
Managing Requirements Uncertainty with Partial Models

Rick Salay, Marsha Chechik, and Jennifer Horkoff
University of Toronto

Toronto, Canada
{rsalay,chechik,jenhork}@cs.toronto.edu

Abstract—Models are good at expressing information that
is known but do not typically have support for representing
what information a modeler does not know at a particular
phase in the software development process. Partial models
address this by being able to precisely represent uncertainty
about model content. In previous work, we developed a
general approach for defining partial models and applied
it to capturing uncertainty, including reasoning over design
models containing uncertainty. In this paper, we show how to
apply our approach to managing requirements uncertainty. In
particular, we address the problem of specifying uncertainty
within a requirements model, refining a model as uncertainty
reduces and reasoning with traceability relations between
models containing uncertainty. We illustrate our approach
using the meeting scheduler example.

I. INTRODUCTION

In the requirements phase of the software lifecycle, unre-
solved decisions about needs, incomplete understanding of
the problem domain and disagreements among stakeholders
can all produce uncertainty. If uncertainties in the require-
ments phase remain unresolved, corresponding uncertainties
are forced into the design phase alongside design-specific
uncertainties such as undetermined architectural strategies or
the presence of alternative design possibilities. In a similar
way, design uncertainty impacts implementation uncertainty.
Since the uncertainty at each phase is linked to the next, any
increase or reduction at one phase must be appropriately
propagated to the next. Furthermore, since the requirements
phase is the first one in this sequence, as with defects,
requirements uncertainty has the highest potential impact
on the entire software life cycle. To facilitate the resolution
of uncertainty early in the software development process, it
is important to provide techniques which explicitly capture
uncertainty as part of Requirements Engineering (RE).

Models are advocated as part of the RE process to
help with elicitation, recording current understanding, com-
munication, requirements development, and exploration of
alternative high-level designs. During the process of creating
RE models, it is common to uncover uncertainty over the
contents and structure of the model. Such uncertainties
involve gaps in domain knowledge, disagreements between
stakeholders, or uncertainty over model details. The mod-
eling process often implicitly involves identifying model
uncertainties and then resolving them through further elici-
tation or decision making. It is useful to explicitly express

Meeting

Initiator Meeting

Participant
Organize

meeting

Quick
Low

Effort

 Ways to

organize

meeting

Dependencies
D

D

Attend

meeting

Participate

in meeting

Provide

details

Details

D
D

Meeting

Scheduler

Meeting be

scheduled

D

D
Schedule

meeting

Let

Scheduler

Schedule

Meeting

Meeting Be

Scheduled

H
el

p

H
el

p

Low

Effort

Agreeable

Meeting

Date

Decide

Convenient

Dates

Detemine

Meeting

Date

unknown set of

other ways to

organize meetings

unknown

which

actor will

perform

this task

unknown

dependencies

unknown what or

how many details

there will be

unknown whether

these are actually

different goals

unknown if

we need this

unknown if we want

to add more content

to the model

Convenient

Meeting

Date

Actor

Actor

Boundary

Goal

Softgoal

Task

Resource

D

Help

Means-Ends

Decomposition

Contribution

Dependency

Legend

Figure 1. An early RE diagram with annotated uncertainty for the meeting
scheduler example.

uncertainty in RE models, and to capture such uncertainty-
reducing decisions and elicited information as part of the
modeling process.

A. Motivating Scenario

A requirements process may make use of multiple types
of models, for example, to separate “early”, high-level mod-
eling from “later” RE stages ([32]), as a form of expressive
redundancy, to ensure important aspects of the domain are
captured (e.g., [20] [8]), or to move towards system design
(e.g., [30], [15]). We illustrate uncertainty representation and
mapping on a scenario moving from early to late RE models
(see Figure 2).

Expressing uncertainty in RE models. Figure 1 shows
an i* model, adapted from [32]1, created in the early
stages of determining the requirements for an automated
meeting scheduler. We summarize our motivating scenario
in Figure 2, calling this early RE model P1. During the
construction of this model, the following uncertainties could
arise: (a) gaps in the domain knowledge of the modelers
(“Are there more alternative ways to organize meetings,
are they quick?”); (b) disagreements between stakeholders
(“Jack thinks the Meeting Initiator should pick a date,
but Anne thinks it should be up to the participants”);
(c) modelers wishing to indicate that they are still in the
process of adding model detail (“We know the Meeting

1Parts of this scenario are adapted from [2] and have appeared in [18],
[22].

Early RE Late RE

P1

(i* model)

P2

(class diagram)

P1’

(i* model)

P2’

(class diagram)

R1: uncertainty

reducing

refinement

R2: uncertainty

reducing

refinement

Traceability

Traceability

Figure 2. Overview of a sample RE modeling process considering
uncertainty.

P2

+WaysToOrganizeMeeting()
+UseSchedulerToOrganizeMeeting()
+OrganizeMeeting()

-name
-department

MeetingInitiator

+ScheduleMeeting()

MeetingScheduler

+DetermineMeetingDate()
+CheckDateInCalendar()

DateDeterminer

+ParticipateInMeeting()
+AttendMeeting()
+ProvideDetails()
+DecideConvenientDates()

-name
-department

MeetingParticipant

+FindAvailableDates()

Calendar

+FindRoom()
+GetRoomAttributes()

RoomDB

Details

unknown

dependencies

unknown set of other ways

to organize meetings

unknown if we want to add

more content to the model

unknown If this class will

be combined with another

unknown what or how many

details there will be

unknown if we

need this method

Figure 3. A late RE diagram with uncertainty for the meeting scheduler
example.

Participant needs to provide details to the scheduler, but
will list these details later”). It may be especially useful
to record uncertainty if the process of creating the model is
long and may be interrupted, i.e., via successive modeling
workshops [20].

In Figure 1, we captured uncertainties using text annota-
tions — an approach which is neither formal nor systematic.
While individual modeling languages may provide ways to
capture uncertainty (e.g., in i*, some types of uncertainty
can be captured with an “unknown” link), providing un-
certainty annotations specific to each possible RE modeling
notation would be cumbersome, prone to misinterpretation,
and would create a cognitive barrier to learning and applying
such a notation in each language. Thus, we ask: Q1: How
to express uncertainty over the content and structure of RE
models, in a language-independent way?

After gaining an understanding of the domain and high-
level requirements through early RE modeling, a model
such as the class diagram in Figure 3 may be developed,
in order to represent relevant details of domain entities.
In Figure 2, we call the resulting model P2. Although,
ideally, uncertainties would be resolved in early RE stages,
uncertainties may remain when creating later RE models
(shown in Figure 3 via text annotations). By answering Q1,
we can express uncertainty over multiple types of models
used in an RE process.

Uncertainty reducing changes. As modeling continues,
model uncertainty can either increase or reduce. In this
paper, we focus on the uncertainty reducing case. Fur-

ther rounds of elicitation and discussion can help resolve
uncertainties leading to corresponding model refinements.
For example, elicitation may reveal that meetings are often
scheduled via in person communication, and we may wish
to add this to our model in Figure 1. Model refinement2

is captured in the left side of Figure 2, where, after the
resolution of some uncertainty, the model P1 is refined into
P1′ via a mapping R1. Thus, we ask: Q2: How to record
uncertainty-reducing model refinements in RE models?

Capturing refinement rationale. Refinements are often
caused by the availability of new information. Thus, it
would be useful to optionally annotate such decisions with
textual rationale, e.g., “Spoke to Jack, March 1. He said
they typically organize meetings in person. This is quick, as
colleagues are collocated, but it is often quite difficult to find
an agreeable date”. Although methods to capture rationale
for RE models have been introduced (e.g., [13], [21]), they
are not directly linked to the process of resolving model
uncertainty. Thus, we ask: Q3: How to capture rationale
specific to uncertainty reduction?

Model change and model uncertainty. When modifying
a model, we may wish to know whether our changes
actually make the model less uncertain. For example, in
Figure 1, after further elicitation we may decide that the
MeetingParticipant needs to provide available dates
along with a meeting location. Does this change make the
model less uncertain? Thus, we ask: Q4: How to check
whether model changes reduce model uncertainty?

Traceability relations and uncertainty. Requirements
traceability is a central concern for requirements engineering
and has been well studied (e.g., see [28] for an overview).
Traceability relations are used to link the elements of dif-
ferent artifacts (including models) in a development process
and can be used to express different relationships such as
overlap, dependency, satisfaction, refinement, etc. Various
approaches to RE modeling introduce traceability relations
between multiple types of models used in RE (e.g., [2],
[20]). For example, Figure 4 shows traceability between i*
and class diagram meta-models. Thus, we ask: Q5: What
is the meaning of a traceability relation between models
containing uncertainty?

B. Contributions and Organization

Our goal is to enable expressing model uncertainties and
uncertainty resolution for and across existing RE models, in
a systematic, language-independent and formal way.

In previous work, the first two authors have developed a
language-independent approach for expressing certain types
of uncertainty [26] using partial models. The approach is

2In this paper, when we say “refinement”, we always mean “uncertainty
reducing refinement”.

based on allowing the modeler to use annotations with for-
mal semantics to express her uncertainty within the model.
The language-independence means that we can use it to
express uncertainty within models in a uniform way at every
phase of a development process. The formal nature of our
approach allows the precise expression of uncertainty and
provides the basis for automated tool support for activities
such as reasoning with models containing uncertainty [5]
and verifying that model changes reduce uncertainty [25].
Despite the fact that our approach is formally grounded,
the formal details can be hidden from the user, making
it appropriate for use with stakeholders in early RE. We
give background on partial models and uncertainty-reducing
refinement in Section II.

While our previous work defined individual components
of our approach, in this paper, we present these components
as part of a methodology for managing uncertainty in
requirements engineering by addressing questions Q1-Q5.
Specifically, in Section III, we show how to use partial
models to express uncertainty in RE models, illustrating
them on i* models and class diagrams (Q1). In Section IV,
we look at applying partial model refinement to RE mod-
els. Specifically, we show how to construct the refinement
mapping (Q2) and capture refinement rationale (Q3). In
Section V, we discuss how to check whether a change made
to a model constitutes a refinement (Q4). In Section VI,
we show how to lift a traceability relation to the uncertain
case. The machinery for answering Q1 and Q2 is taken
directly from our earlier work. Novel contributions include:
the notion of documenting refinement rationale (Q3), a new
computational procedure for checking uncertainty reducing
refinement (Q4) and an expansion our partial modeling
approach to address traceability relations with uncertainty
(Q5). We conclude the paper with a comparison between our
approach and related work in Section VII and a summary
and discussion in Section VIII.

II. BACKGROUND

In this section, we briefly review the formal concepts of
language-independent partial modeling introduced in [26].
We use it to capture models with uncertainty. When a model
contains partiality information, we call it a partial model.

Partial models. To be able to add uncertainty information to
existing modeling languages in a language-independent way,
our approach takes as input arbitrary metamodels, referring
to them as model types. For example, the upper part of
Figure 4 shows a (simplified) metamodel for i* models,
and the lower part gives one for class diagrams. Given a
model type, a partial model of that type represents the set
of different possible concrete (i.e., non-partial) models of
that type that would resolve the uncertainty represented by
the partiality. More formally:

Definition 1 (Partial model): A partial model P consists
of a base model, denoted bs(P), and a set of annotations. Let

CD

i*

Actor

ResourceTask

Dependency

IntentionalElement

-depender 1

*

-dependee1
*

-dependum 1
0..1

Goal

Class Operation DependencyAssociation

0..1

1

0..1

1

0..1

1

*

1

1 *1 *

-ownedOperation

*
1

-task *

1

Additional constraints on the traceability relation R:
· Every Class for an Actor has an Operation for every Task in the Actor
· Every DependencyAssociation between Classes for Actors is mapped

to a Dependency between the Actors

R

Figure 4. The traceability relation Tr between an i* model and class
diagram defined over fragments of the metamodels.

T be the metamodel of bs(P). Then, [P] denotes the set of T
models called the concretizations of P . P is called consistent
iff it allows at least one concretization, i.e., [P] 6= ∅.
Models consist of a set of atoms, i.e., the elements and
relation instances of the types defined in its metamodel.

Partiality is used to express uncertainty about the model
until it can be resolved using partiality refinement. Refining
a partial model means removing partiality so that the set
of concretizations shrinks until, ultimately, it represents a
single concrete model. In general, when a partial model P ′

refines another one, P , there is a mapping from bs(P ′) to
bs(P) that expresses the relationship between them and thus
between their concretizations.

MAVO annotations. We achieve language-independence
by adding partiality information as annotations of a base
model. For example, models P1 and P1′ in Figure 6 show
annotations on an i* base model. We use four types of
partiality annotations, each adding support for a different
type of uncertainty in a model, as described below.

The May partiality allows us to express the level of
certainty we have about the presence of a particular atom
in a model by annotating it with either M, to indicate that
it “may exist” or E, to indicate that it “must exist”. A May
annotation is refined by changing a M to E or eliminating
the atom altogether. The ground annotation E is the default
if an annotation is omitted.

The Abs partiality allows a modeler to express uncertainty
about the number of atoms in the model by letting her
annotate atoms as P, representing a “particular”, or S,
representing a “set”. A refinement of an Abs annotation
elaborates the content of S atoms by replacing them with

a set of S and P atoms. The ground annotation P is the
default if an annotation is omitted.

The Var partiality allows a modeler to express uncertainty
about distinctness of individual atoms in the model by
annotating an atom to indicate whether it is a “constant”
(C) or a “variable” (V). A refinement of a Var annotation
involves reducing the set of variables by merging them with
constants or other variables. The ground annotation C is the
default if an annotation is omitted.

The OW partiality allows a modeler to explicitly state
whether her model is incomplete (i.e., can be extended)
(INC) or complete (COMP). In contrast to the other types of
partiality discussed in this paper, here the annotation is at the
level of the entire model rather than at the level of individual
atoms. The ground annotation COMP is the default if an
annotation is omitted.

When these four types of partiality annotations are used
together, we refer to them as MAVO partiality.

MAVO refinement. When the annotations are used together,
the refinement mapping combines the mappings of all four
types into a single relation between the atoms of the two
models.

We give semantics of uncertainty reducing refinement of
a model in terms of reducing the set of concretizations it
has, while making sure at least one concretization remains.

Definition 2 (MAVO Refinement): Let MAVO models P
and P ′ be given. P ′ refines P iff there exists a mapping
R s.t. the following conditions hold:

(Ref1) P ′ must be a consistent partial model.
(Ref2) Every concretization of P ′ is also one of P .

Condition Ref1 ensures that P ′ has at least one con-
cretization (see Definition 1). R is then called a refinement
mapping.

Formalizing MAVO. In this section we describe how MAVO
partiality formally characterizes model uncertainty and is
given to help the reader understand the computational issues
of encoding and reasoning with partial models. Readers
interested in methodological aspects of applying MAVO can
skip this section.

To formalize MAVO partiality, we begin by noting that a
metamodel represents a set of models and can be expressed
as a First Order Logic (FOL) theory.

Definition 3 (Metamodel): A metamodel is an FOL the-
ory T = 〈Σ,Φ〉, where Σ is the signature with sorts and
predicates representing the element types, and Φ is a set of
sentences representing the well-formedness constraints. The
models that conform to T are the finite FO Σ-structures that
satisfy Φ according to the usual FO satisfaction relation. We
denote the set of models with metamodel T by Mod(T).
For example, for the fragment of the i* metamodel in
Figure 4, ΣiStar, consists of boxes, interpreted as sorts,
and associations, interpreted as predicates. ΦiStar consists

ΣM1 has unary predicates MP(Actor), AM(Task), . . . ,
and binary predicates MPtaskAM(Actor, Task), . . .

ΦM1 contains the following sentences:
(Complete) (∀x : Actor · MP(x) ∨ MS(x) ∨ . . .)∧

(∀x : Actor, y : Task · task(x, y)
⇒ (MPtaskAM(x, y) ∨ . . .)) ∧ . . .

BC:
(ExistsMP) ∃x : Actor · MP(x)
(UniqueMP) ∀x, x′ : Actor · MP(x) ∧ MP(x′)⇒ x = x′

(DistinctMP−MS) ∀x : Actor · MP(x)⇒ ¬MS(x)
(DistinctMP−DD) ∀x : Actor · MP(x)⇒ ¬DD(x)
(DistinctMP−MI) ∀x : Actor · MP(x)⇒ ¬MI(x)

similarly for all other element and relation predicates

Figure 5. The FO encoding of PM1.

of the i* multiplicity constraints, translated to FOL, as well
as additional textual constraints.

Like a metamodel, a partial model also represents a set
of models and thus can also be expressed as an FOL theory.
Specifically, for a partial model P , we construct a theory
FO(P) s.t. Mod(FO(P)) = [P]. We proceed as follows.
(1) Let M = bs(P) be the base model of a partial model
P and define a new partial model PM which has M as its
base model and its sole concretization, i.e., bs(PM) = M
and [PM] = {M}. We call PM the ground model of P .
(2) To construct the FOL encoding of PM , FO(PM), we
extend T to include a unary predicate for each element in
M and a binary predicate for each relation instance between
elements in M . Then, we add constraints to ensure that the
only first order structure that satisfies the resulting theory
is M itself. (3) We construct FO(P) from FO(PM) by
removing constraints corresponding to the annotations in P .
This constraint relaxation allows more concretizations and
so represents increasing uncertainty. For example, if an atom
a in P is annotated with M then the constraint that enforces
the fact that a must occur in every concretization is removed.

We illustrate the above 3-step construction using the
partial i* model P1 in Figure 6.

(1) Let M1 = bs(P1) be its base model and PM1 be the
corresponding ground partial model.

(2) We have: FO(PM1) = 〈ΣiStar ∪ ΣM1,ΦiStar ∪ ΦM1〉
(see Definition 3), where ΣM1 and ΦM1 are model M1-specific
predicates and constraints, defined in Figure 5. They extend
the signature and constraints for i* models described in
Figure 4. We refer to ΣM1 and ΦM1 as the MAVO predicates
and constraints, respectively. The FO structures that satisfy
FO(PM1) are the i* models that satisfy the constraint set
ΦM1 in Figure 5. For conciseness, we abbreviate element
names in Figure 5, e.g., MeetingParticipant becomes MP,
etc. Assume N is such an i* model. The MAVO constraint
Complete ensures that N contains no more elements or
relation instances than M1. Now consider the actor MP in
M1. ExistsMP says that N contains at least one actor called
MP, UniqueMP – that it contains no more than one actor called

MP, and the clauses DistinctMP−∗ – that the actor called MP is
different from all the other actors. Similar MAVO constraints
are given for all other elements and relation instances in
M1. These constraints ensure that FO(PM1) has exactly one
concretization and thus N = M1.

(3) Relaxing the MAVO constraints ΦM1 allows additional
concretizations and represents a type of uncertainty indicated
by a partiality annotation. For example, if we use the INC
annotation to indicate that M1 is incomplete, we can express
this by removing the Complete clause from ΦM1 and thereby
allow concretizations to be i* models that extend M1. Simi-
larly, expressing the effect of the M, S and V annotations
for an element E corresponds to relaxing ΦM1 by removing
ExistsE , UniqueE and DistinctE−∗ clauses, respectively. For
example, removing the DistinctDD−∗ clauses is equivalent to
marking the actor DD with V(i.e., DateDeterminer may or
may not be distinct from another actor).

In addition to precisely defining the semantics of a partial
model, the FOL encoding provides several capabilities. First,
it allows us to do property checking, i.e., answer questions
such as “does any concretization of P have the property
Q?” and “do all concretizations of P have the property Q?”,
where Q is expressed in FOL. The answer to the former is
affirmative iff FO(P)∧Q is satisfiable, and to the latter iff
FO(P)∧¬Q is not satisfiable. Second, it allows us to check
the consistency (i.e., whether it has any concretizations)
of a partial model as a special case of property checking.
P is consistent iff FO(P) is satisfiable. Third, we can
verify that a given mapping R is a refinement mapping
between a pair MAVO models by checking the conditions
in Definition 2. Checking condition Ref1 is the consistency
check. Checking condition Ref2 can be cast as a special case
of property checking by checking if FO(P ′) ⇒ R(ΦP),
where R translates ΦP according to the refinement mapping.
The theory and the tooling for refinement are described
in [25]. Finally, the FO encoding allows us to extend the
expressiveness of MAVO by allowing the specification of
more complex textual constraints using FOL to augment the
annotations.

III. EXPRESSING UNCERTAINTY IN RE MODELS

In this section, we address question Q1 from Section I and
show how to use MAVO partiality to express uncertainty in
RE models.

Model P1 in Figure 8 shows the application of MAVO
partiality to our i* model, describing the same points of
uncertainty as given in the ad-hoc way in Figure 1. Consider
also the class diagram P2 in Figure 8, which is a MAVO-
annotated model capturing the same information as done in
an ad-hoc way in Figure 3. Both P1 and P2 use the same par-
tiality annotations, demonstrating language-independence of
MAVO partiality and its applicability to a variety of models.
We use these examples to discuss and illustrate the different
situations in which to use MAVO annotations.

May partiality is used in P1 for the M-annotated task
Decide Convenient Dates in Meeting Participant to
express the fact that it is unknown whether the task will be
needed. In general, the M annotation should be used for any
piece of information that we are not sure should be in the
model. It can also be used when there is a known small set of
alternatives for some fragment of the model but we are not
sure which is the correct one. This arises, for example, when
multiple stakeholders provide conflicting information. Thus,
the M annotation provides a language-independent way to
tolerate conflicts until they can be resolved.

Early in the development of a model we may ex-
pect to have collections of atoms representing certain
kinds of information but not yet know exactly what those
atoms are. For example, in P2, the S-annotated operation
Ways to organize meeting in class MeetingInitiator is
used to indicate that there are some such ways but they are
as yet unknown. Later, when we know more about these
ways, we can refine this to particular tasks.

May and Abs are used together in model P1 with MS-
annotated task Provide details and resource Details to
indicate that there may be no details or several. In general,
Abs partiality provides a way to create placeholders in the
modeler to indicate that “further elaboration is yet to come”.

Early in a modeling process, we may not be sure whether
two atoms are distinct or should be the same, i.e., we may be
uncertain about atom identity. This annotation is used when
it is known that a particular fragment should be in the model
but it is not yet known where it should go. For example, in
Figure 1, it is known that task Determine Meeting Date

should be in the model but not yet clear which actor should
perform it. Yet, in order to achieve i* well-formedness, it
must assigned to some actor. Without the means to express
this type of uncertainty, the modeler would be forced to
assign it prematurely (and perhaps, incorrectly) to one of
the actors. To solve this problem, in P1, we put the task in
a temporary “variable” actor, i.e., something treated like an
actor but, in a refinement, potentially equated (merged) with
other variable actors and eventually assigned to a constant
actor.

Finally, it is common, during model development, to
make the assumption that the model is still incomplete, i.e.,
that other elements are yet to be added to it. This status
typically changes to “complete” (if only temporarily) once
some milestone, such as the release of software based on the
model, is reached. OW partiality defines model completeness
in a very specific way: a model is complete iff it should not
be extended. However, a model marked as complete with
COMP can still be changed if it has annotations representing
other types of uncertainty. For example, even if P1 is marked
as COMP , it would still be possible to replace the resource
Details to more specific sets of detail resources since this
is an Abs refinement. Yet, it would not be possible to add
a new goal to Meeting Participant because this would

P1

Meeting

Initiator
Meeting

Participant

Organize

meeting

Quick
Low

Effort

 (S)

Ways to

organize

meeting

(S
)

(MS)

Dependencies (MS) D (M
S) D

(M
) U

nknown

(M
)

U
n
k
n
o
w

n Attend

meeting

Participate

in meeting

(MS)

Provide

details

(S)

Details
(S

)
D

(S) D

Meeting

Scheduler

Meeting be

scheduled

D

D Schedule

meeting

Let

Scheduler

Schedule

Meeting

Meeting Be

Scheduled

H
e
lp

H
el

p

Low

Effort

(S
)

(V)

Agreeable

Meeting

Date

(V) Date

Determiner

(M) Decide

Convenient

Dates

Detemine

Meeting

Date

(VM)

Convenient

Meeting

Date

P1'
Meeting

Initiator

Meeting

ParticipantOrganize

meeting

Quick
Low

Effort

 (S)

Ways to

organize

meeting

(S
)

(MS)

Dependencies (MS) D

(MS) D

(M
) U

nknown

(M
)

U
n
k
n
o
w

n

Attend

meeting

Participate

in meeting

Provide

dates

(inc) dates

DD

Meeting

Scheduler

Meeting be

scheduled

D

D

Schedule

meeting

Let

Scheduler

Schedule

Meeting

Meeting Be

Scheduled

H
e

lp

H
el

p

Low

Effort
Detemine

Meeting

Date
location

D

D

Book

meeting

(inc)

Agreeable

Meeting

DateProvide

location

Figure 6. The use of MAVO partiality annotations to express the uncertainty
in the model in Figure 1 and an example of a refinement that reduces
uncertainty.

be a model extension. OW partiality is used in P1 and P2

with the INC annotation to indicate that the model is still
incomplete and can be extended.

IV. CAPTURING UNCERTAINTY REDUCING REFINEMENT

In this section, we address the questions Q2 and Q3 from
Section I. Specifically, we show how uncertainty reduction
in an RE model is done by constructing a partial model
refinement of the model including optional refinement ratio-
nale.

Constructing the Refinement Mapping (Q2). Given a
model with uncertainty and another model which removes
some of it, the refinement mapping is an artifact that ex-
presses the way in which the elements in the two models are
mapped to each other and captures the uncertainty resolution
decisions made. Figure 6 gives an example of a partial
i* model P1′ refining model P1. As the decisions about
reduction of uncertainty are made, they are captured in the
refinement mapping R1. To avoid visual clutter, the figure
shows only those parts of R1 where the refinement results
in changes in the model.

For example, our analyst may decide which of detailed
resources should exist and thus the S-annotated resource
Details in P1 gets mapped to the two resources, Dates
and Location, in P1′. In turn, this means that the S-
annotated task Provide details in P1 is mapped to tasks
Provide dates and Provide location. The analyst can

also decide that the task Determine Meeting Date should
be performed by actor Meeting Scheduler, which is re-
flected by merging the V-annotated actor Date Determiner
with Meeting Scheduler so that both are mapped to
actor Meeting Scheduler in P1′. Since P1 is marked
INC , more information can be added to the model
so Determine Meeting Date can be made a subtask of
Schedule meeting and the sibling task Book meeting can
be added as well. After further discussions with stake-
holders, the analyst also determined that V-annotated goals
Agreeable Meeting Date and Convenient Meeting Date

are not sufficiently different to keep them distinct, so they
are merged and mapped to goal Agreeable Meeting Date
in P2. Connected with this, she also realized that the M-
annotated task Decide Convenient Dates is not needed
after all, and so it is removed in P2.

Capturing Refinement Rationale (Q3). Each of the
decisions that contributed to the refinement mapping
R1 constructed above could have a motivating ratio-
nale. For example, the analyst may decide that task
Determine Meeting Date should be performed by actor
Meeting Scheduler because this will reduce the burden
on the meeting initiator and participants. The refinement
mapping artifact provides a convenient place to docu-
ment such statements of rationale as part of the develop-
ment process. For example, the above rationale for task
Determine Meeting Date would be attached to the corre-
sponding part of the mapping as a textual annotation.

This information can be used in various ways: (1) it can
help recall the provenance of refinement decisions, e.g., in
case of an audit; (2) it can be combined with the rationale
from subsequent refinement steps to build an argument that
justifies the state of the model at any point in time in
order to support model comprehension; (3) it can be queried
to answer questions such as “which decisions involved
stakeholder X?”; (4) it can be used to “backtrack” to earlier
points in the development of the model to undo decisions
and explore other alternatives. For more on using rationale,
please see our discussion of future work in Section VIII.

V. CHECKING UNCERTAINTY REDUCING REFINEMENT

In this section, we address the question Q4 from Sec-
tion I. Specifically, we show how to verify that a potential
refinement actually reduces uncertainty.

Verifying a MAVO refinement requires showing that the
two refinement conditions in Definition 2 hold. In general,
this can be done using the FO encoding of the two mod-
els, and we have implemented prototype tool support [25]
on top of Alloy, for performing these checks using SAT-
solving. The approach can be applied directly for checking
refinement of RE models.

While this approach is powerful and can be used with
general uncertainty-representing models which may include

P’

P 𝑎

…

 () (
)

 () () (
)

 () (
) (

)

…

 () ()

(()) ()

(()) ()

(()) ()

 () ()

(1) (2) (3) (4)

Figure 7. Summary of the constraints on annotations of model elements
across a MAVO refinement mapping.

additional textual constraints augmenting MAVO annota-
tions, it has computational limitations and typically is not
applicable to large (even in the RE sense!) models. However,
when we limit ourselves to just using MAVO annotations,
we can simplify checking refinement condition Ref2 by
defining syntactic constraints (i.e., necessary conditions) on
the annotations that follow from the FO condition. We now
describe this approach and discuss its scalability relative to
the Alloy implementation.

Figure 7 summarizes these constraints. Each of the four
columns indicates a different case (case number at top) in
the refinement mapping, and the sentences in the lower part
of each case give the constraints on the MAVO annotations
for the atoms of that case. A valid refinement must satisfy
all of these constraints. The sentences make reference to the
full set of MAVO annotations described in Section II (M/E;
S/P; V/C; INC /COMP), including those assumed by default
when the annotation for a partiality type is omitted.

For example, case (1) is when an atom a of model P is
refined to a set of atoms a1, ..., an of P ′. The first sentence
says that if a is annotated with E (i.e, it is not M), then at
least one of the atoms ai must also be annotated with E.
Thus, if a exists and it is refined to the set of ais then at
least one of these should exist. The second sentence says
that if a is a particular (i.e., not a set) then there can only
be one ai and it too must be a particular. The third sentence
says that if a is a constant and thus it can’t merge with any
other atom then neither can any of the ais it refines to and
so they too must be constants. Case (2) says that if a is
not propagated into the new model, then it must have been
annotated with M. Case (3) states that if multiple ais in P
are mapped into a single a′ in P ′, then if any of the ais had
definite information, or were particular, or were a constant,
then so is a′. The last sentence in case (3) says that at most
one of the ais could be a variable. Finally, if a new atom,
not mapped to anything in P appears in P ′ (case (4)), then
P could not be complete.

We illustrate the application of these rules for checking
the refinement in Figure 6. The refinements of resource
Details and task Provide details are examples of case
(1). The merges of actor Meeting Scheduler with actor
Date Determiner and goal Agreeable Meeting Date with

P2

P1

Meeting

Initiator
Meeting

Participant

Organize

meeting

Quick
Low

Effort

 (S) Ways

to

organize

meeting

(S
)

(MS)

Dependencies (MS) D (M
S) D

(M
) U

nknown

(M
)

U
n

k
n

o
w

n Attend

meeting

Participate

in meeting

(MS)

Provide

details

(inc)

(S)

Details

(S
)

D

(S) D

Meeting

Scheduler

Meeting be

scheduled

D

D Schedule

meeting

Let

Scheduler

Schedule

Meeting

Meeting Be

Scheduled

H
e
lp

H
el

p

Low

Effort

(S
)

(V)

Agreeable

Meeting

Date

(V) Date

Determiner

(M) Decide

Convenient

Dates

Detemine

Meeting

Date

+(S)WaysToOrganizeMeeting()
+UseSchedulerToOrganizeMeeting()
+OrganizeMeeting()

-name
-department

MeetingInitiator

+ScheduleMeeting()

MeetingScheduler

+DetermineMeetingDate()
+CheckDateInCalendar()

(V)DateDeterminer

+ParticipateInMeeting()
+AttendMeeting()
+(MS)ProvideDetails()
+(M)DecideConvenientDates()

-name
-department

MeetingParticipant

+FindAvailableDates()

Calendar
+FindRoom()
+GetRoomAttributes()

RoomDB

(M)

(S)Details

(MS) (M)(MS)(S)(S) (V)

(VM)

Convenient

Meeting

Date

(inc)

Figure 8. The i* model P1 from Figure 6 mapped to the partial class
diagram P2 using the traceability relation Tr(P1, P2).

Convenient Meeting Date are examples of case (3). The
addition of task Book meeting is an example of case (4).
Finally, the removal of Decide Convenient Dates is an
example of case (2). Furthermore, the annotations in models
P and P′ in Figure 6 satisfy the conditions for their respective
cases. For example, resource Details (with annotations
ESC) refines to resources Dates (with annotations EPC) and
Location (with annotations EPC). It is straightforward to
see that these annotations satisfy the three constraints for
case (1).

The procedure for applying Figure 7 to verifying condition
Ref2 of a potential refinement involves first iterating through
the atoms of P and checking cases (1) and (2), and then
iterating through the atoms of P ′ and checking cases (3)
and (4). This procedure has time complexity O(|P | × |P ′|),
which allows us to conclude that this is a scalable strategy
for checking condition Ref2 of refinement.

Checking the first refinement condition, Ref1, requires
showing that P ′ has at least one concretization, i.e., that
FO(P ′) is satisfiable. This can be done using a SAT-solver.
However, the process can be simplified for RE models by
taking advantage of the following property discussed in [25]:
when the base model of P ′ (i.e., P ′ with all the annotations
removed) is a well-formed i* (resp., class diagram) model,
then it is also a concretization of P ′, and thus refinement
condition Ref1 is satisfied. Of course, this is a sufficient but
not necessary condition: the base model of a MAVO model
may not be well-formed but can still have concretizations.
In this case, the FO encoding to check Ref1 is required.

The base model of P1′ in Figure 6 is a well-formed
i* model so we can conclude that P1′ satisfies refinement
condition Ref1. Furthermore, following the above illustra-

tion, the refinement in Figure 6 satisfies the constraints in
Figure 7 and so it satisfies refinement condition Ref2. Thus,
we conclude that the mapping in Figure 6 shows a valid
MAVO refinement and reduces uncertainty.

VI. TRACEABILITY RELATIONS AND UNCERTAINTY

In this section, we consider the problem of traceability
in the presence of model uncertainty and address question
Q5 from Section I. Specifically, we show how to “lift” an
existing traceability relation to a partial traceability relation
in order to incorporate uncertainty and relate models con-
taining it.

To illustrate the approach, we begin with a traceability
relation Tr between i* models and class diagrams adapted
from [2]. Figure 4 shows the associations between elements
of the relevant fragments of i* and the class diagram
metamodels. In this case, Tr is used to show the overlap
between the i* model and the class diagram. Specifically, i*
Actor and Resource correspond to a Class, and an i* Task

is expressed as an Operation in the class corresponding
to the actor of the task. These relations are constrained so
that every actor, resource and task is reflected as classes
and operations, but the class diagram can have additional
classes and operations not corresponding to anything in the
i* model. An i* Dependency between actors is expressed as
a DependencyAssociation between classes. In this case,
if there are many dependencies in a particular direction
between the same actors, they map to a single dependency
association between the corresponding classes.

Our goal is now to use traceability relations between meta-
model elements, like Tr, to define traceability between mod-
els containing uncertainty. We can apply MAVO annotations
to Tr just like we would to atoms of a model! Figure 8 shows
the partial i* model P1 from Figure 6 mapped to the partial
class diagram P2 using the resulting partial traceability
relation Tr(P1, P2). Note that each trace link and each of
its endpoints can be annotated with MAVO annotations.
To reduce visual clutter, Figure 8 only shows links with
annotations. For example, the actor MeetingParticipant
is linked to the class MeetingParticipant and its M-
annotated task Decide Convenient Dates is linked via an
M-annotated link to a M-annotated operation by the same
name.

Furthermore, since the existence of the task and operation
is uncertain, the existence of the traceability link should be
uncertain as well. This is because the uncertainty of the
endpoints is affected by the uncertainty of a link. Making
the existence of the link certain, e.g., by annotating it with E,
means that it occurs in every concretization and this would
force the task and operation to also be in every concretization
since a link can’t occur without its endpoints. Thus, if
the task and operation is present in every concretization,
their existence is made certain despite the fact that they are
annotated with M.

To address this problem, we state the following well-
formedness rule for traceability relations:

Rule 1: For each traceability link ρ(a, b), the annotation
of ρ should not be more refined than the annotations of a
and b.
Recall that refinement of individual MAVO annotations was
defined in Section II and constitutes a constant-time check
for each of a and b, making checking of the rule efficient.

The traceability relation in Figure 8 satisfies this rule.
The partiality annotations on the traceability links occur

not only because of Rule 1 but also to express specific
uncertainties about the traceability relationship itself. For
example, suppose that the analyst is unsure whether to map
the actor Meeting Scheduler in the model in Figure 8 to
the class Meeting Scheduler or to the class Calendar (i.e.,
to integrate the scheduling functionality into the calendar).
This can be expressed by mapping the actor to both classes
and annotating the links with M. Note that due to the multi-
plicity constraints on the actor-class links it will actually be
mapped only to one class in each concretization.

In summary, MAVO annotations can be used with trace-
ability relations by annotating the individual traceability
links. Furthermore, the annotations on a link can be both
due to the annotations on its endpoint atoms (via Rule 1) as
well as to the intentions of the analyst.

VII. RELATED WORK

In this section, we survey a number of approaches related
to our work on uncertainty.

Uncertainty in RE. Several approaches consider uncertainty
in requirements, often as part of an overall strategy for man-
aging uncertainty in software development. For example,
[10] provides a framework for uncertainty in SE, recog-
nizing requirements uncertainties such as inconsistencies,
clarity and accuracy. While this approach uses existing
techniques to model uncertainty in isolation, our approach
aims to integrate uncertainty modeling with existing RE
modeling approaches. [3] investigates requirements changes
and uncertainty in an experimental field study, using data
gathered to provide a useful list of root causes for uncer-
tainty, including vague product strategy and missing key
stakeholders. Although it is useful to consider possible root
causes for uncertainties, our approach takes a more narrow
focus, capturing the manifestation of uncertainties in the
structure of RE models.

The approach in [14] argues that much of the uncertainty
in SE comes from our inability to precisely measure soft-
ware and its processes, proposing the use of rough sets
to capture software properties and requirements. Although
some of the uncertainties captured by MAVO might be
related to imprecision, our approach aims to support a
wider variety of model uncertainty. Similarly, work in [23]
studies the problem of “imperfect information” in software

development, using fuzzy set theory and probability theory
to model imprecise non-functional requirements in order to
evaluate design decisions. This approach allows modeling
of uncertainty concerned with specific NFRs, while our
approach allows for uncertainty over RE models which may
capture NFRs. Thus, when it comes to the precision of
requirements, our approach inherits the expressiveness of
the modeling language to which it is applied.

In another direction, Herrmann [9] studied the value
of being able to express vagueness within design models.
His modeling language SeeMe has notational mechanisms
similar to OW and May partiality; however, there is no
formal foundation for these mechanisms.

Much of the investigation of uncertainty in RE is con-
cerned with work on adaptive systems. Such systems aim
to respond to uncertainty during run-time by specifying
functional adaptations as part of RE (see [27] for overview).
Our approach is aimed to represent uncertainty in the
content or structure of requirements models arising as part
of elicitation, ideally resolved as part of the requirements
process, and do not explicitly to handle run-time uncertainty.

Uncertainties in software development are often consid-
ered as part of risk management. For example, the approach
in [11] advocates the early and explicit consideration of risks
as part of RE goal modeling. Although certain risk factors
(e.g., an unknown budget) may motivate the presence of
model uncertainty, our framework is not explicitly intended
to capture these risks.

Argumentation and Rationale in RE. Previous work has
focused on the use of rationale as part of design decisions
(e.g., [24]), whereas others added rationale as part of the
development of goal models [13], [21] or other requirements
models [6]. In contrast, our approach focuses on adding
rationale for the reduction of uncertainty, which may or may
not involve a design decision.

RE Model Mapping and Traceability. We consider map-
pings between requirements models as part of managing
uncertainty across multiple models. Although we use a
particular traceability mapping in our example (adapted from
[2]), our approach is meant to apply to any mapping between
models (other examples can be found in [20], [15], [30]).
Traceability amongst software artifacts has received much
attention (see [28] for an overview of software traceability,
including traceability as part of RE), much of it geared
towards traceability from models to requirements (e.g., [4],
[7]), or from requirements to architecture (e.g., [31], [6]).
Other work has a more general focus on software models,
often using UML models as examples (e.g., [1], [12],
[19]). As our work manages uncertainty on top of existing
traceability mappings, including integrity constraints, the
traceability links and rules proposed in such work could be
integrated with our approach.

Partial Modeling. May partiality in MAVO is related to var-
ious modal extensions to behavioural modeling formalisms.
For example, Modal Transition Systems (MTSs) [16] al-
low introduction of uncertainty about transitions on a
given event, whereas Disjunctive Modal Transition Systems
(DMTSs) [17] add a constraint that at least one of the
possible transitions must be taken in the refinement. Con-
cretizations of these models are Labelled Transition Systems
(LTSs). MTSs and DMTSs have been used to capture some
forms of uncertainty in early design models [29]. The MAVO
approach generalizes May partiality to arbitrary model types
and allows specification of more uncertainty types.

VIII. CONCLUSION AND FUTURE WORK

In our previous work [26], [25], [5], we have developed a
formal approach called MAVO for expressing and reasoning
with model uncertainty and have applied it to design models.
In this paper, we expanded MAVO and applied it to the
RE modeling context, answering five methodological and/or
algorithmic questions about uncertainty in RE. Specifically,
we made the following contributions: (1) we explicated
methodological guidelines for using MAVO annotations (Q1)
and illustrated them through an application to expressing
uncertainty in RE models; (2) we applied MAVO refinement
to expressing uncertainty reduction in RE models (Q2); (3)
we proposed a methodological approach to documenting the
rationale of these refinements (Q3); (4) we developed an
efficient algorithm for checking the validity of MAVO refine-
ments (Q4) ; and (5) we showed how to apply the MAVO
uncertainty to traceability relations between RE models
(Q5). Through these contributions, we have made progress
towards the identification and resolution of uncertainty early
in the software development process. Also, although we
illustrated our approach in an RE scenario using i* and UML
models, it is general enough to be applied as part of any RE
modeling approach where the model can be represented via
a metamodel.

Future Work. We see the current paper as a step towards
the development of a comprehensive strategy for uncertainty
management across the development lifecycle, and many of
the topics addressed in this paper have natural follow-up
work. For example, the recording of rationale with a MAVO
refinement provides the opportunity to revisit decisions and
explore other alternatives, but how can the model then be
changed to reflect an alternative earlier decision without
affecting the decisions that came after? At a high level, we
want to increase uncertainty in the model just enough to
“remove” the original decision and then refine it to reflect
the new decision. The formalization of MAVO may help do
this in a sound way.

Now that we have “lifted” traceability relations to the
uncertainty setting, another area that has rich potential is
the corresponding lifting of the different types of analyses

that are typically done using traceability relations [28].
For example, how is change impact analysis across related
models containing uncertainty conducted? How are model
changes propagated across a traceability relation containing
uncertainty? Furthermore, how are actual uncertainty reduc-
tions or increases propagated to related models? Since our
approach expresses uncertainty as sets of concrete models,
this suggests we need to “lift” the existing analyses that
apply to individual models to work on sets of models. We
are currently exploring approaches for doing this lift by
encoding existing analysis techniques into FOL and using
these with the MAVO FO encoding of partial models.

Finally, we intend to further evaluate our technique by
applying it to industrial RE case studies.

REFERENCES

[1] N. Assawamekin. An Ontology-Based Approach for Mul-
tiperspective Requirements Traceability between Analysis
Models. In Proc. of ACIS’10, pages 673–678, 2010.

[2] G. Cysneiros, A. Zisman, and G. Spanoudakis. A Traceability
Approach from i* and UML Models. In Proc. of SELMAS’03,
LNCS, 2003.

[3] C. Ebert and J. De Man. Requirements Uncertainty: Influenc-
ing Factors and Concrete Improvements. In Proc. of ICSE’05,
pages 553–560, 2005.

[4] A. Egyed. A Scenario-Driven Approach to Trace Dependency
Analysis. IEEE TSE, 29(2):116–132, 2003.

[5] M. Famelis, M. Chechik, and R. Salay. Partial Models:
Towards Modeling and Reasoning with Uncertainty. In Proc.
of ICSE’12, 2012.

[6] F. Gilson and V. Englebert. Rationale, Decisions and Alter-
natives – Traceability for Architecture Design. In Proc. of
ECSA’11, Companion Vol., pages 4:1–4:9, 2011.

[7] A. Goknil, I. Kurtev, and K. van den Berg. Tool Support for
Generation and Validation of Traces between Requirements
and Architecture. In Proc. of ECMFA-TW’10, pages 39–46,
2010.

[8] J. Gordijn, M. Petit, and R. Wieringa. Understanding Business
Strategies of Networked Value Constellations Using Goal-
and Value Modeling. In Proc. of ICRE’06, pages 126–135,
2006.

[9] T. Herrmann. Systems Design with the Socio-Technical
Walkthrough, pages 336–351. 2009.

[10] H. Ibrahim, B. H. Far, A. Eberlein, and Y. Daradkeh. Uncer-
tainty Management in Software Engineering: Past, Present,
and Future. In Proc. of CCECE’09, pages 7–12, 2009.

[11] S. Islam and S. H. Houmb. Integrating Risk Management Ac-
tivities into Requirements Engineering. In Proc. of RCIS’10,
pages 299–310, 2010.

[12] W. Jirapanthong. Analysis of Relationships among Software
Models through Traceability Activity, volume 55 of Commu-
nications in Computer and Information Science, pages 71–80.
2009.

[13] H. Kaiya, H. Horai, and M. Saeki. AGORA: Attributed Goal-
Oriented Requirements Analysis Method. In Proc. of RE’02,
pages 13–22, 2002.

[14] P. A. Laplante and C. J. Neill. Modeling Uncertainty in
Software Engineering using Rough Sets. J. Innovations in
Systems and Soft. Eng., 1:71–78, 2005.

[15] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu.
Towards Requirements-Driven Autonomic Systems Design.
ACM SIGSOFT SEN, 30(4):1, 2005.

[16] K. G. Larsen and B. Thomsen. A Modal Process Logic. In
Proc. of LICS’88, pages 203–210, 1988.

[17] P. Larsen. The Expressive Power of Implicit Specifications.
In Proc. of ICALP’91, volume 510 of LNCS, pages 204–216,
1991.

[18] L. Lin and J. Zhi. Integrating Goals and Problem Frames in
Requirements Analysis. In Proc. of RE’06, pages 349–350,
2006.

[19] P. Mader, O. Gotel, and I. Philippow. Enabling Automated
Traceability Maintenance by Recognizing Development Ac-
tivities Applied to Models. In Proc. of ASE’08, pages 49 –58,
2008.

[20] N. Maiden, S. Jones, S. Manning, J. Greenwood, and L. Re-
nou. Model-Driven Requirements Engineering: Synchronis-
ing Models in an Air Traffic Management Case Study. In
Proc. of CAiSE’04, volume 3084 of LNCS, pages 3–21, 2004.

[21] N. Maiden, J. Lockerbie, D. Randall, S. Jones, and D. Bush.
Using Satisfaction Arguments to Enhance i* Modelling of an
Air Traffic Management System. In Proc. of RE’07, pages
49–52, 2007.

[22] F. Moisiadis. Prioritising Scenario Evolution. In Proc. of
RE’00, pages 85–94, 2000.

[23] J. Noppen, P. van den Broek, and M. Aksit. Software
Development with Imperfect Information. J. Soft Computing,
12(1):3–28, 2008.

[24] C. Potts and G. Bruns. Recording the Reasons for Design
Decisions. In Proc. of ICSE’88, pages 418–427, 1988.

[25] R. Salay, M. Chechik, and J. Gorzny. Towards a Method-
ology for Verifying Partial Model Refinements. In Proc. of
VOLT’12, 2012.

[26] R. Salay, M. Famelis, and M. Chechik. Language Independent
Refinement Using Partial Modeling. In Proc. of FASE’12,
volume 7212 of LNCS, pages 224–239, 2012.

[27] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkel-
stein. Requirements-Aware Systems: A Research Agenda for
RE for Self-adaptive Systems. In Proc. of RE’10, pages 95–
103, 2010.

[28] G. Spanoudakis and A. Zisman. Software Traceability: a
Roadmap. J. of Software Engineering and Knowledge, III:1–
35, 2005.

[29] S. Uchitel and M. Chechik. Merging Partial Behavioural
Models. In Proc. of SIGSOFT FSE’04, pages 43–52, 2004.

[30] A. van Lamsweerde. Requirements Engineering: From System
Goals to UML Models to Software Specifications. Wiley,
2009.

[31] A. Yrjönen and J. Merilinna. Tooling for the Full Traceability
of Non-Functional Requirements within Model-Driven Devel-
opment. In Proc. of ECMFA-TW’10, pages 15–22, 2010.

[32] E. Yu. Towards Modelling and Reasoning Support for Early-
Phase Requirements Engineering. In Proc. of RE’97, pages
226–235, 1997.

