
Weak Alphabet Merging of Partial Behaviour
Models

DARIO FISCHBEIN, GREG BRUNET, NICOLAS D’IPPOLITO, MARSHA CHECHIK,
SEBASTIAN UCHITEL

Constructing comprehensive operational models of intended system behaviour is a complex and
costly task, which can be mitigated by the construction of partial behaviour models, providing
early feedback and subsequently elaborating them iteratively. However, how should partial be-
haviour models with different viewpoints covering different aspects of behaviour be composed?
How should partial models of component instances of the same type be put together? In this
paper, we propose model merging of Modal Transition Systems (MTSs) as a solution to these
questions. MTS models are a natural extension of Labelled Transition Systems that support
explicit modelling of what is currently unknown about system behaviour. We formally define
model merging based on weak alphabet refinement, which guarantees property preservation, and
show that merging consistent models is a process that should result in a minimal common weak
alphabet refinement (MCR). In this paper, we provide theoretical results and algorithms that
support such a process. Finally, because in practice MTS merging is likely to be combined with
other operations over MTSs such as parallel composition, we also study the algebraic properties
of merging and apply these, together with the algorithms that support MTS merging, in a case
study.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications; F.4.1 [Math-
ematical Logic and Formal Languages]: Mathematical Logic—Temporal Logic

General Terms: Design

Additional Key Words and Phrases: MTS, Merge, Partial Behaviour Models.

1. INTRODUCTION

Behaviour modelling and analysis has been shown to be successful in uncovering subtle
design errors [Clarke and Wing, 1996]. However, the adoption of such technologies by
practitioners has been slow. Partly, this is due to the difficulty of constructing behaviour
models – this task requires considerable expertise in modelling notations that developers
often lack.

Automated synthesis techniques have been studied to aid theconstruction and elabora-
tion of behaviour models. In particular, synthesis from scenario-based specifications such

The first and the third authors are at the Department of Computing, Imperial College, 180 Queen’s Gate, London,
SW7 2RH, UK and can be reached atfdario@gmail.com and srdipi@gmail.com. The second author is
now at Oracle, Inc. in California, but the work was done whilehe was in the Department of Computer Science,
University of Toronto, Toronto, ON M5S 2E4, Canada. He can bereached atgreg.brunet@utoronto.ca.
The fourth author is at the University of Toronto as well and can be reached atchechik@cs.toronto.edu.
The fifth author is at Imperial College and at the University of Buenos Aires, Argentina. He can be reached at
s.uchitel@doc.ic.ac.uk.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

For submission to ACM Transactions on Software Engineeringand Methodology.

2 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

as message sequence charts [ITU-T, 1993] and goal models [van Lamsweerde, 2004] are
increasingly popular (e.g. [Uchitel et al., 2005; Dupont etal., 2008]). Such specifications
tend to be of a partial nature, and the automated construction of behaviour models is ex-
pected to support elicitation of scenarios and goals in the context of an elicit-model-validate
cycle.

We have shown that classical, two valued, behaviour models such as labelled transition
systems (LTSs) [Keller, 1976] are inadequate to support such iterative elaboration as they
cannot capture the partial information provided by heterogeneous specifications that con-
tain both existential and universal statements of system behaviour [Uchitel et al., 2009].

When supporting the incremental elaboration of partial specifications of system be-
haviour, a more appropriate type of model to synthesize is one in which currently unknown
aspects of behaviour can be explicitly modelled [Uchitel etal., 2009]. These models can
distinguish between positive, negative, and unknown behaviours: positive behaviour refers
to the behaviour that the system is expected to exhibit, negative behaviour refers to the
behaviour that the system is expected to never exhibit, and unknown behaviour could be-
come positive or negative, but the choice has not yet been made. Behaviour models that
distinguish between these kinds of behaviour are referred to aspartial behaviour mod-
els. A number of such modeling formalisms exist, e.g., Partial Labelled Transition Sys-
tems (PLTSs) [Uchitel et al., 2003a], multi-valued state machines [Diaz-Redondo et al.,
2002], Mixed Transition Systems [Dams, 1996], multi-valued Kripke structures [Fitting,
1991; Bruns and Godefroid, 1999; Chechik et al., 2003]), andModal Transition Systems
(MTSs) [Larsen and Thomsen, 1988], and promising results ontheir use to support incre-
mental modelling and viewpoint analysis has been reported.

In this paper, we concentrate on using MTSs for which synthesis techniques for various
specification language styles, such as Message Sequence Charts and Sequence Diagrams,
Use Cases and Goal Models, have been developed [Sibay et al.,2008; Uchitel et al., 2009].

The semantics of a partial behaviour model can be thought of as a set of traditional
behaviour models. For instance, MTS semantics can be given in terms of sets of LTSs that
provide all of the behaviour required by the MTS, do not provide any of the behaviour
prohibited by the MTS, and make different decisions on whether or not to provide the
MTS’s unknown behaviour.

The notions of strong and weak refinement [Larsen et al., 1996] between MTSs capture
this intuition formally and provide an elegant way of describing the process of behaviour
model elaboration as one in which behaviour information is acquired and introduced into
the behaviour model incrementally, gradually refining a given MTS until it characterizes a
single LTS.

LTSs can be thought of as partial models if a notion of refinement, such astrace inclu-
sionandsimulation[Milner, 1989], is adopted. For instance, if we interpret the behavior
explicitly described in an LTS as required and all other behavior as “yet to be determined”,
an LTS that simulates another can be interpreted as a partialmodel in which some of the
“yet to be determined” behaviour has been identified as required. This interpretation of
LTSs can be thought of as providing alower boundto the final, complete, description of
the system behavior, since the latter must provide at least the required behavior, while per-
haps implementing additional behavior. This view is taken by approaches that construct
LTS models from scenario-based specifications, e.g., [Krueger et al., 1999].

An alternative interpretation of LTSs is to consider the explicitly described behaviour
as possible, but not yet confirmed, while the behaviour not described as forbidden. As

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 3

more information becomes available, the possible behaviour can be pruned by making it
prohibited. This interpretation considers the described behavior as anupper boundof the
behaviour of the final system. This view is taken by approaches that synthesize LTSs from
safety properties (e.g., [Letier et al., 2008]), where the synthesized model describes all of
the behaviour that does not violate known properties.

However, partial behaviour models such as MTSs can describeboth an upper and a
lower bound to the intended system behaviour, allowing bothbounds to be refined simulta-
neously. As more information becomes available, unknown orunclassified behaviour gets
changed into either required or prohibited behaviour. MTSscome equipped with two sets
of transitions: required, which provide a lower bound to system behavior, and possible,
which provide an upper bound.

A particularly useful notion in the context of software and requirements engineering
is that ofmerge[Larsen and Thomsen, 1988; Uchitel and Chechik, 2004]. Merging of
operational behaviour models is similar to conjunction of declarative descriptions. The
LTSs described by a merge are those that provide all the required behaviour and that do
not provide any of the prohibited behaviour of the MTSs beingmerged. In other words,
merging attempts to build a new MTS that represents the intersection of the sets of LTSs
described by models being merged.

MTSs have been studied extensively, and a number of theoretical results and practical
algorithms to support reasoning and elaboration of partialbehaviour models expressed in
this formalism have been published [Huth et al., 2001; Larsen and Thomsen, 1988; Larsen
et al., 1996; Larsen et al., 1995; Fischbein and Uchitel, 2008; Uchitel et al., 2007; Uchitel
et al., 2009]. However, these studies make the strong assumption that alphabets of these
models are the same. Hence, existing MTS semantics,strong andweak [Larsen et al.,
1996], require MTSs to have the same alphabet.

For partial models to support the elaboration of behaviour models in practice, an as-
sumption that requires fixing the scope, i.e., the set of relevant observable actions, of all
modelsa priori is too strong. The semantics of partial behaviour models andthe notion of
refinement associated with it should allow for extending thealphabet of partial models as
they are elaborated. In particular, a semantics that allowsfor alphabet refinement supports
merging various partial behaviour models with different alphabets and hence of diverse
scopes.

In this paper, we present a study of Modal Transition Systemsunder a new semantics,
called weak alphabet semantics, which supports alphabet refinement. We also present
results and algorithms that support the elaboration of partial behaviour models. The paper
makes a number of contributions.

The first contributionof this paper is a novel refinement notion calledweak alphabet
refinement. Not only does it capture the elaboration process in which behaviour is incre-
mentally identified as required or prohibited, as in strong and weak semantics, but it also
enables augmenting the scope of the description as novel relevant concepts are identified.
We further show that this refinement preserves properties expressed in fluent linear tempo-
ral logic (FLTL).

The second contributionof this paper is a study of consistency under weak and weak
alphabet refinement. Two models are said to beconsistentif a common refinement ex-
ists. Consistency is a precondition for computing merge, asa minimal common refinement
cannot be built if there are no common refinements. We define a notion of a consistency re-
lation which is a complete characterization of consistencyfor MTSs under weak refinement

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

4 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

and a sufficient condition for consistency under weak alphabet refinement. This contribu-
tion extends the current state of the art: until now, consistency has only been characterized
under strong semantics [Fischbein and Uchitel, 2008], and asufficient condition for it has
been provided under weak semantics [Larsen et al., 1996].

Thethird contributionof this paper is a set of automated methods for constructing com-
mon refinements and merge. Given two models for which a consistency relation exists,
we provide an operator that constructs their common refinement and an algorithm that
builds their merge – the least common refinement, if it exists, or a set of minimal common
refinements, otherwise.

The fourth contributionof this paper is a study of the algebraic properties of merge
and parallel composition and their relationship with refinement. We provide results that
are essential to support compositional construction of system behaviour models. Such
construction includes both merging partial behaviour models of the same componentand
parallel composition of partial behaviour models ofdifferent componentswhich commu-
nicate to provide the system-level functionality. We exemplify the utility of some of the
algebraic properties, theoretical results and algorithmspresented in the paper by applying
them to support behaviour model elaboration within a Mine Pump case study.

The rest of the paper is organized as follows. In Section 3, wegive preliminary defi-
nitions used throughout the paper, as well as introduce3-valued linear temporal logic of
fluents. Section 4 describes merging MTSs. In Section 5, we present a discussion on
consistency. In Section 6, we give algorithms for constructing common refinements and
merging MTSs. In Section 7, we present positive and negativeresults on algebraic prop-
erties for merging, while providing insights into the implications that these results have on
engineering partial behaviour models. In Section 8, we briefly comment on the tool sup-
port that we have developed for computing MTS refinement and merging. In Section 9, we
provide a case study that illustrates the utility of our theoretical results. Finally, Section 10
presents a summary of our results, compares them with related approaches, and discusses
directions for future work. Proofs of selected theorems aregiven in the Appendix.

2. MOTIVATING EXAMPLE

In this section, we provide a small example which motivates the work presented in this
paper.

Consider a specification of software controlling a bank ATM.The specification may
consist of a number of use cases exemplifying how the ATM is tobe used and some prop-
erties it is expected to satisfy. An example use case is “whena user has successfully logged
in, i.e., inserted a valid card and keyed in a valid password,the user must be offered the
following choices: withdraw cash, balance slip or log out”.In addition, some ATMs may
provide an optional feature of topping up a pay-as-you-go mobile phone. A possible safety
property of an ATM is to prohibit withdrawals, balances and top-ups if the user is not
logged in.

An operational model, in the form of an MTS that captures the above use-case and
property, is depicted in modelA in Figure 1. Here, the initial state of the model is labelled
0, transitions with labels ending with a question mark represent possible but not required
behaviour, while the rest of the transitions represent required behaviour. If the system has
provisions for logging in the user and the login is successful, the user (in state2) must be
given a choice to withdraw cash, obtain a balance or exit. Thetop-up feature is optional.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 5

No other behaviour is allowed, i.e., cash withdrawal, topping up or exiting are not allowed
in states0 or 1.

Another important property of an ATM is that a user must be allowed to attempt login at
least once and is not allowed to attempt to login afterN failed attempts. The modelB in
Figure 1 depicts an MTS withN = 2. Note that the property does not prescribe the number
of failed attempts after which the ATM must retain the card; hence, modelB allows a card
to be retained after one or two failed logins but forbids a third login attempt by retaining
the bank card. For the user to attempt a login once more, she must recover her card from
her bank branch.

ATM models do not have to be manually produced by an engineer.It might be more de-
sirable to generate them automatically from specificationsexpressed in message sequence
charts [ITU-T, 1993], use-case diagrams [Jacobson, 2004] and structured declarative spec-
ifications such as [Dwyer et al., 1998]. MTS synthesis techniques have been studied [Uchi-
tel et al., 2007; Uchitel et al., 2009] but are beyond the scope of this paper. The advantage
of a synthesis approach is that it allows specifying different aspects of a system using dif-
ferent languages which depend on the nature of properties being expressed and preferences
of the modeller. In addition, each synthesized operationalmodel can be used to validate a
specific aspect of the system-to-be.

Having validated modelsA andB, it would be desirable to compose them to understand
the implications of building a system that conforms to the requirements expressed inboth
models. ModelC in Figure 1 precisely captures the behaviour prescribed by these models;
it merges the required and forbidden behaviour of both models. How can such a model be
constructed automatically? What are its properties? How can we guarantee that it preserves
semantics of models being composed? How to treat models withdifferent languages? In
this paper, we answer these questions.

Furthermore, if a model of the assumptions made on the user behaviour (modelD in
Figure 1) were provided, how can we reason about the emergentbehaviour of the user and
the partially described ATM (modelC)? Are there ATM implementations conforming toC
which can produce deadlocking situations? Do non-deadlocking implementations preserve
the intended behaviour of the ATM? In this paper we study parallel composition of partial
behaviour models and present results that answer these questions.

3. BACKGROUND

In this section, we provide the necessary definitions, fix thenotation, and introduce a new
3-valued variant of the linear temporal logic of fluents (FLTL) for reasoning about MTSs.
Specifically, Section 3.1 discusses LTSs and their extension to MTSs, and Section 3.2 re-
views relations and operations on MTSs: strong and weak refinement, hiding, and parallel
composition. Finally, Section 3.3 defines3-valued FLTL and provides refinement preser-
vation and model checking results.

3.1 Transition Systems

We begin with the familiar concept of labelled transition systems (LTSs) [Keller, 1976],
which are widely used for modelling and analyzing the behaviour of concurrent and dis-
tributed systems. An LTS is a state transition system where transitions are labelled with
actions. The set of actions of an LTS is called itscommunicating alphabetand constitutes
the interactions that the modelled system can have with its environment. In addition, LTSs
can have transitions labelled withτ , representing actions that are not observable by the

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

6 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

A :

0 1 2

login?

fail?

success?

exit

balance,
topup?,

withdraw

B :

5 3 1 2

0 4

login? fail? fail?

retainCard

recoverCard

login
success

success?

fail?

C :

4 1

0 6 2

3 5

login

success?

exit

success

fail?

login?

recoverCard

retainCard

fail?

fail?

balance,
topup?,

withdraw

D :

5 3 4

0 1 2

fail

login
recoverCard?

fail
success

login success

exit

balance,
topup,

withdraw

Fig. 1. MTS and LTS models for an ATM.

environment. ModelsE andF in Figure 3 are example LTSs. Recall that states labelled
by 0 represent initial states. Transitions labelled with sets are abbreviations for an individ-
ual transition on every action in the set, and the fontsM, M, andM are used for naming
specific transition systems.

In the following definitions, we useStatesto denote the universal set of states,Act –
the universal set of observable action labels,τ – the non-observable action andActτ =
Act ∪ {τ}.

DEFINITION 3.1. (Labelled Transition System)A Labelled Transition System(LTS) is
a tupleL = (S,A,∆, s0), whereS ⊆ States is a finite set of states,A ⊆ Actτ is a set of
actions (labels),∆ ⊆ (S × A × S) is a transition relation between states, ands0 ∈ S is
the initial state.

DEFINITION 3.2. L = (S,A,∆, s0) be an LTS. Thecommunicating alphabetof L
(denotedαL) isA \ {τ}.

Modal Transition Systems (MTSs) [Larsen and Thomsen, 1988]allow explicit mod-
elling of what isnot known about the behaviour of a system. They extend LTSs with
an additional set of transitions that model the interactions with the environment that the
system cannot be guaranteed to provide, but equally cannot be guaranteed to prohibit.

DEFINITION 3.3. (Modal Transition System)A Modal Transition System(MTS)M
is a structure(S,A,∆r ,∆p, s0), where∆r ⊆ ∆p, (S,A,∆r, s0) is an LTS represent-
ing requiredtransitions of the system and(S,A,∆p, s0) is an LTS representingpossible
transitions of the system.

We use℘ to denote the universe of all MTSs.
Figures 1 and 3 shows a graphical representation of MTSs thatmodel ATMs. For ex-

ample,G models those ATMs in which the top-up feature may or may not bepresent.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 7

Transitions labelled with a question mark are those in∆p \∆r. LTSs are a special type of
MTSs in which the sets of possible and required transitions coincide; thus, modelsE and
F can be considered as LTSs or MTSs.

DEFINITION 3.4. (MTS Transitions)Given an MTSM = (S,A,∆r,∆p, s0) and an
actionℓ ∈ A, we say that

—M has arequiredtransition onℓ (denotedM
ℓ
−→r M

′) iff (s0, ℓ, s′0) ∈ ∆r andM ′ =
(S,A,∆r,∆p, s′0).

—M has apossibletransition onℓ (denotedM
ℓ
−→p M

′) iff (s0, ℓ, s′0) ∈ ∆p andM ′ =
(S,A,∆r,∆p, s′0).

—We writeM
ℓ
−→γ to mean∃M ′ ·M

ℓ
−→γ M

′, whereγ ∈ {r, p}.

—M prohibitsℓ (denotedM
ℓ

6−→) iff M does not have a possible transition onℓ, i.e.,
∀s′0 ∈ S · (s0, ℓ, s

′
0) 6∈ ∆p.

For example, in MTSG in Figure 3, there is a required transition between states 0 and

1 (G0
login
−→r G1 and also a possible transition between these statesG0

login
−→p G1, since

∆r ⊆ ∆p), a possible but not required self-loop in state 3 (G3
topup
−→p G3) and no transition

ontopup from state 0 (G0
topup

6−→).

DEFINITION 3.5. (Initial State)For an MTSM = (S,A,∆r ,∆p, s0) and a staten ∈
S, we denote changing the initial state ofM from s0 to n asMn.

DEFINITION 3.6. LetM = (S,A,∆r ,∆p, s0) be an MTS. Thecommunicating alpha-
betofM (denotedαM) isA \ {τ}.

Allowing MTSs to have different communicating alphabets enables us to provide descrip-
tions with different scopes. For instance, the communicating alphabets ofA andB differ,
allowing for more compact descriptions. For example, the user operations provided by
an ATM once a user is logged in, inA, can be described independently, and thus more
compactly, of the procedure for recovering cards that have been retained due to too many
successive failed login attempts, in modelB.

Our treatment of alphabets is in line with the process algebra semantics such as FSP
(Finite State Processes) [Magee and Kramer, 1999]. Unless stated otherwise, we assume
that the communicating alphabet of an MTS coincides with theset of observable actions
for which the MTS has a transition. However, this is not necessarily the case: an MTS may
not include transitions labelled with an action from its communicating alphabet, meaning
that this action is prohibited from occurring in all states.

Finally, we define the shared alphabet of two MTSs.

DEFINITION 3.7. (Shared Alphabet)We call the setαM ∩ αN thesharedalphabet of
MTSsM andN , and(αM \ αN) ∪ (αN \ αM) thenon-sharedalphabet ofM andN .

3.2 Relations and Operations on MTSs

Refinementcan be seen as being a “more defined than” relation between twopartial mod-
els. Intuitively, refinement in MTSs is about converting transitions which are possible but
not required into required transitions or removing them altogether: an MTSN refines an
MTS M if N preserves all of the required and all of the prohibited behaviours ofM .

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

8 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

Alternatively,N refinesM if N can simulate the required behaviour ofM , andM can
simulate the possible behaviour ofN . Refinement captures the notion of elaborating a par-
tial description by iteratively adding more information about the required and prohibited
behaviour of the system to be.

Larsen [Larsen et al., 1996] introduced notions of strong and weak refinement for MTSs.
We reproduce these definitions below, making explicit that they only apply to MTSs with
identical communicating alphabets.

DEFINITION 3.8. (Strong Refinement)LetM andN be MTSs such thatαM = αN .
N is a refinementof M , writtenM �s N , iff (M,N) is contained in somestrong re-
finement relationR ⊆ ℘ × ℘, for which the following holds for allℓ ∈ Actτ and for all
(M ′, N ′) ∈ R:

1. ∀M ′′ · (M ′ ℓ
−→r M

′′ ⇒ ∃N ′′ ·N ′ ℓ
−→r N

′′ ∧ (M ′′, N ′′) ∈ R)

2. ∀N ′′ · (N ′ ℓ
−→p N

′′ ⇒ ∃M ′′ ·M ′ ℓ
−→p M

′′ ∧ (M ′′, N ′′) ∈ R)

The above definition is given in terms of possible and required transitions and the set of
possible transitions is a superset of the required ones. Hence,M �s N if the required
behaviour ofM is required inN and any behaviour which is possible inN is possible in
M . That is,N can “convert” possible but not required behaviour ofM into required or
prohibited behaviour but may not introduce “new” such behaviour.

The MTSC in Figure 1 is refined by the LTSG of Figure 3 (C � G). The additional
information inG is that the ATM cannot retain a card after a first attempt and must allow
a second attempt at logging in. Intuitively, some possible transitions have been dropped
(those that model whether the ATM retains a card after a failed first attempt at logging in)
and some required transitions have been added (those related to retaining cards after two
failed logins). The refinement relation between these models is

R = {(C0,G0), (C6,G1), (C2,G2), (C1,G4), (C4,G3), (C5,G5), (C3,G6)}.

When two models refine each other, we say that they areequivalent:

DEFINITION 3.9. (Equivalence)LetM andN be MTSs.M is strongly equivalentto
N (denotedM ≡s N) if and only ifM � N andN �M .

When restricted to LTSs, strong equivalence is bisimulation [Milner, 1989].
Although (strong) refinement captures the notion of model elaboration, it requires the

alphabets of the processes being compared to be the same. In practice, model elaboration
can lead to augmenting the alphabet of the system model to describe behaviour aspects that
previously had not been taken into account. To capture this aspect of model elaboration,
we use two concepts: hiding and weak refinement.

Hiding is an operation that makes a set of actions of a model unobservable to its envi-
ronment by reducing the alphabet of the model and replacing transitions labelled with an
action in the hiding set byτ , as shown below.

DEFINITION 3.10. (Hiding)LetM = (S,A,∆r,∆p, s0) be an MTS andX ⊆ Act be
a set of actions.M with the actions ofX hidden, denotedM\X , is an MTS(S,A\X,∆r′ ,
∆p′

, s0), where∆r′ and∆p′

are the smallest relations that satisfy the rules below, where
ℓ ∈ Actτ .

M
ℓ

−→γM
′

(M\X)
ℓ

−→γ(M ′\X)
ℓ 6∈X, γ∈{r,p}

M
ℓ

−→γM
′

(M\X)
τ

−→γ(M ′\X)
ℓ∈X, γ∈{r,p}

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 9

For a setY ⊆ Act, we useM@Y to denoteM\(Act\Y).

DEFINITION 3.11. (Notation for Transitions)Letw = l1, . . . , lk be a word overAct∗τ
and letM be an MTS. We use the following notation assumingℓ ∈ Actτ :

—Forγ ∈ {r, p},M
w
−→γ M

′ denotesM
l1−→γ . . .

lk−→γ M
′.

—For γ ∈ {r, p}, M
ℓ̂
−→γ M ′ denotes either thatM

ℓ
−→γ M ′ or thatM = M ′ and

ℓ = τ .

—Forγ ∈ {r, p},M
ℓ

=⇒γ M
′ denotesM(

τ
−→γ)

∗(
ℓ
−→γ)(

τ
−→γ)

∗M ′. Similarly,M
ℓ̂

=⇒γ

M ′ denotesM(
τ
−→γ)

∗(
ℓ̂
−→γ)(

τ
−→γ)

∗M ′.

—Forγ ∈ {r, p}, we extend=⇒γ to words the same way as we do−→γ .

—Forγ ∈ {r, p}, we writes
ℓ
−→γ s

′ to denoteMs
ℓ
−→γ Ms′ (and similarly, for=⇒γ).

For example, for consider modelA in Figure 1 and defineA′ = A\{success}. ForA′,

A′
0

login fail
−→ p A′

0 andA′
0

τ̂
−→p A′

0. In addition,A′
0

ˆlogin
−→p A′

1, A′
1

τ̂
−→p A′

2,

A′
2

ˆexit
−→p A′

0, and thusA′
0

ˆlogin
=⇒p A′

2 andA′
1

ˆexit
=⇒p A′

0.

DEFINITION 3.12. (Traces)For an MTSM = (S,A,∆r,∆p, s0), a traceπ= ℓ0,ℓ1,. . .
whereℓi ∈ Act is a required tracein M iff there exists anM ′ such thatM

π
=⇒r M

′.
Similarly,π is apossible tracein M iff there exists anM ′ such thatM

π
=⇒p M

′.

DEFINITION 3.13. (Infinite Traces)We denote the set of infinite required and pos-
sible traces of an MTSM by REQTR(M) and POSTR(M) respectively. For an LTS
L = (S,A,∆, s0), we denote byTR(L) the set of (infinite) required traces of its embedding
into an MTSM = (S,A,∆,∆, s0), so thatTR(L) = REQTR(M).

We use infinite traces to give semantics to FLTL properties inSection 3.3 below.
In order to compare models that have unobservable actions, possibly generated through

hiding, we need an alternative notion of refinement, calledweak refinement, which ignores
differences related toτ -transitions. Weak equivalence of MTSs can be defined in the same
manner as strong equivalence.

DEFINITION 3.14. (Weak Refinement)Let MTSsN andM such thatαM = αN be
given.N is a weak refinementofM , writtenM �w N , iff (M,N) is contained in some
weak refinement relationR ⊆ ℘ × ℘, for which the following holds for allℓ ∈ Actτ and
for all (M ′, N ′) ∈ R:

1. ∀M ′′ · (M ′ ℓ
−→r M

′′ ⇒ ∃N ′′ ·N ′ ℓ̂
=⇒r N

′′ ∧ (M ′′, N ′′) ∈ R)

2. ∀N ′′ · (N ′ ℓ
−→p N

′′ ⇒ ∃M ′′ ·M ′ ℓ̂
=⇒p M

′′ ∧ (M ′′, N ′′) ∈ R)

Consider again the MTSC shown in Figure 1. It captures the requirements of modelsA
andB (as claimed in Section 2) because it weakly refines (with appropriate hiding) these
models.

If actions in setX = {retainCard, recoverCard} are hidden inC, thenC′ = C \X
weakly refinesA (A �w C′) via the relation

R = {(A0, C
′
0), (A1, C

′
6), (A1, C

′
1), (A2, C

′
4), (A0, C

′
5), (A0, C

′
3), (A0, C

′
2)}.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

10 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

(a)

E@Y

D@Y

F@Y

G@Y

(C‖D)@Y

A

C@Y

6

�
���

�
��7

@
@@I

y y

yy

yy

y

6

6

@
@@I

�
���

(b)

(C‖D)@Z

E@Z,F@Z,G@Z

B, C@Z

�
���6

y

y

y

(c)
E

(C‖D)

F

G

C
6

@
@@I

�
��7

@
@@I

y

y

yy

y

Fig. 2. Weak Refinements between ATM models for alphabets (a)Y ; (b)Z; (c) Y ∪ Z.

The weak refinement relation betweenC′′ = C \ {balance, withdraw, topup, exit} and
B is

R = {(B0, C
′′
0), (B1, C

′′
6), (B2, C

′′
5), (B3, C

′′
2), (B4, C

′′
3), (B5, C

′′
1), (B0, C

′′
4)}.

Figure 2 depicts weak refinements that hold between models discussed above. Fig-
ure 2(a) relates models with the alphabet

Y = {login, success, fail, exit, balance, topup, withdraw}.

Figure 2(b) relates models with alphabets restricted to

Z = {login, success, fail, retainCard, recoverCard},

and Figure 2(c) relates models with the alphabetY ∪Z. Nodes with multiple labels indicate
models that are weakly equivalent.

LTSs that refine an MTSM are complete descriptions of the system behaviour and thus
are calledimplementationsof M . The semantics of an MTSM can be thought of as a
model that represents the set of LTSs that implement it.

DEFINITION 3.15. (Implementation and Implementation Relation)An LTSL is anim-
plementationof an MTSM if and only ifL is a refinement ofM (M � L). We denote the
set of implementations ofM asI(M) and refer to the refinement relation between an MTS
M and an LTSL ∈ I(M) as animplementation relation.

The LTSsE\{balance, withdraw, topup, exit} andF\{balance, withdraw, topup,
exit} are both weak implementations ofB. However,B also admits weak implementa-
tions that model ATMs which retain cards after the first failed attempt to login.

An implementation isdeadlock freeif all states have outgoing transitions. We refer to
the set of deadlock-free implementations ofM asI∞(M). Deadlock-free implementations
are also parameterized by their refinement type (e.g., strong and weak).

DEFINITION 3.16. (Deadlock-free Implementation)An LTSL = (SL, A, ∆L, s0L) is
a deadlock-freeimplementation of an MTSM if and only ifM � L and for all s ∈ SL,
there existsa ∈ A ands′ ∈ SL such thatLs

a
−→ Ls′ .

In the remainder of this paper, we assumeweakinterpretations of the notions of (deadlock-
free) implementations and equivalence, unless stated otherwise.

We say that an MTS isdeterministicif it has noτ transitions and there is no state that has
two outgoing possible transitions on the same label, and refer to the set of all deterministic
implementations of an MTSM asIdet[M].

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 11

E :

3

0 1 2 4 5

6

ex
it

success

login fail login fail

retainCardrecoverCard

success

balance,withdraw

F :

3

0 1 2 4 5

6

ex
it

success

login fail login fail

retainCardrecoverCard

success

balance,topup,withdraw

G :

3

0 1 2 4 5

6

ex
it

success

login fail login fail

retainCardrecoverCard

success

balance,topup?,withdraw

C‖D :

0 1 2

5

8

4 6 3 7

login? fail?

su
cc

ess
?

fail?

success? login?

retainC
ard

fail?

retainCard

recoverCard?

balance,
topup?,

withdraw

H :

0

1

2
login?fail?

exit, withdraw

success?

balance,
topup

Fig. 3. Additional MTS and LTS models for an ATM. ModelsC andD are shown in Figure 1.

DEFINITION 3.17. (Determinism)LetM = (S,A,∆r ,∆p, s0) be an MTS.M is de-
terministiciff τ 6∈ A and

∀s, s′, s′′ ∈ S · (s
ℓ
−→p s

′ ∈ ∆p ∧ s
ℓ
−→p s

′′ ∈ ∆p)⇒ (s′ = s′′).

Larsen and Thomsen [Larsen and Thomsen, 1988] define a parallel composition operator
over MTSs, intended to describe how models of two different systems work together:

DEFINITION 3.18. (Parallel Composition)LetM = (SM , AM , ∆r
M , ∆p

M , s0M) and
N = (SN ,AN ,∆r

N ,∆p
N , s0N) be MTSs.Parallel composition(‖) is a symmetric operator

such thatM‖N is the MTS(SM × SN , AM ∪ AN , ∆r, ∆p, (s0M , s0N)), where∆r and
∆p are the smallest relations that satisfy the rules below, where ℓ ∈ Actτ :

RD
M

ℓ
−→rM

′

M‖N
ℓ

−→rM ′‖N
ℓ 6∈αN PR

M
ℓ

−→pM
′, N

ℓ
−→rN

′

M‖N
ℓ

−→pM ′‖N ′

ℓ 6= τ PD
M

ℓ
−→pM

′

M‖N
ℓ

−→pM ′‖N
ℓ 6∈αN

RR
M

ℓ
−→rM

′, N
ℓ

−→rN
′

M‖N
ℓ

−→rM ′‖N ′

ℓ 6= τ PP
M

ℓ
−→pM

′, N
ℓ

−→pN
′

M‖N
ℓ

−→pM ′‖N ′

ℓ 6= τ

When restricted to LTSs, the parallel composition operatordefined above becomes the
standard one (e.g., [Magee and Kramer, 1999]).

In the rules in Definition 3.18, “R” stands for “required”, “P” stands for “possible”, and
“D” stands for “don’t care”. In particular, rule RR capturesthe case when there is a required
transition in both models, PR — when there is a possible but not required transition in one
model and a required transition in the other, and RD — when there is a required transition

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

12 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

in one model on a non-shared action (i.e., on an action the other system is not concerned
with).

ModelC||D in Figure 3 depicts the parallel composition of modelsC (of the ATM) and
D (of the user). The resulting MTS has a deadlock since composing the user model with an
implementation ofC that prohibits more than a single failed login, can exhibit the following
scenario: the user, after failing the login, tries to login again (see state 2) and yet the ATM
does not allow it, instead attempting to retain the card (seestate 5). The two systems cannot
synchronize, thus resulting in a deadlock.

We now recall some properties of parallel composition of MTS. Note that it does not
preserve refinement. For instance,C‖D is not a refinement ofC.

PROPERTY 3.1. Parallel composition satisfies the following properties [Hüttel and Larsen,
1989]:

1. (Commutativity) M‖N = N‖M .
2. (Associativity) (M‖N)‖P = M‖(N‖P).
3. (Strong Monotonicity) M �s N ⇒ M‖P �s N‖P .
4. (Weak Monotonicity) M �w N ⇒ M‖P �w N‖P .

3.3 3-valued FLTL

In this paper, we describe properties using Fluent Linear Temporal Logic (FLTL) [Gian-
nakopoulou and Magee, 2003]. Linear temporal logics (LTL) [Pnueli, 1977] are widely
used to describe behaviour requirements [Giannakopoulou and Magee, 2003; van Lam-
sweerde and Letier, 2000; Kazhamiakin et al., 2004]. The motivation for choosing an LTL
of fluents is that it provides a uniform framework for specifying and model-checking state-
based temporal properties in event-based models [Giannakopoulou and Magee, 2003]. An
LTL formula checked against an LTS model requires interpreting propositions as the occur-
rence of events in the LTS model. Some properties can be rather cumbersome to express as
sequences of events, while describing them in terms of states is simpler. Fluents provide a
way of defining abstract states that can be checked on an LTS. In this section, we review the
3-valued Kleene logic [Kleene, 1952], 3-valued variant of Fluent Linear Temporal Logic
(FLTL) [Uchitel et al., 2009], and results for the property preservation of refinement.

3.3.1 3-Valued Logic.The truth valuest (true), f (false), and⊥ (maybe, unknown)
form the Kleene logic, which we refer to as3. These truth values can have two orderings,
⊑ (truth), which satisfiesf ⊑ ⊥ ⊑ t, and⊑inf (information), which satisfies⊥ ⊑inf t

and⊥ ⊑inf f (i.e.,maybegives the least amount of information). With respect to the truth
ordering, the valuest andf behave classically for∧ (and),∨ (or), and¬ (negation). The
following identities hold for⊥:

⊥ ∧ t = ⊥ ⊥ ∧ f = f ⊥ ∨ t = t ⊥ ∨ f = ⊥ ¬⊥ = ⊥.

3.3.2 Fluent LTL. FLTL [Giannakopoulou and Magee, 2003] is a linear-time temporal
logic for reasoning about fluents. Afluent Fl is defined by an initial valueInitiallyFl and a
pair of setsIFl (the set of initiating actions) andTFl (the set of terminating actions).

Fl = 〈IFl , TFl〉Initially Fl
whereIFl , TFl ⊆ Act andIFl∩TFl = ∅ andInitiallyFl is trueor false

When omitted, the initial value of a fluent is assumed to befalse. Every actiona ∈ Act
induces a fluent, namely,a means〈a,Act\ {a}〉.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 13

π |= Fl , π0 |= Fl
π |= ¬ϕ , ¬(π |= ϕ)

π |= ϕ ∨ ψ , (π |= ϕ) ∨ (π |= ψ)

π |= ϕ ∧ ψ , (π |= ϕ) ∧ (π |= ψ)

π |= Xϕ , π1 |= ϕ

π |= ϕUψ , ∃i ≥ 0 · πi |= ψ ∧ ∀ 0 ≤ j < i · πj |= ϕ

π |= ϕ W ψ , π |= (ϕ U ψ) ∨ 2ϕ

π |= 3ϕ , π |= t U ϕ

π |= 2ϕ , π |= ¬3¬ϕ

Fig. 4. Semantics of the satisfaction operator.

Given a set of fluentsΦ, an FLTL formula is defined inductively using the standard
boolean connectives and temporal operatorsX (next),U (strong until),W (weak until),3
(eventually), and2 (always), as follows:

ϕ ::= Fl | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | Xϕ | ϕUψ | ϕWψ | 3ϕ | 2ϕ,

whereFl ∈ Φ.
Let Π be the set of infinite traces overAct. For a traceπ = a0, a1, . . . ∈ Π andi ∈ N,

let πi denote the part ofπ starting at positioni. We say thatπi satisfies a fluentFl, denoted
πi |= Fl, if and only if one of the following conditions holds:

- InitiallyFl ∧ (∀j ∈ N · 0 ≤ j ≤ i⇒ aj /∈ TFl)

- ∃j ∈ N · (j ≤ i ∧ aj ∈ If) ∧ (∀k ∈ N · j < k ≤ i⇒ ak /∈ TFl)

In other words, a fluent holds at a time instanti if and only if it holds initially or some
initiating action has occurred, but no terminating action has yet occurred. The interval
over which a fluent holds isclosedon the left andopenon the right, since actions have an
immediate effect on the value of fluents.

Given an infinite traceπ, the satisfaction operator|= is defined as shown in Figure 4.
This definition is standard [Giannakopoulou and Magee, 2003] and yields a 2-valued op-
erator.

In classical semantics, a formulaϕ ∈ FLTL holds in a deadlock-free LTSL (denoted
L |= ϕ) if it holds on every (infinite) trace produced byL. The3-valued semantics of
FLTL over an MTSM is given by the function‖ · ‖Mt that, for each formulaϕ ∈ FLTL,
returns the truth value ofϕ in M , i.e.,t, f or⊥:

DEFINITION 3.19. (3-valued Semantics of FLTL (“thorough”))Let ϕ be an FLTL
property andM be an MTS s.t.I∞(M) 6= ∅. ϕ evaluates totrue in M iff it evaluates
to truein all deadlock-free implementations ofM . ϕ evaluates tofalseinM iff it evaluates
to falsein all deadlock-free implementations ofM . ϕ evaluates tomaybein M iff it is true
in some deadlock-free implementations ofM and false in others. Formally, the function
‖ · ‖Mt : FLTL −→ 3 is defined as follows:

‖ϕ‖Mt = t iff ∀L ∈ I∞(M) · L |= ϕ
‖ϕ‖Mt = f iff ∀L ∈ I∞(M) · L 6|= ϕ
‖ϕ‖Mt = ⊥ iff ∃L,L′ ∈ I∞(M) · L |= ϕ ∧ L′ 6|= ϕ

Definition 3.19 is similar to the thorough semantics given by[Bruns and Godefroid, 2000]
but restricted only to non-deadlocking implementations. WhenM is a deadlock-free LTS,

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

14 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

the 3-valued semantics in Definition 3.19 reduces to the standard2-valued semantics of
FLTL given in Figure 4.

Refinement preserves alltrueandfalseFLTL properties under thorough semantics, e.g.,
the value of FLTL properties in more refined models increasesw.r.t. the information order-
ing (can go frommaybeto true or falsebut not the other way around).

THEOREM 3.1. (Preservation of FLTL)[Uchitel et al., 2009] LetM andN be MTSs
such thatM �w N . Then,∀ϕ ∈ FLTL · ‖ϕ‖Mt ⊑inf ‖ϕ‖Nt .

For instance, consider the propertyΦ = 2(LoggedOut⇒ (¬balance∧¬withdraw))
which states that withdrawals and balance requests must notoccur when the user is logged
out. This property holds forA and, sinceA �w G, for G as well. Furthermore,Φ also
holds for all refinements ofG, namely, the LTSsE andF .

Given an MTSM with deadlock-free implementations, model-checkingM against 3-
valued FLTL formulas w.r.t. Definition 3.19 is likely as expensive as the procedure de-
scribed in [Godefroid and Pitterman, 2009] (which is 2EXPTIME-complete in the size of
the formula and polynomial in the size of the model), using a similar approach.

In practice, thorough semantics is often approximated bycompositionalor inductive[Wei
et al., 2009] one defined as follows:

DEFINITION 3.20. (3-valued Semantics of FLTL (inductive))Letϕ be an FLTL prop-
erty andM be an MTS. The function‖ · ‖M : FLTL −→ 3 is defined as follows:

‖ϕ‖M = t , ∀π ∈ POSTR(M) · π |= ϕ

‖ϕ‖M = f , (∃π ∈ REQTR(M) · π 6|= ϕ) ∨
(∀π ∈ POSTR(M) · π 6|= ϕ)

‖ϕ‖M = ⊥ , ¬(‖ϕ‖M = t) ∧ ¬(‖ϕ‖M = f)

A formula ϕ is true in M (denoted‖ϕ‖M = t or M |= ϕ), if every infinite trace in
POSTR(M) satisfiesϕ. A formulaϕ is false in M (denoted‖ϕ‖M = f or M 6|= ϕ) if
there is an infinite trace in REQTR(M) that refutesϕ or if all infinite traces in POSTR(M)
refuteϕ. Otherwise, a formulaϕ evaluates tomaybein M (denoted‖ϕ‖M = ⊥).

Inductive semantics of FLTL approximates the thorough one,i.e., if a property istrue
(false) under inductive semantics, it istrue (false) under thorough as well. Moreover,
all true properties under thorough semantics are alsotrue under inductive [Gurfinkel and
Chechik, 2005]. However, somemaybeproperties under inductive semantics are in fact
falseunder thorough:

THEOREM 3.2. Relationship between Inductive and Thorough Semantics of FLTL Let
M be an MTS andϕ be an FLTL formula. Then,

‖ϕ‖M = t ⇔ ‖ϕ‖Mt = t

‖ϕ‖M = f ⇒ ‖ϕ‖Mt = f

Inductive model-checking of an MTSM which has deadlock-free implementations against
a 3-valued FLTL formula can be done using another standard procedure, described, e.g.,
in [Uchitel et al., 2009]. The procedure is based on creatingoptimisticandpessimistic
versions ofM , referred to asM+ andM−, respectively, and checking them using a clas-
sical model-checker, such as LTSA [Magee and Kramer, 1999].Intuitively,M+ is an LTS
obtained fromM by converting all maybe transitions to required and then removing those
transitions which are not part of some infinite trace and all states that are not reachable

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 15

(a)

refinementsrefinement
commonLeast Common

M N

ofof andM N andM N

(b)
of M and N

of M and N
Common refinements

M

refinements

N

Minimal
common

Fig. 5. Common refinements for consistent modelsM andN : (a)M andN have a least common refinement;
(b)M andN have no least common refinement.

from the initial one. This procedure is linear in the size of the model and linear in the size
of the formula [Bruns and Godefroid, 1999].

The above algorithm allows us to maintain themonotonicityproperty of the inductive
semantics of FLTL under refinement, i.e., as in Theorem 3.1, in a more refined model,
values for all properties increase w.r.t. the information ordering when compared to a less
refined one.

THEOREM 3.3. (Monotonicity of Inductive Semantics of FLTL)Let M and N be
MTSs such thatM �w N . Then,∀ϕ ∈ FLTL · ‖ϕ‖M ⊑inf ‖ϕ‖N .

In what follows, when we say “a property holds (fails) in a model”, we mean inductive
semantics of FLTL, unless explicitly mentioned otherwise.

4. MERGE

In this section, we introduce the notion of weak alphabet merging of modal transition sys-
tems. Section 4.1 argues for the notion of a common weak alphabet refinement as the basis
for merge. In Section 4.2, we define merge of consistent models to be the least common
(weak alphabet) refinement if it exists, and a minimal commonrefinement, otherwise.

Figure 5 provides an abstract summary of the concepts discussed in this section. In this
figure, arrows depict weak alphabet refinements (i.e., an edge fromP to Q indicates that
P is weak alphabet refined byQ). For simplicity, we do not depict refinements that can be
inferred by transitive closure of the ones depicted.

4.1 Common Weak Alphabet Refinement

The intuition we wish to capture by merging is that of augmenting the knowledge we have
of the behaviour of a system by taking what we know from the twopartial descriptions
of the system. Clearly, the notion of refinement underlies this intuition as it captures the
“more defined than” relation between two partial models. Hence, merging two models of
the same system is about finding a common refinement for these models, i.e., finding a
model that is more defined than both.

Models to be merged may have different scopes and hence different alphabets. Existing
refinement relations for MTSs require models to have the samealphabet and consequently
do not serve our purpose. In this section, we introduce weak alphabet refinement and
discuss merging in this context.

Weak alphabet refinement allows comparing two models in which one has an alphabet
that is a superset of the other. The refinement aims to capturethe intuition of having more

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

16 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

information but only with respect to the common alphabet. Itconsiders all other actions
as out of scope for the comparison. Hence, weak alphabet refinement amounts to weak
refinement in which actions in the extended alphabet are considered unobservable.

DEFINITION 4.1. (Weak Alphabet Refinement)An MTSN is a weak alphabet refine-
mentof an MTSM , writtenM �a N , if αM ⊆ αN andM �w N@αM .

Note that weak alphabet refinement is a generalization of weak and strong refinements.
In other words, given two models with the same alphabet and noτ -transitions, if one is
a strong refinement of the other, then it is also a weak alphabet refinement of the other.
Similarly, given two models with the same alphabet but withτ -transitions, if one is a weak
refinement of the other, then it is also a weak alphabet refinement of the other.

Like weak and strong refinement, weak alphabet refinement preserves FLTL. This fol-
lows from Theorem 3.1.

COROLLARY 4.1. (Preservation of FLTL)LetM andN be MTSs such thatM �a N .
Then,∀ϕ ∈ FLTL · ‖ϕ‖M ⊑inf ‖ϕ‖N@αM .

The notion of common refinement is effectively parameterized by a particular refinement
definition, e.g., strong, weak, and weak alphabet. In addition, we can use strong common
refinement when models have the same vocabulary and do not useτ -transitions, weak
common refinement when the models have the same vocabulary but do useτ -transitions,
and weak alphabet common refinement if the alphabets are different. However, in this
paper, we assume that common refinement refers to weak alphabet common refinement,
unless otherwise specified.

DEFINITION 4.2. (Common Refinement)Given a refinement notion,�, we say that a
modal transition systemP is a common refinement(CR) of modal transition systemsM
andN iff M � P andN � P .

We writeCR(M,N) to denote the set of common refinements of modelsM andN .

For example,G is a common refinement ofA andB. G specifies that the ATM must pro-
vide two opportunities for logging in, that at the second failed attempt the card is retained,
and that once the user is logged in, she can execute several operations. It leaves open
whether the ATM should provide a top-up feature.G refinesA which describes operations
to be provided by the ATM to users and also refinesB which sets the maximum number of
failed login attempts to two.
G illustrates how common refinements add required behaviour.Although there is a

required transition for withdrawals in modelA, this transition is not reachable (through
required transitions) from the initial state and thusA allows implementations in which
withdrawals are not possible. However,B guarantees that implementations will allow suc-
cesfull logins. Hence, a common refinement ofA andB, such asG, requires that imple-
mentations allow for withdrawals.

In Figure 6, we depict the alphabet refinement relations thatexist between the ATM
models discussed previously.

4.2 Merge as a Minimal Common Refinement

SinceG is a common refinement ofA andB, it preserves the required and prohibited
behaviour of both models. However, a behaviour which is possible but not required in
one model may become required or prohibited in the common refinement. For instance,

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 17

E

(C‖D)

A

F

G

D C

B

6

@
@@I

�
��7

@
@@I

y

y

yy

yy

yy

�
���

@
@@I 66

Fig. 6. Weak alphabet refinement relation between ATM models.

an unbounded number of consecutive failed logins is possible but not required inA but is
disallowed inG (since otherwise it would not be a refinement ofB as well).

However,G does introduce constraints on the behaviour of ATMs that arenot specified
in eitherA orB, such as requiring an ATM to allow up to two failed logins and disallowing
it to retain bank cards after the first failed attempt.

Model C is also a common refinement ofA andB, but unlikeG, it does not introduce
additional constraints. Furthermore,C is the least refined MTS that is a common refinement
of A andB, andG is a refinement ofC.

Least common refinements are of interest because they compose two partial operational
descriptions of the same system without introducing additional constraints on its behaviour.

DEFINITION 4.3. (Least Common Refinement)Given a refinement notion,�, an MTS
P is a least common refinement(LCR) of modal transition systemsM andN if P is a
common refinement ofM andN , αP = αM ∪ αN , and for any common refinementQ of
M andN , P � Q.

As before, when referring to the least common refinement, we assume weak alphabet
refinement, unless stated otherwise.

Assume thatP1 andP2 are two LCRs ofM andN , by Definition 4.3 it follows that
P1 � P2 andP2 � P1 thereforeP1 ≡ P2. This shows that least common refinements
are unique up to observational equivalence, and hence we refer totheleast common refine-
ment, denotedLCRM,N for modelsM andN .

An LCR of the original systems may not exist for two reasons. First, it is possible that
no common refinement exists. Second, a common refinement may exist, but there may be
no least one. We discuss these possibilities below.

Consider modelH in Figure 3 that specifies an ATM in which, in addition to the top-
up feature being enabled, a withdrawal automatically logs the user out (to prevent the
user from forgetting her card). This model is inconsistent with the previous ATM models
such asA or G which forbid logging in until an exit action has occurred. Itis therefore
impossible to build an ATM that satisfies bothH and modelG.

DEFINITION 4.4. (Consistency)Two MTSsM andN are consistentiff there exists an
MTSP such thatP is a common refinement ofM andN .

Now refer to the models shown in Figure 7(a). ModelsI andJ do have common
refinements, e.g.,K, L andO, but no LCR. Intuitively, to findLCRI,J , we must refineI
into I ′ so that(I ′ \ {a, b}) has a required transition onc. Hence, we must transform the
possible but not required transition onc in I to a required transition, and also transform one
of the possible but not required transitions ona or b. If we transform all three transitions,
we obtain the modelO. However, if we choose not to transform the transition either ona

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

18 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

(a) I: 0 1 2

a?

b?

c? J : 0 1
c K: 0 1 2

a?

b

c L: 0 1 2

a

b?

c

M: 0 1 2

a?

b?

c

c

N : 0 1 2

a?

b?

τ c O: 0 1 2

a

b

c P : 0 1 2

a?

b?

c

(b)
L

J

M

N

K

P

O

I
6

6

6

�
���

�
��7

S
S

So

@
@@I

@
@@I

HHHHHHHHHYy

y

y

y

yy

y

y

Fig. 7. (a) Example MTSs. (b) Weak alphabet refinement relation between models of (a).

or onb, then we obtain the modelsK andL, which are both refined by, but not equivalent
toO. These common refinements are not comparable (neither is a refinement of the other)
because of the different choices of which non-shared possible but not required transition is
made required.

It is not possible to find common refinements ofI andJ which are less refined thanK
andL. For example,P is less refined than both but is not a refinement ofJ . Hence, we
refer toK andL as theminimal common refinementsof I andJ . Note that modelsM
andN are incorrect attempts at building minimal common refinements ofI andJ . These
are not refinements ofI because they can both transit onc from the initial state through (a
sequence of) required transitions, whereasI cannot do so from its initial state.

DEFINITION 4.5. (Minimal Common Refinement)Given a refinement notion,�, an
MTSP is a minimal common refinement(MCR) of MTSsM andN if P ∈ CR(M,N),
and for allQ ∈ CR(M,N) if Q � P , thenP � Q.

Again, when referring to minimal common refinement, we assume weak alphabet re-
finement, unless stated otherwise.

We writeMCR(M,N) to denote the set of MCRs of modelsM andN . By Defini-
tion 4.5 and Theorem 3.1, we have the following result.

COROLLARY 4.2. (Merge Preservation)LetP = P ′@αM with P ′ ∈MCR(M,N),
Q = Q′@αN with Q′ ∈ MCR(M,N), sM , sN , sP , sQ the initial states ofM , N , P ,
andQ, such thatP andQ have deadlock-free implementations. Then:

∀φ ∈ FLTL· (sM ∈ [[φ]]t ⇒ sP ∈ [[φ]]t) ∧ (sM ∈ [[φ]]f ⇒ sP ∈ [[φ]]f) ∧

(sN ∈ [[φ]]t ⇒ sQ ∈ [[φ]]t) ∧ (sN ∈ [[φ]]f ⇒ sQ ∈ [[φ]]f).

That is, alltrueandfalseFLTL properties ofM andN are preserved in model ofMCR(M,N),
when restricted to the appropriate alphabet, if the merge has deadlock-free implementa-
tions.

In conclusion, what should be the result of merging two consistent modal transition sys-
tems,M andN? If LCRM,N exists, then this is the desired result of the merge. However,
if M andN are consistent but their LCR does not exist, then the merge process should
result in one of the MCRs ofM andN . Model merging should support the modeller in

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 19

Q: 0 1 2
b? b?

c a?

R: 0 1
a

c?

S: 0 1 2
c a

b

T : 0 1 2
d?

b

a U : 0 12
aa?

c?

V : 0 12
aa

c?

V ′: 0 1
a W : 1 0 2

a a

b? b?, c

X : 1 0 2
a a

c? b, c?

Y : 1 0 2
a a

b, c

Z: 1 0 2
a a

b c

A: :0 1 2
τ b

c

B: 0 1 2 3
a τ b

c

Fig. 8. Example MTSs.

choosing the most appropriate MCR. In Section 6.2, we present an algorithm that supports
the merging process including the computation of multiple MCRs, should they exist.

5. CONSISTENCY

In this section, we define consistency relations and discussthe role of the largest such
relation. Consistency relations are used in Section 6 to define two merge algorithms.

In order to merge two consistent models, it is necessary to understand precisely which of
their behaviours can be integrated. In particular, a state in any common refinement of two
models is intuitively a combination of two consistent states: one from each of the original
models. InM = (SM , AM , ∆r

M , ∆p
M , s0M) andN = (SN , AN , ∆r

N , ∆p
N , s0N), states

s ∈ SM andt ∈ SN are consistent if and only if there is a common refinement ofMs

andNt (recall thatMs indicates changing the initial state of an MTSM to s). Therefore,
Nt@αM should be able to simulate required behaviour atMs with possible behaviour,
and vice-versa. Aconsistency relationis used to describe pairs of reachable consistent
states.

DEFINITION 5.1. (Weak Consistency Relation)A weak consistency relationis a binary
relationC ⊆ ℘×℘, such that the following conditions hold for all(M,N) ∈ C, provided
ℓ ∈ Actτ :

1. ∀M ′ · (M
ℓ
−→r M

′ ⇒ ∃N ′ · (N
ℓ̂

=⇒p N
′ ∧ (M ′, N ′) ∈ C))

2. ∀N ′ · (N
ℓ
−→r N

′ ⇒ ∃M ′ · (M
ℓ̂

=⇒p M
′ ∧ (M ′, N ′) ∈ C))

The weak consistency relation requires that each model can simulate the required tran-
sitions of the other using possible transitions. That is, ifM can go toM ′ on an observable

actionℓ 6= τ through a required transition (M
ℓ
−→r M

′), thenN can go toN ′ on a pos-

sible transition (N
ℓ̂

=⇒p N
′) such thatM ′ andN ′ are consistent. However,N can do so

by performing zero or moreτ transitions before and afterℓ. On the other hand, ifM can
move toM ′ on aτ transition,N can move toN ′ in zero or moreτ moves.

DEFINITION 5.2. (Weak Alphabet Consistency Relation)A weak alphabet consistency
relation is a binary relationC ⊆ ℘ × ℘, such that the following conditions hold for all

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

20 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

(M,N) ∈ C, provided thatℓ ∈ Actτ :

1. ∀M ′ · (M
ℓ
−→r M

′ ∧ ℓ 6∈ αN ∪ {τ})⇒∃N ′ · (N
τ̂

=⇒p N
′ ∧ (M ′, N ′) ∈ C)

2. ∀M ′ · (M
ℓ
−→r M

′ ∧ ℓ ∈ αN ∪ {τ}) ⇒∃x1, . . . , xn ∈ (αN\αM)·

∃N1, . . . , Nn, N
′ · (N

x1=⇒p N1 · · ·
xn=⇒p Nn

ℓ̂
=⇒p N

′) ∧
(∀i · 1 ≤ i ≤ n⇒ (M,Ni) ∈ C) ∧ (M ′, N ′) ∈ C

3. Condition 1 defined forN .
4. Condition 2 defined forN .

The weak alphabet consistency relation is similar in spiritto the weak consistency ver-
sion (see Definition 5.1): a behaviour required in one model must be possible in the other.
However, it has two important differences. First, it allowsone model to simulate a required
ℓ action by performing not onlyτ ’s beforeℓ, but also any other non-shared action. That

is, if M can go toM ′ through a required transition on a shared actionℓ (M
ℓ
−→r M

′)
(antecedent of condition 2 in Definition 5.1), thenN@αM can simulateℓ using, if nec-
essary, a succession of possible transitions on actions notin αM . Second, it requires that
the states traversed by one model to simulate the other preserve the consistency relation.

In other words, ifM
ℓ
−→r M

′, then all hops
xi=⇒p starting fromN before the transition

on ℓ (i.e., fromN toNx) must be consistent withM . This condition is similar to the one
required for branching semantics for MTSs [Fischbein et al., 2006].

For example, consider the modelsA andB in Figure 8. These models are related by
weak alphabet consistency:

CAB = {(A0,B0), (A0,B1), (A1,B2), (A2,B3)}

The transitionA0
c
−→r A0 is simulated byB with B0

ac
=⇒r B1. That is,B first performs

an action that is not observable forA, and then simulates thec action. As we show below
(Theorem 5.1), existence of a consistency relation guarantees consistency. Thus, since
modelB is a common weak alphabet refinement of itself and modelA, these models are
consistent.

Consider modelsQ andR in Figure 8, whereαR = {a, c}. There is no weak alpha-
bet consistency relation between them: If there were one,(Q0,R0) should be in it. As

R0
a
−→r R1, Q must match this behaviour withQ0

b
=⇒p Q1

b
=⇒p Q2

a
=⇒p Q2. The

definition of weak alphabet consistency requires intermediate stateQ1 be related to state
R0. ButQ1

c
=⇒r Q1 andR1 prohibitsc. Hence, assuming a weak alphabet consistency

with (Q0,R0) leads to a contradiction.
The above example illustrates the importance of requiring that intermediate states in the

simulation ofa byQ0 be in the consistency relation. If this additional constraint were not
included, it would be possible to matchR0

a
−→r R1 with Q0

a
=⇒p Q2, constructing the

consistency relation betweenR andQ. Yet, these models are inconsistent!
The following theorems show the relation between weak and weak alphabet consistency

relations and the notion of consistency.

THEOREM 5.1. (Weak Consistency Relation Characterizes Weak Consistency) Two
MTSs areweakly consistentiff there is a weak consistency relation between them.

THEOREM 5.2. (Weak Alphabet Consistency Relation Entails Weak Alphabet Consis-
tency)Two MTSs areweakly alphabet consistentif there is a weak alphabet consistency
relation between them.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 21

C:

0 1

2

3 4

l

τ?

l

m

D:

0 1 2

3

a? l

m

E:

0 1 2

3

a l

m

Fig. 9. MTSs for showing that weak alphabet consistency doesnot imply existence of a weak alphabet consistency
relation between the models.

Note that the relationship in Theorem 5.2 (entailment) is weaker than the one in The-
orem 5.1 (characterization). The converse of Theorem 5.2 does not hold. For example,
consider modelsC andD in Figure 9. ModelE is their common weak alphabet refine-
ment, soC andD are weak alphabet consistent. However, there does not exista weak
alphabet consistency relation between these models:(C0,D0) must be in the relation and,

asC0
l
−→r C1, so must(C1,D2) and intermediate state(C0,D1). However, the latter is

clearly inconsistent asC0
m
−→r but this is not the case forD1.

A consistency relation between two models describes consistent behaviours: anything
one model does can be simulated by the other. Thus, an interesting and useful consistency
relation is the one that captures as much of the consistent behaviour between the models as
possible. To describeall reachable consistent behaviours between two consistent models,
we give the notion of thelargest (strong) consistency relation. It is straightforward to
show from Definition 5.2 that the union of two consistency relations is also a consistency
relation.

DEFINITION 5.3. (Largest Consistency Relation)The largest consistency relationbe-
tween consistent MTSsM andN is

⋃
{CM,N · CM,N is a consistency relation betweenM andN}.

For example, consider modelsR andU in Figure 8 defined over the vocabulary{a, c}.
WhileCRU = {(R0,U0), (R1,U1), (R1,U2))} is the largest consistency relation between
them,C′

RU = CRU \ {(R1,U2)} is a consistency relation as well. In particular, these
two relations correspond to different common refinements ofR andU , namely,V andV ′.
UnlikeV ′, modelV does not rule out the possibility of an actionc occurring after an action
a becauseCRU does not exclude the consistent behaviours atR1 andU2.

Computing the largest consistency relation betweenM andN can be done using a fix-
point algorithm, similar to those used for computing bisimulations [Fischbein et al., 2006].
Such an algorithm (see Algorithm 5.1 below) starts with the Cartesian product of states of
MTSsM andN , and then iteratively removes pairs that are noti-step consistent, wherei
is the number of iterations performed so far.

ALGORITHM 5.1. WEAKALPHABETCONSISTENCYRELATION(M ,N)

Input: MTSsM = (SM ,AM , ∆r
M , ∆p

M , s0M) andN = (SN , AN , ∆r
N , ∆p

N , s0N)
C0 = {(Ms, Nt) · s ∈ SM andt ∈ SN}
Repeat
Ci+1 ← {(P,Q) ∈ Ci | (P,Q) satisfies conditions 1-4 of Definition 5.2}

Until Ci+1 = Ci

Return Ci

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

22 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

It is easy to show that the algorithm terminates as it starts from a finite set,C0, andCi+1 ⊆
Ci; hence, a fixpoint is reached in at most‖C0‖ steps. Therefore, the time and the space
complexity of this algorithm isO(m × n4 × log(n)) andO(n2), respectively. n and
m are the maximum number of states and transitions of the inputmodels, respectively.
Furthermore, if there exists a consistency relation between M andN then the algorithm
returns the largest consistency relation between them.

THEOREM 5.3. (Soundness of Algorithm 5.1)LetM = (SM , AM , ∆r
M , ∆p

M , s0M)
andN = (SN ,AN , ∆r

N , ∆p
N , s0N) be MTSs andC be the relation returned by

CONSISTENCY(M , N). If (M,N) ∈ C thenC is a weak alphabet consistency relation
betweenM andN .

The CONSISTENCYalgorithm can be used to check whether two models with identical
alphabets are consistent (Theorem 5.1). However, since theconverse of Theorem 5.2 does
not hold, we cannot rely on this algorithm when it returns false in the case of models with
different alphabets. The following result, however, partially resolves this issue by con-
verting the consistency problem between models with different alphabets to a consistency
problem between models with identical alphabets.

THEOREM 5.4. (Consistency Implies Consistency over Common Alphabet) If M and
N are consistent, thenM@(αM ∩ αN) andN@(αM ∩ αN) are consistent as well.

Hence, if two models are inconsistent w.r.t. their common alphabet, as computed by
CONSISTENCY, they are not consistent. Thus, we can determine consistency of modelsM
andN with different alphabets via the following process:

ALGORITHM 5.2. WEAKALPHABETCONSISTENT(M ,N)

Input: MTSsM = (SM ,AM , ∆r
M , ∆p

M , s0M) andN = (SN , AN , ∆r
N , ∆p

N , s0N)
If (M,N) ∈ WEAKALPHABETCONSISTENCYRELATION(M,N)

Return True
M ′ ←M@(αM ∩ αN)
N ′ ← N@(αM ∩ αN)
If (M ′, N ′) 6∈ WEAKALPHABETCONSISTENCYRELATION(M ′, N ′)

Return False
Return Unknown

In summary, in this section, we have characterized weak (non-alphabet) consistency by
means of the existence of a weak consistency relation. In addition, we have shown that
the existence of a weak alphabet consistency relation entails the existence of a common
weak alphabet refinement. To mitigate the fact that the non-existence of a weak alphabet
consistency relation does not entail inconsistency, we have proved a theorem allowing us
to relate consistency of models with different alphabets tothat of consistency over their
shared alphabet.

6. COMPUTING MERGE

In this section, we describe the algorithm for constructingmerge under weak alphabet
refinement. We first define the+cr operator and show that if there is a consistency relation
betweenM andN , thenM+crN is a common refinement ofM andN (Section 6.1). The
result of+cr may not be an MCR in general. Hence, we present an algorithm, MERGE,

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 23

F: 0 1 2 3
a? τ c

b

G: 0 1 2
a c

H: 0, 0 1, 1 2, 2 3, 3

(1, 2), (2, 1)

a?
a? τ c

b

a?

I: 0 1

a

b J: 0 1

a

τ

Fig. 10. Example MTSs for illustrating merge.

that iteratively abstractsM +cr N while guaranteeing that the result is still a common
refinement ofM andN . This algorithm copes with the case in which two models have
more than one MCR.

6.1 Building a Common Refinement

In this subsection, we introduce the+cr operator and show that if there is a consistency
relation betweenM andN , thenM +cr N is an element ofCR(M,N), which preserves
the properties of the original systems.

DEFINITION 6.1. (The+cr operator)Let M = (SM , AM , ∆r
M , ∆p

M , s0M) and
N = (SN , AN , ∆r

N , ∆p
N , s0N) be MTSs and letCMN be the largest consistency re-

lation between them.M+crN is the MTS(CMN , AM ∪AN ,∆
r,∆p, (s0M , s0N)), where

∆r and∆p are the smallest relations that satisfy the rules below, forℓ ∈ Actτ :

RP
M

ℓ̂
=⇒rM

′, N
ℓ̂

=⇒pN
′

(M,N)
ℓ

−→r(M ′,N ′)
PR

M
ℓ̂

=⇒pM
′, N

ℓ̂
=⇒rN

′

(M,N)
ℓ

−→r(M ′,N ′)

PD
M

ℓ
=⇒pM

′, N
τ̂

=⇒pN
′

(M,N)
ℓ

−→r(M ′,N ′)
ℓ 6∈(αN ∪ {τ}) DP

M
τ̂

=⇒pM
′, N

ℓ
=⇒pN

′

(M,N)
ℓ

−→r(M ′,N ′)
ℓ 6∈(αM ∪ {τ})

PP
M

ℓ̂
=⇒pM

′, N
ℓ̂

=⇒pN
′

(M,N)
ℓ

−→p(M ′,N ′)

Intuitively, the areas of agreement (described by the consistency relation) of the models
being merged are traversed simultaneously, synchronizingon shared actions and producing
transitions in the merged model that amount to merging knowledge from both models.
Thus, transitions which are possible but not required in onemodel can be overridden by
transitions that are required or prohibited in the other. For example, ifM can transit onℓ
through a required transition andN can do so via a possible but not necessarily required
transition, thenM +cr N can transit onℓ through a required transition, captured by rules
RP and PR in Definition 6.1.

The cases in which the models agree on possible transition are handled by rule PP in
Definition 6.1. If bothM andN can transit onℓ through possible transitions, thenM+crN
can transit onℓ through a possible transition.

The rules mentioned so far do not apply to non-shared actions. If ℓ 6= τ is not in a
model’s alphabet, then that model is not concerned withℓ. Therefore, if the other model
can transit on the non-shared actionℓ through a required transition, the merge can do so
as well. Our rules (PD and DP) allow the model which does not have ℓ in its alphabet
to stay in the same state or to move throughτ transitions to another state. The following
example motivates this. Consider modelsI andJ in Figure 10 and assume thatαI = {a, b}

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

24 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

andαJ = {a}. The largest consistency relation forI andJ is CIJ = {(I0, J0), (I1, J1)}.

I
b
−→r I1, but (I1, J0) 6∈ CIJ (the above definition requires the resulting modelI +cr J to

stay within consistent states), and therefore,I0 +cr J0
b

6−→ I1 +cr J0. However,J0
τ
−→r

J1, and(I1, J1) ∈ CIJ. Rule PD allowsI +cr J to have a required transition onb, i.e.,

I0 +cr J0
b
−→r I1 +cr J1. In fact,I+cr J is preciselyI, which is inCR(I,J).

Note that rules PD and DP are conservative, i.e., they introduce required transitions
rather than possible transitionsℓ even when neither of the models being composed has
a required transition onℓ. In these rules, if+cr were constructed with possible but not
required transitions, then the resulting MTS would not be a common refinement of the
models being composed. For instance, considering the models in Figure 7(a),I +cr J
would yieldI (which is not a refinement ofJ) rather thanO.

Special care must be taken in order to combine only consistent behaviours of the two sys-
tems (i.e., elements in the consistency relation). For example, suppose that modelF+cr F
(see Figure 10) were built without this restriction. There are two transitions ona from
the initial state ofF, and, therefore, four ways of combining them via the rules inDefini-
tion 6.1. This composition results in modelH, which isnota refinement ofF. On the other
hand, since the pairs(F1,F2) and(F2,F1) are not in any consistency relation betweenF
and itself, constructingF+cr F using this restriction yieldsF, as desired.

When a consistency relation exists, the+cr operator as defined above yields a common
refinement of its operands:

THEOREM 6.1. (+cr builds CRs)If there is a consistency relation betweenM andN ,
thenM +cr N is in CR(M,N).

For example, suppose we are interested in computing the merge of modelsF andG
shown in Figure 10, whereαF = αG = {a, b, c}. The largest consistency relation is
CFG = {(F0,G0), (F2,G1), (F3,G2)}. SinceF0

a
=⇒p F2, G0

a
=⇒r G1, and(F2,G1) ∈

CFG, it follows that(F0,G0)
a
−→r (F2,G1) is a transition ofF+crG by the PR rule. Since

F2
c

=⇒r F3, G1
c

=⇒r G2, and(F3,G2) ∈ CFG, it follows that(F2,G1)
c
−→r (F3,G2) is

a transition inF+cr G. Hence,F+cr G = G, as desired.

6.2 The MERGEAlgorithm

While the+cr operator can sometimes produce the LCR, as in the above example, it is
generally imprecise. For example, for modelsI andJ in Figure 7,I +cr J = O, but
MCRs ofI andJ areK andL (see the discussion in Section 4). Since rules DP and PD
convert all possible but not required transitions on non-shared actions to required in the
composition, thus making the conservative choice, the+cr operator computes a CR that is
not necessarily minimal.

Below, we present an algorithm aimed to detect the required transitions resulting from
the conservative rules that define the+cr operator and converting them into possible but
not required transitions. It does so while guaranteeing that after each iteration, the resulting
MTS continues to be a refinement ofM andN .

We begin by defining an abstraction operation which, given anMTS and a subset of
its required transitions, returns an MTS in which these transitions are possible but not
required:

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 25

K :

0

1 2

3 4

a
b?

a?
c?

L :

0 1 2
a b?

M :

0

1 2

3

a
b?

a

N :

0

1 2

3

a
b?

a?

O :

0

1 2

3 4

a?
b?

a?
c?

P :

0

1 2

3

a?
b?

a

Fig. 11. Example MTSs for illustrating cover sets.

DEFINITION 6.2. (Abstraction Operation)LetM = (S,A,∆r,∆p, s0) be an MTS and
let Λ ⊆ ∆r be a subset of required transitions. Then theabstraction operationis defined
as follows:

Abs(M,Λ) , (S,A,∆r \ Λ,∆p, s0)

We now use the abstraction operation to define a notion of aCover Set– a set of outgoing
required transitions from a given state on a given set of labels such that if these are the only
transitions kept as required, the resulting model continues to be a common refinement of
M andN .

DEFINITION 6.3. (Cover Set)LetM = (SM , AM , ∆r
M , ∆p

M , s0M), N = (SN , AN ,
∆r

N , ∆p
N , s0N) andP = (SP , AP , ∆r

P , ∆p
P , s0P) be MTSs, withP ∈ CR(M,N). For

s ∈ SP andA ⊆ AP , a setζs,A ⊆ ∆r
P is a cover setof the states on labelsA iff the

following conditions hold:

(1) ζs,A ⊆ ∆r
P (s, A), where∆r

P (s, A) = {s
ℓ
−→ s′ ∈ ∆r

P | ℓ ∈ A)}

(2) M �a Abs(P,∆
r
P (s, A) \ ζs,A)

(3) N �a Abs(P,∆
r
P (s, A) \ ζs,A)

The first rule of Cover Set states that a cover setζs,A of P with respect toM andN is
a set of required transitions ofP originating from states. The second (third) rule states
that if all the required transitions froms on a label inA that do not belong toζs,A are
removed (leaving their behaviour as possible but not required) then the resulting MTS is a
refinement ofM (respectivelyN).

For example, consider modelM which is a common refinement of modelsK andL
(see Figure 11).ζ0,a = {0

a
−→ 3} is the only non-trivial cover set forM. The result

of executingAbs(M,∆r
M
(0, a) \ ζ0,a) is modelN, which is an abstraction ofM while

remaining to be a refinement ofK andL.
Thus, to compute a merge of modelsM andN , the algorithm should continuously

abstractM +cr N while ensuring that the result remains a refinement ofM andN , and
it seems that the approach to do this is to apply the abstraction operation on cover sets
of the common refinement ofM andN . However, more than one cover set can exist in
this case. For example, consider models in Figure 11. ModelM is a common refinement
of modelsO andL and has exactly two non-empty cover sets:ζ0,a = {0

a
−→ 1} and

ζ′0,a = {0
a
−→ 3}. The result ofAbs(M,∆r

M
(0, a) \ ζ0,a) is a modelN, and the result of

Abs(M,∆r
M
(0, a) \ ζ′0,a) is a modelP. WhileP is a refinement ofN, N is nota refinement

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

26 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

Q :

0 1

2 3

4 5

x?
y?

a?

y?
b?

R :

0 1 2 3
x? y a?, b?

S :

0 1

2 3

4 5

x?
y

a?

y

b?

T :

0 1

2 3

4 5

x?
y?

a?

y

b?

U :

0 1

2 3

4 5

x?
y

a?

y?
b?

V :

0

1 2 3

4 51′

x?

x?

y? a?

y

b?

x? y

y?

W :

0

1 2 3

4 51′

x?

x?

y a?

y

b?

x? y

y

Fig. 12. Example MTSs for illustrating the need for cloning states.

of P. Hence, out of the two choices of the cover set, the better oneis ζ0,a since it yields the
less refined model. We say that the cover setζ′0,a refinesζ0,a (and thusζ0,a is theminimal
cover set). We formalize this intuition below:

DEFINITION 6.4. (Cover Set Refinement)Let an MTSP = (SP , AP , ∆r
P , ∆p

P , s0P)
be given and letA ⊆ AP . For a pair of cover sets over a states onA, ζs,A and ζ′s,A,
we say thatζs,A is refined byζ′s,A, written ζs,A � ζ′s,A, iff Abs(P,∆r

P (s, A) \ ζs,A) �
Abs(P,∆r

P (s, A) \ ζ
′
s,A).

As expected, refinement of cover sets defines a partial order,i.e., a common refinement
may have two cover sets where neither refines the other. Consider the models in Fig-
ure 12. ModelS, a common refinement ofQ andR, has exactly two non-empty cover sets:
ζ1,y = {1

y
−→ 2} andζ′1,y = {1

y
−→ 4}. Neither of these cover sets refine each other as

Abs(S,∆r
S
(1, y) \ ζ1,y) (modelU) is not a refinement ofAbs(S,∆r

S
(1, y) \ ζ′1,y) (model

T), nor is the latter a refinement of the former. An algorithm that picks only one of these
cover sets to abstractS is not able to compute the LCR ofQ andR: modelV. To compute
V fromS, we need to replicate, or clone, state1 in modelS, obtaining an equivalent model,
modelW, which allows an application of a different cover set for each copy of1 in order
to abstract the model.

We formally define the clone operation below.

DEFINITION 6.5. (Clone Operation)Let M = (S,A,∆r ,∆p, s0) be an MTS. For a
states ∈ S, let theclone operationbe defined asClone(M, s) = (S′, A,∆r′ ,∆p′

, s0),
where∃s′ 6∈ S, s.t. forℓ ∈ A,

(1) S′ = S ∪ {s′}

(2) ∆p′

= ∆p ∪ {(s′, ℓ, t)|(s, ℓ, t) ∈ ∆p} ∪ {(t, ℓ, s′)|(t, ℓ, s) ∈ ∆p}

(3) ∆r′ = ∆r ∪ {(s′, ℓ, t)|(s, ℓ, t) ∈ ∆r} ∪ {(t, ℓ, s′)|(t, ℓ, s) ∈ ∆r}

PROPERTY 6.1. The clone operation preserves implementations. In other words,

I[Clone(M, s)] = I[M].

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 27

ALGORITHM 6.1. MERGE(M ,N)

Input: consistent MTSsM = (SM ,AM , ∆r
M , ∆p

M
, s0M) andN = (SN ,AN , ∆r

N , ∆p
N

, s0N)
P ←M +cr N

A ← {{ℓ} | ℓ ∈ (αM ∩ αN)} ∪ {(αM \ αN) ∪ (αN \ αM) ∪ {τ}}
repeat
Q ← emptyQueue

enqueue(Q,(s0M , s0N))
V ← ∅ //Visited and not Abstracted
W ← ∅ //Visited and Abstracted
while |Q| > 0
s← dequeue(Q)
For each A ∈ A do

LetS be the set of all minimal non-trivial cover sets ofs onA
if |S| = 0

if (s,A) ∈ V
continue

V ← V ∪ {(s,A)}
else

if (s,A) ∈ W
abort

Clone states in P |S| − 1 times
For each i do

takesi in SP andζsi,A ∈ S
P ← Abs(P,∆r

P
(si, A) \ ζsi,A)

W ←W ∪ {(si, A)}
For each s′ such that existsℓ ∈ A · (s, ℓ, s′) ∈ ∆p

N
do

enqueue(Q, s’)
until no change inP
return P

Fig. 13. The MERGEalgorithm.

We are now ready to present the algorithm MERGE(see Algorithm 6.1 in Figure 13). As
illustrated earlier in this section, the MERGEalgorithm computes a common refinement of
two consistent models and then iteratively abstracts it by abstracting required transitions
based on least refined cover sets of the common refinement. Should there be more than
one, the algorithm clones the appropriate states and applies abstraction with respect to
each cover set to each clone.

When applied to modelsQ andR in Figure 12, this algorithm yields modelV, as desired.
The algorithm includes one small optimization: rather thanlooking for cover sets for all

possible subsets ofαM ∪ αN , it tries to only build cover sets for singleton sets over the
common alphabet ofM andN (i.e.,{ℓ} | ℓ ∈ (αM ∩ αN)) and the set of actions that are
not observable to eitherM orN (i.e.,(αM \ αN) ∪ (αN \ αM) ∪ {τ}). This is because
any other subset ofαM ∪ αN will, by definition of cover set and refinement, never yield
a cover set.

Termination of the algorithm is guaranteed as each iteration considers a fewer number of
cover sets for the current state and its clones. Otherwise, an abort statement is invoked. The
compleity of the algorithm is discussed in Section 6.3. The correctness of this algorithm
is straightforward to prove using properties of cloning andcover sets. The latter are by
definition guaranteed to result in a common refinement when used in the context of an
abstraction operation.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

28 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

X :

0

1 2

3 4

a?
b?

a?
c?

Y :

0 1 2
a b?, c?

Z :

0

1 2

3 4

a?
b?

a

c?

A :

0

1 2

3 4

a
b?

a?
c?

B :

0 1 2

3 40′

a? b?

a

c?
a

a? C :

0

1 2

3 4

a
b?

a

c?

Fig. 14. Example of a merge where the LCR does not exist.

PROPERTY 6.2. If there is a consistency relation betweenM andN , then theMERGE

algorithm produces a common refinement ofM andN but not necessarily a minimal one.

As we discussed in Section 4, two consistent models do not always have a unique least
common refinement – they may have non-equivalent minimal common refinements instead.
In the remainder of this section, we show that the MERGEalgorithm deals with these cases
correctly and effectively when it clones states.

Consider the models in Figure 14 (modelX of Figure 11 is repeated here for conve-
nience). ModelC is a common refinement ofX andY and has two incomparable cover
sets: ζ0,a = {0

a
−→ 1} andζ′0,a = {0

a
−→ 3}. Interestingly, applying the abstraction

operation of these incomparable cover sets onC yields two minimal common refinements
of X andY: modelsZ andA. The result of the MERGEalgorithm is modelB (by cloning
state0 of C and applying a different cover set to each clone). WhileB is equivalent to
Z because state0′ is unreachable, changing the initial state from0 to 0′ yields a model
equivalent to the other MCR ofX andY, namely,A.

Hence, the MERGEalgorithm is able to encode the various ways in which the two models
can be merged by computing an MTS witha setof potential initial states. Each one of
these states defines an MTS which is an MCR of the models being merged (as in the above
example) or which refines it. We formalize this correctness property below.

PROPERTY 6.3. LetM andN be MTSs with a consistency relation between them. Let
P = (SP , AP ,∆

r
P , ∆

p
P , (m0, n0)

0) be the result of applying theMERGE algorithm to
M andN , and let(m0, n0)

j be the clones of the initial state ofP . Then, for anyPj =
(SP , AP ,∆

r
P ,∆

p
P , (m0, n0)

j) where(m0, n0)
j ∈ SP , there existsQ ∈ MCR(M,N)

such thatQ � Pj .

6.3 Limitations and Discussion

Unlike merge under strong semantics, described in [Fischbein and Uchitel, 2008], the
MERGEalgorithm in Section 6.2 is not complete: given two consistent MTSs with a unique
LCR, it does not necessarily construct this LCR; further, given two consistent MTSs with
multiple MCRs, it does not necessarily encodeall of these in its resulting MTS. There are
two reasons for this incompleteness: (1) reliance on the existence of a consistency relation
which is not complete with respect to weak alphabet refinement (Theorem 5.2) and (2) the
use of the insufficiently strong abstraction strategy basedon cloning and cover sets.

In other words, the first reason for incompleteness is that inthe case of weak alpha-
bet refinement, the non-existence of a consistency relationdoes not imply inconsistency.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 29

D: 0 1

a?

b

E: 0
a?, b?, c?

MERGE(D,E): 0 1
c? c?

a?

b

DE: 0 1 2

a?

b

c?

c
c?

c?

c?

a?

b?Fig. 15. An example showing that merge is incomplete.
.

Hence, given two consistent models, the MERGE algorithm may not execute because a
consistency relation does not exist. This is not a limitation if the two models being merged
have the same alphabet, possibly withτ transitions, as the notion of consistency relation
is complete with respect to weak refinement. The original merge operation for strong re-
finement, from [Larsen et al., 1996], was also incomplete in asimilar way, requiring the
existence of an independence relation. In addition, the algorithm presented in this section
is an extension to that of [Fischbein and Uchitel, 2008] and hence is complete with respect
to strong refinement.

The second cause for incompleteness is that the abstractionstrategy based on cloning
and cover sets is not sufficiently strong to guarantee that the LCR or MCRs will be reached
through successive abstractions. For example, consider modelsD andE in Figure 15. Their
common refinement,DE, is strictly more refined than MERGE(D, E).

In general, a complete merge algorithm is not possible. The reason for this is that two
MTSs may have an infinite number of MCRs. Encoding such cases in a single MTS would
result in a model with an infinite number of states.

While incomplete, the MERGE algorithm is better than the one presented in [Uchitel
and Chechik, 2004]. For the cases handled by the algorithm in[Uchitel and Chechik,
2004], MERGEcan compute more abstract common refinements. In addition, MERGEcan
compute common refinements (and possibly minimal common refinements) for a broader
range of consistent MTSs.

Some sufficient rules for guaranteeing completeness have been explored in [Brunet,
2006]. However, they are either not intuitive enough to be practical to an engineer, or
overly restrictive.

The time complexity of the merge algorithm strongly dependson the amount of non-
determinism of the model produced by the application of the+cr operation. If this initial
approximation of the merge is deterministic the time complexity is polynomial. However, it
grows exponentially with the degree of non-determinism of the model. The degree of non-
determinism is defined as follows: The degree of non-determinism of a model on a given
state and label is equal to the number of outgoing transitions with that label minus one.
The degree of non-determinism of an MTS is the sum of the degree of non-determinism
for every state and label. Thus, our MERGE algorithm has the same complexity as the
merge algorithm for strong refinement [Fischbein and Uchitel, 2008]. However, while both
algorithms are exponential in time and polynomial in space,the degree of non-determinacy
is higher for the cases of weak alphabet refinement, rendering the corresponding algorithm
more expensive in practice.

From a practical perspective, time complexity of MERGEmay not be problematic since
the algorithm approximates the final result by iterative abstraction operations, and thus the
user may decide to cut the process short and obtain a model that is a common refinement of
the original ones. As this approximation characterizes implementations that satisfy require-
ments captured in the original models, it can still be usefulfor validation and verification
of the system behaviour. The only potential issue with cutting the merge of MTSsM and
N short is that if the resulting model is then merged with a third model,P , a spurious

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

30 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

inconsistency may be obtained: The resulting common refinement ofM andN may not
be abstract enough to include a valid implementation that isalso an implementation ofP .
This problem can be resolved by computing ann-ary rather than pairwise merge, which
we discuss in Section 10.3.

7. ALGEBRAIC PROPERTIES OF MERGE

In practice, partial behaviour model construction, refinement and merging are likely to be
combined in many different ways, possibly in conjunction with other operators on partial
models, such as parallel composition. Therefore, it is essential to study their algebraic
properties, to guarantee that the overall process yields sensible results. For example, does
the order in which various partial models are merged matter?Is it the same to merge
two models and elaborate the result through refinement as it is to elaborate the models
independently and then merge them? In this section, we aim toanswer such questions.
Specifically, we show that while the existence of multiple non-equivalent MCRs does not
guarantee many of the properties that hold when LCRs exist, the right choice of an MCR
among the possible merges can be made in order to guarantee particular algebraic proper-
ties. In Section 9, we apply these results to a case study.

7.1 Properties of Parallel Composition

We first study properties of the parallel composition operator proposed by Larsen in [Hüttel
and Larsen, 1989]. We study the relation between the implementations of two MTSs to be
composed in parallel with the implementations of the model resulting from the application
of the parallel composition operator. The results provide,on one hand, an insight into
the semantics of the parallel composition operator, and on the other, property preservation
results that are important to understand how merge and parallel composition can be used
together.

Composing two MTSs in parallel should result in a model that characterizes all pairwise
parallel compositions of implementations of each of the MTSs. In other words, given
MTSsM andN , it is expected that

I[M ||N] = {IM ||IN | IM ∈ I[M] ∧ IN ∈ I[N]}) (1)

independently of the choice of refinement (strong, weak, weak alphabet).
However, this is not the case even under strong refinement. Consider the models in

Figure 16. ModelIF||G is a strong refinement ofF||G. Yet it is easy to see that there are
no implementationsIF andIG of F andG, respectively, such thatIF||G ≡ IF||IG: In all
implementations ofF, if ℓ occurs,b is then enabled. In implementations ofG, the traceℓ, b
must be possible. So the parallel composition of an implementation ofF andG must either
not haveℓ transitions, or it must allow the behaviourℓ, b.

Although it is tempting to think that the problem is the non-deterministic choice inN ,
this is not the case. Consider models in Figure 17. BothH andI are deterministic, andIH||I

is a strong refinement ofH||I. Yet there are noIH andII such that their parallel composition
is equivalent toIH‖I. Intuitively, the problem is that if we pick implementations ofH andI
which admitb anda respectively, their parallel composition should admit anyinterleaving
of these two actions. Yet inIH‖I, only one interleaving is allowed.

Summarizing, the MTS parallel composition operator in [Hüttel and Larsen, 1989] pro-
duces a superset of the expected implementations (see Equation (1) above) independently
of the choice of refinement (strong, weak, weak alphabet):

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 31

F||G:
0 1

2

ℓ?

ℓ?
a?

b

F:
0 1

ℓ?

a, b
G:

0 1

2

ℓ?

ℓ

a?

b

IF||G:
0 1

ℓ
a

Fig. 16. Examples for Parallel Composition: Non-Deterministic Models.

H||I:
0 1

2 3

a?

b?

a?

b? H:
0 1

b?

I:
0 1

a?

IH||I: 0 1 3
a b

Fig. 17. Example for Parallel Composition: Deterministic Models with Different Alphabets.

THEOREM 7.1. (Implementations of the MTS Parallel Composition Operator)For MTSs
M andN ,

I[M‖N] ⊇ {IM‖IN | IM ∈ I[M] ∧ IN ∈ I[N]}).

It is possible to enunciate restrictions that make the parallel composition operator correct
and complete with respect to a semantic definition along the lines of the one proposed in
Equation (1). The restrictions are that the two MTSs to be composed in parallel have
the same alphabet and that the operator yields a deterministic MTS. In addition, we must
restrict the result to the universe of deterministic implementations:

THEOREM 7.2. (Parallel Composition Preserves Deterministic Implementations)For
MTSsM andN , if αM = αN andM ||N is deterministic, then

Idet[M ||N] = {IM ||IN | IM ∈ I
det[M] ∧ IN ∈ I

det[N]})

under strong, weak and weak alphabet refinement.

Even though the parallel composition operator admits more implementations than it
should (Theorem 7.1), the following results provide guarantees of property preservation
and give methodological guidelines as to how to use parallelcomposition in partial be-
haviour model elaboration.

The implementations characterized byM‖N can be simulated by the parallel composi-
tion of some choiceof implementations ofM andN .

The notion of simulation between transition systems was originally introduced in [Mil-
ner, 1989]. A formal definition is presented below.

DEFINITION 7.1. (Simulation)[Milner, 1989] Let LTSsP andQ such thatαP = αQ.
Q simulatesM , writtenP ⊑s Q, iff (P,Q) is contained in somesimulation relationR ⊆
℘× ℘, for which the following holds for allℓ ∈ Act and for all (P ′, Q′) ∈ R:

∀P ′′ · (P ′ ℓ
−→ P ′′ ⇒ ∃Q′′ ·Q′ ℓ

−→ Q′′ ∧ (P ′′, Q′′) ∈ R)

THEOREM 7.3. (Parallel Composition Preserves Simulation)LetM andN be MTSs
andIM||N be an LTS. IfIM||N ∈ IA[M ||N], then

∃IM ∈ IA[M], IN ∈ IA[N] · (αIM ∩ αIN = αM ∩ αN) ∧ (IM||N ⊑s IM‖IN)

Given that simulation relations preserve safety properties ([Abadi and Lamport, 1991]),
a corollary of the above theorem is that true safety properties are preserved by parallel
composition. That is, if a safety property holds in an MTS, italso holds in its parallel
composition with every other MTS.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

32 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

J: 0 1
c K: 0 1

c? L: 0 M: 0 1 2
c? a N: 0 1

b P: 0 1 2
c b

Fig. 18. Example MTSs for algebraic properties.

COROLLARY 7.1. (Parallel Composition Preserves True Safety Properties) [Uchitel
et al., 2009] LetM andN be MTSs andϕ ∈ FLTL. If ϕ is a safety property and
‖ϕ‖M = t, then‖ϕ‖M‖N = t.

The implications of the results discussed so far are that if,when elaborating the be-
haviour of the system-to-be, we have a partial description of the system and a partial be-
haviour of the environment, it is possible to reason compositionally about the safety prop-
erties of the composite system-environment. However, it isincorrect to compose these
models in parallel and continue the elaboration process based on the composite model;
elaboration must proceed in a component-wise fashion, refining the model of the system
and of the environment separately. In fact, component-wiseelaboration is standard for
traditional approaches to behaviour modelling and analysis.

In Section 7.2, we show that the result on property preservation discussed above also
plays a role in behaviour elaboration when using merge, morespecifically, in the distribu-
tivity of merge over parallel composition.

7.2 Properties of LCRs

In this subsection, we discuss properties related to modelsfor which the existence of a
unique minimal common refinement can be guaranteed. In the next subsection, the unique-
ness requirement is relaxed.

PROPERTY 7.1. For MTSsM ,N , andP , the following properties hold:

1. (Idempotence) LCRM,M ≡M .
2. (Commutativity) If∃LCRM,N , thenLCRM,N ≡ LCRN,M .
3. (Associativity) If∃LCRM,N , ∃LCRP,LCRM,N

, and∃LCRN,P , then
∃LCRM,LCRN,P

andLCRP,LCRM,N
≡ LCRM,LCRN,P

.

A useful property of LCR is monotonicity with respect to refinement as it allows elabo-
rating different viewpoints independently while ensuringthat the properties of the original
viewpoints put together still hold.

PROPERTY 7.2. (Monotonicity 1)Let MTSsM ,N andP be given. IfLCRM,N exists,
M � P andN � Q, thenLCRM,N � C for all C ∈ MCR(P,Q).

We now look at distributing merge over parallel composition: Assume that two stake-
holders have developed partial modelsM andN of the intended behaviour of the same
component. Each stakeholder will have verified that some required properties hold in a
given context (other components and assumptions on the environmentP1, . . ., Pn). It
would be desirable if merging viewpointsM andN preserved the properties of both stake-
holders under the same assumptions on the environment, i.e., for LCRM,N ‖ P1 ‖ · · · ‖
Pn.

The following property supports the above reasoning and follows from Corollary 7.1
and the fact that parallel composition is monotonic under weak alphabet refinement.

PROPERTY 7.3. (Monotonicity 2)If M �a N andαP ⊆ αM , thenM‖P �a N‖P .

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 33

PROPERTY 7.4. LetM , N , andP be MTSs such thatαP ⊆ αM ∩ αN andϕ is a
safety FLTL property. If‖ϕ‖M‖P = t or ‖ϕ‖N‖P = t, then‖ϕ‖LCRM,N‖P = t.

7.3 Properties of MCRs

In this subsection, we present algebraic properties of merging without assuming the ex-
istence of the LCR. The algebraic properties are therefore stated in terms of sets and the
different choices that can be made when picking an MCR. Idempotence is the only prop-
erty of Section 7.2 that still holds as is, since an LCR alwaysexists between a system and
itself. The rest of the properties discussed in Section 7.2 require some form of weakening.

Commutativity of merge holds independently of the existence of an LCR. The following
property states that the set of MCRs obtained fromM andN is the same as those obtained
fromN andM .

PROPERTY 7.5. (Commutativity)MCR(M,N) =MCR(N,M).

On the other hand, associativity cannot be guaranteed the same way as commutativity.
That is, it cannot be guaranteed that the same MCRs are achieved regardless of the order
in which the three MTSs are merged. However,the set of implementations(see Defini-
tion 3.15) reachable through refinement is not affected by the merge order.

PROPERTY 7.6. (Associativity)LetI(X) =
⋃

x∈X

I(x) and letM ,N , andP be MTSs.

Then,

I(
⋃

A∈MCR(N,P)

MCR(M,A)) = I(
⋃

A∈MCR(M,N)

MCR(A,P)).

From a practical perspective, the above property says that an engineer with a specific im-
plementation in mind is able to reach it through successive refinements, regardless of the
merge order of the three models. However, if the goal is not toachieve a specific imple-
mentation but rather obtain a particular partial model characterizing the implementations
that conform to the three MTSs, then the merge order becomes important. This problem
can be solved by defining ann-ary merge, as discussed in Section 10.3.

Monotonicity is also disrupted by multiple MCRs. It is not expected that any choice
fromMCR(M,N) is refined by any choice fromMCR(P,N) whenM is refined byP ,
because incompatible decisions may be made in the two merges. Rather, there are two
desirable forms of monotonicity: (1) whenever a choice fromMCR(M,N) is made, a
choice fromMCR(P,N) can be made such a refinement holds; and (2) whenever a choice
fromMCR(P,N) is made, some model inMCR(M,N) can be chosen for a refinement
to exist.

Form (1) does not hold, as the following example shows. Consider modelsK andN in
Figure 18 withαK = {c} andαN = {b}. These models are consistent, and their merge
may result in modelP ∈MCR(K,N). Also,K � L (assuming thatαL = {c}) and models
L andN are consistent. However,LCRL,N is equivalent toN over{b, c}, and sinceN � P,
no MCR ofL andN that refinesP can be chosen.

Form (1) fails because there are two choices of refinement being made. On the one hand,
by picking one minimal common refinement forM andN over others, we are choosing
one of several incompatible refinements. On the other hand, we are also choosing how
to refineM into P . These two choices might be inconsistent, leading to the failure of
monotonicity. This tells us that choosing an MCR adds information to the merged model,

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

34 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

which may be inconsistent with evolutions of the different viewpoints that are represented
by the models being merged. Form (2) always holds, as stated below.

PROPERTY 7.7. (Monotonicity)If M, N, P, and Q are MTSs, then:

M � P ∧N � Q⇒ ∀B ∈ MCR(P,Q) · ∃A ∈ MCR(M,N) ·A � B.

Thus, once a model inMCR(P,Q) is chosen, there always exists some model inMCR(M,N)
that it refines, and so the properties of each MCR ofM andN are preserved by the MCRs
of P andQ. If MCR(M,N) is a singleton set, Property 7.7 reduces to Property 7.3, as
expected. In practical terms, this means that if the variousviewpoints are still to be elab-
orated, the results of reasoning about one of their possiblemerges (picked arbitrarily) are
not guaranteed to carry through once the viewpoints have been further refined.

Finally, Property 7.4 can also be extended to the context of multiple MCRs:

PROPERTY 7.8. LetM ,N , andP be MTSs such thatαP ⊆ αM∩αN andϕ is a safety
FLTL property. If‖ϕ‖M‖P = t or ‖ϕ‖N‖P = t, then∀A ∈ MCR(M,N) · ‖ϕ‖A‖P = t.

In this subsection, we have shown that properties which holdfor LCRs do not hold
when consistent models have no unique MCR (Section 7.2). Intuitively, the existence of
nonequivalent MCRs implies that merging involves a choice that requires some form of
human intervention: a choice which requires domain knowledge. While this affects some
of the algebraic properties of merge, we have shown that these properties do hold in terms
of preservation of implementations.

8. TOOL SUPPORT

We have developed a tool that supports construction and analysis of MTS models: the
Modal Transition System Analyzer (MTSA) [D’Ippolito et al., 2008] (available athttp:
//sourceforge.net/projects/mtsa/files/mtsa/MTSA-R2/). The basic
mechanism for describing MTS models is using a text languagebased on the FSP process
algebra [Magee and Kramer, 1999] and includes operators such as sequential and parallel
composition, and hiding, in addition to the MTS merge operator. The tool also supports
visualization of MTSs in a graphical format, and various analyses such as animation, mo-
del checking of FLTL properties, consistency checking, as well as deadlock freedom and
refinement checks.

The tool builds upon the Labelled Transition System Analyzer (LTSA) [Magee and
Kramer, 1999], utilizing and extending its graphical user interface as well as specific anal-
ysis algorithms for LTSs. For instance, MTSA implements 3-valued FLTL model check-
ing of MTSs (under inductive semantics) by reducing the problem to two classical FLTL
model-checking runs on LTS models (see Theorem 3.3). Hence,MTSA builds on top of
the model checking features of LTSA.

9. A CASE STUDY: THE MINE PUMP

We have applied the results described in this paper to a number of case studies includ-
ing the Philips television product family [van Ommering et al., 2000] and use-case based
specifications of information system.

The purpose of this section is to show, by means of the mine pump [Kramer et al., 1983]
case study, how the results described earlier in this paper are exploited in an incremen-
tal behaviour model elaboration process. We do focus on multiple iterations nor on the

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 35

(a) 0 1 2

medWater highWater

medWaterlowWater

(b) 0 1

methAppears

methLeaves

(c) 0 1

switchOn

switchOff

switchOff

(d) 0 1

dangerLightOn

dangerLightOff

Fig. 19. The LTSs for (a)WaterLevelSensor, (b) MethaneSensor, (c) Pump, and (d)DangerLight

high-level languages that can be used to describe behaviourfrom which MTS models are
synthesized as this is beyond the scope of this paper.

All analyses were performed automatically by means of the MTSA tool described above.
In Section 9.1, we give a high level overview and introduce some components of the case
study. In Section 9.2, we show how a behaviour model for the case study can be constructed
by merging partial models of the intended system behaviour,and how tool-supported vali-
dation of the resulting model can prompt further elaboration. We construct the final model,
which satisfies the expected requirements, through successive merge operations over par-
tial models.

9.1 Informal Description

A pump controller is used to prevent the water in a mine sump from passing some thresh-
old, and hence flooding the mine. To avoid explosions, the pump may only be active when
there is no methane gas present in the mine. The pump controller monitors the water and
methane levels by communicating with two sensors. In addition, the pump is equipped
with a danger light that is intended to reflect the presence ofmethane in the sump.

The mine pump system consists of five components:WaterLevelSensor, MethaneSensor,
DangerLight, PumpController, andPump. The complete system,MinePumpSystem, is the
parallel composition of these components.WaterLevelSensormodels the water sensor and
includes assumptions on how the water level is expected to change between low, medium,
and high. MethaneSensorkeeps track of whether methane is present in the mine,Pump
andDangerLightmodel the physical pump and danger light, respectively, which can be
switched on and off. The LTSs for these components are shown in Figure 19, where we
assume that initially the water is low, the pump is off, no methane is present, and the danger
light is off. PumpControllerdescribes the controller that monitors the water and methane
levels, controls the pump in order to guarantee the properties of the mine pump system,
and also maintains the status of the danger light according to the methane level.

The informal description given above leaves open the exact water level at which to turn
the pump on and off. For example, the pump could be turned on when there is high water
or possibly when the water is not low, (e.g., at a medium level). The pump could be turned
off when there is low water or possibly when the water is not high. In what follows, we
investigate models for the pump controller, which are intended to be merged to create a
model of the entire system, namely,MinePumpSystem.

9.2 Model Construction and Elaboration

We begin by formalizing the requirements of the intended system behaviour given in Sec-
tion 9.1 and providing the MTSs initially used to model partial operational views of this
behaviour. We then show how the merging and analysis resultspresented earlier in this
paper can support the elaboration of a final system model thatsatisfies the intended re-
quirements.

9.2.1 Initial Models and Properties.Assume that requirements specification of the
pump has been organized following the IEEE Recommended Practice for Software Re-

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

36 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

quirements Specifications Standard 830 [IEEE, 1994], whichprovides a template for struc-
turing requirements based on the operation mode of the system-to-be. Consequently, re-
quirements are grouped into those that are relevant when themine pump is on and those in
which the mine pump is off.

As with the ATM example presented in Section 2, the operational requirements for the
mine pump controller could be given in a variety of specification languages. From some
of these languages (e.g., MSCs, use cases or temporal logics), MTS models could be syn-
thesized automatically [Uchitel et al., 2007; Uchitel et al., 2009]. Synthesis of MTSs is
beyond the scope of this paper and consequently of this case study. Hence, we assume that
two MTSs have been constructed manually or (semi-)automatically from the requirements
corresponding to each mode.

Thus, we begin with two MTSs for the pump controller: one corresponding to the mode
in which the pump is off and which specifies when the pump should be switchedon (re-
ferred to as the “on policy”, orOnPolicy– see Figure 20) and another – for the mode in
which the pump is on and which specifies when the pump should beswitchedoff (referred
to as the “off policy”, orOffPolicy – see Figure 21). While Figure 20 contains both a
graphical depiction and a textual representation ofOnPolicy, for larger models, such as
OffPolicy, we use only a textual representation, as in Figure 21.

OnPolicyturns the pump on when there is high water and no methane present, and leaves
open the possibility of turning the pump on when there is medium water. It keeps track
of the state of the pump in addition to the level of methane andwater in order to enable
switching the pump on at the appropriate moment. The MTS depicted in Figure 20 for
OnPolicyis easier understood by noting that the four states in the tophalf of the diagram
correspond to the water being high, and those in the lower half correspond to the water not
being high; the states on the left side model the case when there is no methane present,
while the right side has states in which methane is present; and finally, the four states in
the center correspond to the pump being on, while the outer four states are when the pump
is off. Note stateQ1 which requiresswitchOn; this state is central to enforcing the “on
policy”.

TheOffPolicyturns the pump off when there is low water or methane present.To do this,
it keeps track of the state of the pump and changes in the waterand methane levels to force
switchOff as soon as the water becomes low or methane appears. In addition, OffPolicy
models a danger light with actionsdangerLightOnanddangerLightOff(unobservable to
OnPolicy), turning the light on when methane is present in the mine. The intention of the
model is to guarantee that the danger light warns miners whenmethane is present; hence,
the corresponding danger light action is the only action allowed upon changes in the level
of methane.

Each of the models has been validated independently and found to correspond to the
intended behaviour of the pump. The validation of these models may have included human-
centric activities such as inspection and observation of animations and simulations, and
automated verification techniques such as model checking each model individually against
alternative specifications of the system. Specifically, we assume that the validation of the
MTS models included properties that both models are expected to satisfy. These areΦ1

andΦ2, which express that the pump should only be turned on if it is already off, and
should only be turned off if it is already on, respectively (see Table I). In addition, an
expected property for the on policy isΦ3, which states that when there is high water and
no methane, the pump should be immediately turned on if it is not on already. An expected

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 37

Q0 Q2

Q5Q1

Q3 Q6

Q7Q4

lowWater?
medWater?

methaneLeaves?
switchOff?

h
ig

h
W

a
ter?

methaneAppears?

switchOn?

switch
On

methaneLeaves?

lowWater?
medWater?

methaneAppears?
switchOff?

h
ig

h
W

a
ter?

switch
On?

switchOff?

lowWater?
medWater?

methaneLeaves?
switchOn?

h
ig

h
W

a
ter?

methaneAppears?

lo
w

W
a
ter?,

m
e
d
W
a
te
r
?

highWater?
methaneLeaves?

switchOn?
methaneAppears?

methaneLeaves?

lo
w

W
a
ter?,m

ed
W

a
ter?

highWater?
methaneAppears?

switchOff?

switchOn?

switch
Off?

methaneLeaves?
lowWater?
medWater?

methaneAppears?
switchOn?

h
ig

h
W

a
ter?

methaneLeaves?

switchOff?

lo
w

W
a
ter?,m

ed
W

a
ter?

highWater?
methaneAppears?

switchOn?

OnPolicy = Q0,
Q0 = ({lowWater?, medWater?,

methaneLeaves?, switchOff?} -> Q0
|highWater? -> Q1
|methaneAppears? -> Q2
|switchOn? -> Q3),

Q1 = (switchOn -> Q4),
Q2 = (methaneLeaves? -> Q0
|{lowWater?, medWater?,

methaneAppears?, switchOff?} ->
Q2

|highWater? -> Q5
|switchOn? -> Q6),

Q3 = (switchOff? -> Q0
|{lowWater?, medWater?, methaneLeaves

?, switchOn?} -> Q3
|highWater? -> Q4
|methaneAppears? -> Q6),

Q4 = ({lowWater?, medWater?} -> Q3

|{highWater?, methaneLeaves?,
switchOn?} -> Q4

|methaneAppears? -> Q7),
Q5 = (methaneLeaves? -> Q1
|{lowWater?, medWater?} -> Q2
|{highWater?, methaneAppears?,

switchOff?} -> Q5
|switchOn? -> Q7),

Q6 = (switchOff? -> Q2
|methaneLeaves? -> Q3
|{lowWater?, medWater?,

methaneAppears?, switchOn?} ->
Q6

|highWater? -> Q7),
Q7 = (methaneLeaves? -> Q4
|switchOff? -> Q5
|{lowWater?, medWater?} -> Q6
|{highWater?, methaneAppears?,

switchOn?} -> Q7).

Fig. 20. The graphical and the textual representations of the MTS forOnPolicy.

property for the off policy isΦ4, which states that if there is low water or methane present,
the pump should be immediately turned off if it is not off already.

9.2.2 Analysis.Using MTSA [D’Ippolito et al., 2008], we verify that inOnPolicy, Φ3

evaluates totrue , but propertiesΦ1, Φ2 andΦ4 evaluate tomaybe(see Table II). We
further determine that inOffPolicy, Φ2 andΦ4 evaluate totrue , but propertiesΦ1 andΦ3

evaluate tomaybe.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

38 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

OffPolicy = Q0,
Q0 = (lowWater? -> Q0
|{highWater?, medWater?} -> Q1
|methaneLeaves? -> Q15
|methaneAppears? -> Q16),

Q1 = (lowWater? -> Q0
|{highWater?, medWater?} -> Q1
|switchOn? -> Q2
|methaneLeaves? -> Q13
|methaneAppears? -> Q14),

Q2 = (switchOff? -> Q1
|{highWater?, medWater?, switchOn?}

-> Q2
|methaneLeaves? -> Q3
|methaneAppears? -> Q4
|lowWater? -> Q12),

Q3 = (dangerLightOff -> Q2),
Q4 = (dangerLightOn -> Q5),
Q5 = (switchOff -> Q6),

Q6 = ({highWater?, medWater?} -> Q6
|methaneLeaves? -> Q7
|methaneAppears? -> Q8
|lowWater? -> Q9),

Q7 = (dangerLightOff -> Q1),
Q8 = (dangerLightOn -> Q6),
Q9 = ({highWater?, medWater?} -> Q6
|lowWater? -> Q9
|methaneLeaves? -> Q10
|methaneAppears? -> Q11),

Q10 = (dangerLightOff -> Q0),
Q11 = (dangerLightOn -> Q9),
Q12 = (switchOff -> Q0),
Q13 = (dangerLightOff -> Q1),
Q14 = (dangerLightOn -> Q6),
Q15 = (dangerLightOff -> Q0),
Q16 = (dangerLightOn -> Q9).

Fig. 21. The MTS forOffPolicy.

MonitoredActions, (highWater∨ lowWater∨ medWater∨ methaneAppears∨ methaneLeaves)
(auxiliary definition: an action monitored by the pump controller has occurred)

Φ1 = 2(PumpOn⇒ X(¬switchOnW ¬PumpOn))
(the off policy: the pump is turned off when there is low water or methane present)

Φ2 = 2(¬PumpOn⇒ X(¬switchOff W PumpOn))
(the pump can only be turned on if it is currently off)

Φ3 = 2(AtHighWater∧ ¬MethanePresent⇒ X(¬MonitoredActionsW PumpOn))
(the pump can only be turned off if it is currently on)

Φ4 = 2(AtLowWater∨ MethanePresent⇒ X(¬MonitoredActionsW ¬PumpOn))
(the on policy: the pump is turned on when there is high water and no methane)

Table I. Desired properties ofMinePump, expressed in FLTL.

Maybevalues ofΦ4 onOnPolicyand ofΦ3 onOffPolicyare reasonable as neither model
was produced with the initial goal of satisfying these properties. This gives us reason to
believe that it is possible to construct an implementation that conforms to both policies and
satisfies both properties. We construct such an implementation below by determining that
the policies are consistent, merging them, and obtaining a model whose implementations
satisfy the properties.

Interestingly, although all implementations ofOffPolicy are guaranteed to satisfyΦ2,
only some are guaranteed to satisfyΦ1! This is not necessarily a modelling error, rather, it
can mean that assumptions are being made about the behaviourof the environment.

Specifically, thePumpmodel in Figure 19 does not allow the pump to be switched on
when it is currently on; hence, it guaranteesΦ1, as verified by MTSA. This is sufficient to
guarantee (using Corollary 7.1 and the fact thatΦ is a safety property) thatΦ1 evaluates to
true inOffPolicy‖Environment, where

Environment= WaterLevelSensor‖MethaneSensor‖Pump‖DangerLight.

While theoretical results guarantee thatΦ1 is true in OffPolicy‖Environment, we can
check this using MTSA, obtaining the expected results (see Table II).

In summary, propertiesΦ1 andΦ2 evaluate tomaybein OnPolicy, and similarly toOff-
Policy, the model of thePumpguarantees that any controller that conforms toOnPolicy

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 39

Φ1 Φ2 Φ3 Φ4

OnPolicy maybe maybe true maybe
OffPolicy maybe true maybe true

Pump true false - -
Environment, Pump‖ MethaneSensor‖ WaterLevelSensor‖ DangerLight true false false false

OnPolicy‖ Environment true maybe true maybe
OffPolicy‖ Environment true true maybe true

PumpController1 , OnPolicy++ OffPolicy maybe true true true
(OnPolicy‖ Environment) ++ (OffPolicy‖ Environment) true true true true

PumpController1 ‖ Environment true true true true

PumpController2 , PumpController1 ++ MethaneSensor++ WaterLevelSensor maybe true true true
PumpController2 ‖ Environment true true true true

Table II. Property evaluation in different models.

satisfiesΦ1 when composed with the environment. However, neitherEnvironmentnor
OnPolicyguaranteeΦ2, nor does their parallel composition.

9.2.3 Merged Policies.SinceΦ3 evaluates tomaybein OffPolicy and totrue in On-
Policy, while Φ4 evaluate totrue in OffPolicyandmaybein OffPolicy, if the policies are
consistent, that is, there are implementations that conform to both, then these implementa-
tions satisfy both properties. This is due to Corollary 4.1,since refinement preserves FLTL.
In addition, sinceOffPolicyalso satisfiesΦ2, LTSs that implement both policies satisfy this
property as well.

Using MTSA, we can check that the two policies are consistentand build their merge,
shown in Figure 22 (in MTSA terms, MERGE(M , N) is denotedM ++ N). MTSA can
also be used to verify that propertiesΦ2-Φ4 aretrue (as guaranteed by Corollary 4.1) and
Φ1 is maybein PumpController1 = OnPolicy ++ OffPolicy.

However, what can be said about the truth ofΦ1? This property holds inOffPolicy‖
Environmentand inOnPolicy‖ Environment. Hence, it also holds in their merge:

(OffPolicy‖Environment) ++ (OnPolicy‖Environment). (2)

Yet we are interested in building a model for the pump controller and composing this model
with its environment. In other words, we wish to reason about

(OffPolicy++ OnPolicy)‖Environment. (3)

By Property 7.8 (see Section 7.3), factoring out the parallel composition in (2) to obtain
(3) is guaranteed to preserve true safety properties of (2),includingΦ1. We can use MTSA
to verify that (OffPolicy++ OnPolicy) ‖ Environmentis a refinement of (OffPolicy‖ Envi-
ronment) ++ (OnPolicy‖ Environment), and that (OffPolicy++ OnPolicy) ‖ Environment
satisfies propertiesΦ1-Φ4.

9.2.4 Elaboration. We can now construct the full model of the mine pump system by
composingPumpController1 in parallel with models of the water level sensor, the methane
sensor and the pump:

MinePumpSystem1 = PumpController1‖Environment.

The result, depicted in Figure 23, has manymaybetransitions and admits deadlocking
implementations. This can be checked using MTSA or by visualinspection, looking for
reachable states without outgoing required transitions. This indicates a problem: The com-
bined policies admit implementations of the pump controller which can deadlock if com-

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

40 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

PumpController1 = Q0,
Q0 = (lowWater? -> Q0

|medWater? -> Q7
|methaneAppears? -> Q9
|highWater? -> Q10
|methaneLeaves? -> Q22),

Q1 = (medWater? -> Q1
|highWater? -> Q2
|lowWater? -> Q3
|methaneLeaves? -> Q13
|methaneAppears? -> Q15),

Q2 = (medWater? -> Q1
|highWater? -> Q2
|lowWater? -> Q3
|methaneAppears? -> Q16
|methaneLeaves? -> Q24),

Q3 = (medWater? -> Q1
|highWater? -> Q2
|lowWater? -> Q3
|methaneLeaves? -> Q14
|methaneAppears? -> Q19),

Q4 = (dangerLightOn -> Q1),
Q5 = (dangerLightOn -> Q17),
Q6 = (dangerLightOn -> Q18),
Q7 = (lowWater? -> Q0

|methaneAppears? -> Q4
|medWater? -> Q7
|highWater? -> Q10
|switchOn? -> Q20

|methaneLeaves? -> Q23),
Q8 = (switchOff -> Q0),
Q9 = (dangerLightOn -> Q3),
Q10 = (switchOn -> Q21),
Q11 = (dangerLightOff -> Q21),
Q12 = (dangerLightOff -> Q20),
Q13 = (dangerLightOff -> Q7),
Q14 = (dangerLightOff -> Q0),
Q15 = (dangerLightOn -> Q1),
Q16 = (dangerLightOn -> Q2),
Q17 = (switchOff -> Q2),
Q18 = (switchOff -> Q1),
Q19 = (dangerLightOn -> Q3),
Q20 = (methaneAppears? -> Q6

|switchOff? -> Q7
|lowWater? -> Q8
|methaneLeaves? -> Q12
|{medWater?, switchOn?} -> Q20
|highWater? -> Q21),

Q21 = (methaneAppears? -> Q5
|lowWater? -> Q8
|methaneLeaves? -> Q11
|medWater? -> Q20
|{highWater?, switchOn?} -> Q21),

Q22 = (dangerLightOff -> Q0),
Q23 = (dangerLightOff -> Q7),
Q24 = (dangerLightOff -> Q10).

Fig. 22. The MTS forPumpController1 .

System_It1 = Q0,
Q0 = (methaneAppears? -> Q1

|medWater? -> Q2),
Q1 = (dangerLightOn -> Q3),
Q2 = (lowWater? -> Q0

|highWater? -> Q4
|methaneAppears? -> Q5
|switchOn? -> Q6),

Q3 = (methaneLeaves? -> Q7
|medWater? -> Q8),

Q4 = (switchOn -> Q9),
Q5 = (dangerLightOn -> Q8),
Q6 = (switchOff? -> Q2

|highWater? -> Q9
|lowWater? -> Q10
|methaneAppears? -> Q11),

Q7 = (dangerLightOff -> Q0),
Q8 = (lowWater? -> Q3

|methaneLeaves? -> Q12
|highWater? -> Q13),

Q9 = (medWater? -> Q6
|methaneAppears? -> Q14),

Q10 = (switchOff -> Q0),
Q11 = (dangerLightOn -> Q15),
Q12 = (dangerLightOff -> Q2),
Q13 = (medWater? -> Q8

|methaneLeaves? -> Q16),
Q14 = (dangerLightOn -> Q17),
Q15 = (switchOff -> Q8),
Q16 = (dangerLightOff -> Q4),
Q17 = (switchOff -> Q13).

Fig. 23. The MTS forMinePumpSystem1 .

posed with the environment. Thus, we need to further refine the partial model of the pump
controller,PumpController1.

There is an implicit requirement not addressed by the partial model of the controller:
it cannot block the environment inputs. The requirement canbe satisfied by merging the
controller modelPumpController1 with another MTS that captures this requirement, i.e.,
that has required transitions on the controller’s inputs: water-level and methane events.

MergingPumpController1 with the models forWaterLevelSensorandMethaneSensor
achieves the desired result:

PumpController2 = PumpController1 ++ WaterLevelSensor++ MethaneSensor

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 41

Controller2 = Q0,
Q0 = (methaneAppears? -> Q4

|medWater -> Q13),
Q1 = (switchOff -> Q9),
Q2 = (switchOn -> Q11),
Q3 = (dangerLightOn -> Q1),
Q4 = (dangerLightOn -> Q15),
Q5 = (switchOff -> Q12),
Q6 = (dangerLightOn -> Q9),
Q7 = (dangerLightOn -> Q5),
Q8 = (switchOff -> Q0),
Q9 = (highWater? -> Q12

|lowWater? -> Q15
|methaneLeaves -> Q17),

Q10 = (methaneAppears? -> Q3
|lowWater? -> Q8
|switchOn? -> Q10

|highWater? -> Q11
|switchOff -> Q13),

Q11 = (methaneAppears? -> Q7
|medWater -> Q10
|switchOn? -> Q11),

Q12 = (medWater -> Q9
|methaneLeaves? -> Q14),

Q13 = (lowWater -> Q0
|highWater -> Q2
|methaneAppears -> Q6
|switchOn? -> Q10),

Q14 = (dangerLightOff -> Q2),
Q15 = (medWater -> Q9

|methaneLeaves? -> Q16),
Q16 = (dangerLightOff -> Q0),
Q17 = (dangerLightOff -> Q13).

Fig. 24. The MTS forPumpController
2
.

satisfies propertiesΦ2-Φ4. PumpController2, depicted in Figure 24, also satisfiesΦ1 under
parallel composition withEnvironment.

Finally, when composed in parallel with its entire environment,Pump, MethaneSensor,
WaterLevelSensorandDangerLight, PumpController2 results in an MTS which only has
deadlock-free implementations. Thus,PumpController2 is the desired model of the pump
controller as all its implementations ensure the correct behaviour (non-deadlocking and
conforming toΦ1-Φ4). The final mine pump system is

MinePumpSystem2 = PumpController2‖Environment.

9.2.5 Discussion.The case study shows that by using MTSs, weak alphabet refine-
ment and merge, we can support the elaboration of a system model from multiple partial
models of the same system. This case study does not use all of the results discussed in this
paper, as doing so would make the models too complex for this presentation. However, the
case study does show the utility of various theoretical results described in previous sec-
tions and, in particular, results about combining merging with parallel composition, which
is the standard operator for compositional construction ofsystem models from complete
(i.e., non-partial, two-valued) component models.

The distributivity property of merge and parallel composition is of particular relevance
as it allows multiple partial models to be developed independently, with their own en-
vironmental assumption, while guaranteeing that the analysis remains valid under these
assumptions as the partial models are merged.

Although the case study highlights how the theoretical results described in previous
sections can be used to reason about the elaboration process, the tool support we have
developed allows this reasoning to be done automatically. The models used in this case
study, in the input format of MTSA, are available athttp://sourceforge.net/
projects/mtsa/.

10. CONCLUSIONS

In this section, we summarize the paper, compare our work with related approaches, and
discuss directions for future research.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

42 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

10.1 Summary

The motivation for the work presented in this paper comes from the need to support the
elaboration of partial behaviour models. In particular, our research has been motivated by
existing limitations for mergingdifferentpartial behaviour models of thesamesystem.

This paper studies merge for Modal Transition Systems whichare a natural extension to
Labelled Transition Systems that support partial behaviour descriptions. Although MTSs
and merge have been studied extensively [Huth et al., 2001; Larsen and Thomsen, 1988;
Larsen et al., 1996; Larsen et al., 1995; Fischbein and Uchitel, 2008; Uchitel et al., 2007;
Uchitel et al., 2009], studies have included the strong assumption that alphabets of all
models are the same. Hence, existing MTS semantics and merge, strongandweak[Larsen
et al., 1996], do not allow for a more natural and realistic approach to modelling in which
different viewpoints being merged have different scopes, and hence different alphabets,
and in which the alphabet of the descriptions is extended as elaboration progresses.

In this paper, we present a study of Modal Transition Systemsunder a new seman-
tics, calledweak alphabet semantics, which supports alphabet elaboration together with
behaviour elaboration. The paper makes a number of contributions including(i) a novel
semantics for MTSs which preserves fluent linear temporal logic (FLTL) properties,(ii)
theoretical and practical results regarding characterization of consistency which extend the
current state of the art [Fischbein and Uchitel, 2008; Larsen et al., 1996],(iii) automated
methods for constructing common refinements and merge,(iv) a study of the algebraic
properties of merge and parallel composition and their relationship with refinement. These
results give rise to a formal framework for partial model elaboration, based on merging and
ensures that such a framework is adequately supported algorithmically.

10.2 Related Work

Below, we survey related work along three directions: (1) behaviour modelling, (2) merg-
ing, and (3) abstraction and property preservation with respect to partial models.

10.2.1 Behaviour Modelling.A significant body of work has been produced in the
area of behaviour modelling, including research on processalgebras (e.g., [Hoare, 1985]),
notions of equivalence and refinement (e.g., [Milner, 1989]), and model checking (e.g.,
[Clarke et al., 1999]). The bulk of this work has used a two-valued semantics approach to
behaviour modelling (e.g., using LTSs [Keller, 1976] as theunderlying formalism). Typi-
cally, the behaviour explicitly described by the underlying state-machine is considered to
be required, while the rest is considered to be prohibited. As stated previously, the as-
sumption that the underlying state machine is complete, up to some level of abstraction, is
limiting in the context of iterative development processes[Boem and Turner, 2004], and
in processes that adopt use-case and scenario-based specifications (e.g., [CREWS, 1999;
Uchitel et al., 2004]), or that are viewpoint-oriented [Hunter and Nuseibeh, 1998].

While LTSs and other two-valued state machine formalisms can capture some notion of
partiality, the behaviour they describe is considered as either the upper or the lower bound
to the final, complete, system behaviour (see our discussionin Section 1),but not both.
Partial behavioural formalisms capture this nicely, by capturing the unknown behaviour
explicitly, so as new information becomes available, the two bounds can be refined simul-
taneously. In MTSs, this unknown behaviour is specified by transitions which are possible
but not required.

In this work, we have focused on Modal Transition Systems which are less expressive

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 43

than other partial behaviour modelling formalisms that have been proposed, such as multi-
valued Kripke structures [Chechik et al., 2003] and Mixed Transition Systems [Dams,
1996]. There is a trade-off between expressiveness, tractability and understandability and
further studies, extending the results presented in this paper to these formalisms, are nec-
essary.

10.2.2 Merging. Composition of behaviour models is not a novel idea [Milner,1989;
Hoare, 1985]; however, its main focus has been onparallel composition, which describes
how twodifferentcomponents work together. In the context of model elaboration, we are
interested inmerge, i.e., composing two partial descriptions of thesamecomponent to
obtain a model that is more comprehensive than either of the original partial descriptions.

The notion of merge in itself is not novel either; it underlies many approaches to system
model elaboration such as viewpoints [Cunningham and Finkelstein, 1986], aspects [Clarke
et al., 2001], and scenario/use case composition (e.g., [Uchitel et al., 2003b; Krueger et al.,
1999]). However, the interplay of partial descriptions andmerge is not necessarily treated
explicitly and formally.

Larsen et. al. originally introduced a merge operator (calledconjunction), but defined it
only for MTSs over the same vocabulary withoutτ transitions, and for which there is an
independence relation(at which point the least common refinement exists) [Larsen et al.,
1995]. Their goal is to decompose a complete specification into several partial ones to
enable compositional proofs. Although not studied in depth, the operator in [Larsen et al.,
1995] is based on strong refinement. In particular, [Larsen et al., 1995; Larsen et al., 1996]
use an incomplete notion of consistency and do not address the problem of multiple MCRs.

The subtleties of the existence of multiple MCRs under weak semantics were initially
discussed in [Uchitel and Chechik, 2004] and then resolved for strong semantics in [Fis-
chbein and Uchitel, 2008]: [Fischbein and Uchitel, 2008] presented a complete and cor-
rect merge algorithm for strong refinement together with a complete characterization of
inconsistency under the same semantics. [Uchitel and Chechik, 2004] study merge and
consistency for weak and weak alphabet semantics; however,the results presented in here
are stronger: We characterize consistency under weak semantics and give a less restrictive
precondition for consistency under weak alphabet semantics than the one given in [Uchitel
and Chechik, 2004].

[Larsen and Xinxin, 1990] defines a conjunction operator forDisjunctive MTSs (DMTSs),
similar to the one in [Larsen et al., 1995]. These models simplify merging by allowing in-
consistencies of models being merged to be encoded within the DMTSs. However, the
computational complexity of merging MTS is traded for the complexity of detecting con-
tradictions: Checking that a DMTS has an implementation by inspection is non-trivial even
in small examples and in general it is computationally as expensive as merge is in MTS.
Checking consistency of an MTS is trivial as by definition anyMTS has an implementa-
tion. The goal of [Larsen and Xinxin, 1990] is to characterize equation solving in process
algebra. In particular, consistency is used to prove satisfiability of a given specification.

Hussain and Huth [Hussain and Huth, 2004] also study the consistency problem, solv-
ing it for multiple 3-valued models, representing different views, with the same alphabet.
But, they focus on the complexity of the relevant model-checking procedures: consistency,
satisfiability, and validity. Instead, our paper addressesthe more general problem of sup-
porting engineering activities in model elaboration. Finally, our models are more general
than the models of Hussain and Huth in that we merge models with different vocabularies

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

44 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

andτ transitions, but less general in that Hussian and Huth handle hybrid constraints, e.g.,
restricting the number of states a given proposition is evaluated in.

MTSs are defined over flat state spaces:∆r and∆p give a partial description of the
behaviours over afinite set of states. Huth et al. [Huth et al., 2002] use the mixed power-
domain of Gunter [Gunter, 1992] to generalize MTSs to non-flat state spaces, modelled as
domains. This extension is more expressive than MTSs, and can be used to represent other
formalisms such as Mixed MTSs or partial Kripke structures.This extension guarantees
uniqueness of merge, but at the expense of a non-trivial consistency check for one model.
Checking whether a model has at least one valid implementation cannot be done in poly-
nomial time. This complexity is “transferred” to the modeller when he or she attempts to
understand a model drawing an intuition from the implementation set given by that model.
In addition, non-uniqueness of merge over MTSs encounteredin our work can be seen as
an opportunity for elicitation, validation, and negotiation of partial descriptions.

Other approaches support merging inconsistent and incomplete views, i.e., enabling rea-
soning in the presence of inconsistencies [Easterbrook andChechik, 2001; Sabetzadeh and
Easterbrook, 2003]. In [Easterbrook and Chechik, 2001] it is assumed that only states
with the same label can be merged, and a similar consistency assumption is made in [Xing
and Stroulia, 2005] in the context of UML differencing. On the other hand, in [Sabetzadeh
and Easterbrook, 2003] a more general category-theoretic approach is presented which is
based on the observation that it is not always clear how to relate two views. They use
graph morphisms to express such relationships, enabling the user to provide this as a third
argument to merge. Nejati and Chechik present a framework for merging4-valued Kripke
structures [Nejati and Chechik, 2005], where the fourth value indicates disagreement. The
aim is to support negotiation for inconsistency resolution, helping users identify and prior-
itize disagreements through visualization. A key difference with the above approaches is
that we focus on merging models that describe only the observable behaviour of a system.
Hence, simulation-like relations, as opposed to relationsthat focus on the state structure,
are appropriate for merging. Models merged by [Easterbrookand Chechik, 2001; Sabet-
zadeh and Easterbrook, 2003; Nejati and Chechik, 2005; Nejati et al., 2007] include state
information, and consequently other notions of preservation, such as isomorphism, apply.

An alternative to partial operational descriptions, whichwe focus on, is the use of declar-
ative specifications. For instance, classical logics are partial in that a theory denotes a set
of models, hence they support merging as the conjunction of theories which denotes the
intersection of their models. Similarly, Live Sequence Charts [Harel et al., 2005] support
merging through logical conjunction, as each chart can be interpreted as a temporal logic
formula. We believe that our approach is complementary and the fact that it models ex-
plicitly possible but not required behaviour may facilitate exploration and validation of
unknown behaviours facilitating further elicitation.

The operation of merging also arises in several other related areas, including synthesis
of StateChart models from scenarios [Krueger et al., 1999],program integration [Horwitz
et al., 1989], and combining program summaries for softwaremodel-checking [Ball et al.,
2004].

The notion of system composition through partial descriptions is at the core of ap-
proaches to feature interaction in telecommunication systems (e.g., [Calder and Magill,
2000; Nejati et al., 2008]). These approaches aim to describe a product through a com-
position of features. When features are described via operational models such as state
machines, the formalisms require that each feature be fullyspecified. It is not possible to

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 45

model the fact that certain aspects of a feature are presently unknown, to compose these
features without having to resolve the unknowns, and to analyze the resulting model in
the presence of these unknowns. Thus, there is no support forreasoning about a family
of products resulting from the unknown aspects of the features used to build the product
model. Furthermore, the notions of merge and composition, prevalent in the feature inter-
action literature, differ from the ones used in this paper (see [Nejati and Chechik, 2008]
for details).

10.2.3 Abstraction and Property Preservation.Explicit partiality corresponds natu-
rally to the lack of information at modelling time. Our work has focused on finding a
more elaborate model, based on refinement, that preserves the properties of two consistent
partial models. The reverse of this process is abstraction,in which a less refined model
is constructed. Unlike merge, abstract models are usually hidden from the user for use in
automatic procedures, e.g., for efficient model-checking of large or infinite state systems.
In addition, the notion of consistency is irrelevant in abstraction, as there is always a model
that refines an abstraction, namely, the original model itself. However, like merge, sound-
ness of abstractions with respect to property preservationis of fundamental importance in
order for abstractions to be of any use when checking properties.

The approach of extending transition systems with a second transition relation describ-
ing unknown behaviour was originally proposed by [Larsen and Thomsen, 1988], and in-
dependently by [Dams, 1996]. Larsen and Thomsen introducedMTSs as a solution to the
completeness limitation of LTSs, and proved that Hennessy-Milner logic [Hennessy and
Milner, 1985] characterizes strong refinement. Dams’ MixedTransition Systems [Dams,
1996; Dams et al., 1997], which are MTSs that do not assume that all required transi-
tions are possible transitions, are used for abstracting Kripke structures. It is shown that
3-valued CTL* properties are preserved by the refinement preorder between these mod-
els [Dams, 1996]. Bruns and Godefroid introduced partial Kripke Structures (PKs) [Bruns
and Godefroid, 1999], which have a single unlabelled transition relation and3-valued state
propositions. They show that3-valued CTL defined over PKs characterizes their complete-
ness preorder.

[Huth et al., 2002] introduced Kripke MTSs (KMTSs) – a state-based version of MTSs.
A KMTS has two transition relations, as in an MTS, but insteadof having labelled transi-
tions, each state is labelled with a set of3-valued propositions. It is shown that3-valued
µ-calculus characterizes refinement defined over KMTSs, which is used as the basis for a
3-valued framework for program analysis.

When a property evaluates tomaybein an abstract model, the model must be further
refined (where refinement corresponds to splitting abstractstates). [Shoham and Grumberg,
2004] show that even standard methods of refining abstract models (e.g. [Godefroid et al.,
2001]) are not monotonic with respect to property preservation. Shoham and Grumberg
define Generalized KMTSs (GKMTSs), an extension of KMTSs with hyper-transitions, as
a solution to this problem, and obtain a monotonic abstraction-refinement framework with
respect to3-valued CTL.

Finally, MTSs, KMTSs, and PKs have the same expressive power[Godefroid and Ja-
gadeesan, 2003], and in addition,4-valued Kripke structure, Mixed Transition Systems and
Generalized Kripke MTSs have the same expressive power as well [Gurfinkel et al., 2006;
Wei et al., 2009].

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

46 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

10.3 Future Work

Our long-term goal is to provide a sound engineering approach to the development of
software systems via automated support for constructing partial behaviour models from
scenario-based specifications, merging and elaborating these partial behaviour models, as
well as enabling users to choose the desired merge from the set of possible minimal com-
mon refinements. In particular, we plan to develop synthesisalgorithms for construct-
ing behaviour models from heterogeneous specifications (e.g. scenarios, properties, state-
machines) and integrate this into our approach to merging partial behaviour models. First
steps towards this goal are reported in [Uchitel et al., 2009].

We intend to continue experimentation by conducting largercase studies in order to
further explore the limitations and the opportunities of the presented framework. One of
the aspects to be addressed in the near future relates the practical difficulties introduced
by merging models with no least common refinement. We aim to develop ann-ary merge
operator that constructs a common refinement from an unbounded number of MTSs and
iteratively abstracts the result. Such an operator would remove the necessity of choosing
MCRs for then− 1 pairwise merges needed to mergen MTSs. It would also prevent the
propagation of any incompleteness introduced by merging models. The fact that MTS are
not closed under merge, i.e., that multiple MCRs may exist, also prompts the question of
whether other partial behaviour modelling formalisms could be developed to better support
incremental behaviour model elaboration.

Acknowledgements

The authors would like to thank Shoham Ben-David and Ivo Krkafor carefully reading
previous drafts of this manuscript. We are also grateful to Arie Gurfinkel for many fruitful
discussions (specifically, about semantics of FLTL) and to anonymous TOSEM reviewers
for their excellent suggestions.

REFERENCES

Abadi, M. and Lamport, L. (1991). “The Existence of Refinement Mappings”. Theoretical Computer Science,
82(2):253–284.

Ball, T., Levin, V., and Xie, F. (2004). “Automatic Creationof Environment Models via Training”. InProceed-
ings of 10th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04), volume 2988 ofLNCS, pages 93–107. Springer.

Boem, B. and Turner, R. (2004).Balancing Agility and Discipline: A Guide for the Perplexed. Person Education.

Brunet, G. (2006). “A Characterization of Merging Partial Behavioural Models”. Master’s thesis, University of
Toronto, Department of Computer Science.

Bruns, G. and Godefroid, P. (1999). “Model Checking PartialState Spaces with 3-Valued Temporal Logics”.
In Proceedings of Proceedings of 11th International Conference on Computer-Aided Verification (CAV’99),
volume 1633 ofLNCS, pages 274–287. Springer.

Bruns, G. and Godefroid, P. (2000). “Generalized Model Checking: Reasoning about Partial State Spaces”. In
Proceedings of 11th International Conference on Concurrency Theory (CONCUR’00), volume 1877 ofLNCS,
pages 168–182. Springer.

Calder, M. and Magill, E. H., editors (2000).Feature Interactions in Telecommunications and Software Systems
VI, May 17-19, 2000, Glasgow, Scotland, UK. IOS Press.

Chechik, M., Devereux, B., Easterbrook, S., and Gurfinkel, A. (2003). “Multi-Valued Symbolic Model-
Checking”. ACM Transactions on Software Engineering and Methodology, 12(4):1–38.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2001). “Progress on the State Explosion Problem in
Model Checking”. In Wilhelm, R., editor,Informatics. 10 Years Back. 10 Years Ahead, volume 2000 ofLNCS,
pages 176–194. Springer-Verlag.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 47

Clarke, E., Grumberg, O., and Peled, D. (1999).Model Checking. MIT Press.
Clarke, E. and Wing, J. (1996). “Formal Methods: State of theArt and Future Directions”.ACM Computing

Surveys, 28(4):626–643.
CREWS (1999). Cooperative Requirements Engineering With Scenarios.http://Sunsite.Informatik.

RWTH-Aachen.DE/CREWS.
Cunningham, J. and Finkelstein, A. (1986). “Formal Requirements Specification: the FOREST Project”. In

Proceedings of 3rd International Workshop on Software Specification and Design, pages 186–192. IEEE CS
Press.

Dams, D. (1996).Abstract Interpretation and Partition Refinement for ModelChecking. PhD thesis, Eindhoven
University of Technology, The Netherlands.

Dams, D., Gerth, R., and Grumberg, O. (1997). “Abstract Interpretation of Reactive Systems”.ACM Transactions
on Programming Languages and Systems, 2(19):253–291.

Diaz-Redondo, R., Pazos-Arias, J., and Fernandez-Vilas, A. (2002). “Reusing Verification Information of Incom-
plete Specifications”. InProceedings of the 5th Workshop on Component-Based Software Engineering.

D’Ippolito, N., Fishbein, D., Chechik, M., and Uchitel, S. (2008). “MTSA: The Modal Transition System An-
alyzer”. In Proceedings of International Conference on Automated Software Engineering (ASE’08), pages
475–476.

Dupont, P., Lambeau, B., Damas, C., and van Lamsweerde, A. (2008). “The QSM Algorithm and its Application
to Software Behavior Model Induction”.Journal of Applied Artificial Intelligence, 22(1&2):77–115.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1998). “Property Specification Patterns for Finite-state Verifi-
cation”. InProceedings of 2nd Workshop on Formal Methods in Software Practice.

Easterbrook, S. and Chechik, M. (2001). “A Framework for Multi-Valued Reasoning over Inconsistent View-
points”. In Proceedings of International Conference on Software Engineering (ICSE’01), pages 411–420,
Toronto, Canada. IEEE Computer Society Press.

Fischbein, D. and Uchitel, S. (2008). “On Correct and Complete Merging of Partial Behaviour Models”. In
Proceedings of SIGSOFT Conference on Foundations of Software Engineering (FSE’08), pages 297–307.

Fischbein, D., Uchitel, S., and Braberman, V. A. (2006). ”A Foundation for Behavioural Conformance in Software
Product Line Architectures”. InProceedings of ISSTA’06 Workshop on Role of Software Architecture for
Testing and Analysis (ROSATEA’06), pages 39–48.

Fitting, M. (1991). “Many-Valued Modal Logics”.Fundamenta Informaticae, 15(3-4):335–350.
Giannakopoulou, D. and Magee, J. (2003). “Fluent Model Checking for Event-Based Systems”. InProceedings

of the 9th joint meeting of the European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’03), pages 257–266. ACM Press.

Godefroid, P., Huth, M., and Jagadeesan, R. (2001). “Abstraction-based Model Checking using Modal Tran-
sition Systems”. In Larsen, K. and Nielsen, M., editors,Proceedings of 12th International Conference on
Concurrency Theory (CONCUR’01), volume 2154 ofLNCS, pages 426–440, Aalborg, Denmark. Springer.

Godefroid, P. and Jagadeesan, R. (2003). “On the Expressiveness of 3-Valued Models”. InProceedings of 4th
International Conference on Verification, Model Checking,and Abstract Interpretation (VMCAI’03), volume
2575 ofLNCS, pages 206–222. Springer.

Godefroid, P. and Pitterman, N. (2009). “LTL Generalized Model Checking Revisited”. InProceedings of the 10th
International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI’09), volume
5403 ofLNCS, pages 89–104.

Gunter, C. (1992). “The Mixed Powerdomain”.Theoretical Computer Science, 103(2):311–334.
Gurfinkel, A. and Chechik, M. (2005). “How Thorough is Thorough Enough”. InProceedings of 13th Advanced

Research Working Conference on Correct Hardware Design andVerification Methods (CHARME’05), volume
3725 ofLNCS, pages 65–80, Saarbrücken, Germany. Springer.

Gurfinkel, A., Wei, O., and Chechik, M. (2006). “Systematic Construction of Abstractions for Model-Checking”.
In Proceedings of 7th International Conference on Verification, Model-Checking, and Abstract Interpretation
(VMCAI’06), volume 3855 ofLNCS, pages 381–397, Charleston, SC. Springer.

Harel, D., Kugler, H., and Pnueli, A. (2005). “Synthesis Revisited: Generating Statechart Models from Scenario-
Based Requirements.”. InFormal Methods in Software and Systems Modeling, pages 309–324.

Hennessy, M. and Milner, R. (1985). “Algebraic Laws for Nondeterminism and Concurrency”.Journal of ACM,
32(1):137–161.

Hoare, C. (1985).Communicating Sequential Processes. Prentice-Hall, New York.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

48 · Fischbein, Brunet, D’Ippolito, Chechik, Uchitel

Horwitz, S., Prins, J., and Reps, T. (1989). “Integrating Noninterfering Versions of Programs.”.ACM Transactions
on Programming Languages and Systems, 11(3):345–387.

Hunter, A. and Nuseibeh, B. (1998). “Managing InconsistentSpecifications: Reasoning, Analysis and Action”.
ACM Transactions on Software Engineering and Methodology, 7(4):335–367.

Hussain, A. and Huth, M. (2004). “On Model Checking MultipleHybrid Views”. In Proceedings of 1st Interna-
tional Symposium on Leveraging Applications of Formal Methods, pages 235–242.

Huth, M., Jagadeesan, R., and Schmidt, D. (2002). “A Domain Equation for Refinement of Partial Systems”.
Submitted to Mathematical Structures in Computer Science.

Huth, M., Jagadeesan, R., and Schmidt, D. A. (2001). “Modal Transition Systems: A Foundation for Three-Valued
Program Analysis”. InProceedings of 10th European Symposium on Programming (ESOP’01), volume 2028
of LNCS, pages 155–169. Springer.

Hüttel, H. and Larsen, K. G. (1989). “The Use of Static Constructs in A Modal Process Logic”. InProceedings
of Symposium on Logical Foundations of Computer Science (Logic at Botik’89), volume 363 ofLNCS, pages
163–180.

IEEE (1994). “IEEE Recommended Practice for Software Requirements Specifications Standard 830”. Technical
Standard 830, Wallace S. Read (Chair).

ITU-T (1993). “ITU-T Recommendation Z.120: Message Sequence Chart (MSC)”.ITU-T.

Jacobson, I. (2004).Object-Oriented Software Engineering: A Use Case Driven Approach. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA.

Kazhamiakin, R., Pistore, M., and Roveri, M. (2004). “Formal Verification of Requirements using SPIN: A Case
Study on Web Services”. InProceedings of International Conference on Software Engineering and Formal
Methods (SEFM’04), pages 406–415.

Keller, R. (1976). “Formal Verification of Parallel Programs”. Communications of the ACM, 19(7):371–384.

Kleene, S. C. (1952).Introduction to Metamathematics. New York: Van Nostrand.

Kramer, J., Magee, J., and Sloman, M. (1983). “CONIC: an Integrated Approach to Distributed Computer Control
Systems”.IEE Proceedings, 130(1):1–10.

Krueger, I., Grosu, R., Scholz, P., and Broy, M. (1999). “From MSCs to Statecharts”. In Rammig, F. J., editor,
Distributed and Parallel Embedded Systems. Kluwer Academic Publishers.

Larsen, K., Steffen, B., and Weise, C. (1996). “The Methodology of Modal Constraints”. InFormal Systems
Specification, volume 1169 ofLNCS, pages 405–435. Springer.

Larsen, K. and Thomsen, B. (1988). “A Modal Process Logic”. In Proceedings of 3rd Annual Symposium on
Logic in Computer Science (LICS’88), pages 203–210. IEEE Computer Society Press.

Larsen, K. and Xinxin, L. (1990). “Equation Solving Using Modal Transition Systems”. InProceedings of the 5th
Annual IEEE Symposium on Logic in Computer Science (LICS’90), pages 108–117. IEEE Computer Society
Press.

Larsen, K. G., Steffen, B., and Weise, C. (1995). “A Constraint Oriented Proof Methodology based on Modal
Transition Systems”. InTools and Algorithms for Construction and Analysis of Systems (TACAS’95), volume
1019 ofLNCS, pages 13–28. Springer.

Letier, E., Kramer, J., Magee, J., and Uchitel, S. (2008). Deriving event-based transition systems from goal-
oriented requirements models.Autom. Softw. Eng., 15(2):175–206.

Magee, J. and Kramer, J. (1999).“Concurrency - State Models and Java Programs”. John Wiley.

Milner, R. (1989).Communication and Concurrency. Prentice-Hall, New York.

Nejati, S. and Chechik, M. (2005). “Let’s Agree to Disagree”. In Proceedings of 20th IEEE International
Conference on Automated Software Engineering (ASE’05), pages 287 – 290. IEEE Computer Society.

Nejati, S. and Chechik, M. (2008). “Behavioural Model Fusion: Experiences from Two Telecommunication Case
Studies”. InProceedings of ICSE’08 Workshop on Modeling in Software Engineering (MiSE’08).

Nejati, S., Chechik, M., Sabetzadeh, M., Uchitel, S., and Zave, P. (2008). “Towards Compositional Synthesis
of Evolving Systems”. InProceedings of SIGSOFT Conference on Foundations of Software Engineering
(FSE’08), pages 285–296.

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., and Zave, P. (2007). “Matching and Merging of
Statecharts Specifications”. InProceedings of the 29th International Conference on Software Engineering
(ICSE’07), pages 54–64.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

Weak Alphabet Merging of Partial Behaviour Models · 49

Pnueli, A. (1977). “The Temporal Logic of Programs”. InProceedings of 18th Annual Symposium on the
Foundations of Computer Science, pages 46–57.

Sabetzadeh, M. and Easterbrook, S. (2003). “Analysis of Inconsistency in Graph-Based Viewpoints: A Category-
Theoretic Approach”. InProceedings of 18th IEEE International Conference on Automated Software Engi-
neering (ASE’03), pages 12–21. IEEE Computer Society.

Shoham, S. and Grumberg, O. (2004). “Monotonic Abstraction-Refinement for CTL”. InProceedings of 10th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’04),
volume 2988 ofLNCS, pages 546–560. Springer-Verlag.

Sibay, G., Uchitel, S., and Braberman, V. (2008). “Existential Live Sequence Charts Revisited”. InProceedings
of the 30th International Conference on Software Engineering (ICSE’08), pages 41–50. ACM.

Uchitel, S., Broy, M., Krueger, I. H., and Whittle, J. (2005). Guest editorial: Special section on interaction and
state-based modeling.IEEE Transactions on Software Engineering, 31(12):997–998.

Uchitel, S., Brunet, G., and Chechik, M. (2007). “BehaviourModel Synthesis from Properties and Scenarios”.
In Proceedings of International Conference on Software Engineering (ICSE’07), pages 34–43.

Uchitel, S., Brunet, G., and Chechik, M. (2009). “Synthesisof Partial Behaviour Models from Properties and
Scenarios”.IEEE Transactions on Software Engineering, 3(35):384–406.

Uchitel, S. and Chechik, M. (2004). “Merging Partial Behavioural Models”. InProceedings of 12th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages 43–52.

Uchitel, S., Kramer, J., and Magee, J. (2003a). “Behaviour Model Elaboration using Partial Labelled Transition
Systems”. InProceedings of the 9th joint meeting of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’03), pages 19–27.

Uchitel, S., Kramer, J., and Magee, J. (2003b). “Synthesis of Behavioural Models from Scenarios”.IEEE
Transactions on Software Engineering, 29(2):99–115.

Uchitel, S., Kramer, J., and Magee, J. (2004). “IncrementalElaboration of Scenario-Based Specifications and
Behaviour Models using Implied Scenarios”.ACM Transactions on Software Engineering and Methodology,
13(1):37–85.

van Lamsweerde, A. (2004). Goal-oriented requirements enginering: A roundtrip from research to practice. In
RE, pages 4–7. IEEE Computer Society.

van Lamsweerde, A. and Letier, E. (2000). “Handling Obstacles in Goal-Oriented Requirements Engineering”.
IEEE Transactions on Software Engineering, 26(10):978–1005.

van Ommering, R., van der Linden, F., Kramer, J., and Magee, J. (2000). “The Koala Component Model for
Consumer Electronics Software”.IEEE Computer, 33(3):78–85.

Wei, O., Gurfinkel, A., and Chechik, M. (2009). “Mixed Transition Systems Revisited”. InProceedings of 10th
International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI’09), volume
5403 ofLNCS, pages 349–365.

Xing, Z. and Stroulia, E. (2005). “UMLDiff: An Algorithm forObject-Oriented Design Differencing”. InPro-
ceedings of 20th IEEE International Conference on Automated Software Engineering (ASE’05), pages 54–65.
IEEE Computer Society.

For resubmission to ACM Transactions on Software Engineering and Methodology, 2010.

