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ABSTRACT
In large-scale model-based development, developers period-
ically need to combine collections of interrelated models.
These models may capture different features of a system, de-
scribe alternative perspectives on a single feature, or express
ways in which different features may alter one another’s
structure or behaviour. We refer to the process of combining
a set of interrelated models as model fusion. In this posi-
tion paper, we provide an overview of our work on two key
fusion activities, merging and composition, for behavioural
models. The practical basis of our work comes from two case
studies that we conducted using models from the telecom-
munications domain. We illustrate our work using these case
studies, summarize the results our research has led to so far,
and describe the future research challenges.

Categories and Subject Descriptors: D.2.1 [Software
Engineering]: Requirements/Specifications.

Keywords: Model Fusion, Model Management, Model Merg-
ing, Model Composition, Behavioural Model, Model Match-
ing, Design Patterns, Model Checking.

1. INTRODUCTION
Model-based development involves construction, manage-

ment, and analysis of complex models. For large-scale projects,
this can include several interrelated models, representing dif-
ferent perspectives, different versions across time, different
variants in a product family, different components of a sys-
tem, different development concerns, etc.

The nature of the relationships between a set of models
varies based on the intended application of the models and
how they were developed. For example, the relationships
may describe overlaps (e.g., when the models are different
perspectives originating from different sources); or they may
describe shared interfaces for interaction (e.g., when the
models are autonomous executable components); or they
may describe ways in which models alter one another’s be-
haviour or structure (e.g., a cross-cutting model applied to
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other models). To construct a functional system, models
need to be combined with respect to the relationships be-
tween them. We refer to this problem as model fusion.

Several important activities in model-based development
form different facets of model fusion. These include (1)
merging, used to build a global view of a set of overlapping
perspectives (e.g., [20, 16, 24, 22]); (2) composition, used to
assemble a set of autonomous but interacting components
that run sequentially or in parallel (e.g., [8, 10, 12]); and (3)
weaving, used in aspect-oriented development to incorporate
cross-cutting concerns into a base system (e.g., [23]).

Over the past three years, we have been studying fu-
sion activities in behavioural modelling. Behavioural mod-
els capture dynamic aspects of software systems and are
described using notations with operational semantics, such
as state machines. Our efforts have primarily focused on
merging and composition of behavioural models and the au-
tomated reasoning tasks that go hand in hand with them
(e.g., consistency checking and verification). In this position
paper, we provide an overview of the results our research has
led to so far, the insights we made along the way, and the
challenges we faced, which invite further future research.

The principal source for the observations given here are
two case studies that we conducted using models from a
telecommunication domain [12]. These case studies, despite
dealing with models of the same nature, represent two en-
tirely different fusion problems: The first study concerns
maintenance of variant specifications of individual telecom
features. The goal here is to merge the variants while pre-
serving their points of difference (i.e., variabilities). In con-
trast, the goal of the second study is feature interaction
analysis. Specifically, given a set of features, we aim to con-
struct a composition of the features which does not exhibit
any undesirable behaviours.

In the remainder of this paper, we motivate the two fu-
sion problems (Section 2), summarize our solutions to these
problems, and outline the challenges in each case (Sections 3
and 4). We conclude the paper with a plan for future work
in Section 5.

2. MODEL FUSION PROBLEMS
One major source for identifying model-based develop-

ment problems is through studying complex event-driven
systems, e.g., automotive or telecom systems. In these sys-
tems, a considerable amount of development effort is dedi-
cated to the design of the system architecture and its com-
ponents. Modelling is used as a suitable vehicle for trans-
forming the high-level design concepts and problem-level ab-



Figure 1: Simplified variants of the call logger feature.

stractions to software implementations. In our work, we
focused on telecom models implemented within the Dis-
tributed Feature Composition (DFC) architecture [12], and
identified two main fusion problems: merging behavioural
models with overlapping behaviours (Section 2.1), and ana-
lyzing behavioural models with interacting behaviours (Sec-
tion 2.2).

2.1 Model Merging
Domain. The motivation for model merging in DFC is

to help maintain variant specifications of the same feature.
For example, Figure 1 shows two variants of the “call logger”
feature, aimed to make an external record of the disposition
of a call allowing customers to later view information on calls
they placed or received. At an abstract level, the feature
first tries to setup a connection between the caller and the
callee. If for any reason (e.g., caller hanging up or callee
not responding), a connection is not established, a failure is
logged; otherwise, when the call is completed, information
about the call is logged.

Initially, the functionality was designed only for basic phone
calls (model basic in Figure 1), for which logging is limited
to the direction of a call, the address location where a call
is answered, success or failure, and the duration if it suc-
ceeds. Later, a variant of this feature (model voicemail in
Figure 1) was developed for customers who subscribe to the
voicemail service. Incoming calls for these customers may
be redirected to a voicemail resource, and hence, the log
information should include the voicemail status as well.

In this domain, telecom features may come in several vari-
ants to accommodate different customers’ needs. The devel-
opment of these variants is often distributed across time and
over different teams of people, resulting in the construction
of independent but overlapping models for each feature. For

example, the behaviour “After a connection is set up, a suc-
cessful call will be logged if the subscriber or the participant
sends Accept” holds in both models in Figure 1 (through
paths from s4 to s6, and t4 to t6 in basic and voicemail,
respectively). This behaviour is a potential overlap between
these models.

Goal. To reduce the high costs associated with verifying
and maintaining independently developed models, it is de-
sirable to consolidate the variants of each feature into a sin-
gle coherent model. The main challenge here is to identify
correspondences between variant models and merge these
models with respect to these correspondences.

2.2 Interaction Analysis
Domain. The second fusion problem concerns the analy-

sis of interactions between concurrent software components.
Figure 2 shows the state machines describing two different
telecom features: Call Blocking (CB) and Record Voice Mail
(RVM). The purpose of CB is to block calling requests com-
ing from addresses on a blocked list. CB becomes active by
receiving a setup message containing routing data such as in-
formation about the caller and callee. Using this information
and its internal logic, CB decides whether the caller should
be blocked. If so, it moves to the blocked state and tears
down the call; otherwise, it moves to the transparent state
and effectively becomes invisible. The purpose of RVM is
to record a voice mail message when the callee is not avail-
able. Like CB, RVM becomes active by receiving a setup

message. It then remains transparent until it receives an
unavail message, indicating that the callee is unavailable or
is unable to receive the call. Upon the receipt of this mes-
sage, RVM records a voicemail message through interactions
with its media channel, as represented by the internal action



Figure 2: Two different telecom features: Call
Blocking (CB); and Record Voice Mail (RVM).

voicemail.
CB and RVM run in synchronous parallel mode and com-

municate through message passing. They can potentially
communicate via their shared messages, i.e., setup and unavail.
While the behaviour of each of these components is fixed
and deterministic, the behaviour of their parallel composi-
tion depends on the messages that are communicated be-
tween them. For example, in Figure 3, we have shown two
possible compositions of CB and RVM. In the composition
in Figure 3(a), RVM sends setup to CB and receives unavail

from it, whereas in the composition in Figure 3(b), CB sends
setup to RVM and receives unavail from it. The composition
in Figure 3(a) results in an undesirable interaction: On the
path from (s0, t0) to (s3, t2), message “rvm.voicemail;” comes
after “cb.reject;”. That is, we may record a voicemail mes-
sage from a blocked caller. The composition in Figure 3(b)
does not exhibit this undesirable interaction.

Goal. Large systems, such as those from the telecom do-
main, are often assembled from smaller and modular compo-
nents. These components, while being independent, interact
with one another to perceive and modify the overall func-
tion of the system. The major challenge in such systems is
orchestrating and managing interactions among components
to avoid undesirable behaviours.

3. BEHAVIOURAL MODEL MERGING

3.1 Existing Work
Software engineering deals extensively with model merg-

ing – several papers study the subject in specific domains,
e.g., use-cases [18], class diagrams [2, 26], and software ar-
chitectures [1]. These approaches differ in a number of as-

pects including the notations they support, their algebraic
and logical properties, their ability to resolve or tolerate in-
consistency, and assumptions they make about the nature
of models and their intended use. A preliminary survey of
model merging approaches can be found in [19].

In [16], we proposed a framework for merging Statecharts
specifications with overlapping behaviours. Our framework
has two main components: (1) match, for finding relation-
ships between models, and (2) merge, for combining models
with respect to identified relationships. In general, match-
ing is a heuristic process because we can never be completely
sure how exactly the models are related. The main challenge
in devising a usable match operator is finding a set of effec-
tive heuristics that can imitate the reasoning of a domain ex-
pert. In our work, we used a number of heuristics including
typographic and linguistic similarities between the vocab-
ularies of different models, structural similarities between
model elements, and semantic similarities between models
based on a quantitative notion of behavioural bisimulation.

In contrast to matching, merging is not heuristic, and is
almost entirely automatable. Given a pair of models and a
correspondence relation between them, we proposed an au-
tomatic behaviour-preserving merge operator [16]. The nov-
elty of this merge procedure is the use of parameterization
for representing variabilities between input models: non-
shared behaviours in the merged model become guarded.
This approach, while allowing us to merge models with be-
havioural discrepancies, guarantees that the merge preserves,
in either guarded or unguarded form, every behaviour of the
input models.

For example, Figure 4 shows one potential matching re-
lation between models in Figure 1, and Figure 5 shows the
merge of the models of Figure 1 with respect to the match-
ing in Figure 4. In the merge, non-shared transitions are
guarded by the boldface conditions representing their source
model.

3.2 Challenges

Relationships between models. Since relationships play
a crucial role in model-based development, one has to be
concerned with the methods for constructing, verifying, and
representing these relationships. Developers may find it very
hard to identify and manipulate model relationships manu-
ally, specially when models are complex, or when the devel-
opers are not very familiar with the models. Automatic or
semi-automatic match operators, such as the one described
in our work, can allow developers to quickly identify appro-
priate matches with reasonable accuracy.

These operators can be improved in a number of ways.
For example, they can be used interactively, with the devel-
oper seeding them with some of the more obvious matches,
and pruning incorrect ones iteratively. Or, they can be
customized for specific domains using learning-based tech-
niques [14].

In addition to identifying model relationships, we need to
ensure that these relationships are semantically meaningful.
One way to achieve this is to first compute the merge of the
given models with respect to their relationships, and then
apply automated analyses, e.g., consistency checking, to en-
sure that the relationships between models result in a merge
which satisfies the properties of interest [21]. In situations
where merges are very large, we may investigate compo-



Figure 3: Two possible compositions of the features in Figure 2.

(s0, t0), (s4, t4), (s2, t1), (s5, t5),
(s3, t2), (s6, t6), (s3, t3), (s7, t7)

Figure 4: A correspondence relation between the
models in Figure 1.

sitional techniques to reduce reasoning about the merge to
reasoning about smaller subsets of models and relationships.

Another significant problem is the representation of model
relationships. Visual representations are very appealing but
they may not scale well for complex operational models such
as large executable Statecharts. For these models, it should
be possible to express relationships symbolically using logi-
cal formulas or regular expressions. This may lead to a more
compact and comprehensible representation of model corre-
spondences, especially when tuples of states in a correspon-
dence relation agree on some logical properties or generate
similar traces or behaviours.

Heterogeneous merge. Heterogeneous merge is often car-
ried out using transformations and manipulations defined
at the meta-model level [5]. Meta-model level transforma-
tions, despite being general and flexible, typically deal only
with syntactic and visual aspects of models. To generate
merges that are semantically sound and to better mechanize
the matching process, we could define meta-models that are
more than just the abstract syntax of a language, e.g., by
augmenting meta-model languages with logical constraints
or behavioural specification languages such as activity and
sequence models [9].

Tool support. Many industrial distributed and collabora-
tive model-based development tools include some support
for model merging. A careful examination of the model
merging processes in these tools reveals a number of im-
portant shortcomings. In particular, most existing indus-
trial modelling platforms, e.g., the Rational Software Archi-
tect [11], are primarily aimed at centralized development,
where all developers contribute to a single holistic model.
Fragments of this model are visualized as views containing
diagrams (potentially) in different notations, e.g., class or
sequence diagrams. These tools lack support for merging
independently developed models as they often do not al-
low developers to explicitly construct relationships between

Figure 5: Resulting merge for the call logger vari-
ants in Figure 1 with respect to the correspondence
relation in Figure 4.

models. In these tools, elements in different views are con-
sidered similar only if they are simply different copies of the
same element in the holistic model. This is inadequate for
merging independently developed models where elements in
different models may be similar due to their syntactic and
semantic characteristics.

Another issue in the holistic approach to modelling is that
even if relationships are made explicit, it is not clear whether
they should be defined between models or views. Models
usually subsume views in that they contain all the infor-
mation about the elements of the views. But it would be
counter-intuitive for developers to move from a view to its
model to specify relationships because models lack the vi-
sual layout of views. On the other hand, views may not
contain sufficient information for model matching because
all information about model elements may not be preserved
in the views. Finding the right level of abstraction for defin-
ing and representing relationships is an important challenge



in developing model merging tools and designing usable in-
terfaces for these tools.

4. INTERACTION ANALYSIS

4.1 Existing Work
Given a set of interacting components, the goal is to find

architectural links (bindings) between them such that the
resulting composition does not exhibit any undesirable be-
haviour. In some sense, this may look like the model merg-
ing problem as bindings can be seen as a form of model
relationships. However, in distributed component-based de-
velopment, top-level design decisions about issues such as
the overall architecture of a system, component interfaces,
and desirable system behaviours are often made prior to the
component assembly phase. As a result, finding bindings
between interacting components becomes a less heuristic
process than finding relationships between the overlapping
models. The major issue is that calculating desirable bind-
ings can be very expensive because there are several ways
to arrange system components within a given architecture.
Analyzing system compositions for all these alternative ar-
rangements takes a lot of time and effort. Hence, we need to
provide compositional techniques that can reduce the prob-
lem of finding a desirable arrangement of components into
smaller subproblems.

A general way to enable such compositional approaches is
by exploiting domain-specific patterns used in the design of
the components. These patterns often introduce a degree of
similarity to the behaviour of the system components, allow-
ing us to construct global system arrangements through the
analysis of smaller subsets of components. Specifically, our
study of the DFC telecom features shows that DFC com-
ponents implement a pattern of behaviour known as trans-

parency. This pattern requires every component realizing
it to have at least one execution path along which it is in-
visible to other components. The transparent behaviour of
feature components is an important factor contributing to
their independence and to the freedom with which they can
be combined and used in various telecom usages [12].

In [17], we formalize the transparency pattern and propose
an automated technique for finding a suitable arrangement
of components implementing this pattern, ensuring that un-
desirable behaviours are not attained. The basic idea behind
our technique is that if an ordered pair of components ex-
hibits an undesirable behaviour, then these two components
can never appear in this particular ordering even when there
is an arbitrary number of components between them. Find-
ing undesirable pairwise orderings between components al-
lows us to prune the search space considerably, and hence,
enables efficient computation of a global system arrange-
ment.

4.2 Challenges

Design for verification. To achieve the goal of construct-
ing reliable software systems, we need to promote the use
of patterns and guidelines that are able to facilitate efficient
automated verification [4, 7]. We conjecture that many ex-
isting software design patterns enjoy this characteristic as
well: They make software systems more modular and intro-
duce regularity to the behaviour of the system components,
enabling efficient compositional verification of system-level

properties. To demonstrate this, we need to formalize these
patterns and illustrate how they can contribute to more ef-
ficient verification of properties of interest. Alternatively,
instead of studying general design patterns, we can concen-
trate on specific problem domains, such as telecom or auto-
motive domains, and let them guide us to the patterns and
best practices that have been previously developed by do-
main experts to make real systems more modular and man-
ageable. By restricting our analysis to specific domains, we
may sacrifice claims to generality but we will gain a lot more
credibility [3].

Verification of a system of models. Fusion tasks are
often intertwined with some kind of verification to ensure
that the manipulations performed over models preserve their
well-formedness and desired semantic properties. For exam-
ple, in [17], we employ model checking to verify that the
composition of a given set of components satisfies the de-
sirable properties. Similarly, [21] combines model merging
and (intra-model) consistency checking to enable construc-
tion of sound and meaningful relationships between a set of
models. To build and manage systems of interrelated mod-
els, we need to devise scalable verification techniques that
can check not only classical properties of models, but also
non-classical ones, such as those involving inconsistent and
incomplete aspects of models.

Expressiveness of modelling formalisms. DFC features
are implemented in the Boxtalk language, a domain-specific
language for specifying telecom components [25]. To an-
alyze these features, we translated them to Input/Output
automata [15]. Even though the basis of Boxtalk is very
similar to I/O automata, we found a number of domain ab-
stractions in Boxtalk that could not be expressed easily in
I/O automata. Domain abstractions are often created to
describe complex features of real systems. Lack of support
in existing modelling formalisms for capturing them shows a
potential gap between real-world systems and the expressive
power of these formalisms. To address this gap, we need to
design analyzable modelling formalisms that are sufficiently
expressive for various domain-specific abstractions. Below,
we summarize two of the most interesting problems we faced
when formalizing Boxtalk.

• Determining a model’s vocabulary: The vocabulary of
DFC features, i.e., their input and output actions, can-
not be determined statically. This is because these fea-
tures may be instantiated in different telecom pipelines,
and the vocabulary of a pipeline depends on the union
of vocabulary of its features. For example, feature
RVM generates an action loggedVM, indicating that
a voicemail message was logged by RVM. The only
feature that uses this action, and hence is always en-
abled for it, is the call logger feature. However, other
features, should they appear in between RVM and
call logger in a pipeline, also have to be enabled for
loggedVM in order to let this message pass through.
Yet, these features do not need to be enabled for loggedVM

if RVM and call logger do not appear in the pipeline.

In Boxtalk, a shorthand called signal-linkage self-loop

is designed to directly connect the right and left ports
of a feature, allowing features to pass arbitrary signals
form their left neighbour to their right neighbour, and
vice versa. Using signal-linkages, Boxtalk models do



not need to make their vocabulary explicit. However,
in general-purpose formalisms such as I/O automata,
we need to determine the vocabulary of models stati-
cally and explicitly label their transitions with appro-
priate actions from their vocabulary. We may be able
to address this problem by assuming that models are
incomplete and adopting an open-world approach to
modelling.

• Dynamic bindings: In DFC, architectural links, i.e.,
bindings, are dynamic, allowing features to change roles
at runtime. Boxtalk represents bindings between fea-
tures as dynamic call variables that can be created,
destroyed, and reassigned at runtime. Since I/O au-
tomata do not provide any means for describing bind-
ings, we had to extend them as follows: First, we
added a notion of action type to I/O automata to
explicitly indicate which action belongs to which call
variable. We then implemented bindings between I/O
automata using a relabeling mechanism [13]. How-
ever, we still could not capture dynamic aspects of
DFC bindings because our typing and relabeling mech-
anisms are static. To solve this problem, we need to
study the techniques developed for verifying adaptive
and self-managing systems [6].

5. CONCLUSION
In this paper, we presented our work on two fusion prob-

lems identified in the context of a telecom domain. We out-
lined a list of challenges that we faced in our work, providing
suggestions for future research in this area.

Analyzing a set of models with interacting behaviours is
a well-studied problem, e.g., [10, 12]. Existing notions of
composition for such models, however, are mostly studied
for abstract-level modelling languages such as LTSs or I/O
automata. We believe advancement in this area requires fo-
cusing on domain specific languages. This would allow us to
(1) understand the shortcomings of general purpose mod-
elling formalisms for capturing problem-level abstractions,
and (2) identify useful domain specific patterns and guide-
lines that can facilitate efficient management and analysis
of complex component-based systems.

Merging software artifacts is a broader problem, span-
ning several application domains, from requirements models
to code. Even though existing techniques mostly focus on
particular applications, they lack sufficient scalability and
usability. As a result, adoption by practitioners has been
limited. Therefore, we should study the problem of model
merging in the context of very large and heterogeneous sys-
tems and develop usable tool support for such systems.
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