
P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking

MARSHA CHECHIK, BENET DEVEREUX, STEVE EASTERBROOK
and ARIE GURFINKEL
University of Toronto

This article introduces the concept of multi-valued model-checking and describes a multi-valued
symbolic model-checker, χChek. Multi-valued model-checking is a generalization of classical model-
checking, useful for analyzing models that contain uncertainty (lack of essential information) or
inconsistency (contradictory information, often occurring when information is gathered from mul-
tiple sources). Multi-valued logics support the explicit modeling of uncertainty and disagreement
by providing additional truth values in the logic.

This article provides a theoretical basis for multi-valued model-checking and discusses some
of its applications. A companion article [Chechik et al. 2002b] describes implementation issues in
detail. The model-checker works for any member of a large class of multi-valued logics. Our mod-
eling language is based on a generalization of Kripke structures, where both atomic propositions
and transitions between states may take any of the truth values of a given multi-valued logic.
Properties are expressed in χCTL, our multi-valued extension of the temporal logic, CTL.

We define the class of logics, present the theory of multi-valued sets and multi-valued relations
used in our model-checking algorithm, and define the multi-valued extensions of CTL and Kripke
structures. We explore the relationship between χCTL and CTL, and provide a symbolic model-
checking algorithm for χCTL. We also address the use of fairness in multi-valued model-checking.
Finally, we discuss some applications of the multi-valued model-checking approach.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Ver-
ification—Formal methods, Model-checking; D.2.1 [Software Engineering]: Requirements/
Specifications—Tools; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Temporal Logic

General Terms: Documentation, Verification

Additional Key Words and Phrases: CTL, multi-valued logic, model-checking, partiality, inconsis-
tency, fairness, χChek.

1. INTRODUCTION

This article introduces the concept and the general theory of multi-valued
model-checking and describes our multi-valued symbolic model-checker,
χChek. Multi-valued model-checking can best be explained as a generalization

This work was financially supported by NSERC and CITO.
Authors’ addresses: Department of Computer Science, University of Toronto, Toronto, ON M5S
3G4, Canada; email: {chechik,benet,sme,arie}@cs.toronto.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc.,
1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1049-331X/03/1000-0001 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004, Pages 1–38.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

2 • M. Chechik et al.

of classical model-checking. A classical model-checker takes a model, M , of
a system (expressed as a finite state machine), and a temporal correctness
property, ϕ, (expressed as a formula in a suitable temporal logic), and deter-
mines whether or not the model satisfies the property [Clarke et al. 1986].
In other words, it returns the value of the predicate M |= ϕ. Multi-valued
model-checking permits reasoning with additional truth values beyond just
TRUE and FALSE. In particular, the satisfaction relation, M |= ϕ, can be multi-
valued. χChek [Chechik et al. 2002a] is a generalization of an existing symbolic
model-checking algorithm [McMillan 1993] for a multi-valued extension of the
temporal logic, CTL.

Our motivation stems from two observations about the application of model-
checking in software engineering. The first is that to make model-checking prac-
tical for verification of real software systems, abstract models of the software
behavior must be constructed. When working with abstractions, it is natural
to consider three-valued logics, with the third value, MAYBE, used to indicate
elided information in the model [Bruns and Godefroid 1999], or to indicate the
result of checking when a definite answer is not possible using the chosen ab-
straction [Sagiv et al. 1999; Chechik and Ding 2002]. The second observation
is that model-checking has a natural application for model exploration, where
the goal is to arrive at a good model of the desired system through successive
approximations. Each model is likely to be incomplete and/or wrong, but by
exploring its properties, the analyst learns how to improve it. Again, three-
valued logics provide a natural way of indicating missing information [Bruns
and Godefroid 2000]. However, it is also appealing to consider a more general
family of logics with additional truth values, for example, to distinguish levels
of uncertainty, levels of priority, or disagreements between knowledge sources
[Easterbrook and Chechik 2001].

In this sense, our interest in multi-valued reasoning parallels a similar inter-
est in philosophy and AI, where multi-valued logics have been explored for rea-
soning with information with associated degrees of belief or credibility weight-
ings [Ginsberg 1988]. We draw on that work to provide us with a suitable class
of multi-valued logics for our model-checker, in particular, the work of Kleene
[1952] who originally explored the use of three-valued logics for reasoning with
missing information and Belnap [1977] who extended Kleene’s strong three-
valued logic to a four-valued logic to account for inconsistency. Belnap observed
that the truth values of these logics admit to two intuitive (partial) orders: a
knowledge order, which places MAYBE below both TRUE and FALSE, and a truth
order which places FALSE below MAYBE below TRUE. Finally, Fitting [1991b] used
this observation to characterize an entire family of multi-valued logics based on
Kleene’s logic and offers several intuitive constructions for them. Fitting also
explored a multi-valued generalization of modal logic, using Kripke’s possible
world semantics in which not only do formulae take values from a multi-valued
space in each possible world, but the accessibility relationships between worlds
can also be multi-valued [Fitting 1991a; Fitting 1992].

Applying these ideas to model-checking, our approach supports all of the
following generalizations:

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 3

—Variables in the finite state machine can be multi-valued or boolean.
—Transitions between states in the finite state machine can be multi-valued

or boolean.
—The satisfaction relation can be multi-valued or boolean.

We achieve this generalization by defining model-checking algorithms over a
large class of logics, including the family of Kleene-like logics identified by
Fitting. In particular, we pose the following requirements to this class: (a)
many of the desired properties of classical logic operators are preserved, for
example associativity, commutativity, and idempotance; (b) the logics can be
used for representing a large class of systems; (c) model-checking using these
logics remains tractable. We intentionally leave probabilistic systems outside
the scope of this article, concentrating instead on logics with a finite set of
truth values. To meet these requirements, we restrict ourselves to logics whose
truth values form a finite distributive lattice under the truth ordering, with a
negation operator that preserves De Morgan laws and involution (¬¬a = a).
The resulting structures are called quasi-boolean algebras [Rasiowa 1978].
Classical boolean logic, as well as the logics described by Kleene [1952] and
Belnap [1977], are examples of quasi-boolean algebras. Unlike Heyting algebras
[Fitting 1992], quasi-boolean algebras allow us to preserve the duality between
the “next-time” operators: EX¬ϕ = ¬AX ϕ. Our model-checker operates on any
multi-valued logic whose truth values form a quasi-boolean algebra—the par-
ticular logic to be used in each analysis is selected as a run-time parameter. We
define quasi-boolean algebras formally and discuss their properties in Section
3. Throughout the article, we use terms “algebras” and “logics” interchangeably,
to indicate a set of truth values closed under logical operations.

Having identified a suitable class of logics, we develop the theory of multi-
valued model-checking as follows. We first apply a theory of multi-valued sets
and relations to create the core structure for our symbolic model-checking algo-
rithm. Multi-valued sets are sets whose membership functions are multi-valued
[Goguen 1967]. We use multi-valued sets to represent the partition of the state-
space over the set of truth values in the logic, induced by a given property. We
extend the notion of multi-valued set membership to multi-valued relations
which we use to represent the transition relations in our models. We present
the theory of multi-valued sets and relations in Section 4.

Second, we define a multi-valued semantics for CTL and demonstrate that
this semantics preserves the desired properties. We call the resulting logic
χCTL. We provide a model-based semantics for χCTL by extending the notion
of Kripke structures, so that both atomic propositions and transitions between
states range over values of a given quasi-boolean algebra. We call the resulting
models χKripke structures. We present χCTL and χKripke structures in Sec-
tion 5. We also show that χCTL is decidable and analyze fixpoint properties of
its operators.

Third, we give a characterization of multi-valued model-checking with fair-
ness. Fairness is used in classical model-checking to simplify modeling by al-
lowing the user to build a model with more behaviors than is desired, and then

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

4 • M. Chechik et al.

to restrict the analysis to just those behaviors that are fair, that is, occur under
reasonable assumptions about occurrence of events in the environment. We ar-
gue that fairness conditions in multi-valued model-checking should be boolean-
valued and give a formulation of fairness for each χCTL operator in Section 6.

Combining these ideas yields a clean extension of the theory of classical
model-checking, applicable to a variety of tasks. We describe the implementa-
tion details and some potential applications of multi-valued model-checking in
Section 7. We further note that the multi-valued model-checking decision pro-
cedure can be either implemented directly or reduced to classical. The trade-
offs between these choices are studied in the companion article, Chechik et al.
[2002b].

We conclude the article with a brief discussion of the relationship between
our work and other recent work on multi-valued model-checking and discuss
some planned extensions of our work (Section 8).

Throughout the article we use these notational conventions: (1) we refer to
an unnamed function over the domain D as λx ∈ D · F-n Body; (2) we use nat
to refer to the set of natural numbers; (3) we use ∃! to mean “exists unique”.
Proofs of selected theorems can be found in the Appendix.

2. CTL MODEL-CHECKING

In this section, we give a brief overview of classical CTL model-checking.
CTL model-checking is an automatic technique for verifying properties ex-

pressed in a propositional branching-time temporal logic called Computation
Tree Logic (CTL) [Clarke et al. 1986]. A model is a Kripke structure whose prop-
erties are evaluated on a tree of infinite computations produced by the model.
The standard notation M , s |= ϕ indicates that a formula ϕ holds in a state s of
a model M . If a formula holds in the initial state, it is considered to hold in the
model.

A Kripke structure consists of a set of states, S, a transition relation, R ⊆
S × S, an initial state, s0 ∈ S, a set of atomic propositions, A, and a labeling
function, I : S → 2A. R must be total, that is, ∀s ∈ S, ∃t ∈ S, such that
(s, t) ∈ R. Finite computations are modeled by adding a self-loop to the final
state of the computation. For each s ∈ S, the labeling function provides a set of
atomic propositions which hold in the state S.

The syntax of CTL is as follows:

(1) Every atomic proposition a ∈ A is a CTL formula.
(2) If ϕ and ψ are CTL formulas, then so are ¬ϕ, ϕ ∧ψ , ϕ ∨ψ , EXϕ, AXϕ, EFϕ,

AFϕ, E[ϕ U ψ], A[ϕ U ψ], AGϕ, EGϕ.

The logic connectives¬,∧ and∨ have their usual meanings. The existential and
universal quantifiers E and A are used to quantify over paths. The operator X
means “in the next state”, F represents “sometime in the future”, U is “until”,
and G is “globally”. For example, EXϕ is TRUE in state s if ϕ holds in some
immediate successor of s, while AX ϕ is TRUE if ϕ holds in every immediate
successor of s. E Fϕ is TRUE in s if ϕ holds in the future along some path from
s; E[ϕ U ψ] is TRUE in s if along some path from s, ϕ continuously holds until

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 5

Fig. 1. Fixpoint formulations of CTL operators. Note: µZ . f (Z) and νZ . f (Z) indicate the least
and the greatest fixpoints of f , respectively.

ψ becomes TRUE. EGϕ hold in s if ϕ holds in every state along some path from
s. AFϕ, A[ϕ U ψ] and AGϕ are defined similarly, replacing the quantification
over some paths by the one over all paths. Formally,

M , s |= a iff a ∈ I (s)
M , s |= ¬ϕ iff M , s 6|= ϕ

M , s |= ϕ ∧ ψ iff M , s |= ϕ ∧ M , s |= ψ
M , s |= ϕ ∨ ψ iff M , s |= ϕ ∨ M , s |= ψ
M , s |= E X ϕ iff ∃t ∈ S, (s, t) ∈ R ∧ M , t |= ϕ
M , si |= EGϕ iff there exists some path si, si+1, . . . s.t. ∀ j ≥ i · M , sj |= ϕ

M , si |= E[ϕ U ψ] iff there exists some path si, si+1, . . . , s.t.
∃ j ≥ i · M , sj |= ψ ∧ ∀k · i ≤ k < j ⇒ M , sk |= ϕ.

Note that these definitions give us a “strong until”, that is, E[ϕ U ψ] is TRUE

only if ψ eventually occurs. Further, note that we have used EG, EX, and EU
as an adequate set of temporal operators, following Huth and Ryan [2000] and
Clarke et al. [1999]. The remaining temporal operators are defined in terms of
these:

A[ϕ U ψ] , ¬E[¬ψ U ¬ϕ ∧ ¬ψ] ∧ ¬EG¬ψ def. of AU
AX ϕ , ¬EX¬ϕ def. of AX
AFϕ , A[> U ϕ] def. of AF
E Fϕ , E[> U ϕ] def. of E F
AGϕ , ¬E F¬ϕ def. of AG

Alternatively, CTL operators can be described using their fixpoint formula-
tions as shown in Figure 1. This description is most useful for symbolic model-
checking [McMillan 1993].

3. QUASI-BOOLEAN LOGICS

Our motivation for developing multi-valued model-checking is to enable auto-
mated reasoning over models where there are uncertainties or disagreements.
For different applications, we expect that different multi-valued logics will be
appropriate. We therefore need to identify a class of multi-valued logics that
are natural for describing realistic problems, but which still enable tractable
model-checking. Where possible, we wish to build upon the existing body of
work in constructing efficient model-checkers by reusing existing algorithms
and data structures. Hence, we need logics whose operators have most of the
same properties as their classical counterparts.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

6 • M. Chechik et al.

Following the work of Fitting [1991b], we observe that many of the desired
properties can be obtained if we insist that the truth values of the logic form a
complete lattice under the truth order, with conjunction and disjunction defined
as the lattice operations meet and join, respectively. Further, to preserve the
relationships between the temporal operators described in Section 2, we will
require that conjunction and disjunction distribute over each other and that De
Morgan’s laws hold for negation. Distributive lattices have the former property,
but for the latter, we need additional constraints on the choice of the negation
operator.

One possible choice is to use boolean algebras which are very well known
and have all the properties described above, together with the law of non-
contradiction (LNC) and the law of excluded middle (LEM). However, this choice
would exclude many interesting logics, including those of Kleene [1952] and
Belnap [1977], where LNC and LEM do not hold. Instead, we use quasi-boolean
algebras which have all the properties of boolean algebras except LNC and
LEM. Quasi-boolean algebras, also known as De Morgan algebras, are a famil-
iar concept in logic [Bolc and Borowik 1992; Dunn 1999].

The remainder of this section provides a formal treatment of the above dis-
cussion. We start with the lattice theory background in Section 3.1. We then
define quasi-boolean algebras in Section 3.2, and describe some examples.

3.1 Lattice Theory

Definition 1. A partial order, v, on a set L is a binary relation on L such
that the following conditions hold:

∀a ∈ L : a v a reflexivity
∀a, b ∈ L : a v b∧ b v a⇒ a = b anti-symmetry
∀a, b, c ∈ L : a v b∧ b v c⇒ a v c transitivity.

A partially ordered set, (L,v), has a bottom element if there exists ⊥ ∈ L
such that ⊥ v a for all a ∈ L. Dually, (L,v) has a top element if there exists
> ∈ L such that a v > for all a ∈ L.

Definition 2. A partially ordered set, (L,v), is a lattice if a unique greatest
lower bound and least upper bound exist for every finite subset of L.

Given lattice elements a and b, their greatest lower bound is referred to as
meet and denoted a u b, and their least upper bound is referred to as join and
denoted a t b. It follows from Definition 2 that every (finite) lattice has a top
and a bottom.

Lattices enjoy a number of useful properties, some of which are given below:

a t > = > base
a u ⊥ = ⊥
a u > = a identity
a t ⊥ = a
a t a = a idempotence
a u a = a
a t b = bt a commutativity

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 7

Fig. 2. Example lattices.

a u b = bu a
a t (bt c) = (a t b) t c associativity
a u (bu c) = (a u b) u c
a t (a u b) = a absorption
a u (a t b) = a

a v a′ ∧ b v b′ ⇒ a u b v a′ u b′ monotonicity
a v a′ ∧ b v b′ ⇒ a t b v a′ t b′

a u b v b and a u b v a u elimination
a v b ∧ a v c ⇒ a v bu c u introduction

a v a t b and b v a t b t introduction
a v c ∧ b v c ⇒ a t b v c t elimination.

Definition 3. A lattice is distributive if and only if

a t (bu c) = (a t b) u (a t c) distributivity
a u (bt c) = (a u b) t (a u c).

Figure 2 gives some example lattices. The lattice in Figure 2(g) is non-
distributive, whereas all other lattices are distributive.

3.2 Quasi-Boolean Algebras

In this section we define quasi-boolean algebras and study their properties.

Definition 4. A quasi-boolean algebra is a tuple (L, u, t, ¬), where:

—(L, v) is a finite distributive lattice, with a v b iff a u b = a;
—Conjunction (u) and disjunction (t) are meet and join operators of (L, v),

respectively;
—Negation ¬ is a function L→ L such that every element a ∈ L corresponds

to a unique element ¬a ∈ L satisfying the following conditions:

¬(a u b) = ¬a t ¬b De Morgan ¬¬a = a ¬ involution
¬(a t b) = ¬a u ¬b a v b ⇔ ¬a w ¬b ¬ antimonotonic

where b ∈ L. ¬a is called a quasi-complement of a [Rasiowa 1978].

Note that the negation operator satisfying the above properties is a lattice
dual isomorphism with period 2 [Birkhoff 1967].

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

8 • M. Chechik et al.

Definition 5. A product of two algebras, L1 = (L1, u1, t1, ¬1) and L2 =
(L2, u2, t2, ¬2), is an algebra, L1 × L2 = (L1 × L2, u, t, ¬), where

¬(a, b) = (¬1a, ¬2b) ¬ of pairs
(a, b) u (a′, b′) = (a u1 a′, bu2 b′) u of pairs
(a, b) t (a′, b′) = (a t1 a′, bt2 b′) t of pairs.

Thus, the operations on the product algebra are the component-wise exten-
sions of their individual counterparts. Similar properties hold for >, ⊥, and the
ordering:

⊥L1×L2 = (⊥L1 ,⊥L2) ⊥ of pairs
>L1×L2 = (>L1 ,>L2) > of pairs

(a, b) v (a′, b′) ⇔ a v1 a′ ∧ b v2 b′ v of pairs.
THEOREM 1. A product of two quasi-boolean algebras is quasi-boolean, that

is,
(1) ¬¬(a, b) = (a, b)
(2) ¬((a1, b1) u (a2, b2)) = (¬a1, ¬b1) t (¬a2, ¬b2)
(3) ¬((a1, b1) t (a2, b2)) = (¬a1, ¬b1) u (¬a2, ¬b2)
(4) (a1, b1) v (a2, b2) ⇔ ¬(a1, b1) w ¬(a2, b2).

PROOF: See Appendix.

We now give some example quasi-boolean algebras using the lattices in
Figure 2.

(1) The lattice in Figure 2(a), with ¬T = F and ¬F = T, gives us classical logic
which we refer to as 2. Note that in this case, t and u are conventionally
written∨ and∧, respectively. We use these notations interchangeably when
the interpretation is clear from the context.

(2) The three-valued logic 3 is defined on the lattice in Figure 2(b), where ¬T=
F, ¬F = T, ¬M =M. This is Kleene’s strong 3-valued logic [Kleene 1952].

(3) Belnap’s 4-valued logic can be defined over the lattice in Figure 2(c), with
¬N = N and ¬B = B. This logic has been used for reasoning about incon-
sistent databases [Belnap 1977; Anderson and Belnap 1975].

(4) The lattice in Figure 2(d) shows the product algebra 2x2, where ¬TF = FT
and ¬FT = TF. This logic can be used for reasoning about disagreement be-
tween two knowledge sources [Easterbrook and Chechik 2001]. The under-
lying lattice is isomorphic to the one in Figure 2(c) but the resulting quasi-
boolean algebras are not isomorphic because of the choice of negations.

(5) The lattice in Figure 2(e) shows a nine-valued logic constructed as the
product algebra 3x3. Like 2x2, this logic can be used for reasoning about
the disagreement between two sources, but also allows missing information
in each source.

Note that we generally label > and ⊥ of the lattice with the values TRUE and
FALSE of the logic, respectively.

The lattice in Figure 2(f) cannot be used as a basis for a quasi-boolean algebra
because no suitable quasi-complement can be found for element 2. The lattice
in Figure 2(g) cannot be used either, because it is non-distributive.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 9

The class of quasi-boolean algebras includes (finite) boolean algebras as a
special case:

Definition 6. A tuple, L = (L, u, t, ¬), is a finite Boolean algebra if L is a
quasi-boolean algebra and additionally, for every element, a ∈ L,

a u ¬a = ⊥ ¬ contradiction or LNC
a t ¬a = > ¬ exhaustiveness or LEM.

For example, the algebra 2 is boolean, whereas 3 is not (M u ¬M 6= ⊥). Also, as
the product of two boolean algebras is a boolean algebra [Birkhoff 1967], then
the product algebra 2x2 shown in Figure 2(d) is boolean. The product algebra
3x3, shown in Figure 2(e), is quasi-boolean but not boolean.

The identification of a suitable negation operator is greatly simplified by
the observation that quasi-boolean algebras have underlying lattices that are
symmetric about their horizontal axes:

Definition 7. A lattice (L,v) is symmetric iff there exists a bijective function
H such that for every pair a, b ∈ L,

a v b ⇔ H(a) w H(b) H antimonotonic
H(H(a)) = a H involution.

Notice that H is a lattice dual automorphism with period 2. Thus, this sym-
metry is a sufficient condition for defining a quasi-boolean algebra over a dis-
tributive lattice with a potential negation defined as¬a = H(a) for each element
of the lattice. Lattices in Figure 2(a)–(e) exhibit this symmetry and thus are
quasi-boolean, whereas the lattice in Figure 2(f) is not. Note that in Belnap’s
4-valued logic, defined on the lattice in Figure 2(c), the chosen negation, ¬N =
N, ¬B = B, is not the one offered by symmetry.

Finally, we define implication and equivalence as follows:

a→ b , ¬a t b material implication
a↔ b , (a→ b) u (b→ a) equivalence.

Note that from the underlying partial order, we also have equality:

a = b , (a v b) ∧ (b v a) equality.

In boolean algebras, equality is the same as equivalence. In quasi-boolean al-
gebras, this is not necessarily the case. For example, for algebra 3, x = M
and y = M: x = y is (M v M) ∧ (M v M), which is >, whereas x ↔ y is
(M→M) u (M→M), which is M.

4. MULTI-VALUED SETS AND RELATIONS

In order to define multi-valued model-checking later in this article, we begin by
creating a data structure that allows definition and reasoning about operations
on sets of states in which a property holds. Such operations include union,
intersection, complement, and backward image for computing predecessors.
Given a quasi-boolean algebra, we can treat these as operations over multi-
valued sets: sets whose membership functions are multi-valued. We define the

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

10 • M. Chechik et al.

Fig. 3. Ex1: a simple χKripke structure.

concept of multi-valued sets and relations over quasi-boolean algebras in this
section. This treatment is similar to the definition of L-fuzzy sets [Goguen
1967].

4.1 Multi-Valued Sets

In classical set theory, a set is defined by a boolean predicate, also called a
membership or a characteristic function. Typically, it is written using a set com-
prehension notation: a predicate P defines the set S={x | P (x)}. For instance,
if P = λx ∈ nat · 0 ≤ x ≤ 10, then S is the set of all integers between 0 and
10 inclusive. If instead of using a boolean predicate, we allow the membership
function to range over elements of a given algebra, we obtain a multi-valued
set theory in which it is possible to make statements like “element x is more in
set S than element y”. We call the result mv-sets.

Definition 8. Given an algebra, L = (L, u, t, ¬), and a classical set, S, an
L-valued set on S, referred to as S, is a total function S→ L.

Where the underlying algebra, L, is clear from context, we refer to an L-valued
set just as an mv-set. For an mv-set, S, and a candidate element, x, we use S(x)
to denote the membership degree of x in S. In the classical case, this amounts
to representing a set by its characteristic function.

We illustrate mv-sets using a simple state machine shown in Figure 3. This
machine uses the quasi-boolean algebra 2x2 where the logical values form the
lattice in Figure 2(d) and exemplifies χKripke structures – multi-valued gen-
eralizations of Kripke structures, defined formally in Section 5.1. In classical
symbolic model-checking, each (boolean-valued) expression, x, partitions the
state space into states where x is TRUE and states where it is FALSE. Likewise,
we use multi-valued expressions to partition the state space of the system.
For example, the variable, a. partitions the states of the χKripke structure in
Figure 3: for each value, `, of 2x2, we get the set of states where a has value `. In
this case, a has value TT in {s0}, FT in {s2}, FF in {s1} and TF in {}. The resulting
2x2-valued set, referred to as [[a]], can be graphically represented as shown in
Figure 4(a), where the structure corresponds to that of the underlying lattice.

We extend some standard set operations to the multi-valued case by lifting
the lattice meet and join operations as follows1:

1The subscript on mv-set operations ∩L, ∪L,⊆L, and so forth refers to a given algebra, L =
(L, u, t, ¬).

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 11

Fig. 4. Several mv-sets for the example in Figure 3: (a) corresponding to variable a; (b) corre-
sponding to variable b; (c) [[b]] – a multi-valued complement of the mv-set in (b).

(S ∩L S′)(x) , (S(x) u S′(x)) multi-valued intersection
(S ∪L S′)(x) , (S(x) t S′(x)) multi-valued union

S ⊆L S′ , ∀x · (S(x) v S′(x)) set inclusion
S = S′ , ∀x · (S(x) = S′(x)) extensional equality.

For example, in computing intersection of mv-sets [[a]] and [[b]] given in
Figure 4(a) and (b), respectively, we note that in state s1, a is FF and b is
TF. Thus,

([[a]] ∩L [[b]])(s1) = FF u TF = FF.

We also extend the notion of set complement to the multi-valued case by
defining it in terms of the quasi-complement of L and denoting it with a bar:

S(x) , ¬(S(x)) multi-valued complement

Mv-set [[b]] is given in Figure 4(c).
We then obtain the desired properties:

S ∪L S′ = S ∩L S′ De Morgan 1
S ∩L S′ = S ∪L S′ De Morgan 2
S ⊆L S′ = S′ ⊆L S antimonotonicity.

Note that we obtain classical set theory in the special case where the algebra
is 2 and the multi-valued intersection, union, and complement are equivalent
to their classical counterparts:

THEOREM 2. For a 2-valued set S on S, the following hold:

(1) The membership function S(x) is a boolean predicate
(2) (S ∩2 S′) = {x | S(x) ∧ S′(x)} = (S ∩ S′)
(3) (S ∪2 S′) = {x | S(x) ∨ S′(x)} = (S ∪ S′)
(4) S(x) = x ∈ (S − { y | S(y) = >}).

4.2 Multi-Valued Relations

Now we extend the concept of degrees of membership in an mv-set to degrees of
relatedness of two entities. This concept, formalized by multi-valued relations,
allows us to define multi-valued transitions in state machine models.

Definition 9. For a given algebra L, an L-valued relation R on two sets S
and T is an L-valued set on S × T .

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

12 • M. Chechik et al.

Fig. 5. (a) The multi-valued relation between pairs of states of Ex1; (b) Forward image of [[a]] over
the relation in (a); (c) Backward image of [[a]] over the relation in (a).

Let S be the set of states of the χKripke structure in Figure 3, referred to
as Ex1. The multi-valued relation over S × S represents values of transitions
between pairs of states of Ex1 and is shown in Figure 5(a). We will refer to
this mv-relation as A. For example, the value of the transition (s0, s1) is TF, so
A((s0, s1)) = TF.

Definition 10. Given an algebra, L, an L-valued relation, R, on sets S and
T , and an L-valued set, S, on S, the forward image of S under R, denoted

→
R (S),

is an L-valued set on T, defined as:

→
R (S) , λt ∈ T ·

⊔
s∈S

(S(s) u R(s, t))

and for an L-valued set, T, on T, the backward image of T under R is

←
R (T) , λs ∈ S ·

⊔
t∈T

(T(t) u R(s, t)).

Intuitively, the forward image of an mv-setS under the relation R represents all
elements reachable from S by R where multi-valued memberships of R and S
are taken into consideration. Similarly, a backward image of an mv-setT under
R represents all elements that can reach T by R.

We now consider computing the forward and the backward images of [[a]] (see
Figure 4(a)) under the multi-valued relationA between the pairs of states of the
χKripke structure Ex1. These are shown in Figures 5(b) and (c), respectively.
For example, when we compute backward image of s0, we get⊔

t∈S

([[a]](t) u A(s0, t)) = (TT u FF) t (FF u TF) t (FT u FT) = FT

which indicates that there exists an FT transition from state s0 to another state
(actually, s2), where a is FT.

THEOREM 3. The forward and backward image of a 2-valued set, Q, under
a 2-valued relation, R, are as follows:

(1)
→
R (Q) = λt ∈ T ·∨{s∈S|R(s,t)} S(s)

(2)
←
R (Q) = λs ∈ S ·∨{t∈T |R(s,t)} T(t).

In other words, when the underlying algebra is 2, forward and backward images
are equivalent to their classical counterparts [Clarke et al. 1999].

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 13

5. MULTI-VALUED CTL MODEL-CHECKING

In this section, we extend the notion of boolean model-checking described in
Section 2 by defining multi-valued Kripke structures, which we call χKripke
structures, and multi-valued CTL (χCTL).

5.1 Semantics

M is a χKripke structure if M = (S, s0, R, I, A, L), where:

— L = (L, u, t, ¬) is a quasi-boolean algebra, used for all mv-sets in the model;
— A is a (finite) set of atomic propositions that evaluate to elements of the

algebra, L;
— S is a (finite) set of states;
— s0 ∈ S is the initial state;
—R : S × S→ L is the multi-valued transition relation;
— I : S → (A → L) is a (total) labeling function that maps states in S into

L-valued sets on A.

Intuitively, for any atomic proposition, a ∈ A, (I (s))(a) = ` means that the
variable a has value ` in state s. Given an atomic proposition, a ∈ A, I ′a : S→ L
is a (total) multi-valued characteristic function for an mv-seton S. I ′a is defined
as follows:

I ′a , λs ∈ S · (I (s))(a).

Thus, for each proposition, a, I ′a partitions the state-space with respect to it,
that is for each state, s, ∃!` · I ′a(s) = `.

Note that a χKripke structure is a completely connected graph. As with
classical model-checking, we ensure that all traces have infinite length by re-
quiring that there is at least one non-⊥ transition out of each state (if necessary,
by adding a non-⊥ self-loop to terminal states). Formally,

∀s ∈ S · ∃t ∈ S · R(s, t) 6= ⊥.
To avoid clutter, when we present finite-state machines graphically, we follow
the convention of not showing ⊥ transitions. An example χKripke structure,
shown in Figure 3, was introduced in Section 4.

5.2 Multi-Valued CTL

Here we give semantics of CTL operators on a χKripke structure M over a
quasi-boolean algebra L. We refer to this language as multi-valued CTL, or
χCTL.

In extending the CTL operators, we want to ensure that the desired prop-
erties of E X , EG and EU which form the adequate set for CTL, are still pre-
served.

Definition 11. A computation of a χKripke structure M from a (reachable)
state s is an infinite sequence of states, s0, s1, . . . , s.t. s = s0, and R(si, si+1) 6= ⊥.
This sequence of states is also referred to as a path.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

14 • M. Chechik et al.

Fig. 6. Two classical Kripke structures: (a) Exl ; (b) Exr .

We also note that evaluating a formula, ϕ, in a state, s, is the same as evaluating
ϕ on a tree of all computations emanating from s.

We start defining χCTL by giving the semantics of propositional operators.
We use the double-brace notation, adopted from denotational semantics, and
write [[ϕ]] to denote the mv-set of states representing a degree to which ϕ holds.
Note that we have already used this notation when illustrating mv-sets in
Section 4.

The semantics is as follows:

[[a]] , I ′a
[[¬ϕ]] , [[ϕ]]

[[ϕ ∧ ψ]] , [[ϕ]] ∩L [[ψ]]
[[ϕ ∨ ψ]] , [[ϕ]] ∪L [[ψ]].

We proceed by defining the E X operator. Recall from Section 2 that in clas-
sical CTL, this operator is defined using existential quantification over next
states. We extend the notion of existential quantification for multi-valued rea-
soning through the use of disjunction. This treatment of quantification is stan-
dard [Belnap 1977; Rasiowa 1978]. The semantics of E X is:

[[EXϕ]] ,
←
R ([[ϕ]]) def. of EX.

Note that we use our definition of backward image (Definition 9), that is for a
state s,

[[EXϕ]](s) =
⊔
t∈S

([[ϕ]](t) u R(s, t)).

When reasoning about a model which was produced by merging two (classical)
models, we can think of EXϕ as representing a question “does there exist a next
state in each individual model where ϕ is TRUE, even if the two individual models
do not agree on what this state is”. For example, consider the two classical
Kripke structures, Exl and Exr , shown in Figure 6. χKripke structure Ex1,
shown in Figure 3, constitutes one possible merge of Exl and Exr . In this case,
states with the same name are merged. For example, a variable b has values T
and F in state s1 of Exl and Exr , respectively; therefore, in Ex1, this variable
has value TF. Similarly, a transition (s0, s1) is present in Exl and absent in Exr ;
therefore, it has value TF in Ex1. Consider evaluating a property EXb in state
s0 of these three models. This property is T in Exl , because b is T in s1, and T in
Exr , because b is T in s2. In Ex1, this property evaluates to TF on path (s0, s1)

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 15

and to FT on path (s0, s2). Their disjunction, and, therefore, the value of EXb in
state s0, is TT.

AX is then defined, following the AX duality in Section 2, as

[[AX ϕ]] , [[EX¬ϕ]] def. of AX .

Expanding this definition, [[AX ϕ]] = ←R ([[ϕ]]) = λs · t∈S([[ϕ]](t) t ¬R(s, t)), we
see that universal quantification in the AX operator is replaced by conjunction.

Note that our definitions of E X and AX enjoy some familiar properties of
their CTL counterparts. In particular,

[[EX(ϕ ∨ ψ)]] = [[EXϕ]] ∪L [[EXψ]] E X of disjunction
[[AX (ϕ ∧ ψ)]] = [[AX ϕ]] ∩L [[AXψ]] AX of conjunction.

We further define EG and EU using the EG and EU fixpoint properties in
Figure 1:

[[EGϕ]] , νZ.[[ϕ]] ∩L [[EXZ]] def. of EG
[[E[ϕ U ψ]]] , µZ.[[ψ]] ∪L ([[ϕ]] ∩L [[EXZ]]) def. of EU.

Then, A[ϕ U ψ] becomes

[[A[ϕ U ψ]]] , [[E[¬ψ U ¬ϕ ∧ ¬ψ]]] ∩L [[EG¬ψ]] def. of AU

and the remaining χCTL operators are defined as their classical counterparts
(see Section 2):

[[AFϕ]] , [[A[> U ϕ]]] def. of AF
[[E Fϕ]] , [[E[> U ϕ]]] def. of E F
[[AGϕ]] , [[E F¬ϕ]] def. of AG.

Note that our definition of EU also preserves the familiar property of its CTL
counterpart:

[[E[ϕ U ψ]]] = [[E
[
ϕ U E[ϕ U ψ]

]
]] EU expansion.

5.3 Properties of χCTL

We begin with some sanity checks on χCTL.

THEOREM 4. χCTL reduces to CTL when the algebra is 2. That is,

(1) [[EXϕ]] = [[E X Bϕ]]
(2) [[EGϕ]] = [[EGBϕ]]
(3) [[E[ϕ U ψ]]] = [[E[ϕ U B ψ]]]

where EGB, EU B, and E X B are classical CTL operators defined in Section 2.

We now consider monotonicity of “next-time” operators and ensure that
χCTL is well defined, that is, each property, ϕ, has exactly one value in each
state of the system.

THEOREM 5. χCTL operators AX and E X are monotone.

THEOREM 6. The definition of χCTL ensures that for each ϕ, [[ϕ]] forms a
partition.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

16 • M. Chechik et al.

We now ensure that algorihtms for multi-valued model-checking can be
found.

THEOREM 7. Multi-valued model-checking is decidable.

THEOREM 8. Fixpoint properties of (derived) χCTL operators are the same
as for CTL operators. That is,

(1) [[AGϕ]] = νZ.[[ϕ]] ∩L [[AXZ]] AG fixpoint
(2) [[AFϕ]] = µZ.[[ϕ]] ∪L [[AXZ]] AF fixpoint
(3) [[E Fϕ]] = µZ.[[ϕ]] ∪L [[EXZ]] E F fixpoint
(4) [[A[ϕ U ψ]]] = µZ.[[ψ]] ∪L ([[ϕ]] ∩L [[AXZ]]) AU fixpoint.

Note that our ability to prove the above properties of χCTL operators was
dependent on the fact that our model-checking is defined over quasi-boolean
algebras. For a treatment of properties of χCTL when the model-checking is
defined over a more general class of algebras, please see Devereux [2002] and
Chechik and MacCaull [2003].

5.4 Running Time

To determine the running time of our algorithm, we note that this time is
dominated by the fixpoint computations of EG and EU . In what follows, we
first show that the fixpoint computation converges in O(|S|) iterations, where S
is the state space of the model under analysis, and then analyze the complexity
of each iteration.

5.4.1 Number of iterations. We start with the property [[E Fϕ]](s) =
[[E[> U ϕ]]](s), where ϕ is a propositional formula, and s is an arbitrary state
of the model. Intuitively, the nth iteration of the fixpoint algorithm computes
the least upper bound (join) over the values of ϕ on states reachable from s
by a path of length at most n, weighted by “the value of the path”. Formally,
the value of a path, s0, s1, . . . , sn, is

n−1
i=0 R(si, si+1). In any model with a finite

state space, S, a state that is reachable by a path, π , of length greater or equal
to |S| + 1, is also reachable by a sub-path of π of length at most |S|. That is,
any path longer than |S| necessarily contains a cycle, and, therefore, has a
corresponding acyclic sub-path. Combining this with the fact that a value of a
sub-path is always above a value of the full path, we conclude that the fixpoint
computation converges after at most |S| + 1 iterations.

THEOREM 9. Model-checking a χCTL property E Fϕ on a χKripke structure
with a state space S takes at most |S| + 1 iterations [Gurfinkel 2002].

We now extend this result to the EU operator. The result of model-checking
a χCTL property E[ϕ U ψ] on a χKripke structure, M , with the transition
relation, R, is equivalent to model-checking E Fψ of a χKripke structure, M ′,
obtained from M by replacing its transition relation with R′(s, t) = R(s, t) ∧
[[ϕ]](s).

THEOREM 10. Model-checking a χCTL formula E[ϕ U ψ] on a χKripke
structure with a state space S takes at most |S| + 1 iterations [Gurfinkel 2002].

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 17

For the EG operator, we start with its simplest form, [[EG>]](s). The ith
iteration of the fixpoint computation of [[EG>]](s) computes the least upper
bound of the values of all paths of length i emanating from s. Since the state
space S is finite, for any path π of length greater than |S| + 1, there exists a
path π ′ of length at most |S| + 1, whose value is above the value of π . Thus,
the fixpoint computation converges after at most |S| + 2 iterations. The result
is extended to the general case by the fact that computing EGϕ on a χKripke
structure, M , with transition relation, R, is equivalent to computing EG> on
a χKripke structure, M ′, obtained from M by replacing its transition relation
with R′(s, t) = R(s, t) ∧ [[ϕ]](s).

THEOREM 11. Model-checking a χCTL formula EGϕ on a χKripke structure
with a state space S takes at most |S| + 2 iterations [Gurfinkel 2002].

5.4.2 Running Time of Each Iteration. Given an algebra L, assume that
conjunctions and disjunctions of lattice elements take tL time2. To understand
the running time of each iteration, we need to analyze the running time of
individual operations: mv-setunion, intersection, complement, and backward
image. The first three operations can be done in the time linear in the size of
the representation of the corresponding mv-sets (O(|S| × tL)). Backward image
includes a disjunction of conjunctions between the formula and the transition
relation, taking at most O(|K | × tL), where |K | = |S| + |R| is the size of the
Kripke structure K [Clarke et al. 1999].

5.4.3 Putting It All Together. We established that there are O(|S|) itera-
tions before a fixpoint is reached, and each iteration is bounded by O(|K | × tL).
Since a given χCTL formula, ϕ, contains at most |ϕ| different subformulas, the
running time of our model-checking algorithm is O(|K |×|S|×tL×|ϕ|). This run-
ning time is also obtained by reducing multi-valued model-checking to several
questions to the classical model-checker, as shown in Gurfinkel and Chechik
[2003b]. If we fix the lattice L, for example, by letting it be 2, the running time
reduces to (|K | × |S| × |ϕ|), which is the expected running time of a classical
model-checking algorithm [Clarke et al. 1999].

6. FAIRNESS

In this section, we address the problem of multi-valued model-checking with
fairness. We discuss fairness in classical and multi-valued model-checking in
Sections 6.1 and 6.2. We proceed by giving a formulation of fair counterparts for
all χCTL operators, starting with EG (Section 6.3) and then using it to define
other fair χCTL operators (Section 6.4). Finally, we analyze the running time
of model-checking with fairness in Section 6.5.

6.1 Intuition

In classical model-checking, it is often easier to specify all behaviors of the
system being modeled, plus some additional “unwanted” behaviors, and then

2tL is linear in the number of join-irreducible elements of L [Davey and Priestley 1990].

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

18 • M. Chechik et al.

restrict the analysis to just the “wanted” behaviors of the system. This approach
is often taken in practice because it allows complicated systems to be specified
more compactly. Since computations considered in classical model-checking are
infinite, a natural way to partition behaviors into “wanted” and “unwanted” is
by specifying progress that should be made on a fair computation (path). Thus,
we define a computation as fair if and only if a certain progress state, or a
sequence of states, occurs in it infinitely often [Clarke et al. 1986]. Formally,

Definition 12. A path is fair w.r.t. a set of fairness conditions, C =
{c1, c2, . . . , cn}, iff every predicate, ci, is TRUE on it infinitely often.

THEOREM 12. The following statements are equivalent for a path, π , and
fairness conditions, C = {c1, . . . , ck}:

(1) Each fairness condition, ci, occurs infinitely often in π ;
(2) A sequence c1, c2, . . . , ck occurs infinitely often in π .

6.2 Fairness in Multi-Valued Model-Checking

In the multi-valued case, we want to preserve the ability to specify a larger set
of computations than necessary and then restrict our attention to the “wanted”,
or fair ones. Multi-valued models already have a notion of “possible” computa-
tion: it is a computation where the conjunction of values of transitions between
states is non-⊥, and “impossible” otherwise. Thus, if the goal of fairness in the
multi-valued model-checking is to enable specification of a system in a concise
form, fairness must be able to effectively turn some “possible” computations
into “impossible” ones. Therefore, a “wanted” path in the fair system is a “possi-
ble” path conjoined with the appropriate fairness condition. Further, fair paths
should preserve the “possibility” values of their underlying models, whereas
unfair paths should have value ⊥. One easy way to guarantee this is by ensur-
ing that the fairness condition is 2-valued, because > and ⊥ give us the desired
base and identity laws (xu> = x and xu⊥ = ⊥). Thus, we assume that fairness
constraints are given by a set of χCTL formulas, C = {c1, c2, . . . , cn}, such that
each formula always evaluates to either > or ⊥. Intuitively, such expressions
consist of boolean predicates (v, w, =, 6=) on χCTL formulas. For example, for
an arbitrary ϕ, AX ϕ may evaluate to M when the logic is 3, and, therefore,
cannot be used to specify a fairness condition. On the other hand, ψ v AX ϕ
(for some arbitrary ϕ and ψ) always evaluates to > or ⊥, and thus can be used
to specify fairness. Fairness conditions partition the sets of states into mv-sets.
For notational convenience we assume that these mv-sets are over the same
algebra, L = (L, u, t, ¬), as the model, even though for each fairness condition,
ci, ∀s ∈ S · [[ci]](s) ∈ {>,⊥}.

We begin defining multi-valued fairness by introducing the concept of mv-
trace. In classical model-checking, a trace from s is a single computation, em-
anating from s, of the corresponding Kripke structure. On the other hand, a
trace in multi-valued model-checking may correspond to several computations,
that is, a witness to an E X operator is not necessarily a single path [Gurfinkel
and Chechik 2003a]. For example, consider the χKripke structures Exl , Exr
and Ex1, shown in Figures 6 and 3, respectively. As indicated earlier, Ex1 is

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 19

the merge of the other two models. Next-state computations from s0 in models
Exl and Exr are s0, s1 and s0, s2, respectively. Yet, as shown in Section 5.2, both
are necessary to evaluate EXb. So, even existential χCTL operators, and their
fair counterparts, are defined and evaluated on sets of computations which we
refer to as mv-traces.

Definition 13. An mv-trace in a χKripke structure, M , is fair w.r.t. a set
of fairness conditions, C = {c1, c2, . . . , cn}, if and only if each computation com-
prising it is fair w.r.t. C.

Following Huth and Ryan [2000], we write AC and EC for the operators A and
E restricted to fair paths. For example, [[ACGϕ]](s) = > means that ϕ is TRUE

in every fair mv-trace.

6.3 Fair EG

As in CTL, χCTL operators ECG, EC[ϕ U ψ] and EC X form an adequate set.
Given a formulation for ECG, we can define other fair χCTL operators, as shown
in Section 6.4.

Note that [[ECGϕ]](s) = `means that there exists an mv-trace beginning with
state s on which EGϕ holds with value `, and each formula in C is > infinitely
often along each path. Alternatively, if C = {c1, c2}, it is the repetition of the
following sequence: ϕ holds until c1, and from that point on, ϕ holds until c2.
Formally, we can define this using the following fixpoint formulation:

[[ECGϕ]] , νZ · [[ϕ]] ∩L [[EX E
[
ϕ U ϕ ∧ c1 ∧ EX E[ϕ U ϕ ∧ c2 ∧ Z]

]
]]

def. of ECG.

When C = {c1, c2, . . . , ck}, the above definition can be extended appropriately.
The problem with this definition, however, is that it is dependent on the size of
C. We thus seek an alternative definition, calling the new operator ECG ′.

[[ECG ′ϕ]] , νZ · [[ϕ]] ∩L

⋂n
Lk=1[[EX E[ϕ U ϕ ∧ Z ∧ ck]]] def. of ECG ′

We are now ready to study properties of ECG and ECG ′. We begin by showing
that ECG ′ becomes EG when there are no fairness conditions present, and then
proceed to show that the operators ECG and ECG ′ are equivalent.

THEOREM 13. When C = {>} (no fairness), ECG ′ becomes

[[ECG ′ϕ]] = νZ · [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ Z]]] = νZ · [[ϕ]] ∩L [[EXZ]] = [[EGϕ]]

THEOREM 14. Operators ECG and ECG ′ are equivalent.

6.4 Fairness in Other χCTL Operators

Computing EC X ϕ in state s amounts to finding successors of s which are at
the start of some fair computation path and computing EXϕ using only these
successors. In such states ECG>has a value other than⊥. Thus, the formulation
for EC X ϕ is

[[EC X ϕ]] , [[EX(ϕ ∧ (ECG> = ⊥))]].

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

20 • M. Chechik et al.

For a similar reason, the formulation for EC[ϕ U ψ] is

[[EC[ϕ U ψ]]] = [[E[ϕ U (ψ ∧ (ECG> = ⊥))]]].

Note that both formulations are similar to those of classical CTL.

6.5 Running Time

Running time of the model-checker under fairness conditions, C, is dominated
by the computation of ECG that includes a nested fixpoint. The inner fixpoint
is used to compute E[ϕ U (Z ∧ ck)] and takes, using a regular model-checking
algorithm, O(|S|3). The outer fixpoint converges after at most |S| iterations,
and each iteration involves computing |C| inner fixpoints. Therefore, ECGϕ can
be computed in O(|C| × |S|4) time. Since a given formula, ϕ, contains at most
|ϕ| different subformulas, running time of the model-checker under fairness
conditions, C, is in O(|ϕ| × |C| × |S|4). Note that running time for χCTL with
fairness reduces to that of the classical CTL model-checker when the underlying
logic is classical.

7. IMPLEMENTATION AND APPLICATIONS

In this section, we briefly discuss implementation choices for χChek and
describe some potential applications for it.

7.1 Implementation

As a proof of concept, we have developed a prototype implementation (in Java) of
a multi-valued model-checker called χChek [Chechik et al. 2002a]. The check-
ing engine takes as input a list of χCTL formulas to verify, a model of the sys-
tem represented as a χKripke structure, and a specification of the underlying
quasi-boolean algebra. For each χCTL formula, χChek calculates its value in
the initial state, returning a counter-example or a witness, if appropriate. The
counter-example generator for χCTL is discussed in detail elsewhere [Gurfinkel
and Chechik 2003a].

Practical symbolic model-checking in a given domain (probabilistic,
multi-valued, timed, etc.) depends on efficient algorithms for storing and
manipulating sets of states in which a property holds. In our case, we need
efficient implementations of operations (union, intersection, complement, and
backward image) on the mv-set datatype. χChek uses a general mv-set inter-
face and we are experimenting with alternative implementations of mv-sets.
As in classical symbolic model-checking, we represent mv-sets using decision
diagrams. Several varieties of decision diagrams are suitable. For example, if
the mv-set membership function is kept multi-valued, then mv-sets can be eas-
ily implemented using Multi-Valued Decision Diagrams (MDDs) [Srinivasan
et al. 1990; Chechik et al. 2001a]. Alternatively, each mv-set can be thought of
as a collection of classical sets. Symbolically, this approach can be implemented
using Multi-Valued Binary-Terminal Decision Diagrams (MBTDDs) [Sasao and
Butler 1996]. Of course, the multi-valued model-checking problem also reduces
to several queries to the classical model-checker, run on top of Binary Decision
Diagrams (BDDs) [Konikowska and Penczek 2003; Gurfinkel and Chechik

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 21

2003b]. The tradeoffs between these encodings depend on a number of factors,
including the types of questions asked, the size and the shape of the elements of
the underlying lattice, and the variable ordering. We describe the implementa-
tion and evaluate the performance characteristics of different implementations
of the mv-set datatype in a companion article [Chechik et al. 2002b].

7.2 Applications

Multi-valued model-checking has a number of potential applications in software
engineering, such as analyzing models that contain uncertainty, disagreement,
or relative priority, and for general model exploration. For example:

— The intermediate values of the logic can be used to represent incomplete
information (or uncertainty). Such applications typically use a 3-valued logic,
with the values >, ⊥ and MAYBE . A 3-valued model can be interpreted as a
compact representation for a set of completions [Bruns and Godefroid 2000],
where a completion is generated by replacing each MAYBE value in the model
by either > or ⊥. If a property is > (respectively, ⊥) in a partial model, then
it is > (⊥) in all completions. If a property is MAYBE in a partial model, then
it takes different values in different completions: the missing information
affects the property. Thus, we can use a 3-valued model-checker to determine
if particular properties hold even though the model is incomplete. We can also
use this approach to reduce the size of classical model-checking problems by
creating (partial) abstractions of models that have large state-spaces. We
describe one such case study below. It is possible to generalize this approach
to logics with more than three values, to distinguish levels of uncertainty for
the incomplete information, but we have not yet explored such applications.

— The intermediate values of the logic can be used to represent disagreement.
Such applications typically use quasi-boolean algebras defined over product
lattices. A model based on a product lattice can be interpreted as a compact
representation for a set of models (or views), where the views may disagree on
the values of some transitions or propositions. For example, a model based on
a logic 2x2 can be formed by merging information from two separate 2-valued
views. One such 4-valued model and its corresponding classical models were
shown in Figures 3 and 6, respectively. If a property is > (respectively, ⊥) in
each individual view, then it is > (⊥) in the merged model. If a property is
FT or TF in the merged model, then the disagreement affects the property.
Multi-valued model-checking over such merged models is particularly useful
if the views are partial, representing, for example, different modules, features
or slices of a larger system. In this case, a multi-valued model-checker can
check properties that cannot be expressed in the individual views because
the properties combine vocabulary of several views or refer to interactions
between different views. We are exploring this approach for the feature inter-
action problem in telephony [Easterbrook and Chechik 2001], and as a tool
to support stakeholder negotiations in requirements engineering by tracing
specific disagreements to the properties they affect.

— The intermediate values of the logic can be used to represent relative de-
sirability (or criticality). Such applications typically use chain lattices, also

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

22 • M. Chechik et al.

known as total orders. A model based on a chain lattice can be interpreted
as a compact representation for a set of partial layers, where each successive
layer specifies values for transitions left unspecified by previous layers. For
example, a model based on a 4-valued chain lattice can be used to represent
a system with two levels of criticality. Transitions labeled > (respectively, ⊥)
represent core functionality—transitions that must (must not) occur. Transi-
tions labeled with the remaining values represent optional functionality. If a
property is > (respectively, ⊥) in this model, then it is true (false) in just the
core layer, irrespective of behaviors at the optional layer. We are exploring
this approach for reasoning about requirements prioritization and for an-
alyzing survivable systems. In each of these applications, the multi-valued
model-checker allows us to check which properties are supported by which
layer, but avoids having to maintain separate models of the individual layers.

— Elements of our quasi-boolean algebras need not be interpreted as logical
values. Consider the query-checking problem [Chan 2000] for which the in-
puts are a (classical) model and a temporal logic query (TLQ). A TLQ is a
temporal logic formula with placeholders for some subformulas, for example,
AG?. A query-checker finds the strongest set of assignments of propositional
formulas for each placeholder, such that replacing each placeholder with any
assignment chosen from its set results in a temporal logic formula that holds
in the model. Thus, query-checking is a form of model exploration—it can
be used to discover invariants, guards, and postconditions of (sets of) tran-
sitions in the model. The query-checking problem can be formulated as a
multi-valued model-checking problem on upset lattices3, where the elements
of the lattices are sets of propositional formulas ordered by set inclusion.
The reduction of the query-checking problem to multi-valued model-checking
problem is described in Gurfinkel et al. [2003].

We now demonstrate the use of χChek for reasoning about state-space ab-
straction. Note that this is a demonstration rather than a case study aimed
at showing the scalability of our approach or the quality of the engineering.
Larger case studies as well as experiments aimed at studying the impact of the
use of various decision diagrams and other engineering decisions are given in
the companion article, Chechik et al. [2002b].

The use of abstraction has long been proposed as a way to overcome the state-
space explosion problem in classical model-checking. Abstraction collapses sets
of concrete states into a single abstract state, indicating that any differences
between the concrete states within a single abstract state are ignored [Cousot
and Cousot 1977; Dams et al. 1997; Dams 1996]. One way to ensure property
preservation during abstraction is to guarantee that a set of states in the con-
crete model is composed into a single abstract state only if these states have
an equivalent transition relation (one can refer to them as symmetric). This is
a very strong condition, but sufficient for the purposes of our presentation. For

3Given the ordered set (L,v) and a subset B ⊆ L, then ↑B is the set {` ∈ L | ∃b ∈ B · b v `}. A
subset B of L is an upset if ↑B = B.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 23

Fig. 7. Three models of the elevator button: (a) the original module Button of Plath & Ryan (in
SMV); (b) a modified module Button; (c) an abstracted module Button.

example, states s1 and s2 can become part of the same abstract state if

∀t · (R(s1, t)⇔ R(s2, t)) ∧ (R(t, s1)⇔ R(t, s2)).

If s1 and s2 disagree on a value of a variable, we cannot assign either TRUE (T,
>) or FALSE (F, ⊥) to this variable in the abstract state. Instead, we can model
disagreement using the value MAYBE (M), resulting in a 3-valued logic. This
abstraction guarantees state-wise preservation [Dams et al. 1997]: if a formula
evaluates to> (⊥) in an abstract state, it evaluates to> (⊥) in all corresponding
concrete states.

For the case study, we have used the SMV elevator model of Plath and Ryan
[1999]4. This model consists of a single elevator that accepts requests made by
users pressing buttons at the floor landings or inside the elevator. The elevator
moves up and down between floors and opens and closes its doors in response
to these requests, according to the Single Button Collective Control (SBCC)
strategy [Berney and dos Santos 1985].

The model is implemented by several SMV modules. The Main module de-
clares several instances of the module Button (one per floor, called landingButi),
parameterized by the condition under which the request is considered fulfilled
(reset), and one instance of the module Lift, called lift. The Lift module
declares the variables floor, door, and direction as well as further instances
of Button to indicate requests from within the elevator (also one per floor, called
liftButi).

The SMV module Button is shown in Figure 7(a). Once a button is pressed, it
latches and remains pressed until the elevator fulfills the request. We modified
this module by modeling the latching explicitly: each variable pressed in the
module Button is decomposed into two variables, with button representing the
actual button that users can press, and pressed representing the latching. The
modified button is shown in Figure 7(b), and its state machine in Figure 8(a).

4SMV uses 0 and 1 to represent logic values ⊥ and >.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

24 • M. Chechik et al.

Fig. 8. State machines: (a) of the modified module Button; (b) of the abstracted module Button.

The model has eight possible states, corresponding to the evaluation of the tuple
(button, pressed, reset). To simplify the presentation, in the state-machine
description, we assume that a button cannot be reset until it has been latched,
that is, reset cannot become > if pressed is ⊥.

Each of the pairs of states, {s3, s4}, {s5, s6}, and {s7, s8}, (indicated by dashed
lines in Figure 8(a)) has a symmetric transition relation and can be abstracted.
This corresponds to the value of button being irrelevant when pressed or reset
are>. Thus, we can model button by a 3-valued variable as shown in Figure 7(c).
The state machine model of the abstract system is shown in Figure 8(b). When
this module is composed with the rest of the elevator model, we get a 3-valued
model that cannot be directly verified using a classical model-checker. We pro-
ceed with the verification using two techniques: (a) the reduction to classical
model-checking proposed by Bruns & Godefroid [2000], and (b) directly, using
χChek.

The first technique involves two queries to a classical model-checker and
is applicable to formulas where negation is applied only to atomic proposi-
tions. The first step is the computation of the complement closure [Bruns and
Godefroid 2000] of the model by adding an extra variable ā for each variable
a, such that in each state of the model, ā is equal to ¬a. The second step is the
building of two versions of the model: the pessimistic version replaces each M
value with⊥, while the optimistic version replaces each M with>. The property
to be checked must also be converted into the positive normal form by pushing
all negations to the level of atomic propositions and replacing each negated
variable, a with the corresponding variable, ā. The model-checker is called on
the pessimistic and the optimistic models and the results are combined as fol-
lows: if the pessimistic model yields >, return >; else if the optimistic model

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 25

Fig. 9. Properties of the elevator system.

yields ⊥, return ⊥; otherwise, return M. Alternatively, the order of checks can
be reversed: if the optimistic model yields ⊥, return ⊥; else if the pessimistic
model yields >, return >; otherwise, return M. Both versions of this technique
have the same worst-case complexity as χChek, that is, linear in the size of the
model and the size of the formula. Yet, given a model of interest, it is not clear
whether the Bruns and Godefroid [2000] technique or χChek performs better.

The properties of the elevator system that we verified are given in Figure 9.
Properties 1-4 are taken directly from Plath and Ryan [1999] with the variable
pressed replaced by button in all terms involving landing or elevator buttons
because of our change to the module Button. Property 5 is our own addition.
Similar properties can be formulated for all other floors and all other landing
and elevator buttons. In a correct elevator system, we expect property 1 to
evaluate to ⊥, properties 2-4 to evaluate to >, and property 5 to evaluate to ⊥.

Given classical logic as input, χChek acts as a classical model-checker. Thus,
we can compare the two approaches using the same model-checking engine, and,
hence, factor out implementation issues in the experiments. We parameterized
the model by the number of floors and ran our experiments using models with
3 and 4 floors. For both approaches, we ran χChek with mv-sets implemented
using MDDs on a Pentium III with 850 MHz processor and 256 MB RAM,
running Sun JDK 1.3 under Linux 2.2.19. Table I summarizes the results. Since
it cannot be determined a priori which version of the Bruns and Godefroid [2000]
technique yields the best performance, we give running times on pessimistic
and optimistic models separately and then list their total (if the choice is made
incorrectly and both checks need to be run) and the best time (if the choice is
made correctly, and, where possible, only one check is needed). For example,
verification of property 1 on the 4-floor elevator can be done in 4.638+ 4.594 =
9.232 seconds using two queries to “classical” χChek if we started with the
pessimistic model, and in 4.594 seconds if we started with the optimistic model.
The same property can be verified in 2.29 seconds when χChek uses 3-valued
logic directly. Note that property 5 evaluates to M in both models as opposed
to the expected ⊥. This was caused by the abstraction we made to the module
Button: it is possible that pressed is > while button is M.

The size of the transition relation, as encoded into decision diagrams, does
not change from property to property so in Table I, we show it only once for

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

26 • M. Chechik et al.

Table I. Elevator Abstraction: Comparison between (up to) two runs of the classical
model-checker and a run of χChek.

CTL
Property Bruns & Godefroid [2000]

Model Number Result Pessimistic Optimistic Total Best χChek
3-floor 1. ⊥ 0.756 s 0.774 s 1.53 s 0.774 s 0.306 s

2. > 0.273 s 0.182 s 0.455 s 0.273 s 0.114 s
3. > 0.249 s 0.173 s 0.422 s 0.249 s 0.119 s
4. > 0.608 s 0.634 s 1.242 s 0.608 s 0.299 s
5. M 0.087 s 0.155 s 0.242 s 0.242 s 0.105 s

Size of trans. 2130 2153 954
relation

4-floor 1. ⊥ 4.638 s 4.594 s 9.232 s 4.594 s 2.29 s
2. > 0.936 s 0.942 s 1.878 s 0.936 s 0.463 s
3. > 0.869 s 1.044 s 1.913 s 0.869 s 0.494 s
4. > 3.767 s 3.698 s 7.465 s 3.767 s 2.122 s
5. M 0.047 s 0.502 s 0.549 s 0.549 s 0.298 s

Size of trans. 5249 5307 2367
relation

each elevator model. The process of constructing the complement closure in
the Bruns and Godefroid [2000] approach roughly doubles the size of the models
and slows down the analysis, as confirmed by the experiments. Replacing MDDs
by other decision diagram implementations preserves the same relationship
between the sizes of the encoding [Chechik et al. 2002a].

Also, note that in our comparisons we did not optimize either method. Poten-
tially, by determining which atomic propositions are negated in the formulas
to be verified and only including these in the complement closure, the size of
the transition relation and the running time in the Bruns and Godefroid [2000]
method can be improved. However, in the case of the elevator model, most of
the atomic propositions can appear on the left-hand side of the implication, and
thus need to be negated. Multi-valued model-checking can also be improved:
currently we represent all variables as if they can range over all values of the
logic, for example, pressed and reset are 3-valued, even though they do not
need to be. Representing boolean variables explicitly can lead to faster verifi-
cation times.

Finally, other experiments (see Chechik et al. [2002b]) seem to indicate that
the above relationship between the performance of the two approaches holds
in general but further investigation is necessary to confirm this hypothesis.

8. CONCLUSION

In this section, we summarize the article, compare the work presented here
with that of other researchers, and outline directions for future work.

8.1 Summary

Multi-valued algebras can be useful in a variety of verification tasks. For ex-
ample, they can help reason about partial systems, solve feature interaction
problems, and support general model exploration.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 27

In this article, we introduced an extension of classical CTL model-checking to
reasoning with quasi-boolean algebras. We gave semantics to and categorized
properties of a multi-valued extension of CTL, called χCTL. We also described a
notion of multi-valued Kripke structures and showed how model-checking can
be extended to dealing with systems containing fairness. Finally, we presented
a multi-valued symbolic model-checker, χChek, and illustrated its behavior and
performance.

8.2 Related Work

Multi-valued algebras, often called “logics”, have been explored for a variety of
applications in databases [Gaines 1979], knowledge representation [Ginsberg
1987], machine learning [Michalski 1977], and circuit design [Hazelhurst 1996].
A number of specific propositional multi-valued logics have been proposed and
studied. For example, [Lukasiewicz 1970] first introduced a 3-valued logic to
allow for propositions whose truth values are ‘unknown’, and Kleene [1952]
studied several alternative 3-valued logics. Belnap [1977] proposed a 4-valued
logic that introduced the value “both” (i.e. both TRUE and FALSE), to handle
inconsistent assertions in database systems. Each of these logics can be gener-
alized to allow for additional levels of uncertainty or disagreement. The class
of quasi-boolean algebras defined in this article includes many existing multi-
valued propositional logics, such as those of Kleene [1952] and Belnap [1977].
Work has also been done on deciding a more general class of logics. In particular,
the work of Hähnle [1994] and others [Sofronie-Stokkermans 2001] has led to
the development of several theorem-provers for first-order multi-valued logics.

Multi-valued extensions of modal logics have been explored by Fitting
[1991a, 1992] who introduced a notion of multi-valued models and extended
propositional modal logic (i.e. a fragment of CTL where the modal operators
are limited to AX and E X) to reasoning over such models. In his work, values
of propositions and transitions of the model come from a Heyting instead of
a quasi-boolean algebra. Since boolean algebras (Definition 6) lie in the in-
tersection of quasi-boolean and Heyting algebras, our work can be seen as
(1) extending Fitting’s multi-valued modal logic with additional modal oper-
ators, and (2) extending multi-valued modal models to quasi-boolean algebras.

A number of recent papers [Bruns and Godefroid 1999; Bruns and Godefroid
2000; Godefroid et al. 2001; Huth et al. 2001; Huth et al. 2003] addressed
the problem of model-checking over the algebra 3 on a variety of 3-valued
finite-state transition systems. Bruns and Godefroid [1999, 2000] investigated
3-valued model-checking on partial Kripke structures where propositions are
3-valued, but the transition relation is boolean. They extended branching-time
temporal logic to this case, proposing a 3-valued modal logic for expressing
properties of partial models. Model-checking of positive properties (properties
that do not contain negation) in this logic reduces to two questions to a clas-
sical model-checker. This approach can also be applied to full µ-calculus by
computing complement closure [Bruns and Godefroid 2000] of the model at the
expense of increasing the size of the model and verification time. To make the
analysis more precise, the authors describe a thorough semantics of 3-valued

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

28 • M. Chechik et al.

model-checking under which a property evaluates to MAYBE if and only if there
are two refinements of the partial model that disagree on the value of this
property.

Godefroid et al. [2001] provided an extension of the original 3-valued model-
checking algorithm to Modal Transition Systems (MTS)—a generalization of
Labeled Transition Systems of Larsen and Thomsen [1988], in which the tran-
sition relation is allowed to become 3-valued. Such systems have “must”, “may”
and “must not” type transitions. The authors define a 3-valued extension of
the modal µ-calculus for MTS and describe an algorithm for model-checking
in a fragment of this language using classical model-checking. The idea is fur-
ther extended by Huth et al. [2001, 2003] to Kripke Modal Transition Systems
which are equivalent to our χKripke structures when the algebra is 3. All of
these modeling formalisms have been shown to be equivalent [Godefroid and
Jagadeesan 2003].

When 3-valued algebras are applied to reasoning about inconsistencies, all
inconsistencies are represented using the value M. When model-checking re-
turns > or ⊥, this indicates that inconsistencies do not matter. However, when
model-checking returns M, there is insufficient support for discovering sources
of inconsistencies or for negotiation. If model-checking on a larger class of al-
gebras is possible, such as with χChek, we can refine the algebra when model-
checking returns M, for example, keeping track of exact sources of all disagree-
ments, and allow the users to determine which inconsistencies matter and help
focus potential negotiations.

Huth and Pradhan [2003] study multi-valued model-checking where the un-
derlying algebra is defined on AC-lattices rather than De Morgan lattices. AC
lattices are a pair of lattices with negation mapping between them. In par-
ticular, the authors study the problem of discovering sources of inconsistency
between multiple viewpoints. Each of the C stakeholders, arranged in a par-
tial order of dominance, submits a partial model, consisting of valid (“must”)
and consistent (“may”) statements about states and transitions. The method-
ology assumes that each viewpoint has a possibly incomplete but consistent
description over the same global vocabulary. The systems are on different lev-
els of abstraction. Given a first-order property, the model-checking problem
is to determine sets of stakeholders for which the property is valid or consis-
tent, respectively. The model-checking problem is reduced to reasoning about C
single-view partial models. Verification of each model is performed by switching
between “valid” and “consistent” interpretations of satisfiability of properties.
Our work is complementary to the above: Huth and Pradhan propose to handle
inconsistencies between refinements of the same system, whereas multi-valued
models encode inconsistencies between the different descriptions on the same
level of abstraction.

Symbolic probabilistic model-checking has been implemented as part of the
tool PROBVERUS [Baier et al. 1997]. The models used in this work are Kripke
structures where edges are labeled with probabilities assigned to the corre-
sponding transitions and state variables are classically-valued. Thus, the data
structures used by PROBVERUS are Multi-Terminal Binary Decision Diagrams
(MTBDDs) [Baier and Clarke 1998], which are equivalent to the Algebraic

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 29

Decision Diagrams (ADDs) of Bahar et al. [1993]. Each nonterminal node of
MTBDDs has two children, and the number of terminal nodes depends on the
range of the function being represented.

8.3 Future Work

We plan to extend the work presented in this article in a number of directions.
First of all, success of multi-valued model-checking depends in part on our
ability to engineer the model-checker to handle nontrivial problems. To this
effect, we are currently working on optimizations of symbolic representations
of mv-sets Chechik et al. [2002b] and empirically characterizing the tradeoffs
between different symbolic representations.

Preliminary work on multi-valued LTL (χLTL) model-checking has been re-
ported in [Chechik et al. 2001b]. We are now interested in extending χChek
to handle χLTL properties symbolically. We are also interested in conducting
a number of case studies that use the multi-valued model-checking approach
described in this article.

APPENDIX

We give proofs of selected theorems here. Our proofs follow the calculational
style [Hehner 1993; Back and von Wright 1998].

THEOREM 1. A product of two quasi-boolean algebras is quasi-boolean, that
is,

(1) ¬¬(a, b) = (a, b)
(2) ¬((a1, b1) u (a2, b2)) = (¬a1, ¬b1) t (¬a2, ¬b2)
(3) ¬((a1, b1) t (a2, b2)) = (¬a1, ¬b1) u (¬a2, ¬b2)
(4) (a1, b1) v (a2, b2) ⇔ ¬(a1, b1) w ¬(a2, b2)

PROOF.

(1) ¬¬(a, b) ¬ of pairs
⇔ ¬(¬a, ¬b) ¬ of pairs
⇔ (¬¬a, ¬¬b) ¬ involution
⇔ (a, b)

(2) ¬((a1, b1) u (a2, b2) u of pairs
⇔ ¬((a1 u a2), (b1 u b2)) ¬ of pairs
⇔ (¬(a1 u a2), ¬(b1 u b2)) De Morgan
⇔ (¬a1 t ¬a2, ¬b1 t ¬b2) t of pairs
⇔ (¬a1, ¬b1) t (¬a2, ¬b2)

(4) (a1, b1) v (a2, b2) v of pairs
⇔ a1 v a2 ∧ b1 v b2 ¬ antimonotonic
⇔ ¬a1 w ¬a2 ∧ ¬b1 w ¬b2 w of pairs
⇔ (¬a1, ¬b1) w (¬a2, ¬b2) ¬ of pairs
⇔ ¬(a1, b1) w ¬(a2, b2)

The proof of (3) is similar to that of (2).

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

30 • M. Chechik et al.

THEOREM 2. For a 2-valued set S on S, the following holds:

(1) The membership function S(x) is a boolean predicate
(2) (S ∩2 S′) = {x | S(x) ∧ S′(x)} = (S ∩ S′)
(3) (S ∪2 S′) = {x | S(x) ∨ S′(x)} = (S ∪ S′)
(4) S(x) = x ∈ (S − { y | S(y) = >})

PROOF. The proof follows from the the fact that the set membership function
S(x) is boolean. Then, each mv-setis boolean and thus union, intersection and
complement reduce to classical.

THEOREM 3. The forward and backward image of a 2-valued set, Q, under
a 2-valued relation, R, are as follows:

(1)
→
R (Q) = λt ∈ T ·∨{s∈S|R(s,t)} S(s)

(2)
←
R (Q) = λs ∈ S ·∨{t∈T |R(s,t)} T(t)

PROOF.
→
R (Q) def. of

→
R

= λt ·⊔s∈S(Q(s) u R(s, t)) R is a boolean relation
= λt ·⊔{s∈S|R(s,t)}Q(s) Theorem 2
= λt ·∨{s∈S|R(s,t)}Q(s)

The proof of (2) is similar.

THEOREM 4. χCTL reduces to CTL when the algebra is 2. That is,

(1) [[EXϕ]] = [[E X Bϕ]]
(2) [[EGϕ]] = [[EGBϕ]]
(3) [[E[ϕ U ψ]]] = [[E[ϕ U B ψ]]]

where EGB, EUB, and EXB are classical CTL operators defined in Section 2.

PROOF. (1) holds by Theorem 3. The proof for (2) is based on the fact that
[[EGϕ]] can be represented by νZ ·F (Z), where F (Z) = [[ϕ]]∩L [[EXZ]]. Since F (Z)
reduces to its boolean version syntactically, [[EGϕ]] reduces to [[EGBϕ]]. The
proof for (3) is similar to that of (2).

THEOREM 5. χCTL operators AX and E X are monotone.

PROOF. We begin by reciting some properties of monotone functions and
fixpoints. Assume that F and G are monotone functions. Then, F (Z) ∪ G(Z),
F (Z) ∩ G(Z), and F (Z) are monotone.

We want to show that E X is monotone:
Z ⊆L Y def. of ⊆L

⇒ ∀t ∈ S · Z(t) v Y(t) u is monotone
⇒ ∀s ∈ S · ∀t ∈ S · R(s, t) u Z(t) v R(s, t) u Y(t)

⊔
is monotone

⇒ ∀s ∈ S ·⊔t∈S R(s, t) u Z(t) v ⊔t∈S R(s, t) u Y(t) def. of E X
⇒ ∀s ∈ S · [[EXZ]](s) v [[EXY]](s) def. of ⊆L

⇒ [[EXZ]] ⊆L [[EXY]]

AX is monotone because [[AX]] = [[EX¬Z]] and E X is monotone.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 31

THEOREM 6. The definition of χCTL ensures that for each ϕ, [[ϕ]] forms a
partition.

PROOF. To prove this theorem, it suffices to prove that the computation of
EXϕ forms a partition. All other operators are computed using fixpoints and
applications of ∪L, ∩L, and ¬ operators which, given mv-sets where the charac-
teristic function is total, produce mv-sets with a total characteristic function,
thereby forming a partition. We now turn to showing that the computation of
EXϕ forms a partition.

∀s ∈ S ∃!` · [[EXϕ]](s) = `
= by def. of EX
∀s ∈ S ∃!` ·⊔t∈S([[ϕ]](t) u R(s, t)) = `

⇐ since [[ϕ]] is a partition, R(s, t) is an mv-relation s.t.∀(s, t) ∃!`′ ∈ L · R(s, t) =
`′, and by Definition 2
∀s ∈ S ∃!` ∃!`t ·

⊔
t∈S `t = `

⇐ because
⊔

preserves partition property
>

THEOREM 7. Multi-valued model-checking is decidable.

PROOF. From Theorem 5 and monotonicity of ∩L and ∪L, we conclude that
all χCTL operators involve computation of fixpoints over monotone functions,
thus resulting in natural algorithms. The termination of these algorithms is
guaranteed by the usual application of the Knaster-Tarski theorem.

THEOREM 8. Fixpoint properties of (derived) χCTL operators are the same
as for CTL operators. That is,

(1) [[AGϕ]] = νZ · [[ϕ]] ∩L [[AXZ]] AG fixpoint
(2) [[AFϕ]] = µZ · [[ϕ]] ∪L [[AXZ]] AF fixpoint
(3) [[E Fϕ]] = µZ · [[ϕ]] ∪L [[EXZ]] EF fixpoint
(4) [[A[ϕ U ψ]]] = µZ · [[ψ]] ∪L ([[ϕ]] ∩L [[AXZ]]) AU fixpoint

PROOF. We structure the proof by showing that definitions for the temporal
operators AG, AF, EF and AU are the same as their fixpoints. First we recall
the property relating least and greatest fixpoints [Kozen 1983]

µZ · F (Z) = νZ · F (Z) negation fixpoint

(1) [[AGϕ]] def. of AG
= [[E F¬ϕ]] EF fixpoint
= µZ · [[¬ϕ]] ∪L [[EXZ]] negation fixpoint
= νZ · [[¬ϕ]] ∪L [[EX¬Z]] De Morgan
= νZ · [[ϕ]] ∩L [[EX¬Z]] def. of AX
= νZ · [[ϕ]] ∩L [[AXZ]]

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

32 • M. Chechik et al.

(2) [[AFϕ]] def. of AF
= [[A[> U ϕ]]] AU fixpoint
= µZ · [[ϕ]] ∪L ([[>]] ∩L [[AXZ]]) identity of >
= µZ · [[ϕ]] ∪L [[AXZ]]

(3) [[E Fϕ]] def. of E F
= [[E[> U ϕ]]] EU fixpoint
= µZ · [[ϕ]] ∪L ([[>]] ∩L [[EXZ]]) identity of >
= µZ · [[ϕ]] ∪L [[EXZ]]

We now show (4). We start by reformulating the definition of AU :

[[A[ϕ U ψ]]]
= by def. of AU

[[E[¬ψ U ¬ϕ ∧ ¬ψ]]] ∩L [[EG¬ψ]]
= expanding EU and EG using their definitions
µZ · [[¬ϕ ∧ ¬ψ]] ∪L ([[¬ψ]] ∩L [[EXZ]]) ∩L νZ · [[¬ψ]] ∩L [[EXZ]]

= using negation fixpoint, def. of AX

(νZ · [[ϕ ∨ ψ]] ∩L ([[ψ]] ∪L [[AXZ]])) ∩L (µZ · [[ψ]] ∪L [[AXZ]])
= by distributivity and absorption

(νZ · [[ψ]] ∪L (([[ϕ]] ∪L [[ψ]]) ∩L [[AXZ]])) ∩L (µZ · [[ψ]] ∪L [[AXZ]])
= by distributivity and absorption

(νZ · [[ψ]] ∪L ([[ϕ]] ∩L [[AXZ]])) ∩L (µZ · [[ψ]] ∪L [[AXZ]])

Now, let F (Z) = [[ψ]] ∪L ([[ϕ]] ∩L [[AXZ]]) and G(Z) = [[ψ]] ∪L [[AXZ]]. Then
[[E[¬ψ U ¬ϕ ∧ ¬ψ]]] = K = νZ · F (Z), [[EG¬ψ]] = Y = µZ · G(Z), and
[[A[ϕ U ψ]]] =W = µZ · F (Z). We need to show that W = K ∩L Y.

Recall that if a function F is monotone and continuous, then there exists
n ∈ nat s.t. µZ · F (Z) = F n([[⊥]])5 and νZ · F (Z) = F n([[>]]). We also name ith
iterations of F and G: Ki = F i([[>]]), Wi = F i([[⊥]]) and Yi = Gi([[⊥]]).

We first show that ∀i ∈ nat ·Ki ∩L Yi =Wi. The proof is by induction.

Base Case: K0 ∩L Y0
= by def. of K0, Y0

[[>]] ∩L [[⊥]]
= expanding mv-sets

[[⊥]]
= by def. of W0
W0

IH: Assume Ki ∩L Yi =Wi for i = k
Inductive Case: Proof for i = k + 1

Kk+1 ∩L Yk+1
= expanding each function once

([[ψ]] ∪L ([[ϕ]] ∩L [[AXKk]])) ∩L ([[ψ]] ∪L [[AXYk]])

5 F n stands for applying F n times.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 33

= by distributivity and absorption
[[ψ]] ∪L ([[ψ]] ∩L [[AXKk]] ∩L [[AXYk]])

= by AX of conjunction
[[ψ]] ∪L ([[ψ]] ∩L [[AX (Kk ∩L Yk)]])

= by inductive hypothesis
[[ψ]] ∪L ([[ψ]] ∩L [[AX (Wk)]])

= by def. of Wk+1
Wk+1

Therefore, ∀i ∈ nat ·Wi = Ki ∩L Yi which implies thatW = K∩L Y and thus the
definition and the fixpoint formulation of AU are identical.

THEOREM 9. The following statements are equivalent for a path, π , and fair-
ness conditions, C = {c1, . . . , ck}:

(1) Each fairness condition, ci, occurs infinitely often in π ;
(2) A sequence c1, c2, . . . , ck occurs infinitely often in π .

PROOF. (1)⇒ (2): Starting at the beginning of π , find the first occurrence of
c1 (this can always be done because c1 occurs infinitely often in π). After that
point, find the first occurrence of c2, etc. This process can be repeated forever,
and thus a sequence c1, c2, . . . , ck occurs infinitely often in π .
(2) ⇒ (1): if a sequence c1, c2, . . . , ck occurs infinitely often in π , then each
element of it occurs infinitely often in π , so π is fair.

THEOREM 10. When C = {>} (no fairness), ECG ′ becomes

[[ECG ′ϕ]] = νZ · [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ Z]]] = νZ · [[ϕ]] ∩L [[EXZ]] = [[EGϕ]]

PROOF. Let F (Z) = [[ϕ]]∩L [[EX E[ϕ U ϕ ∧Z]]] and G(Z) = [[ϕ]]∩L [[EXZ]]. By
definition, [[ECG ′ϕ]] =W = νZ · F (Z) and [[EGϕ]] = Y = νZ · G(Z). We start by
proving an intermediate result indicating that [[E[ϕ U ϕ ∧W]]] is the same as
W:

[[E[ϕ U ϕ ∧W]]] EU fixpoint
= ([[ϕ]] ∩L W) ∪L ([[ϕ]] ∩L [[EX E[ϕ U ϕ ∧W]]]) absorption, def. of F
= W ∪L F (W) W is a fixpoint of F
= W

To show that [[ECGϕ]] = [[EGϕ]], we need to show that Y = W. The proof
consists of two parts: (1) showing that W is a fixpoint of G and thus W ⊆L Y
(because Y is the greatest fixpoint of G); and (2) showing that W ⊇L Y.

(1) G(W) def. of G
= [[ϕ]] ∩L [[EXW]] W = [[E[ϕ U ϕ ∧W]]]
= [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧W]]] def. of F
= F (W) W is the fixpoint of F
= W

To prove (2), we start by defining Wi = F i([[>]]) and Yi = Gi([[>]]). Since F
and G are monotone and continuous, there exists n ∈ nat s.t.W =Wn ∧ Y = Yn.
We now show that ∀i ∈ nat ·Wi ⊇L Yi.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

34 • M. Chechik et al.

Base Case: W0 = [[>]] = Y0
IH: Assume Wi ⊇L Yi for i = k

Ind. Case: Proof for i = k + 1
Note that Wk+1 = [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧Wk]]] =

G([[E[ϕ U ϕ ∧Wk]]])and Yk+1 =
[[ϕ]] ∩L [[EXYk]] = G(Yk)

G([[E[ϕ U ϕ ∧Wk]]]) ⊇L G(Yk) G is monotone
⇐ [[E[ϕ U ϕ ∧Wk]]] ⊇L Yk EU fixpoint
⇐ (Wk ∪L ([[ϕ]] ∩L [[EX E[ϕ U ϕ ∧Wk]]])) ⊇L Yk monotonicity of

∪L, absorption
⇐ Wk ⊇L Yk inductive hypothesis
⇐ >

Thus, by induction, ∀n ∈ nat ·Wn ⊇L Yn, soW ⊇L Y. Combining this with results
of part (1), we get that W = Y, so, by definition, [[ECG ′ϕ]] = [[EGϕ]].

Now we set out to show that ECG and ECG ′ are equivalent. We assume that
C = {c1, c2} for brevity. The reasoning can be expanded for an arbitrary C =
{c1, . . . , ck}. Let F (Z) = [[ϕ]] ∩L [[EX E

[
ϕ U ϕ ∧ c1 ∧ EX E[ϕ U ϕ ∧ c2 ∧ Z]

]
]].

Then, by definition, ECGϕ = νZ · F (Z). Also, let G(Z) = [[ϕ]] ∩L⋂
Lk={1,2}[[EX E[ϕ U ϕ ∧ ck ∩L Z]]]. Then, by definition, ECG ′ϕ = νZ · G(Z).
We are interested in representing paths on which the sequence c1, c2 (re-

spectively, c2, c1) holds i times. We do so by encoding the states from which
these paths emanate, using mv-sets Ki and Mi, respectively. These are defined
recursively as follows:

K0 = [[>]] M0 = [[>]]
Kn = [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c1 ∧Mn−1]]]
Mn = [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c2 ∧Kn−1]]]

We also define the nth iteration of νZ · G(Z) explicitly:

G0([[>]]) = [[>]]
Gn+1([[>]]) = G1(Gn([[>]])) ∩L G2(Gn([[>]]))

Note thatK2n = F n([[>]]). We are therefore interested in the degree to whichKn
and Mn approximate Gn([[>]]). We characterize this formally in the following
lemma:

LEMMA 1. ∀n ∈ nat,

(1) Kn ⊇L Gn([[>]]) (2) Mn ⊇L Gn([[>]])
(3) K2n ⊆L Gn([[>]]) (4) M2n ⊆L Gn([[>]])

PROOF. In the proof we use the following results, proofs of which are omitted
for brevity:

Kn ⊇L Kn+1 and Mn ⊇L Mn+1 monotonicity of Kn, Mn
[[ϕ]] ∩L [[EX E[ϕ U c2 ∧ ϕ ∧Kn]]] ⊆L Mn relation between Kn and Mn

The above holds because Mn = [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c2 ∧Kn−1]]]
[[E[ϕ U ψ]]] ⊇L [[E[ϕ U ϕ ∧ EX E[ϕ U ψ]]]] monotonicity 1 of EU

The above holds because of EU expansion
[[ϕ]] ⊇L [[ψ]]⇒ [[E[p U ϕ]]] ⊇L [[E[p U ψ]]] monotonicity 2 of EU

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 35

We are now ready to prove (1)-(4), which we do by induction on n.

Base Case: G0([[>]]) = > def. of G0([[>]])
IH: Assume (1)-(4) hold for n = k

Ind. Case: Proof for n = k + 1
(1) Enough to show Kn+1 ⊇L G1(Gn([[>]]))
> IH

⇒ Mn ⊇L Gn([[>]]) monotonicity 2 of EU
⇒ [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c1 ∧Mn]]]
⊇L [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c1 ∧ Gn([[>]])]]] def. of Kn+1, G1, Gn+1

⇒ Kn+1 ⊇L G1(Gn([[>]])) ⊇L Gn+1([[>]])
(2) Proof is similar to that of (1).
(3) Need to show K2n+2 ⊆L Gn+1([[>]])

We show (3a) K2n+2 ⊆L G1(Gn([[>]]))
(3b) K2n+2 ⊆L G2(Gn([[>]]))

Then by ∩L elimination, we have the desired property.
(3a) K2n+2 def. of K2n+2
= [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c1 ∧ EX E relation between Kn and Mn

[ϕ U ϕ ∧ c2 ∧K2n]]]]
⊆L [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c1 ∧M2n]]] IH and monotonicity
⊆L [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c1 ∧ Gn([[>]])]]] def. of G1
= G1(Gn([[>]]))

(3b) K2n+2 def. of K2n+2
= [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c1 ∧ EX E monotonicity

[ϕ U ϕ ∧ c2 ∧K2n]]]]
⊆L [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ EX E monotonicity 1 of EU

[ϕ U ϕ ∧ c2 ∧K2n]]]]
⊆L [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c2 ∧K2n]]] IH and monotonicity
⊆L [[ϕ]] ∩L [[EX E[ϕ U ϕ ∧ c2 ∧ Gn([[>]])]]] def. of G2
= G2(Gn([[>]]))

(4) Proof is similar to that of (3).

THEOREM 11. Operators ECG and ECG ′ are equivalent.

PROOF. Recall that K2n = F n([[>]]). Since F n converges, ∃N1 ∈ nat · ∀n ≥
N1·νZ·F (Z) = K2n. Since Gn converges, ∃N2 ∈ nat·∀n ≥ N2·νZ·G(Z) = Gn([[>]]).
Further, by Lemma 1, ∀n ≥ N2

K2n ⊆L Gn([[>]]) = νZ · G(Z)
K2n ⊇L G2n([[>]]) = νZ · G(Z)

So, ∀n ≥ N2 ·K2n = νZ · G(Z).
Let m = max{N1, N2}. Then, νZ · F (Z) = K2m = νZ ·G(Z). So, operators ECG

and ECG ′ are equivalent.

ACKNOWLEDGMENTS

We would like to thank Wendy MacCaull, Albert Lai, Christopher Thompson-
Walsh, and Victor Petrovykh for many interesting discussions and for their

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

36 • M. Chechik et al.

help in implementing the model-checker. We are also indebted to Albert Lai for
his help with several aspects of lattice theory presented in this article. Finally,
we are grateful to the members of the University of Toronto’s Formal Methods
Reading Group and the anonymous referees for helping us refine the ideas
presented in this article and improve the clarity of the presentation.

REFERENCES

ANDERSON, A. AND BELNAP, N. 1975. Entailment. Vol. 1. Princeton University Press.
BACK, R.-J. AND VON WRIGHT, J. 1998. Refinement Calculus: A Systematic Approach. Springer-

Verlag.
BAHAR, R., FROHM, E., GAONA, C., HACHTEL, G., MACII, E., PARDO, A., AND SOMENZI, F. 1993. Algebraic

decision diagrams and their applications. In IEEE /ACM International Conference on Computer-
Aided Disign (ICCAD’93) (Santa Clara, CA). IEEE Computer Society Press, pp. 188–191.

BAIER, C. AND CLARKE, E. M. 1998. The algebraic Mu-calculus and MTBDDs. In Proceedings of
the 5th Workshop on Logic, Language, Information and Computation, (WoLLIC’98), pp. 27–38.

BAIER, C., CLARKE, E. M., HARTONAS-GARMHAUSEN, V., KWIATKOWSKA, M. Z., AND RYAN, M. 1997. Sym-
bolic model checking for probabilistic processes. In Automata, Languages and Programming, 24th
Annual Colloquium, (Bologna, Italy). P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, eds.,
Lecture Notes in Computer Science, vol. 1256, Springer, pp. 430–440.

BELNAP, N. 1977. A useful four-valued logic. In Modern Uses of Multiple-Valued Logic, Donn and
Epstein, eds., Reidel, pp. 30–56.

BERNEY, G. AND DOS SANTOS, S. 1985. Elevator Analysis, Design and Control. IEE Control Engi-
neering Series 2. Peter Peregrinus Ltd.

BIRKHOFF, G. 1967. Lattice Theory (3rd Edition). Americal Mathematical Society, Providence, RI.
BOLC, L. AND BOROWIK, P. 1992. Many-Valued Logics. Springer-Verlag.
BRUNS, G. AND GODEFROID, P. 1999. Model checking partial state spaces with 3-valued temporal

logics. In Proceedings of Proceedings of the 11th International Conference on Computer-Aided
Verification (CAV’99), (Trento, Italy). Lecture Notes in Computer Science, vol. 1633, Springer,
pp. 274–287.

BRUNS, G. AND GODEFROID, P. 2000. Generalized model checking: Reasoning about partial state
spaces. In Proceedings of the 11th International Conference on Concurrency Theory (CONCUR’00),
C. Palamidessi, eds., Lecture Notes in Computer Science, vol. 1877, Springer, pp. 168–182.

CHAN, W. 2000. Temporal-logic queries. In Proceedings of the 12th Conference on Computer
Aided Verification (CAV’00), E. Emerson and A. Sistla, eds., Lecture Notes in Computer Science,
vol. 1855, Springer, pp. 450–463.

CHECHIK, M., DEVEREUX, B., AND EASTERBROOK, S. 2001a. Implementing a multi-valued symbolic
model-checker. In Proceedings of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’01), Lecture Notes in Computer Science, vol. 2031,
Springer, pp. 404–419.

CHECHIK, M., DEVEREUX, B., AND GURFINKEL, A. 2001b. Model-checking infinite state-space systems
with fine-grained abstractions using SPIN. In Proceedings of the 8th SPIN Workshop on Model
Checking Software, Toronto, Canada. Lecture Notes in Computer Science, vol. 2057, Springer,
pp. 16–36,

CHECHIK, M., DEVEREUX, B., AND GURFINKEL, A. 2002a. χChek: a multi-valued model-checker.
In Proceedings of the 14th International Conference on Computer-Aided Verification (CAV’02),
Copenhagen, Denmark. Lecture Notes in Computer Science, Springer, pp. 505–509.

CHECHIK, M. AND DING, W. 2002. Lightweight reasoning about program correctness. Inf. Syst.
Frontiers, 4, 4, pp. 363–377.

CHECHIK, M., GURFINKEL, A., DEVEREUX, B., LAI, A., AND EASTERBROOK, S. 2002b. Symbolic data
structures for multi-valued model-checking. CSRG Tech Report 446, University of Toronto. Sub-
mitted for publication.

CHECHIK, M. AND MACCAULL, W. 2003. CTL model-checking over logics with non-classical negation.
In Proceedings of the 33rd IEEE International Symposium on Multi-Valued Logics (ISMVL’03)
(Tokyo, Japan). pp. 293–300,

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

Multi-Valued Symbolic Model-Checking • 37

CLARKE, E., EMERSON, E., AND SISTLA, A. 1986. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8, 2, pp. 244–263.

CLARKE, E., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press.
COUSOT, P. AND COUSOT, R. 1977. Static determination of dynamic properties of generalized type

unions. SIGPLAN Notices, 12, 3.
DAMS, D. 1996. Abstract Interpretation and Partition Refinement for Model Checking. PhD Thesis,

Eindhoven University of Technology, The Netherlands.
DAMS, D., GERTH, R., AND GRUMBERG, O. 1997. Abstract interpretation of reactive systems. ACM

Trans. Program. Lang. Syst., 2, 19, pp. 253–291.
DAVEY, B. AND PRIESTLEY, H. 1990. Introduction to Lattices and Order. Cambridge University

Press.
DEVEREUX, B. 2002. Strong next-time operators for multiple-valued µ-calculus. In Proceedings of

FLOC’02 Workshop on Fixpoints in Computer Science (FICS) (Copenhagen, Denmark), pp. 40–43,
DUNN, J. 1999. A comparative study of various model-theoretic treatments of negation: a history

of formal negation. In What is Negation, D. Gabbay and H. Wansing, eds., Kluwer Academic
Publishers.

EASTERBROOK, S. AND CHECHIK, M. 2001. A framework for multi-valued reasoning over inconsistent
viewpoints. In Proceedings of the International Conference on Software Engineering (ICSE’01)
(Toronto, Canada), IEEE Computer Society Press, pp. 411–420.

FITTING, M. 1991a. Many-valued modal logics. Fund. Info., 15, 3–4, pp. 335–350.
FITTING, M. C. 1991b. Kleene’s logic, generalized. J. Log. Comput., 1, 6, pp. 797–810.
FITTING, M. 1992. Many-valued modal logics II. Fund. Info., 17, pp. 55–73.
GAINES, B. R. 1979. Logical foundations for database systems. Intern. J. Man-Mach. Studies, 11,

4, pp. 481–500.
GINSBERG, M. 1987. Multi-valued logic. In Readings in Nonmonotonic Reasoning, M. Ginsberg,

ed., Morgan-Kaufmann Publishing, pp. 251–255.
GINSBERG, M. L. 1988. Multivalued logics: a uniform approach to reasoning in artificial intelli-

gence. Comput. Intell., 4, 3, pp. 265–316.
GODEFROID, P., HUTH, M., AND JAGADEESAN, R. 2001. Abstraction-based model checking using modal

transition systems. In Proceedings of the 12th International Conference on Concurrency Theory
(CONCUR’01) (Aalborg, Denmark), K. Larsen and M. Nielsen, eds., Lecture Notes in Computer
Science, vol. 2154, Springer, pp. 426–440.

GODEFROID, P. AND JAGADEESAN, R. 2003. On the expressiveness of 3-valued models. In Proceedings
of the 4th International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI’03), Lecture Notes in Computer Science, vol. 2575, Springer, pp. 206–222.

GOGUEN, J. 1967. L-fuzzy sets. J. Math. Anal. Applic., 18, 1, pp. 145–174.
GURFINKEL, A. 2002. Multi-valued symbolic model-checking: fairness, counter-examples, running

time. Master’s Thesis, Department of Computer Science, University of Toronto.
GURFINKEL, A. AND CHECHIK, M. 2003a. Generating counterexamples for multi-valued model-

checking. In Proceedings of Formal Methods Europe (FME’03, Pisa, Italy.
GURFINKEL, A. AND CHECHIK, M. 2003b. Multi-valued model-checking via classical model-checking.

In Proceedings of the 14th International Conference on Concurrency Theory (CONCUR’03),
Marseille, France.

GURFINKEL, A., CHECHIK, M., AND DEVEREUX, B. 2003. Temporal logic query checking: a tool for
model exploration. IEEE Trans. Softw. Eng. To appear.

Hähnle, R. 1994. Automated Deduction in Multiple-Valued Logics, International Series of Mono-
graphs on Computer Science. vol. 10, Oxford University Press.

HAZELHURST, S. 1996. Compositional Model Checking of Partially Ordered State Spaces. PhD
Thesis, Department of Computer Science, University of British Columbia.

HEHNER, E. 1993. A Practical Theory of Programming. Texts and Monographs in Computer Sci-
ence. Springer-Verlag, New York.

HUTH, M., JAGADEESAN, R., AND SCHMIDT, D. 2003. A domain equation for refinement of partial
systems. Math. Struct. Comput. Sci. Accepted for publication.

HUTH, M., JAGADEESAN, R., AND SCHMIDT, D. A. 2001. Modal transition systems: a foundation for
three-valued program analysis. In Proceedings of the 10th European Symposium on Programming
(ESOP’01), Lecture Notes in Computer Science, vol. 2028, Springer, pp. 155–169.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

P1: IAZ
CM203A-01 ACM-TRANSACTION April 16, 2004 2:36

38 • M. Chechik et al.

HUTH, M. AND PRADHAN, S. 2003. An ontology for consistent partial model checking. Elect. Notes
Theoret. Comput. Sci., 23.

HUTH, M. AND RYAN, M. 2000. Logic in Computer Science: Modeling and Reasoning About Systems.
Cambridge University Press.

KLEENE, S. C. 1952. Introduction to Metamathematics. Van Nostrand, New York.
KONIKOWSKA, B. AND PENCZEK, W. 2003. Model checking for multi-valued computation tree logics.

In Beyond Two: Theory and Applications of Multiple Valued Logic, M. Fitting and E. Orlowska,
eds., Physica-Verlag, pp. 193–210.

KOZEN, D. 1983. Results on the propositional µ-calculus. Theoret. Comput. Sci., 27, pp. 334–354.
LARSEN, K. AND THOMSEN, B. 1988. A modal process logic. In Proceedings of the 3rd Annual Sym-

posium on Logic in Computer Science (LICS’88), IEEE Computer Society Press, pp. 203–210.
LUKASIEWICZ, J. 1970. Selected Works. North-Holland, Amsterdam, Holland.
MCMILLAN, K. 1993. Symbolic Model Checking. Kluwer Academic.
MICHALSKI, R. S. 1977. Variable-valued logic and its applications to pattern recognition and ma-

chine learning. In Computer Science and Multiple-Valued Logic: Theory and Applications, D. C.
Rine, eds., North-Holland, Amsterdam, pp. 506–534.

PLATH, M. AND RYAN, M. 1999. SFI: a feature integration tool. In Tool Support for System Spec-
ification, Development and Verification, R. Berghammer and Y. Lakhnech, eds., Advances in
Computer Science, Springer, pp. 201–216.

RASIOWA, H. 1978. An Algebraic Approach to Non-Classical Logics. Studies in Logic and the
Foundations of Mathematics. Amsterdam: North-Holland.

SAGIV, M., REPS, T., AND WILHELM, R. 1999. Parametric shape analysis via 3-valued logic. In Pro-
ceedings of the 26th Annual ACM Symposium on Principles of Programming Languages. ACM,
New York, NY, pp. 105–118.

SASAO, T. AND BUTLER, J. 1996. A method to represent multiple-output switching functions using
multi-valued decision diagrams. In Proceedings of IEEE International Symposium on Multiple-
Valued Logic (ISMVL’96) (Santiago de Compostela, Spain). pp. 248–254.

SOFRONIE-STOKKERMANS, V. 2001. Automated theorem proving by resolution for finitely-valued
logics based on distributive lattices with operators. An Intern. J. Multip. Val. Log. 6, 3–4,
pp. 289–344.

SRINIVASAN, A., KAM, T., MALIK, S., AND BRAYTON, R. 1990. Algorithms for discrete function manip-
ulation. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD’90) (Santa
Clara, CA). IEEE Computer Society, pp. 92–95.

Received October 2001; revised August 2002 and November 2003; accepted December 2003

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2004.

