetLab. At the same time, PlanetLab
nodes are PC-class boxes; the average PlanetLab node has
a 2GHz CPU and 1GB of memory. Any system that hosts
such a workload on similar hardware must be concerned with
overall efficiency–i.e., both performance and scalability–of
the underlying virtualization technology.

2.2 Case for COS Virtualization
The case for COS virtualization rests on the observation
that it is acceptable in some real-world scenarios to trade
isolation for efficiency. Sections 4 and 5 demonstrate quan-
titatively that a COS (VServer) is more efficient than a well
designed hypervisor (Xen). So, the question remains: what
must be traded to get that performance boost?

Efficiency can be measured in terms of overall performance
(throughput, latency, etc) and/or scalability (measured in
number of concurrent VMs) afforded by the underlying VM
technology. Isolation is harder to quantify than efficiency.
A system provides full isolation when it supports a com-
bination of fault isolation, resource isolation, and security
isolation. As the following discussion illustrates, there is
significant overlap between COS- and hypervisor-based tech-
nologies with respect to these isolation characteristics.

Fault isolation reflects the ability to limit a buggy VM
from affecting the stored state and correct operation of other

VMs. Complete fault isolation between VMs requires there
to be no sharing of code or data. In COS- and hypervisor-
based systems, the VMs themselves are fully fault isolated
from each other using address spaces. The only code and
data shared among VMs is the underlying system providing
virtualization—i.e., the COS or hypervisor. Any fault in
this shared code base can cause the whole system to fail.

Arguably the smaller code base of a hypervisor–Xen for x86
consists of roughly 80K lines of code–naturally eases the en-
gineering task to ensure its reliability. While this may be
true, a functioning hypervisor-based system also requires a
host VM that authorizes and multiplexes access to devices.
The host VM typically consists of a fully fledged Linux (mil-
lions of lines of code) and therefore is the weak link with
respect to fault isolation—i.e., a fault in the host VM could
cause the whole system to fail. Fraser et al. [6] propose to
mitigate this problem by isolating device drivers into inde-
pendent driver domains (IDDs).

While the overall Linux kernel is large due to the number of
device drivers, filesystems, and networking protocols, at its
core it is less than 140K lines. To improve resilience to faults
(usually stemming from drivers), Swift et al. [22] propose
to isolate device drivers into IDDs within the Linux kernel
using their Nooks technology. Unfortunately, there exists no
study that directly compares Xen+IDD and Linux+Nooks
quantitatively with respect to their performance.

With respect to fault isolation, if we accept that various
subsystems such as device drivers, filesystems, networking
protocols, etc. are rock solid, then the principle difference
between hypervisor- and COS-based systems is in the inter-
face they expose to VMs. Any vulnerability exposed by the
implementation of these interfaces may let a fault from one
VM leak to another. For hypervisors there is a narrow inter-
face to events and virtual device, whereas for COSs there is
the wide system call ABI. Arguably it is easier to verify the
narrow interface, which implies that the interface exposed
by hypervisors are more likely to be correct.

Resource isolation corresponds to the ability to account
for and enforce the resource consumption of one VM such
that guarantees and fair shares are preserved for other VMs.
Undesired interactions between VMs are sometimes called
cross-talk [9]. Providing resource isolation generally involves
careful allocation and scheduling of physical resources (e.g.,
cycles, memory, link bandwidth, disk space), but can also
be influenced by sharing of logical resources, such as file
descriptors, ports, PIDs, and memory buffers. At one ex-
treme, a virtualized system that supports resource reserva-
tions might guarantee that a VM will receive 100 million
cycles per second (Mcps) and 1.5Mbps of link bandwidth,
independent of any other applications running on the ma-
chine. At the other extreme, a virtualized system might
let VMs obtain cycles and bandwidth on a demand-driven
(best-effort) basis. Many hybrid approaches are also possi-
ble: for instance, a system may enforce fair sharing of re-
sources between classes of VMs, which lets one overbook
available resources while preventing starvation in overload
scenarios. The key point is that both hypervisors and COSs
incorporate sophisticated resource schedulers to avoid or
minimize crosstalk.

277

Security isolation refers to the extent to which a virtual-
ized system limits access to (and information about) logical
objects, such as files, virtual memory addresses, port num-
bers, user ids, process ids, and so on. In doing so, security
isolation promotes (1) configuration independence, so that
global names (e.g., of files, SysV Shm keys, etc) selected
by one VM cannot conflict with names selected by another
VM; and (2) safety, such that when global namespaces are
shared, one VM is not able to modify data and code be-
longing to another VM, thus diminishing the likelihood that
a compromise to one VM affects others on the same ma-
chine. A virtualized system with complete security isolation
does not reveal the names of files or process ids belonging
to another VM, let alone let one VM access or manipulate
such objects. In contrast, a virtualized system that supports
partial security isolation might support a shared namespace
(e.g., a global file system), augmented with an access con-
trol mechanism that limits the ability of one VM to manip-
ulate the objects owned by another VM. As discussed later,
some COSs opt to apply access controls on shared names-
paces, as opposed to maintaining autonomous and opaque
namespaces via contextualization, in order to improve per-
formance. In such a partially isolated scheme, information
leaks are possible, for instance, allowing unauthorized users
to potentially identify in-use ports, user names, number of
running processes, etc. But, both hypervisors and COSs can
hide logical objects in one VM from other VMs to promote
both configuration independence and system safety.

Discussion: VM technologies are often embraced for their
ability to provide strong isolation as well as other value-
added features. Table 1 provides a list of popular value-
added features that attract users to VM technologies, which
include abilities to run multiple kernels side-by-side, have
administrative power (i.e., root) within a VM, checkpoint
and resume, and migrate VMs between physical hosts.

Features Hypervisor Containers
Multiple Kernels 3 5

Administrative power (root) 3 3

Checkpoint & Resume 3 3 [15,23,18]

Live Migration 3 3 [23,18]

Live System Update 5 3 [18]

Table 1: Feature comparison of hypervisor- and

COS-based systems

Since COSs rely on a single underlying kernel image, they
are of course not able to run multiple kernels like hypervi-
sors can. As well, the more low-level access that is desired by
users, such as the ability to load a kernel module, the more
code is needed to preserve isolation of the relevant system.
However, some COSs can support the remaining features.
The corresponding references are provided in Table 1. In
fact, at least one solution supporting COS-based VM mi-
gration goes a step further than hypervisor-based VM mi-
gration: it enables VM migration from one kernel version to
another. This feature lets systems administrators do a Live
System Update on a running system, e.g., to release a new
kernel with bug/security fixes, performance enhancements,
or new features, without needing to reboot the VM. Kernel
version migration is possible because COS-based solutions
have explicit knowledge of the dependencies that processes

Figure 2: Summary of existing hypervisor- and

COS-based technology

within a VM have to in-kernel structures [18].

Figure 2 summarizes the state-of-the-art in VM technology
along the efficiency and isolation dimensions. The x-axis
counts how many of the three different kinds of isolation are
supported by a particular technology. The y-axis is intended
to be interpreted qualitatively rather than quantitatively; as
mentioned, later sections will focus on presenting quantita-
tive results.

The basic observation made in the figure is, to date, there
is no VM technology that achieves the ideal of maximizing
both efficiency and isolation. We argue that for usage sce-
narios where efficiency trumps the need for full isolation, a
COS such as VServer hits the sweet spot within this space.
Conversely, for scenarios where full isolation is required, a
hypervisor is best. Finally, since the two technologies are
not mutually exclusive, one can run a COS in a VM on a
hypervisor when appropriate.

3. CONTAINER-BASED OS APPROACH
This section provides an overview of container-based sys-
tems, describes the general techniques used to achieve iso-
lation, and presents the mechanisms with which VServer
implements these techniques.

3.1 Overview
A container-based system provides a shared, virtualized OS
image consisting of a root file system, a (safely shared) set of

Figure 3: COS Overview

278

system libraries and executables. Each VM can be booted,
shut down, and rebooted just like a regular operating sys-
tem. Resources such as disk space, CPU guarantees, mem-
ory, etc. are assigned to each VM when it is created, yet of-
ten can be dynamically varied at run time. To applications
and the user of a container-based system, the VM appears
just like a separate host. Figure 3 schematically depicts the
design.

As shown in the figure, there are three basic platform group-
ings. The hosting platform consists essentially of the shared
OS image and a privileged host VM. This is the VM that
a system administrator uses to manage other VMs. The
virtual platform is the view of the system as seen by the
guest VMs. Applications running in the guest VMs work
just as they would on a corresponding non-container-based
OS image. At this level, there is little difference between a
container and hypervisor based system. However, they dif-
fer fundamentally in the techniques they use to implement
isolation between VMs.

Figure 4 illustrates this by presenting a taxonomic compar-
ison of their security and resource isolation schemes. As
shown in the figure, the COS approach to security isolation
directly involves internal operating system objects (PIDs,
UIDs, Sys-V Shm and IPC, Unix ptys, and so on). The ba-
sic techniques used to securely use these objects involve:
(1) separation of name spaces (contexts), and (2) access
controls (filters). The former means that global identifiers
(e.g., process ids, SYS V IPC keys, user ids, etc.) live in
completely different spaces (for example, per VM lists), do
not have pointers to objects in other spaces belonging to
a different VM, and thus cannot get access to objects out-
side of its name space. Through this contextualization the
global identifiers become per-VM global identifiers. Filters,
on the other hand, control access to kernel objects with
runtime checks to determine whether the VM has the ap-
propriate permissions. For a hypervisor security isolation is
also achieved with contextualization and filters, but gener-
ally these apply to constructs at the hardware abstraction
layer such as virtual memory address spaces, PCI bus ad-
dresses, devices, and privileged instructions.

The techniques used by COS- and hypervisor-based systems
for resource isolation are quite similar. Both need to multi-
plex physical resources such as CPU cycles, i/o bandwidth,
and memory/disk storage. The latest generation of the Xen
hypervisor architecture focuses on multiplexing the CPU.
Control over all other physical resources is delegated to one
or more privileged host VMs, which multiplex the hardware
on behalf of the guest VMs. Interestingly, when Xen’s host
VM is based on Linux, the resource controllers used to man-
age network and disk i/o bandwidth among guest VMs are
identical to those used by VServer. The two systems simply
differ in how they map VMs to these resource controllers.

As a point of reference, the Xen hypervisor for the i32 archi-
tecture is about 80K lines of code, the paravirtualized vari-
ants of Linux require an additional 15K of device drivers,
and a few isolated changes to the core Linux kernel code. In
contrast, VServer adds less than 8700 lines of code to the
Linux kernel, and due to its mostly architecture indepen-
dent nature it has been validated to work on eight different

instruction set architectures. While lightweight in terms of
lines of code involved, VServer introduces 50+ new kernel
files and touches 300+ existing ones—representing a non-
trivial software-engineering task.

3.2 VServer Resource Isolation
This section describes in what way VServer implements re-
source isolation. It is mostly an exercise of leveraging exist-
ing resource management and accounting facilities already
present in Linux. For both physical and logical resources,
VServer simply imposes limits on how much of a resource a
VM can consume.

3.2.1 CPU Scheduling: Fair Share and Reservations
VServer implements CPU isolation by overlaying a token
bucket filter (TBF) on top of the standard O(1) Linux CPU
scheduler. Each VM has a token bucket that accumulates
tokens at a specified rate; every timer tick, the VM that
owns the running process is charged one token. A VM that
runs out of tokens has its processes removed from the run-
queue until its bucket accumulates a minimum amount of
tokens. Originally the VServer TBF was used to put an
upper bound on the amount of CPU that any one VM could
receive. However, it is possible to express a range of isolation
policies with this simple mechanism. We have modified the
TBF to provide fair sharing and/or work-conserving CPU
reservations.

The rate that tokens accumulate in a VM’s bucket depends
on whether the VM has a reservation and/or a share. A VM
with a reservation accumulates tokens at its reserved rate:
for example, a VM with a 10% reservation gets 100 tokens
per second, since a token entitles it to run a process for one
millisecond. A VM with a share that has runnable processes
will be scheduled before the idle task is scheduled, and only
when all VMs with reservations have been honored. The end
result is that the CPU capacity is effectively partitioned be-
tween the two classes of VMs: VMs with reservations get
what they’ve reserved, and VMs with shares split the unre-
served capacity of the machine proportionally. Of course, a
VM can have both a reservation (e.g., 10%) and a fair share
(e.g., 1/10 of idle capacity).

3.2.2 I/O QoS: Fair Share and Reservations
The Hierarchical Token Bucket (HTB) queuing discipline of
the Linux Traffic Control facility (tc) [10] is used to pro-
vide network bandwidth reservations and fair service among
VServer. For each VM, a token bucket is created with a
reserved rate and a share: the former indicates the amount
of outgoing bandwidth dedicated to that VM, and the latter
governs how the VM shares bandwidth beyond its reserva-
tion. Packets sent by a VServer are tagged with its context
id in the kernel, and subsequently classified to the VServer’s
token bucket. The HTB queuing discipline then allows each
VServer to send packets at the reserved rate of its token
bucket, and fairly distributes the excess capacity to the
VServer in proportion to their shares. Therefore, a VM
can be given a capped reservation (by specifying a reserva-
tion but no share), “fair best effort” service (by specifying a
share with no reservation), or a work-conserving reservation
(by specifying both).

279

Figure 4: Isolation Taxonomy of COS and Hypervisor-based Systems

Disk I/O is managed in VServer using the standard Linux
CFQ (“completely fair queuing”) I/O scheduler. The CFQ
scheduler attempts to divide the bandwidth of each block
device fairly among the VMs performing I/O to that device.

3.2.3 Storage Limits
VServer provides the ability to associate limits to the amount
of memory and disk storage a VM can acquire. For disk stor-
age one can specify limits on the max number of disk blocks
and inodes a VM can allocate. For memory storage one can
specify the following limits: a) the maximum resident set
size (RSS), b) number of anonymous memory pages have
(ANON), and c) number of pages that may be pinned into
memory using mlock() and mlockall() that processes may
have within a VM (MEMLOCK). Also, one can declare the
number of pages a VM may declare as SYSV shared mem-
ory.

Note that fixed upper bounds on RSS are not appropriate for
usage scenarios where administrators wish to overbook VMs.
In this case, one option is to let VMs compete for mem-
ory, and use a watchdog daemon to recover from overload
cases—for example by killing the VM using the most phys-
ical memory. PlanetLab [17] is one example where memory
is a particularly scarce resource, and memory limits with-
out overbooking are impractical: given that there are up
to 90 active VMs on a PlanetLab server, this would im-
ply a tiny 10MB allocation for each VM on the typical
PlanetLab server with 1GB of memory. Instead, PlanetLab
provides basic memory isolation between VMs by running
a simple watchdog daemon, called pl mom, that resets the
VM consuming the most physical memory when swap has
almost filled. This penalizes the memory hog while keeping
the system running for everyone else, and is effective for the
workloads that PlanetLab supports. A similar technique is
apparently used by managed web hosting companies.

3.3 VServer Security Isolation
VServer makes a number of kernel modifications to enforce
security isolation.

3.3.1 Process Filtering

VServer reuses the global PID space across all VMs. In con-
trast, other container-based systems such as OpenVZ con-
textualize the PID space per VM. There are obvious benefits
to the latter, specifically it eases the implementation of VM
checkpoint, resume, and migration more easily as processes
can be re-instantiated with the same PID they had at the
time of checkpoint. VServer will move to this model, but
for the sake of accuracy and completeness we will describe
its current model.

VServer filters processes in order to hide all processes out-
side a VM’s scope, and prohibits any unwanted interaction
between a process inside a VM and a process belonging to
another VM. This separation requires the extension of some
existing kernel data structures in order for them to: a) be-
come aware to which VM they belong, and b) differentiate
between identical UIDs used by different VMs.

To work around false assumptions made by some user-space
tools (like pstree) that the ’init’ process has to exist and
have PID 1, VServer also provides a per VM mapping from
an arbitrary PID to a fake init process with PID 1.

When a VServer-based system boots, all processes belong to
a default host VM. To simplify system administration, this
host VM is no different than any other guest VM in that
one can only observe and manipulate processes belonging
to that VM. However, to allow for a global process view,
VServer defines a special spectator VM that can peek at all
processes at once.

A side effect of this approach is that process migration from
one VM to another VM on the same host is achieved by
changing its VM association and updating the corresponding
per-VM resource usage statistics such NPROC, NOFILE,
RSS, ANON, MEMLOCK, etc..

3.3.2 Network Separation
Currently, VServer does not fully virtualize the networking
subsystem, as is done by OpenVZ and other container-based
systems. Rather, it shares the networking subsystem (route
tables, IP tables, etc.) between all VMs, but only lets VMs
bind sockets to a set of available IP addresses specified ei-
ther at VM creation or dynamically by the default host VM.
This has the drawback that it does not let VMs change their

280

route table entries or IP tables rules. However, it was a de-
liberate design decision to achieve native Linux networking
performance at GigE+ line rates.

For VServer’s network separate approach several issues have
to be considered; for example, the fact that bindings to
special addresses like IPADDR ANY or the local host ad-
dress have to be handled to avoid having one VM receive
or snoop traffic belonging to another VM. The approach to
get this right involves tagging packets with the appropriate
VM identifier and incorporating the appropriate filters in
the networking stack to ensure only the right VM can re-
ceive them. As will be shown later, the overhead of this is
minimal as high-speed networking performance is indistin-
guishable between a native Linux system and one enhanced
with VServer.

3.3.3 The Chroot Barrier
One major problem of the chroot() system used in Linux
lies within the fact that this information is volatile, and will
be changed on the ’next’ chroot() system call. One simple
method to escape from a chroot-ed environment is as follows:

• Create or open a file and retain the file-descriptor, then
chroot into a subdirectory at equal or lower level with
regards to the file. This causes the ’root’ to be moved
’down’ in the filesystem.

• Use fchdir() on the file descriptor to escape from that
’new’ root. This will consequently escape from the
’old’ root as well, as this was lost in the last chroot()
system call.

VServer uses a special file attribute, known as the Chroot
Barrier, on the parent directory of each VM to prevent unau-
thorized modification and escape from the chroot confine-
ment.

3.3.4 Upper Bound for Linux Capabilities
Because the current Linux Capability system does not imple-
ment the filesystem related portions of POSIX Capabilities
that would make setuid and setgid executables secure, and
because it is much safer to have a secure upper bound for all
processes within a context, an additional per-VM capability
mask has been added to limit all processes belonging to that
context to this mask. The meaning of the individual caps of
the capability bound mask is exactly the same as with the
permitted capability set.

3.4 VServer Filesystem Unification
One central objective of VServer is to reduce the overall
resource usage wherever possible. VServer implements a
simple disk space saving technique by using a simple uni-
fication technique applied at the whole file level. The ba-
sic approach is that files common to more than one VM,
which are rarely going to change (e.g., like libraries and bi-
naries from similar OS distributions), can be hard linked on
a shared filesystem. This is possible because the guest VMs
can safely share filesystem objects (inodes). The technique
reduces the amount of disk space, inode caches, and even
memory mappings for shared libraries.

The only drawback is that without additional measures, a
VM could (un)intentionally destroy or modify such shared
files, which in turn would harm/interfere other VMs. The
approach taken by VServer is to mark the files as copy-on-
write. When a VM attempts to mutate a hard linked file
with CoW attribute set, VServer will give the VM a private
copy of the file.

Such CoW hard linked files belonging to more than one con-
text are called ’unified’ and the process of finding common
files and preparing them in this way is called Unification.
The reason for doing this is reduced resource consumption,
not simplified administration. While a typical Linux Server
install will consume about 500MB of disk space, 10 unified
servers will only need about 700MB and as a bonus use less
memory for caching.

4. SYSTEM EFFICIENCY
This section explores the performance and scalability of COS-
and hypervisor-based virtualization. We refer to the com-
bination of performance and scale as the efficiency of the
system, since these metrics correspond directly to how well
the virtualizing system orchestrates the available physical
resources for a given workload.

For all tests, VServer performance is comparable to an un-
virtualized Linux kernel. Yet, the comparison shows that
although Xen3 continues to include new features and op-
timizations, the overhead required by the virtual memory
sub-system still introduces an overhead of up to 49% for
shell execution. In terms of absolute performance on server-
type workloads, Xen3 lags an unvirtualized system by up
to 40% for network throughput while demanding a greater
CPU load and 50% longer for disk intensive workloads.

4.1 Configuration
All experiments are run on an HP Proliant DL360 G4p with
dual 3.2 GHz Xeon processor, 4GB RAM, two Broadcom
NetXtreme GigE Ethernet controllers, and two 160GB 7.2k
RPM SATA-100 disks. The Xeon processors each have a
2MB L2 cache. Due to reports [21] indicating that hyper-
threading degrades performance for certain environments,
we run all tests with hyper-threading disabled. The three
kernels under test were compiled for uniprocessor as well
as SMP architectures, and unless otherwise noted, all ex-
periments are run within a single VM provisioned with all
available resources. In the case of Xen, neither the guest VM
nor the hypervisor include device drivers. Instead, a privi-
leged, host VM runs the physical devices and exposes virtual
devices to guests. In our tests, the host VM reserves 512MB
and the remaining available is available to guest VMs.

The Linux kernel and its variants for Xen and VServer have
hundreds of system configuration options, each of which can
potentially impact system behavior. We have taken the nec-
essary steps to normalize the effect of as many configuration
options as possible, by preserving homogeneous setup across
systems, starting with the hardware, kernel configuration,
filesystem partitioning, and networking settings. The goal
is to ensure that observed differences in performance are
a consequence of the virtualization architectures evaluated,
rather than a particular set of configuration parameters. Ap-
pendix A describes the specific configurations we have used

281

in further detail.

The hypervisor configuration is based on Xen 3.0.4, which
at the time of this writing was the latest stable version avail-
able. The corresponding patch to Linux is applied against a
2.6.16.33 kernel. Prior to 3.0.4, we needed to build separate
host VM and guest VM kernels, but we now use the unified,
Xen paravirtualized Linux kernel that is re-purposed at run-
time to serve either as a host or guest VM. Finally, we also
build SMP enabled kernels, as this is now supported by the
stable Xen hypervisor.

The COS configuration consists of the VServer 2.0.3-rc1
patch applied to the Linux 2.6.16.33 kernel. Our VServer
kernel includes several additions that have come as a result
of VServer’s integration with Planetlab. As discussed ear-
lier, this includes the new CPU scheduler that preserves the
existing O(1) scheduler and enables CPU reservations for
VMs, and shims that let VServer directly leverage the exist-
ing CFQ scheduler to manage disk I/O and the HTB filter
to manage network I/O.

4.2 Micro-Benchmarks
While micro-benchmarks are incomplete indicators of sys-
tem behavior for real workloads [5], they do offer an op-
portunity to observe the fine-grained impact that different
virtualization techniques have on primitive OS operations.
In particular, the OS subset of McVoy’s lmbench bench-
mark [13] version 3.0-a3 includes experiments designed to
target exactly these subsystems.

For all three systems, the majority of the tests perform worse
in the SMP kernel than the UP kernel. While the specific
magnitudes may be novel, the trend is not surprising, since
the overhead inherent to synchronization, internal commu-
nication, and caching effects of SMP systems is well known.
For brevity, the following discussion focuses on the overhead
of virtualization using a uniprocessor kernel. While the lm-

bench suite includes a large number of latency benchmarks,
Table 2 shows results only for those which represent approx-
imately 2x or greater discrepancy between VServer-UP and
Xen3-UP.

For the uniprocessor systems, our findings are consistent
with the original report of Barham et al [3] that Xen incurs
a penalty for virtualizing the virtual memory hardware. In
fact, the pronounced overhead observed in Xen comes en-
tirely from the hypercalls needed to update the guest’s page
table. This is one of the most common operations in a multi-
user system. While Xen3 has optimized page table updates

Configuration Linux-UP VServer-UP Xen3-UP
fork process 86.50 86.90 271.90

exec process 299.80 302.00 734.70

sh process 968.10 977.70 1893.30

ctx (16p/64K) 3.38 3.81 6.02

mmap (64MB) 377.00 379.00 1234.60

mmap (256MB) 1491.70 1498.00 4847.30

page fault 1.03 1.03 3.21

Table 2: LMbench OS benchmark timings for

uniprocessor kernels – times in µs

relative to Xen2, common operations such as process execut-
ing, context switches and page faults still incur observable
overhead.

The first three rows in Table 2 show the performance of fork

process, exec process, and sh process across the systems. The
performance of VServer-UP is always within 1% of Linux-
UP. Also of note, Xen3-UP performance has improved over
that of Xen2-UP due to optimizations in the page table up-
date code that batch pending transactions for a single call
to the hypervisor. Yet, the inherent overhead is still mea-
surable, and almost double in the case of sh process.

The next row shows context switch overhead between differ-
ent numbers of processes with different working set sizes. As
explained by Barham [3], the 2µs to 3µs overhead for these
micro-benchmarks are due to hypercalls from the guest VM
into the hypervisor to change the page table base. In con-
trast, there is little overhead seen in VServer-UP relative to
Linux-UP.

The next two rows show mmap latencies for 64MB and
256MB files. The latencies clearly scale with respect to to
the size of the file, indicating that the Xen kernels incur a
19µs overhead per megabyte, versus 5.9µs in the other sys-
tems. This is particularly relevant for servers or applications
that use mmap as a buffering technique or to access large
data sets, such as [16].

4.3 System Benchmarks
Two factors contribute to performance overhead in the Xen3
hypervisor system: overhead in network I/O and overhead
in disk I/O. Exploring these dimensions in isolation provides
insight into the sources of overhead for server workloads in
these environments. To do so, we repeat various benchmarks
used in the original and subsequent performance measure-
ments of Xen [3, 4, 6]. In particular, there are various multi-
threaded applications designed to create real-world, multi-
component stresses on a system, such as Iperf, OSDB-IR,
and a kernel compile. In addition, we explore several single-
threaded applications such as a dd, Dbench and Postmark to
gain further insight into the overhead of Xen. These exercise
the whole system with a range of server-type workloads illus-
trating the absolute performance offered by Linux, VServer,
and Xen3.

For these benchmarks there is only one guest VM active,
and this guest is provisioned with all available memory. For
Xen, the host VM is provisioned with 512MB of RAM and a
fair share of the CPU. Each reported score is the average of
3 to 5 trials. All results are normalized relative to Linux-UP,
unless otherwise stated.

4.3.1 Network Bandwidth Benchmark
Iperf is an established tool [1] for measuring link through-
put with TCP or UDP traffic. We use it to measure TCP
bandwidth between a pair of systems. We measure both
raw throughput and the CPU utilization observed on the
receiver. This is done in two separate experiments to avoid
measurement overhead interfering with throughput—i.e., max
throughput is lower when recording CPU utilization with
sysstat package on VServer and Linux, and XenMon on Xen.

282

Figure 5: Iperf TCP bandwidth and CPU utiliza-

tion.

Figure 5 illustrates both the throughput achieved and the
aggregate percentage of CPU necessary to achieve this rate
on the receiver. The first three columns are trials run with
the uniprocessor kernels. Both Linux and VServer on a sin-
gle processor achieve line rate with just over 70% CPU uti-
lization as the data sink. In contrast, the Xen3-UP configu-
ration can only achieve 60% of the line rate, because having
the host VM, guest VM, and hypervisor all pinned to a sin-
gle CPU saturate the CPU due to the overhead of switching
between VMs and interaction with the hypervisor.

The fourth column labeled ’Xen3 two CPUs’ consists of
the same Xen3-UP configuration, except the host and guest
VMs are pinned to separate CPUs. In this way the host and
guest VMs do not interfere with each other, and can achieve
line rate just as Linux and VServer. This is an improvement
over prior versions of Xen using the same hardware. We
attribute the improvement to switching from a safe, page-
flipping data transfer model to one utilizing memory copies
between VMs. Still, when compared to Linux and VServer
running on a single CPU, the overall CPU utilization of the
Xen3-UP configuration running on two CPUs is nearly 2x
the load experienced by Linux or VServer.

The last three columns use SMP variants of the Linux ker-
nels. Again VServer compares closely to Linux. Interest-
ingly, Xen3 with a SMP guest VM cannot achieve line rate.
It saturates the CPU it shares with the host VM. And as
a result it also performs worse compared to the Linux-UP
configuration.

4.3.2 Macro Benchmarks
This section evaluates a number of benchmarks that are
CPU and/or disk I/O intensive. The results of these bench-
marks are shown in Figures 6(a) and 6(b), which summa-
rizes the performance between VServer and Xen3 normalized
against Linux.

The DD benchmark writes a 6GB file to a scratch device.
Linux and VServer have identical performance for this bench-
mark, as the code path for both is basically identical. In
contrast, for Xen3 we observe significant slow down for both
UP and SMP. This is due to additional buffering, copying,
and synchronization between the host VM and guest VM to

(a) Disk performance

(b) Performance of CPU and memory bound benchmarks

Figure 6: Relative performance of Linux, VServer, and

XenU kernels.

write blocks to disk.

DBench is derived from the industry-standard NetBench
filesystem benchmark and emulates the load placed on a file
server by Windows 95 clients. The DBench score represents
the throughput experienced by a single client performing
around 90,000 file system operations. Because DBench is
a single-threaded application, the Linux-SMP and VServer-
SMP results show reduced performance due to inherent over-
head of SMP systems. Accordingly, the Xen3-UP perfor-
mance is modestly greater than that of Xen3-SMP, but again,
both have performance that is 25-35% less than Linux-UP,
while VServer-UP slightly exceeds the Linux performance.

Postmark [8] is also a single-threaded benchmark originally
designed to stress filesystems with many small file opera-
tions. It allows a configurable number of files and directo-
ries to be created, followed by a number of random transac-
tions on these files. In particular, our configuration specifies
100,000 files and 200,000 transactions. Postmark generates
many small transactions like those experienced by a heav-
ily loaded email or news server, from which it derives the
name ’postmark’. Again, the throughput of Xen3 is less

283

than both Linux and VServer, as there is more overhead in-
volved in pushing filesystem updates from the guest VM via
the host VM to the disk device.

Figure 6(b) demonstrates the relative performance of several
CPU and memory bound activities. These tests are designed
to explicitly avoid the I/O overhead seen above. Instead, in-
efficiency here is a result of virtual memory, scheduling or
other intrinsic performance limits. The first test is a single-
threaded, CPU-only process. When no other operation com-
petes for CPU time, this process receives all available system
time. But, the working set size of this process fits in proces-
sor cache, and does not reveal the additive effects of a larger
working set, as do the second and third tests.

The second test is a standard kernel compile. It uses multi-
ple threads and is both CPU intensive as well as exercising
the filesystem with many small file reads and creates. How-
ever, before measuring the compilation time, all source files
are moved to a RAMFS to remove the impact of any disk
effects. The figure indicates that performance is generally
good for Xen relative to Linux-UP, leaving overheads only
in the range of 1% for Xen3-UP to 7% for Xen3-SMP.

Finally, the Open Source Database Benchmark (OSDB) pro-
vides realistic load on a database server from multiple clients.
We report the Information Retrieval (IR) portion, which
consists of many small transactions, all reading information
from a 40MB database, again cached in main memory. The
behavior of this benchmark is consistent with current web
applications. Again, performance of VServer-UP is compa-
rable to that of Linux-UP within 4%, but Xen3-SMP suffers
a 39% overhead relative to Linux-SMP. Not until we look at
the performance of this system at scale do the dynamics at
play become clear.

4.4 Performance at Scale
This section evaluates how effectively the virtualizing sys-
tems provide performance at scale. Barham et al. point
out that unmodified Linux cannot run multiple instances of
PostgreSQL due to conflicts in the SysV IPC namespace.
However, VServer’s mechanisms for security isolation con-
tain the SysV IPC namespace within each context. There-
fore, using OSDB, we simultaneously demonstrate the se-
curity isolation available in VServer that is unavailable in
Linux, and the superior performance available at scale in a
COS-based design.

The Information Retrieval (IR) component of the OSDB
package requires memory and CPU time. If CPU time or
system memory is dominated by any one VM, then the oth-
ers will not receive a comparable share, causing aggregate
throughput to suffer. As well, overall performance is cal-
culated as a function of the finish-time of all tests. This
methodology favors schedulers which are able to keep the
progress of each VM in sync, such that all tests end simul-
taneously. Figure 7 shows the results of running 1, 2, 4, and
8 simultaneous instances of the OSDB IR benchmark. Each
VM runs an instance of PostgreSQL to serve the OSDB test.

A virtualization solution with strong isolation guarantees
would partition the share of CPU time, buffer cache, and
memory bandwidth perfectly among all active VMs and

Figure 7: OSDB-IR at Scale. Performance across

multiple VMs

maintain the same aggregate throughput as the number of
active VMs increased. However, for each additional VM,
there is a linear increase in the number of processes and
the number of I/O requests. Since it is difficult to perfectly
isolate all performance effects, the intensity of the workload
adds increasingly more pressure to the system and eventu-
ally, aggregate throughput diminishes. Figure 7 illustrates
that after an initial boost in aggregate throughput at two
VMs, all systems follow the expected diminishing trend.

We observe two noteworthy deviations from this trend. First,
Xen3-UP does not improve aggregate throughput at two
VMs. Instead, the Xen3-UP performance quickly degrades
for each test. In part this is due to the increased load on
the single CPU. It must simultaneously host as many as 8
guest VMs as well as the host VM. Because the host VM is
explicitly scheduled just as the guest VMs, for larger tests it
is given more hosts to serve and correspondingly less time is
available for each guest. This pressure is worst when the load
reaches eight simultaneous VMs, where the performance is
47% less than VServer-UP.

Second, the significant performance jump between one and
two VMs for Xen3-SMP is very large. This behavior is due in
part to the credit scheduler unequally balancing the Xen3-
SMP kernel across both physical CPUs, as evidenced by
monitoring the CPU load on both processors. As a result,
the single Xen3-SMP case does not have the opportunity to
benefit from the full parallelism available. Not until this sit-
uation is duplicated with two Xen3-SMP kernels is greater
utility of the system achieved. Of course, VServer-SMP out-
performs the Xen3-SMP system. In particular, the total
performance in the VServer, eight VM case is within 5% of
Xen3-SMP with 2 VMs and greater than any of the other
Xen3-SMP tests.

Two factors contribute to the the higher average perfor-
mance of VServer: lower overhead imposed by the COS
approach and a better CPU scheduler for keeping compet-
ing VMs progressing at the same rate. As a result, there
is simply more CPU time left to serve clients at increasing
scale.

284

Fraction of VS-UP VS-SMP Xen3-UP Xen3-SMP
Host Requested Achieved Achieved Achieved Achieved

Weight 1/4th 25.16% 49.88% 15.51% 44.10%

Cap 1/4th n/a n/a 24.35% 46.62%

Table 3: Percent of time achieved from a one quarter

CPU reservations using weights and caps. Deviations

are highlighted.

5. ISOLATION
VServer complements Linux’s existing per process resource
limits with per VM limits for logical resources such as shared
file descriptors, number of process limits, shared memory
sizes, etc., which are shared across the whole system. In this
way VServer can effectively isolate VMs running fork-bombs
and other antisocial activity through the relevant memory
caps, process number caps, and other combinations of re-
source limits. In contrast, Xen primarily focuses on CPU
scheduling and memory limits, while i/o bandwidth man-
agement is left to the host VM. As mentioned, for both Xen
and VServer the disk and network i/o bandwidth manage-
ment mechanism (CFQ and HTB, respectively) are largely
identical—differing only in the shims that map per VM ac-
tivities into CFQ and HTB queues. What differs signifi-
cantly between Xen and VServer are their CPU schedulers.
The remainder of this section first focuses on how well their
schedulers can fairly share and reserve the CPU among VMs,
and then evaluates at a macro level the impact of introduc-
ing an antisocial process contained in one VM on another
VM running the OSDB benchmark.

5.1 CPU Fair Share and Reservations
To investigate both isolation of a single resource and re-
source guarantees, we use a combination of CPU intensive
tasks. Hourglass is a synthetic real-time application useful
for investigating scheduling behavior at microsecond granu-
larity [20]. It is CPU-bound and involves no I/O.

Eight VMs are run simultaneously. Each VM runs an in-
stance of hourglass, which records contiguous periods of
time scheduled. Because hourglass uses no I/O, we may
infer from the gaps in its time-line that either another VM
is running or the virtualized system is running on behalf of
another VM, in a context switch for instance. The aggre-
gate CPU time recorded by all tests is within 1% of system
capacity.

We evaluated two experiments: 1) all VMs are given the
same fair share of CPU time, and 2) one of the VMs is
given a reservation of 1/4th of overall CPU time. For the
first experiment, VServer and Xen for both UP and SMP
systems do a good job at scheduling the CPU among the
VMs such that each receive approximately one eights of the
available time.

Table 3 reports the amount of CPU time received when the
CPU reservation of one VM is set to one fourth of the sys-
tem. For a two-way SMP system with an aggregate of 200%
CPU time, a one fourth reservation corresponds to 50% of
available resources. The CPU scheduler for VServer achieves
this within 1% of the requested reservation for both UP and
SMP configurations.

Figure 8: Database performance with competing

VMs

In contrast, Xen is off by up to 6% of the requested reserva-
tions in the worst case. The reason for this is because Xen
does not offer an explicit means to specify a reservation of
CPU time. Instead, it provides only two CPU time alloca-
tion parameters: relative weights or performance caps (i.e.,
hard limits). The inherent problem with relative weights is
that there is no 1:1 relationship between a VM’s weight and
the minimum percentage of CPU allotted to it under load.
Performance caps, on the other hand, only let one express
the maximum fraction of the system a VM can consume, but
not the minimum it should obtain. As a result, to express a
reservation in terms of weights or performance caps can at
best be approximated, which the results shown in Table 3
demonstrate.

5.2 Performance Isolation
Traditional time-sharing UNIX systems have a legacy of vul-
nerability to layer-below attacks, due to unaccounted, ker-
nel resource consumption. To investigate whether VServer
is still susceptible to such interference, we elected to perform
a variation of the multi-OSDB database benchmark. Now,
instead of all VMs running a database, one will behave ma-

liciously by performing a continuous dd of a 6GB file to a
separate partition of a disk common to both VMs.

Figure 8 shows that the performance of OSDB on VServer
is impacted between 13-14% for both UP and SMP when
competing with an active dd. This, despite the fact that
the VServer block cache is both global (shared by all VMs)
and not directly accounted to the originating VM. Earlier
kernels, such as 2.6.12 kernel, experienced crippling perfor-
mance penalties during this test while the swap file was en-
abled. While the ultimate cause of this overhead in older
kernels is still not known, these results for modern kernels
are very a promising improvement. Clearly, though, ad-
ditional improvements can be made to account more com-
pletely for guest block cache usage and are a subject for
future research.

Xen, on the other hand, explicitly partitions the physical
memory to each VM. As a result, since the block cache is
maintained by each kernel instance, the guests are not vul-

285

nerable to this attack. Yet, Xen-UP sees a 12% decrease
for and Xen3-SMP actually gets a 1% boost. Given ear-
lier results these are not surprising. Any additional activ-
ity by the dd VM or the host VM acting on its behalf, is
expected to take processing time away from the Xen3-UP,
OSDB VM. As for the Xen3-SMP case, the original poor
performance of the single VM was due to poor scheduling
by the credit scheduler, which allowed an uneven balancing
across the physical CPUs. Given this scenario, the lighter
loaded CPU runs the dd VM, which requires little CPU time
and consequently has little impact on the mostly OSDB VM.

6. CONCLUSION
Virtualization technology benefits a wide variety of usage
scenarios. It promises such features as configuration in-
dependence, software interoperability, better overall system
utilization, and resource guarantees. This paper has com-
pared two modern approaches to providing these features
while they balance the tension between complete isolation
of co-located VMs and efficient sharing of the physical in-
frastructure on which the VMs are hosted.

We have shown the two approaches share traits in their high-
level organization. But some features are unique to the plat-
form. Xen is able to support multiple kernels while by design
VServer cannot. Xen also has greater support for virtualiz-
ing the network stack and allows for the possibility of VM
migration, a feature that is possible for a COS design, but
not yet available in VServer. VServer, in turn, maintains
a small kernel footprint and performs equally with native
Linux kernels in most cases.

Unfortunately, there is no one-size solution. As our tests
have shown, i/o related benchmarks perform worse on Xen
when compared to VServer. This is an artifact of virtualiz-
ing i/o devices via a proxy host VM. VMware partially ad-
dresses this issue by incorporating device drivers for a small
set of supported high performance I/O devices directly into
its ESX hypervisor product line. In contrast, this issue is
non-issue for COS based systems where all I/O operates at
native speeds. Despite these weaknesses we expect ongoing
efforts to continue to improve Xen-based hypervisor solu-
tions.

In the mean time, for managed web hosting, PlanetLab, etc.,
the trade-off between isolation and efficiency is of paramount
importance. Our experiments indicate that container-based
systems provide up to 2x the performance of hypervisor-
based systems for server-type workloads and scale further
while preserving performance. And, we expect that container-
based systems like VServer will incorporate more of the
feature set that draws users to hypervisors (e.g., full net-
work virtualization, migration, etc.), and thereby continue
to compete strongly against hypervisor systems like Xen for
these usage scenarios.

7. REFERENCES
[1] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson,

and Kevin Gibbs. Iperf version 1.7.1.
http://dast.nlanr.net/Projects/Iperf/.

[2] G. Banga, P. Druschel, and J. C. Mogul. Resource
Containers: A New Facility for Resource Management

in Server Systems. In Proc. 3rd OSDI, pages 45–58,
New Orleans, LA, Feb 1999.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
Proc. 19th SOSP, Lake George, NY, Oct 2003.

[4] B. Clark, T. Deshane, E. Dow, S. Evanchik,
M. Finlayson, J. Herne, and J. Matthews. Xen and
the art of repeated research. In USENIX Technical

Conference FREENIX Track, June 2004.

[5] R. P. Draves, B. N. Bershad, and A. F. Forin. Using
Microbenchmarks to Evaluate System Performance. In
Proc. 3rd Workshop on Workstation Operating

Systems, pages 154–159, Apr 1992.

[6] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. W.
eld, and M. Williamson. Safe Hardware Access with
the Xen Virtual Machine Monitor. In First Workshop

on Operating System and Architectural Support for the

On-Demand IT Infrastructure (OASIS), Oct 2004.

[7] P.-H. Kamp and R. N. M. Watson. Jails: Confining
the Omnipotent Root. In Proc. 2nd Int. SANE Conf.,
Maastricht, The Netherlands, May 2000.

[8] J. Katcher. Postmark: a new file system benchmark.
In TR3022. Network Appliance, October 1997.

[9] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. T.
Barham, D. Evers, R. Fairbairns, and E. Hyden. The
Design and Implementation of an Operating System
to Support Distributed Multimedia Applications.
IEEE J. Sel. Areas Comm., 14(7):1280–1297, 1996.

[10] Linux Advanced Routing and Traffic Control.
http://lartc.org/.

[11] Linux-VServer Project.
http://linux-vserver.org/.

[12] B. McCarty. SELINUX: NSA’s open source Security

Enhanced Linux. O’Reilly Media, Inc., 1005
Gravenstein Highway North, Sebastopol, CA 95472,
USA, 2005.

[13] L. McVoy and C. Staelin. lmbench: Portable Tools for
Performance Analysis. In Proc. USENIX ’96, pages
279–294, Jan 1996.

[14] S. Nabah, H. Franke, J. Choi, C. Seetharaman,
S. Kaplan, N. Singhi, V. Kashyap, and M. Kravetz.
Class-based prioritized resource control in Linux. In
Proc. OLS 2003, Ottawa, Ontario, Canada, Jul 2003.

[15] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
Design and Implementation of Zap: A System for
Migrating Computing Environments. In Proc. 5th

OSDI, pages 361–376, Boston, MA, Dec 2002.

[16] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable Web server. In Proceedings of

the USENIX 1999 Annual Technical Conference, 1999.

[17] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir.
Experiences building planetlab. In Proceedings of the

7th USENIX Symposium on Operating System Design

and Implementation (OSDI ’06), Seattle, WA,
November 2006.

[18] S. Potter and J. Nieh. Autopod: Unscheduled system
updates with zero data loss. In Abstract in Proceedings

of the Second IEEE International Conference on

Autonomic Computing (ICAC 2005), June 2005.

[19] D. Price and A. Tucker. Solaris zones: Operating

286

system support for consolidating commercial
workloads. In Proceedings of the 18th Usenix LISA

Conference., 2004.

[20] J. Regehr. Inferring scheduling behavior with
hourglass. In In Proceedings of the Freenix Track of

the 2002 USENIX Annual Technical Conference, June
2002.

[21] Y. Ruan, V. S. Pai, E. Nahum, and J. M. Tracey.
Evaluating the impact of simultaneous multithreading
on network servers using real hardware. In
SIGMETRICS ’05: Proceedings of the 2005 ACM

SIGMETRICS international conference on

Measurement and modeling of computer systems, pages
315–326, New York, NY, USA, 2005. ACM Press.

[22] M. M. Swift, B. N. Bershad, and H. M. Levy.
Improving the reliability of commodity operating
systems. ACM Trans. Comput. Syst., 23(1):77–110,
2005.

[23] SWSoft. Virtuozzo Linux Virtualization.
http://www.virtuozzo.com.

[24] Vivek Pai and KyoungSoo Park. CoMon: A
Monitoring Infrastructure for PlanetLab.
http://comon.cs.princeton.edu.

[25] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux Security Modules: General
Security Support for the Linux Kernel. In Proceedings

of the 11th USENIX Security Symposium, San
Francisco, CA, Aug 2002.

APPENDIX

A. NORMALIZED CONFIGURATION
A significant aspect of this work involved ensuring that the
experiments were fair. We report the configuration details
of the various subsystems.

A.1 Hardware
All experiments are run on an HP DL360 Proliant with dual
3.2 GHz Xeon processor, 4GB RAM, two Broadcom NetX-
treme GigE Ethernet controllers, and two 160GB 7.2k RPM
SATA-100 disks. The Xeon processors each have a 2MB L2
cache. All tests are run with hyper-threading disabled.

A.2 Kernel Configuration
All kernels were based on the 2.6.16.33 Linux kernel. The
kernel configuration options were normalized across all plat-
forms. The only differences between the kernel config files
that remain come from specific options available for the
given platform, i.e. VServer or Xen specific, for which there
is no comparable option available in the other versions.

A.3 System Clock
The Linux, VServer and unified XenoLinux kernels are con-
figured to run with a 250Hz system clock. This is a devia-
tion from the default configuration of both VServer and Xen,
whose defaults are 1000Hz and 100Hz respectively. However,
the ten fold difference between the two was in earlier tests
shown to contribute to latency measurements, and context
switch overheads. Keeping the system clock equal puts both
on equal footing.

A.4 Filesystem
The host VM is a Fedora Core 5 distribution with current
updates. This is the environment into which the host VMs
boot up. The distribution populating the guest VMs is Fe-
dora Core 2 with the all current updates.

Each guest partition is a 2GB, LVM-backed, ext3 filesys-
tem with the following features: has journal, filetype, and
sparse super. No other fs level features are enabled. The
default journal size is created by mke2fs. Due to the size
of our disk and the chosen partition size we are limited to
approximately 80 VMs. Sixty-four are currently available.
The remaining space is used to host larger scratch space for
particular tests, DD for instance.

We account for the natural, diminishing read and write per-
formance across the extent of platter-based hard drives by
assigning each virtual machine a dedicated LVM partition.
This partition is used exclusively by one VM, irrespective
of which virtualizing system is currently active. This con-
figuration departs from a traditional VServer system, where
a file-level copy-on-write technique replicates the base envi-
ronment for additional storage savings.

A.5 Networking
The physical host has two Ethernet ports, so both Linux
and VServer share two IPv4 IP addresses across all VMs.
As a consequence, the port space on each IP address is also
shared between all VMs. The Xen configuration, on the
other hand, differs by virtue of running an autonomous ker-
nel in each VM which includes a dedicated TCP/IP stack
and IP address. The Xen network runs in bridged mode for
networking tests. We also use two client machines attached
to each Ethernet port on the system under test through a 1
Gbps Netgear switch. Each client is a 3.2GHz HP DL320g5
server equipped with a Broadcom Gigabit Ethernet running
Fedora Core 5.

287

