
Dynamic Analysis of Web Services

by

Jocelyn Simmonds

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2011 by Jocelyn Simmonds

Abstract

Dynamic Analysis of Web Services

Jocelyn Simmonds

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2011

Orchestrated web service applications are highly distributed applications that accomplish

business goals by executing services offered by partners. This dependance on partner

services allows the development of more flexible, modular applications. For a classical

distributed system, correctness can be ensured by statically checking the composition

of the components that make up the system against properties of interest. However, in

the case of web service applications, there are various conditions that make this type

of analysis insufficient. For example, partners can be dynamically discovered, which

means that we cannot create a definitive model of the system to analyze. Web service

applications can also display new behaviour at execution time, so statically checked

properties of the system may not hold throughout the system’s lifetime.

Due to these limitations of static analysis, this thesis concentrates on the dynamic

analysis of web service applications, specifically, by monitoring runtime events. The goal

of runtime monitoring is to check whether an application violates a given specification

of its behaviour during its execution. The behaviour of the system can be specified in

a number of ways, e.g., as a set of temporal properties, assertions or even scenarios.

During execution, application events are intercepted and used to determine if the system

is violating its specification. Moreover, monitoring the system as it runs provides a

chance to recover from an error once a problem has been detected. This is critical in the

domain of web service applications, as bugs are potentially exposed to millions of users

ii

before they are found/fixed. We present techniques to address several major challenges

facing the creation of an industrial-strength runtime monitoring and recovery framework

for web service applications.

The first milestone for achieving this goal is the creation of an adequate property

specification language. This language must be expressive enough to capture the dis-

tributed, interactive, and message-driven nature of web service applications, but must

also be amenable to efficient runtime monitoring. We propose Web Sequence Diagrams

(W-SD), a language that, we feel, meets these criteria. Specifications expressed in W-SD

permit the analysis of orchestrations involving multiple partners, from the point of view

of the orchestrating service.

The second contribution of this thesis is the creation of an industrial-strength online

runtime monitoring and recovery framework that is non-intrusive, supports the dynamic

discovery of web services, deals with synchronous and asynchronous communication,

as well as partner services implemented in different languages. Developers using this

framework can specify and efficiently monitor a variety of temporal behaviour. If recovery

is enabled, properties are monitored proactively, so this framework allows developers to

effortlessly enable error recovery in applications being monitored.

The last contribution of this thesis is the development of recovery plans from runtime

errors. Given an application path which led to a failure and a monitor which detected

it, we have developed various techniques and optimizations that make recovery plan

generation feasible in practice. For some of the violations, such plans essentially involve

“going back” – compensating the occurred actions until an alternative behaviour of the

application is possible. For other violations, such plans include both “going back” and

“re-planning” – guiding the application towards a desired behaviour.

iii

Acknowledgements

I want to take this opportunity to thank all the people that had an influence in the

work presented in this thesis. First and foremost, none of this work would have been

possible without Marsha Chechik’s support. I am extremely grateful for the time she

dedicated to my projects, as well as her inspiration (and her formidable knowledge of

Formal Methods!). I would also like to thank my committee members, Luciano Baresi,

Eric Hehner and Sheila McIlraith, for their insigtful comments and suggestions about

my work. I also have to thank the people at the IBM Toronto Lab, Bill O’Farrell, Elena

Litani and Leho Nigul, who inspired various aspects of the problems studied in this thesis.

I also need to thank Cecilia Bastarrica, who (strongly) encouraged me to apply to the

PhD program.

On a personal note, I would like to also thank my family and friends. My fiancé

Juan Pablo has been extremely patient and understanding during this whole process, his

love and support has made the experience easier. My parents, George and Jennifer, who

always knew when I needed some extra encouragement. My siblings and their families,

who always open their homes to me. To my Toronto roommates, Mihaela Bobaru, and

later Alivia Dey and Maria Modanu, who were always checking whether I was getting

enough sleep. A special thanks to all my Toronto friends, those that guided me as a

new PhD student, and those that later were under my wing (you know which group you

belong to!): Mehrdad Sabetzadeh, Shiva Nejati, Mihaela Bobaru, Jorge Baier, Daniela

Nuñez, Andres Lagar-Cavilla, Claudia Garcia, Yiqiao Wang, Anya Tafliovich, Golnaz

Elahi, Justin Ward, Amy Miller, Jennifer Horkoff, Alicia Grubb, Jessica Davis, Maryam

Fazel, Elizabeth Lam, Aws Albarghouthi and Michalis Famelis (hopefully I did not forgot

anybody). I would also like to thank the gals from the Latinas in Computing group, I

really appreciated your support.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Example: the Trip Advisor System 2

1.1.2 Developing Quality Web Service Applications 3

1.2 Dynamic Analysis of Web Service Applications 5

1.2.1 A Classification of Runtime Monitoring Frameworks 6

1.2.2 Error Recovery . 7

1.3 Challenges . 8

1.4 Contributions . 10

1.5 Our Approach . 12

1.6 Organization . 14

2 Preliminaries 15

2.1 Web Technologies . 16

2.1.1 SOA . 16

2.1.2 BPEL . 17

2.1.2.1 Basic and Structural Activities 18

2.1.2.2 Compensation . 21

2.2 Behavioural Modelling Formalisms . 22

2.2.1 Low-level Specification Languages 22

v

2.2.1.1 Labelled Transitions Systems 23

2.2.1.2 Non-deterministic Finite Automata 23

2.2.1.3 Quantified Regular Expressions 25

2.2.2 High-level Specification Languages 27

2.2.2.1 UML 2.0 Sequence Diagrams 27

2.2.2.2 The Specification Pattern System 31

2.3 Formalizing BPEL . 33

3 Specifying Correctness 38

3.1 Web Sequence Diagrams . 39

3.2 Formalizing Sequence Diagrams . 41

3.2.1 Compositional operators . 42

3.2.2 Alphabet changing operators . 43

3.2.3 Critical operator . 44

3.2.4 Assertion and negation operators 45

3.2.4.1 The negate operator . 45

3.2.4.2 The assert operator . 47

3.2.5 Interaction use operator . 49

3.2.6 Message complementation . 49

3.2.7 Generating Monitors from NFA 50

3.2.8 Complexity of the translation . 52

3.3 Sequence Diagram Templates for Temporal Logic Property Patterns . . . 53

3.3.1 Mapping Property Patterns . 53

3.3.2 Mapping Property Scopes . 56

3.3.3 Specifying Properties of the Loan Application System 57

3.3.3.1 BPEL Model . 58

3.3.3.2 Properties . 58

3.4 Overcoming the Assertion Restriction . 63

vi

3.5 Related Work . 64

3.6 Summary . 66

4 Monitoring and Recovery 68

4.1 Preprocessing . 70

4.1.1 Formalizing BPEL Compensation 70

4.1.2 From Properties to Monitors . 72

4.1.3 Identifying Goal Transitions and Change States 77

4.1.3.1 Goal Transitions . 77

4.1.3.2 Change States . 79

4.2 Runtime Monitoring . 80

4.2.1 Eavesdropping . 80

4.2.2 Monitoring for Recovery . 83

4.3 Recovery Plans for Safety Property Violations 85

4.3.1 Computing Plans . 86

4.3.2 Analysis . 87

4.4 Recovery Plans from Mixed Property Violations 89

4.4.1 Recovery as a planning problem 90

4.4.2 Producing a single recovery plan 93

4.4.3 Producing multiple recovery plans 94

4.4.4 Analysis . 96

4.4.5 Discussion . 98

4.5 Monitoring and Recovery for Other Languages 100

4.6 Related Work . 102

4.6.1 Runtime Monitoring . 102

4.6.2 Recovery and Self-Healing . 103

4.7 Summary . 105

vii

5 Tool Support 106

5.1 Architecture . 106

5.2 Implementation . 108

5.2.1 Preprocessing . 109

5.2.2 Runtime Monitoring . 110

5.2.3 Recovery . 111

5.3 Summary . 113

6 Case Studies 114

6.1 Travel Booking System . 115

6.1.1 BPEL Model . 115

6.1.2 Properties . 117

6.1.3 Preprocessing . 118

6.1.4 Experience: Recovery from a safety property violation 120

6.1.5 Experience: Recovery from a bounded liveness property violation 121

6.2 Flickr examples . 123

6.2.1 Flickr Visibility . 123

6.2.1.1 BPEL Model . 123

6.2.1.2 Properties . 125

6.2.1.3 Preprocessing . 126

6.2.2 Flickr Comments . 126

6.2.2.1 BPEL Model . 127

6.2.2.2 Properties . 128

6.2.2.3 Preprocessing . 128

6.2.3 Comparison with a Related Approach 129

6.3 Summary of Evaluation . 130

6.3.1 Scalability . 130

6.3.2 Plan Quality . 131

viii

6.4 Optimization: Reducing the Number of Generated Plans 133

6.4.1 Relevant Change States . 133

6.4.2 Avoiding Forbidden Behaviours 137

6.5 Summary . 139

7 Conclusion and Future Work 141

7.1 Summary . 141

7.2 Future Work . 142

7.2.1 Improving Tool Support . 142

7.2.2 Reasoning about Data-Aware Properties 145

7.2.3 Monitoring and Recovery for Smart Web Service Interactions . . . 146

Bibliography 149

A QRE Property Patterns 163

B Additional Tool Support Details 167

C Case Studies 173

C.1 BPEL files . 173

C.2 Plan Quality Study . 179

C.2.1 Trip Advisor System . 179

C.2.2 Travel Booking System . 180

ix

Chapter 1

Introduction

1.1 Motivation

Recent years have seen an emergence of service-oriented applications, where applications

are created using existing services. Companies with large legacy back-end systems, like

Deutsche Post AG and Credit Suisse, have used this approach to modernize existing

infrastructure, repackaging legacy applications as services, leading to an overall reduction

in maintenance costs [58]. On the other hand, Web 2.0 companies like Google and

Amazon offer services that grant access to data that was (possibly) expensive to collect,

allowing 3rd party developers to create new applications using this data. These services

are commonly referred to as web services, as they are usually available via the web.

As the individual services are developed on a wide variety of platforms, there is

a need for a flexible architecture that standardizes how these services interact. The

Service-Oriented Architecture (SOA) is such an architecture. Partners develop services

and make them available by publishing service interfaces. Web services can be written

in a traditional compiled language such as JavaTM, or in an XML-centric language such

as BPEL [76], in which predefined activities are used to specify executable workflows.

Web service applications are created by specifying how these partner services interact

1

Chapter 1. Introduction 2

Figure 1.1: Assembly diagram describing interactions between the main TAS process and

its partners.

to achieve stakeholder requirements. The main process of a web service application is

usually referred to as the main (or orchestrating) web service. Service-orientation is not

new concept, as the SOA standard is a generalization of existing web technologies like

Remote Method Invocations (RMI) and Common Object Request Broker Architecture

(CORBA).

1.1.1 Example: the Trip Advisor System

Consider a simple web-based Trip Advisor System (TAS). In a typical scenario, a cus-

tomer either chooses to arrive at her destination via a rental car (and thus books it), or via

an air/ground transportation combination, combining the flight with either a rental car

from the airport or a limo. The requirement of the system is to make sure the customer

has the transportation needed to get to her destination (this is a desired behaviour) while

keeping the costs down, i.e., she is not allowed by her company to reserve an expensive

flight and a limo (this is a forbidden behaviour).

Figure 1.1 presents an assembly diagram depicting interactions between the main

TAS process and its partners – the Car system (which offers two web services: one to

reserve cars and and another to reserve limos) and the Flight system (which offers two

web services: one to reserve flights and another to check whether the flights are cheap or

Chapter 1. Introduction 3

expensive). This is depicted in Figure 1.1 by two sets of connections between TAS and

each of the Flight and the Car components. Since the TAS system is a composition of

several distributed business processes, its correctness depends on the correctness of its

partners and their interactions. For example, the Car system can go offline while the user

attempts to book ground transportation, thus preventing the entire system from getting

the user to her destination.

1.1.2 Developing Quality Web Service Applications

This dependance on partner services allows the development of more flexible, modular

applications, but also introduces various problems. Since the SOA standard allows dy-

namic service discovery and binding, web service applications can display new behaviour

at execution time. Changes to partner services during execution can also lead to new

runtime behaviour. Applications without adequate exception handling can crash if a

partner service is not available, e.g., due to network problems. Web service applications

can also fail because there are bugs in the orchestrating service, e.g., due to faulty logic

and bad data manipulation, or because of the incorrect invocation of services.

Another serious problem with web service applications is that bugs are now potentially

exposed to millions of users before they are found/fixed. For example, Amazon.com

suffered a three hour outage on June 29, 2010, displaying blank or partial pages instead

of product listings. No official reason has been given for this service outage, but at

an annual revenue of nearly $27 billion, Amazon faces a potential loss of an average of

$51,400 a minute when its site is offline [24].

Since runtime failures of web services are inevitable, frameworks for running them

typically include the ability to define faults and compensatory actions for dealing with ex-

ceptional situations. Specifically, the compensation mechanism is the application-specific

way of reversing completed activities. For example, the compensation for booking a car

in the TAS example would be to cancel the booking. These error recovery mechanisms

Chapter 1. Introduction 4

can be used to minimize the impact of runtime bugs, but the developer must anticipate

possible runtime errors since these mechanisms are statically defined. Also, the appli-

cation must be restarted once the bug has been fixed, which can affect existing user

sessions.

The combination of these issues makes the development and maintenance of quality

web service applications quite a challenge in practice, leading us to formulate the following

thesis statement:

The main objective of this work is to enable the efficient analysis of web service

applications (with dynamic service binding). Also, due to the possibly large

impact of bugs, another goal of this work is to attempt to automate some

level of error recovery.

To accomplish the first goal, we must focus on how to specify and check the correctness

of web service applications. For a classical distributed system, correctness can be ensured

by statically checking the composition of the components that make up the system against

properties of interest. This approach has been taken by several researchers in the context

of web services, e.g., [34, 35, 55, 8, 32]. While static analysis is very appealing – errors

are discovered ahead of time and without the need to exercise the system, this approach

has three major limitations:

1. As discussed in the beginning of this section, partners are dynamically discovered,

which means that we cannot create a definitive model of the system to analyze.

2. Another issue is that web services typically communicate via infinite-length chan-

nels, so the problem is decidable only under certain conditions [39].

3. Finally, since web service applications can exhibit new behaviour at runtime, stat-

ically checked properties of the system may not hold throughout the system’s life-

time.

Chapter 1. Introduction 5

Due to these limitations of static analysis, this thesis concentrates on the dynamic

analysis of web service applications, specifically, by monitoring runtime events. Moreover,

monitoring the system as it runs provides a chance to recover from an error once a problem

has been detected. In the rest of this section, we give a brief overview of dynamic analysis

techniques for web service applications, as well as existing work on error recovery, and

outline some of the challenges of applying these techniques to web service applications.

1.2 Dynamic Analysis of Web Service Applications

A goal of dynamic analysis is to check whether an application violates a given specification

of its behaviour during its execution. The behaviour of the system can be specified in a

number of ways, e.g., as a set of temporal properties, assertions or even scenarios. During

execution, application events are intercepted and used to determine if the system is

violating its specification. This is commonly referred to as runtime monitoring. Reported

violations can be used to debug both the application and its specification.

Runtime monitoring is a very flexible technique: applications can be monitored for

both functional (e.g., assertions) and non-functional requirements (e.g., performance),

and the analysis can be done while the application is running, or after the fact. The

complexity of the analysis is determined by the amount and type of information collected

at runtime. There are also various practical considerations that must be taken into

account when applying these techniques. The language used to specify properties must

be expressive enough for users to specify properties of interest, but resulting specifications

must also be efficiently monitorable. Another important factor is the intrusiveness of the

approach – the amount of information available at runtime affects the precision of the

analysis. In the following section, we briefly discuss a classification of dynamic analysis

frameworks.

Chapter 1. Introduction 6

1.2.1 A Classification of Runtime Monitoring Frameworks

The following axes can be used to classify dynamic analysis frameworks – 1) online vs.

offline: runtime events can be analyzed during or after execution, 2) global vs. local

properties: frameworks can check properties of the whole application or of the individual

services that make up the application (or both), and 3) passive vs. active: passive

frameworks just report property violations, while active frameworks attempt to react to

violations, offering some form of error recovery. Frameworks that check local properties

usually insert assertions in the appropriate application locations, while those that check

global properties usually convert the properties into monitors that are updated as the

application runs. Online frameworks can be passive or active, but offline approaches can

only be passive.

1. Online vs. Offline. Online frameworks monitor predefined properties, collecting

just those events which are related to these properties. While expressing proper-

ties beforehand may be non-trivial, the collected data is guaranteed to be both

small and sufficient to check these properties; they also serve as an additional,

and very valuable, documentation of the desired behaviour of the system. Offline

frameworks analyze event logs, allowing the expression of free-form queries over all

stored events. However, since these queries are not necessarily known a priori, the

runtime data collected might not be sufficient to answer the relevant questions, or,

on the other extreme, the amount of data collected may become excessive and hard

to manage, leading to intractable analysis.

2. Global vs. Local properties. Global properties allow the analysis of orches-

trated obligations, i.e., desired or forbidden scenarios (conversations) involving

collaborating partner services. These obligations are expressed from the point of

view of the monitored application, but can also include events from the other ser-

vices involved in the conversation being monitored. Local properties are restricted

Chapter 1. Introduction 7

to monitoring the events of a single service, expressed either as a property of the

current state, or as a desired/forbidden sequence of events.

3. Passive vs. Active. Passive frameworks let the monitored application continue

execution undisturbed when a property violation is detected. Active frameworks

attempt to maintain behavioural correctness, for example, by trying to return the

application to a stable state after a violation is detected. Error recovery mechanisms

are discussed in the next section.

1.2.2 Error Recovery

The advantage of online frameworks is that it is possible for the system to react once

a problem has been detected. Existing infrastructures for web services, e.g., the BPEL

engine [76], include mechanisms for fault definition, for specifying compensation actions,

and for dealing with termination. When an error is detected at runtime, they typically

try to compensate all completed activities for which compensations are defined, with the

default compensation being the reversal of the most recently completed action.

Since these standard error recovery mechanisms are statically defined, one relatively

simple manner of improving error recovery is to statically analyze the application and

suggest changes that improve the application’s fault tolerance. In [25], Dobson defined a

library of fault tolerance patterns, which are used to transform the original BPEL process

into a fault-tolerant one at compile time. This is done by adding redundant behaviour

to the application, but this may result in a significantly bigger, and slower, program.

The work proposed by Baresi et al. [9, 10] also enables recovery through the standard

error recovery mechanisms, but by attaching BPEL exception handlers to properties that

are checked at runtime. The advantage to this approach is that the new exceptions are

triggered by the violation of high-level properties, which can help debugging. If such an

exception handler is not provided, execution terminates when a property is violated.

Chapter 1. Introduction 8

An emerging research area in recent years is that of self-healing systems (see [14,

59, 19, 18] for a partial list). A system is considered self-healing if it is capable of

detecting failures and diagnosing faults, and can adjust itself in response. Error recovery

frameworks omit the diagnosis phase, and can thus be classified as simple self-healing

systems.

Several works have suggested self-healing mechanisms for web service applications.

The Dynamo framework [11] uses annotation rules in BPEL in order to allow recovery

once a fault has been detected. Such rules need to be statically defined by the developers

before the system can function. Fugini and Mussi [36] propose a framework for self-

healing web services, where all possible faults and their repair actions are pre-defined in

a special registry. This approach relies on being able to identify and create recovery from

all available faults.

Carzaniga et al. [17] exploit redundancy in web applications to find workarounds

when errors occur, assuming that the application is given as a finite-state machine, with

an identified error state as well as the “fallback” state to which the application should

return. This approach generates all possible recovery plans, prioritizing them by length.

1.3 Challenges

There are still many challenges in the development of an online monitoring and error

recovery framework for web service applications. In this section, we outline some of

those challenges (in no specific order).

1. Specification. As with any formal analysis technique, the correct formalization

of properties of the system is a major challenge. Formal languages like temporal

logic are hard to use by practitioners, and do not capture the characteristics of web

service applications. A property specification language for web service applications

must be able to capture the distributed, interactive, and message-driven nature of

Chapter 1. Introduction 9

business processes. Such a language should enable specifying a variety of properties,

allowing the analysis of orchestrations involving multiple partners, from the point

of view of the orchestrating service. Support for data should also be considered.

Also, in order to improve the usability of such a specification language, we believe

that this language should be visual. To address this problem, we have adopted

a subset of UML 2.0 Sequence Diagrams (SD) as a specification language. SDs

are used to capture interactions in the form of message passing between objects.

They have been widely adopted by industry as a suitable language for describing

and documenting scenario-based requirements specifications. We aim to show that

this language is sufficiently expressive to capture a wide variety of frequently used

properties, as well as study its formalization, so as to enable monitoring.

2. Runtime monitoring. A problem closely related to the Specification challenge

is that runtime monitoring brings a sense of false security – if an application did

not violate any properties during testing, then there are no bugs! But since we

are dealing with incomplete behavioural specifications and a finite set of execution

traces, obviously there may be many more undiscovered bugs. Moreover, because of

the dynamic nature of web service applications, properties that went unviolated for

large periods of time may suddenly be violated. Another problem is that no matter

how expressive the property specification language is, it must still be amenable

to efficient runtime monitoring. Each web service application can be executed by

thousands of clients simultaneously, and thus monitoring all client interactions with

the application would mean a significant monitoring overhead unless distributed to

the individual clients. Also, not all individual violations are interesting – once a

violation has been discovered, its corresponding monitor can be switched off until a

patch is introduced. To address this problem, we must develop a configurable, non-

intrusive runtime monitoring framework and we must also adapt/develop various

case studies in order to evaluate the practical aspects of such a framework.

Chapter 1. Introduction 10

3. Error recovery. A major limitation of most existing error recovery frameworks

is that they assume that the orchestrating service is internally consistent and that

errors only appear during interactions with partner services. Another limitation of

these frameworks is that possible recovery plans must be specified at design time

by the application developers. Currently, there is a push towards automated recov-

ery plan generation, but existing proposals do not scale (both with respect to the

application size, and to the number of plans generated). When considering auto-

mated plan generation, an important question is what can be considered a recovery

action, as well as who defines these actions and their cost. Another question is how

to evaluate how “good” a plan is (which enables plan ranking). To address this

problem, new recovery plan generation techniques must be created, incorporating

domain information existing in the orchestrating web service and its properties.

1.4 Contributions

The main contribution of this thesis is to address some of the challenges facing runtime

monitoring and error recovery described in the previous section. We address the “Speci-

fication” challenge by proposing a scenario-based property specification language for web

service applications. We address the “Runtime Monitoring” challenge by proposing a

non-intrusive, online runtime monitoring framework that combines and extends exist-

ing runtime verification techniques, as part of the IBM WebSphere product suite [50].

We also propose various optimization techniques that improve the effectiveness of our

framework in practice. Finally, we address the “Error recovery” challenge by developing

new property-guided, SAT-based, recovery plan generation techniques. We have explored

these challenges in the specific context of BPEL, but the ideas presented in this thesis

can be applied to other web service application development frameworks that allow user-

defined compensation. In the rest of this section, we give a more detailed overview of

Chapter 1. Introduction 11

these contributions.

Property Specification Language for Web Service Applications. The first con-

tribution of this thesis is Web Sequence Diagrams (W-SD), a property specification

language for web service applications. This language is a subset of UML 2.0 Se-

quence Diagrams (SD), a feature-rich language without a formal semantics. In this

thesis, we describe the semantics of our chosen subset of SDs, and show how to

translate properties specified in W-SD into automata, enabling runtime monitor-

ing. We also show that this language is sufficiently expressive to capture a wide

variety of frequently used properties, captured and catalogued in the Specification

Pattern System (SPS) [28].

Runtime Monitoring and Recovery. The second contribution of this thesis is the

creation of an industrial-strength online runtime monitoring and recovery frame-

work that is non-intrusive, supports the dynamic discovery of web services, deals

with synchronous and asynchronous communication, as well as partner services im-

plemented in different languages. Developers using this framework can specify and

efficiently monitor a variety of temporal behaviour. If recovery is enabled, proper-

ties are monitored proactively, so this framework allows developers to effortlessly

enable error recovery in applications being monitored.

Property-driven Error Recovery. The third contribution of this thesis is the devel-

opment of recovery plans from runtime errors. Given an application path which led

to a failure and a monitor which detected it, we have developed various techniques

and optimizations that make recovery plan generation feasible in practice. For vio-

lations of safety properties, these recovery plans attempt to return the application

to an earlier state at which an alternative path that potentially avoids the fault

is available. For violations of (bounded) liveness properties, merely going back is

insufficient to ensure that the system can produce the desired behaviour. In this

Chapter 1. Introduction 12

Figure 1.2: Overview of our approach.

case, we compute plans that attempt to redirect the application towards executing

new activities that may lead to the satisfaction of the property in question. We

rely on BPEL’s compensation mechanism to “undo” application actions.

The work presented in this thesis is based upon, and extends, several papers and

reports that have been published in the last three years ([88, 89, 84, 87, 85, 86]). Work

on tool support for the approach was carried out as part of various internships at the

IBM Toronto Lab. This thesis should be regarded as the definitive account of this work.

1.5 Our Approach

Figure 1.2 shows a schematic view of our approach to runtime monitoring and error

recovery. In our approach, developers supply a BPEL program and a set of behavioural

correctness properties that need to be maintained by the program as it runs. These

properties can be visually specified using our subset of UML 2.0 Sequence Diagrams, but

can also be directly specified using the Specification Pattern System (SPS). In this thesis,

we show examples of both types of specifications, but only formalize error recovery for

the second type of specification. The BPEL program is enriched (by its developers) with

the compensation mechanism which allows us to compensate some of the actions of the

program.

In the Preprocessing phase, the correctness properties are turned into finite-state

automata (monitors), and the BPEL program is turned into a labelled transition system.

Chapter 1. Introduction 13

Figure 1.3: A schematic view on plan generation.

These are then passed to the Runtime Monitoring phase, which runs the monitors in

parallel with the BPEL application, stopping when one of the monitors is about to enter

its error state. The use of high-level properties allows us to detect the violation, and our

event interception mechanism allows us to stop the application right before the violation

occurs and begin the Recovery phase.

In the Recovery phase, we identify and optionally rank a set of possible plans that

recover from runtime errors. Given an application path which led to a failure and a

recovery monitor which detected it, our goal is to compute a set of suggestions, i.e.,

plans, for recovering from these failures. For violations of properties capturing undesired

behaviour, such plans use compensation actions to allow the application to “go back” to

an earlier state at which an alternative path that potentially avoids the fault is available.

We call such states “change states”; these include user choices and certain partner calls.

For example, if the TAS system described in Section 1.1.1 produces an itinerary that is

too expensive, a potential recovery plan might be to cancel the limo reservation (so that

a car can now be booked) or to cancel the flight reservation and see if a cheaper one can

be found.

Yet just merely going back is insufficient to ensure that the system can produce a

desired behaviour. Thus, in order to satisfy (bounded) liveness properties, we aim to

compute plans that redirect the application towards executing new activities, those that

lead to goal satisfaction. For example, if the flight reservation partner fails (and thus

the air/ground combination is not available), the recovery plans would be to provide

transportation to the user’s destination (her “goal” state) either by calling the flight

Chapter 1. Introduction 14

reservation again or by cancelling the reserved ground transportation from the airport, if

any, and try to reserve the rental car from home instead. The overall recovery planning

problem is then stated as follows:

From the current (error) state in the system, find a plan to achieve the goal

that goes through a change state.

This process is shown schematically in Figure 1.3. When there are multiple recovery

plans available, we automatically rank them based on user preferences (e.g., the shortest,

the cheapest, the one that involves the minimal compensation, etc.) and enable the

application user to choose among them.

1.6 Organization

The rest of this thesis is structured as follows. In Chapter 2, we give an overview of the

web technologies used in the rest of this thesis, as well as fix our notation. In Chapter 3,

we present Web Sequence Diagrams (W-SD), a property specification language for web

service applications (reported in [89]), as well as discuss its formalization and property

templates. Chapter 4 describes our approach to runtime monitoring and develops the

connection between user-defined properties and automated recovery plan generation, re-

ported in [89, 84]. Chapter 5 describes RuMoR, our runtime monitoring and recovery

framework (reported in [87, 85]), that implements the techniques presented in Chapter 4.

In Chapter 6, we present the case studies used to evaluate RuMoR, as well as present

a couple of optimizations to the recovery plans generation process (reported in [86]).

Finally, we conclude in Chapter 7 with a summary of this thesis and an outline of future

research directions.

Chapter 2

Preliminaries

This thesis focuses on the analysis of service-based applications. There are many different

proposals for how such applications should be built. In Section 2.1, we give an overview

of two standards we used in our work: the Service-Oriented Architecture (SOA) [92]

framework and the Business Process Execution Language (BPEL) [76]. A SOA-based

application is an orchestration of services offered by (possibly third-party) components

written in possibly different languages. BPEL is a standard for implementing orchestra-

tions of web services (provided by partners) by specifying an executable workflow using

predefined activities.

In order to reason about BPEL applications, we need to represent them formally, so

as to make precise the meaning of “taking a transition”, “reading in an event”, etc. In

this work, we extend the approach described in Howard Fosters Ph.D. thesis [30]. This

approach uses Labelled Transition Systems (LTS) [70] as the underlying formalism. In

Section 2.2, we give an overview of LTS, as well as Non-deterministic Finite Automata

(NFA) and Quantified Regular Expressions (QRE) – low-level action-based modelling

formalisms used in this thesis. We also give an overview of the high-level behavioural

specification formalisms used in this thesis: UML Sequence Diagrams (SD) [77] and the

Specification Pattern System (SPS) [26]. Finally, in Section 2.3, we present Foster’s

BPEL to LTS translation.

15

Chapter 2. Preliminaries 16

Service Requester Service Provider

WSDL

discover

WSDL

publish

SOAP

bind

Service Broker

UDDI

Figure 2.1: SOA infrastructure.

2.1 Web Technologies

This section presents a brief overview of the SOA and BPEL standards.

2.1.1 SOA

SOA [92] provides a general architecture for building service-based applications. SOA-

based applications can dynamically discover and bind to services in order to provide

aggregate services. Figure 2.1 shows the three types of partners required to build a SOA-

based application: Service Brokers, Service Providers and Service Requesters. Service

Providers create services, which are made available to Service Requesters through a

Service Broker.

The following three standards define how SOA partners communicate:

UDDI (Universal Description, Discovery and Integration) [75]: This is an XML-

based standard that provides a platform-independent manner for Service Providers

to list their services and for Service Requesters to query existing services.

WSDL (Web Service Description Language) [102]: This is an XML-based language

that provides a model for describing Web services.

SOAP [101]: This once stood for Simple Object Access Protocol, but this acronym has

been dropped, as it was misleading. This is a protocol for exchanging XML-based

messages over computer networks, normally using HTTP/HTTPS.

Service Brokers are UDDI-driven servers. Service Providers (Service Requesters) use

Chapter 2. Preliminaries 17

WSDL to describe the services they wish to publish (discover). Once a Service Requester

has found a suitable service, it establishes a connection to the corresponding Service

Provider, and exchanges XML messages using the SOAP protocol.

Through this architecture, Service Providers are required to make public only service

interfaces. The underlying implementation is hidden; so, unless there are direct changes

to a service’s interface, changes in the internal logic are transparent to Service Requesters.

This makes the task of service maintenance easier for Service Providers, since there is

no need to worry about client dependencies with respect to internal data structures.

However, since the semantics of the operations offered by a service can be modified

without changing the service’s interface, Service Requesters cannot assume that any

services will continue to behave according to their published specifications. This means

that maintenance from the Service Requester’s point of view can be tricky.

2.1.2 BPEL

BPEL [76] is a XML-centric language for describing the behaviour of a business process

based on its interactions with its partner services (both synchronous and asynchronous

interactions are allowed). An executable BPEL process specifies how multiple service

interactions coordinate to achieve a business goal, as well as the state and the logic

necessary for this coordination. The BPEL standard also allows the definition of ab-

stract processes, which are not executable because they are not completely specified. For

example, abstract processes allow non-deterministic data assignments, while executable

processes do not. Since we focus on runtime monitoring in this work, we have omitted

the presentation of abstract BPEL processes from this thesis, the reader can consult [76]

for details. In the rest of this work, the words “process” and “application” refer to exe-

cutable BPEL processes. A process must be deployed to a BPEL engine, e.g., the IBM

WebSphere Process Server [51] or ActiveBPEL [1], for execution.

BPEL also makes available various common mechanisms for dealing with business

Chapter 2. Preliminaries 18

(a) (b)

(c) (d)

Figure 2.2: Basic BPEL activities: (a)<invoke>; (b)<if>; (c)<while>; and (d)<pick>.

exceptions and processing faults, like fault and termination handlers. Moreover, BPEL

introduces compensation, a mechanism used to define how individual or composite activ-

ities within a process are to be compensated in cases where exceptions occur. The rest of

this section presents an overview of the BPEL language, exemplified by the Trip Advisor

System (TAS) introduced in Section 1.1.1.

2.1.2.1 Basic and Structural Activities

The basic BPEL activities for interacting with partner web services are <receive>,

<invoke> and <reply>, which are used to receive messages, execute web services and

return values, respectively. Conditional activities are used to define the control flow of

the application: <while>, <if> and <pick>. The <while> and <if> activities model

internal choice, as conditions are expressions over process variables. The <pick> activ-

ity is used to model non-deterministic external choice: the application waits for one of

several possible messages (specified using <onMessage>) to occur, executing the asso-

ciated child activity. The <pick> activity completes when the child activity completes.

Chapter 2. Preliminaries 19

(a) (b)

(c)

Figure 2.3: Structural BPEL activities: (a) <flow>; (b) <sequence>; and (c) <scope>.

If multiple <onMessage> branches are simultaneously activated, the BPEL engine non-

deterministically chooses which one should be executed. Figure 2.2 shows XML decla-

rations of these activities (<receive> and <reply> are similar to <invoke>, and have

been omitted). BPEL also provides the <empty> activity, a “no-op” activity which does

nothing when executed.

The structural activities <sequence> and <flow> are used to specify sequential and

parallel composition of the enclosed activities, respectively. In the case of the <flow>

activity, the BPEL engine non-deterministically chooses the order in which to execute

the enclosed activities. The <scope> activity is used to define named logical units of

activities (with individual fault, termination and compensation handlers). Figure 2.3

shows XML declarations of these activities.

Figure 2.4 shows the workflow of the Trip Advisor System, expressed using the Eclipse

BPEL Project notation [90]. TAS interacts with four external services: 1) book a rental

car (bc), 2) book a limo (bl), 3) book a flight (bf), and 4) check price of the flight (cf).

The result of cf is then passed to local services to determine whether it is expensive

Chapter 2. Preliminaries 20

Figure 2.4: TAS workflow.

(expF) or cheap (cheapF). Service interactions are preceded by a symbol.

The main process is a <sequence> of activities (shown in Fig 2.5a). The workflow

begins with <receive>’ing input (ri), followed by <pick>’ing (indicated by labelled

) either the car rental (onMessage onlyCar) or the air/ground transportation combi-

nation (onMessage carAndFlight). The latter choice is modelled using a <flow> (scope

enclosed in bold, blue lines , labelled) since air (getFlight) and ground transportation

(getCar) can be arranged independently, so they are executed in isolation. The air trans-

portation branch books a flight (bf), then checks <if> it is expensive (cf) and finally

updates the state of the system accordingly (<if> labelled). The ground transporta-

tion branch <pick>’s between booking a rental car and a limo. The end of the workflow

is marked by a <reply> activity, reporting that the destination has been reached (rd).

Chapter 2. Preliminaries 21

(a) (b)

(c) (d)

(e)

Figure 2.5: BPEL specification of selected TAS activities: (a) the main process; (b)

<pick> labelled 1©; (c) <flow> labelled 2©; (d) <if> labelled 3©; and (e) compensation

for booking a flight (bf).

Figures 2.5b, 2.5c and 2.5d show the BPEL implementation of the activities labelled ,

and , respectively.

2.1.2.2 Compensation

BPEL’s compensation mechanism allows the definition of the application-specific reversal

of completed activities. For example, the compensation for booking a flight (bf) is to

cancel the booking (cancelF). This is described in BPEL as shown in Figure 2.5e: the

<invoke> and its compensation are enclosed in a named <scope> (the scope’s name is

later used to execute compensation).

Compensation handlers (CH) are attached to <scope> and <invoke> activities (a

<scope> activity is used to logically group activities) and are executed by fault, ter-

Chapter 2. Preliminaries 22

mination and compensation via the <compensate> and <compensateScope> activities.

The default compensation respects the forward order of execution of the scopes being

compensated:

If a and b are two activities, where a completed execution before b, then

compensate(a; b) is compensate(b); compensate(a).

An attempt to compensate a scope for which the CH either has not been installed, or

has been installed and executed, is treated as executing an <empty> activity (we denote

these by τ).

While not in the BPEL standard, in this thesis we use BPEL extended with com-

pensation costs. This extension lets application developers associate different costs to

different compensations, e.g., to indicate that cancelling a flight might be significantly

more expensive than cancelling a car. We do this by adding an extra attribute cost to

the definition of <compensationHandler>. For example, the flight booking compensation

defined in Figure 2.5e has been assigned a cost of 9 (out of 10), indicating that this is an

expensive compensation and should be avoided if possible.

2.2 Behavioural Modelling Formalisms

This section presents a brief overview of the low- and high-level specification languages

used in this thesis.

2.2.1 Low-level Specification Languages

There are two approaches to formalizing models low-level: state-based (e.g., using Kripke

structures [48]) and action-based (e.g., using Labelled Transition Systems [70]). In the

state-based approach, an execution of a system is viewed as a sequence of states in which

every state is an assignment of values to some set of propositions. The action-based

approach views an execution as a sequence of actions. The approaches are equivalent: an

Chapter 2. Preliminaries 23

(a) (b)

Figure 2.6: Examples of action-based formalisms: (a) an LTS and (b) an NFA.

action can be modelled as a state change, and a state can be modelled as an equivalence

class of sequences of actions. Web service applications are event-based systems, so it is

more natural to model these systems using action-based approaches. This section gives an

overview of the different low-level action-based modelling formalisms used in this thesis.

2.2.1.1 Labelled Transitions Systems

Definition 2.1 (LTS [70]). A Labelled Transition System LTS is a quadruple (S,Σ, δ, I),

where S is a set of states, Σ is a set of actions/labels, δ ⊆ S × Σ × S is a transition

relation, and I ∈ S is the initial state. We often use the notation s
a−→ s′ to stand for

(s, a, s′) ∈ δ.

An example LTS is shown in Figure 2.6a, where:

• S = {1, 2, 3},

• Σ = {a, b, c},

• δ = {(1, a, 2), (2, b, 2), (2, c, 3)}, and

• I = 1.

An execution, or a trace, of an LTS M is a sequence T = s0a0s1a1s2...an−1sn such that

∀i, 0 ≤ i < n, si ∈ S, ai ∈ Σ and si
ai−→ si+1. For example, 1

a−→ 2
b−→ 2

b−→ 2
c−→ 3 is

a trace of the LTS shown in Figure 2.6a.

2.2.1.2 Non-deterministic Finite Automata

A Non-deterministic Automaton can be defined as an LTS that has a set of final states:

Chapter 2. Preliminaries 24

Definition 2.2 (NFA [47]). A Non-deterministic Finite Automaton is a 5-tuple A =

(S,Σ, δ, I, F), where (S,Σ, δ, I) is an LTS and F ⊆ S is a set of final states.

We denote by Σ∗ the set of all finite traces over Σ. We say that A accepts a word

a0a1a2...an−1 ∈ Σ∗ iff there exists an execution s0a0s1a1s2...an−1sn of A such that a0 ∈ I

and sn ∈ F . The language of A, L(A), is the set of all traces accepted by A.

An example NFA is shown in Figure 2.6b, where:

• S = {1, 2},

• Σ = {a, b},

• δ = {(1, a, 2), (2, b, 2), (2, b, 1)},

• I = 1, and

• F = {2}.

Definition 2.3 (Projection “↓”). Let Σ′ ⊆ Σ be an alphabet, and σ = a0 . . . an be a

word over Σ. The projection of σ to Σ′, denoted σ ↓Σ′, is obtained by replacing every ai

(0 ≤ i ≤ n) by the silent symbol ε iff ai /∈ Σ′.

Let (q, a, q′) be a transition in an NFA A. We often refer to a as the label of the

transition from q to q′. For an NFA A with ε transitions, let L(A) be the set of traces of

A with the occurrences of ε removed.

States in NFAs may have several outgoing transitions on the same input symbol, or

may have transitions labelled ε, indicating a silent move. Deterministic finite automata

(DFAs) are NFAs where each state has at most one outgoing transition on each non-

silent symbol. Every NFA can be converted into a DFA using the subset construction

algorithm [47].

Chapter 2. Preliminaries 25

2.2.1.3 Quantified Regular Expressions

Specifying behaviour using NFAs requires the explicit definition of transition relations,

which can be a tedious and error-prone process for large models. Kleene [57] defined

Regular Expressions (RE) as a way to declaratively specify regular languages, and proved

that RE and finite automata are equivalent. Regular expressions can be used to concisely

describe the behaviour of a system, by specifying the words that the system accepts.

Definition 2.4 (Operators over languages [47]). Let L,L1,L2 be languages over Σ. The

following expressions can be used to define new languages.

• ∅ denotes the empty language

• L1 · L2 = {x · y : x ∈ L1, y ∈ L2} denotes the product of two languages

• L0 = if L 6= ∅ then {ε} else ∅

• Li+1 = L · Li, where i ≥ 0

• L∗ =
⋃∞
i=0 Li

Definition 2.5 (Regular Expression [57]). The regular expressions over Σ and the lan-

guages they denote are defined inductively as follows:

• ∅ is a regular expression that denotes the empty set;

• ε is a regular expression that denotes the set {ε};

• a is a regular expression that denotes {a}, where a ∈ Σ.

If J and K are regular expressions that represent L(J) and L(K), then the following

are also regular expressions:

• J |K (alternation) represents L(J) ∪ L(K);

• J ·K (concatenation) represents L(J) · L(K);

Chapter 2. Preliminaries 26

• J∗ (Kleene star) represents L(J)∗.

By convention, regular expressions can be written with fewer parentheses by establish-

ing the operator precedence (∗ > · > |). Parenthesis can be used to override precedence.

For example, the language of the monitor shown in Figure 2.6b is the regular expression

(a · b∗)∗.

Quantified Regular Expressions (QRE) [78] are regular expressions with limited quan-

tifiers (Q = {no, all}). These quantifiers make specification writing easier, since one QRE

represents a set of REs.

Definition 2.6 (Quantified Regular Expression [78]). A QRE is a 3-tuple

P = (Σ, q, R), where Σ is the alphabet, q ∈ Q and R is the regular expression to be

satisfied.

The no quantifier is used to indicate that R specifies an undesirable behaviour – P

is satisfied if no traces of the system belong to L(R). The all quantifier indicates that R

specifies a desired behaviour – P is satisfied if all traces of the system belong to L(R).

For example, the QRE ({a, b}, all, (a · b∗)∗) holds on the NFA shown in Figure 2.6b but

the QRE ({a, b}, all, (a∗)) does not.

Since regular expressions are closed under complement, the expressive power of all

and no QREs are equivalent. In this thesis, when we omit the alphabet and quantifier

of a QRE, then Σ is the alphabet of the system being modelled, and the quantifier is all.

Definition 2.7 (Additional RE operators). If J and K are regular expressions, then the

following are also regular expressions:

• if p, q, r ∈ Σ, then [−p, q, r] (exclusion) denotes the expression that matches any

symbol except p, q and r;

• if p ∈ Σ, then p? denotes zero or one instances of expression p;

• if k ∈ N and p ∈ Σ, then pk denotes k instances of p.

Chapter 2. Preliminaries 27

Figure 2.7: An SD describing a scenario of the TAS example.

Standard algorithms [40, 69, 2] can be used to turn REs and QREs into NFAs, as

well as make their representation minimal and deterministic.

2.2.2 High-level Specification Languages

The low-level behavioural specification languages presented in the previous section are

easy to analyze, but writing complete and consistent specifications in these languages

can be a tedious and error-prone process, especially in the case of large systems. In this

section, we give an overview of the high-level specification languages that are used in this

thesis.

2.2.2.1 UML 2.0 Sequence Diagrams

UML 2.0 Sequence Diagrams [77] are a popular formalism for modelling behavioural sce-

narios by describing sequences of messages communicated between different objects over

time. An example Sequence Diagram describing a scenario of the TAS system is shown

in Figure 2.7. Sequence Diagrams have two dimensions: vertical, representing time, and

horizontal, representing objects. Each object is illustrated by a rectangle with a verti-

cal dashed line, called a lifeline. Lifelines are connected by horizontal arrows denoting

messages that are sent from one object to another, synchronously (solid arrowhead) or

asynchronously (open arrowhead). We refer to Sequence Diagrams with these features

as basic.

In this thesis, we adopt the automata-theoretic approach of Alur and Yannakakis [4]

for formalizing Basic SDs. In the rest of this section, we provide a formal description of

Chapter 2. Preliminaries 28

semantics of Basic SDs.

Definition 2.8 (Basic SDs [4]). A Basic SD S is a tuple (I, E, f , O), where

• I is a finite set of objects.

• E is a finite set of event occurrences that is partitioned into send events, denoted

by !E, and receive events, denoted by ?E. The set of events sent and received by

an object i ∈ I is denoted by Ei.

• f : !E → ?E is a bijective mapping that associates each send event e with a unique

receive event f(e), and each receive event e′ with a unique send event f−1(e′).

• O is a set of total order relations <i defined over the events Ei for every object i.

It corresponds to the order in which the events are physically displayed along the

lifeline of an object i.

Definition 2.9 (Partial Order [4]). Let S = (I, E, f,O) be a Basic SD. We define a

partial order relation < over E as follows:

(<) = [(∪i∈I(<i)) ∪ ({(s, f(s)) | s ∈ !E})]∗

The SD shown in Figure 2.7 is a Basic SD, where:

• I = {TAS, CarSystem, FlightSystem},

• E = {!bc, ?bc, !bf, ?bf},

• the total order <TAS for the object TAS is {!bc <TAS !bf}, and

• the partial order < associated with the entire scenario is {!bc < !bf, !bc < ?bc,

!bf < ?bf}.

This partial order assumes that messages are communicated asynchronously. Partial

order for synchronous communication is a subset of the above because of synchronization.

Chapter 2. Preliminaries 29

Figure 2.8: NFA corresponding to the SD in Figure 2.7.

In the rest of this thesis, we assume that messages are passed asynchronously. Also,

without loss of generality, we assume that all event labels are unique.

We define the semantics of Basic SDs by translating them into their equivalent NFAs.

Intuitively, an NFA AS is equivalent to a Basic SD S iff AS accepts exactly the set of

traces that can be generated by S, i.e., those traces that respect the partial order of S.

Therefore, translation of S to AS reduces to the translation of the underlying partial

order of S to AS. The algorithm for translating partial orders to NFAs, proposed by [4],

is as follows. Given a partial order < over E, let cut c be a subset of E that is closed

with respect to <, i.e., if e ∈ c and e′ < e, then e′ ∈ c. Since all the events of a single

process are linearly ordered, a cut can be specified by a tuple that gives the maximal

event of each process. The set of all possible cuts associated with the partial order of a

Basic SD generates the state space of its corresponding NFA. The empty cut is the initial

state, and the cut with all the events is the final state. There is a transition labelled e

from cut c to cut d, if the cut d equals the cut c plus the single event e.

Theorem 2.1. A Basic SD S = (I, E, f , O) is semantically equivalent to an NFA AS

= (Q, Σ, δ, Q0, F), where Σ is equal to E, Q is the set of all cuts, Q0 is the empty cut,

F is the maximal cut including all of the events, and δ allows a transition from a cut c

to a cut d on an event e ∈ E iff d = c ∪ {e}.

The above theorem follows from [4]. Listing 2.1 shows an implementation of this trans-

lation algorithm.

Since both the empty and the maximal cuts are unique, Q0 and F consist of only one

state each. The set of cuts obtained by unwinding the underlying partial order of the SD

Chapter 2. Preliminaries 30

Listing 2.1: Function that implements the Basic SD to NFA translation algorithm

sub SD to NFA (I , E, f , O){

par orde r i s a l i s t o f pa i r s , where a < b i s [a , b]

pa r o rde r = compute pa r t i a l o rde r (I , E, f , O)

events i s a hash : events . keys () = E, and events [e] i s the l i s t o f

events that must be inc luded in a cut that i n c l ud e s event e

events = {}

for e in E:

events [e] = [pa i r [1] for pa i r in par o rde r i f pa i r [0] == e]

cuts = []

power = powerset (E)

check which subse t s o f E are va l i d cuts

for p in power :

i f p == () : # empty cut

cuts . append (p)

Q0 = p

break

i f l en (p) == len (E) # maximal cut

cuts . append (p)

F = p

break

crea t e va l i d cut us ing the e lements o f p

s = s e t ()

for e in p :

s . add (s e t (events [e]))

t e s t equ iva l ence and keep va l i d cuts

i f s >= p and p <= s :

cuts . append (p)

de l t a = [(c , e , d) for c , d in cuts i f d−c == (e)]

Q = cuts

Sigma = E

return NFA.NFA(Q, Sigma , de l ta , Q0 , F)

}

Chapter 2. Preliminaries 31

Absence An event does not occur within a given scope;

Existence An event must occur within a given scope;

Bounded Existence An event can occur at most a specified number of times within a

given scope;

Universality An event must occur throughout a given scope;

Response An event must always be followed by another within a scope;

Response Chain A chain of events must always be followed by another chain of

events within a scope;

Precedence An event must always be preceded by another within a scope;

Precedence Chain A chain of events must always be preceded by another chain of

events within a scope.

Table 2.1: SPS patterns.

in Figure 2.7 is

{〈〉, 〈!bc〉, 〈!bc, ?bc〉, 〈!bc, !bf〉, 〈!bc, ?bc, !bf〉,

〈!bc, !bf, ?bf〉, 〈!bc, !bf, ?bc〉, 〈!bc, ?bc, !bf, ?bf〉}.

Note that the number of states of the corresponding automaton in Figure 2.8 is less than

the number of the above cuts, because we reduced the states with the identical outgoing

transitions to a single state.

2.2.2.2 The Specification Pattern System

The Specification Pattern System (SPS), proposed by Dwyer et al. [26], is a pattern-based

approach to the presentation, codification, and reuse of property specifications. The

system allows patterns like “event P is absent between events Q and S” or “S precedes P

between Q and R” to be easily expressed in and translated between linear-time temporal

logic (LTL) [82], computational tree logic (CTL) [20], quantified regular expressions

(QRE) [78] and other state-based and event-based formalisms. This system has been

advocated as a standard tool for measuring the practical usefulness and expressive power

Chapter 2. Preliminaries 32

of specification languages, e.g., [6, 105].

The property patterns are organized into a hierarchy based on the kinds of system

behaviours they describe (see Figure 2.9a): Occurrence patterns talk about the occur-

rence of a given event/state during system execution, and Order patterns specify relative

order in which multiple events/states occur during system execution. The patterns are

described in Table 2.1.

Each pattern is associated with scopes – the regions of interest over which the pattern

must hold. There are five basic kinds of scopes: Global, Before, After, Between and

After-Until. Definitions of these are given in Table 2.2 and pictorially described in

Figure 2.9b – the shaded intervals indicate the portions of an execution where the specified

property must hold. The action-based modelling formalisms used in this thesis do not

allow the simultaneous occurrence of two events, so these scopes should be interpreted as

open on both ends. Note that if a scope is specified but does not occur during execution,

then the specification is vacuously true, since the execution does not contain any regions

of interest. On the other hand, a pattern instance without a scope has an implicit Global

scope.

For example, the specification “P occurs between Q and R” is true if:

1. each event Q is followed at some point by the occurrence of an event R (e.g., at

times t and t + k, respectively; this defines a region of interest) and at least one

P event occurs in each region of interest, i.e., P occurs at some time t′, where

t < t′ < t+ k, for each t, t+ k pair, or

2. Q occurs, but without a matching R. In this case, the pattern instance holds

because there are no regions of interest.

For example, consider a property of a queue that says that there should be a dequeue

event between every enqueue and empty. This is the Existence pattern, with the Be-

tween scope. Looking up the QRE formalization of this pattern/scope combination from

Chapter 2. Preliminaries 33

Global The entire program execution;

Before R The execution up to event R;

After Q The execution after event Q;

Between Q and R All parts of the execution between events Q and R;

After Q until R Similar to Between, except that the designated part of the exe-

cution continues even if the second event does not occur.

Table 2.2: SPS scopes.

the catalogue and substituting our event names, we obtain the formula

(
[−enqueue] ∗ ·enqueue · [−dequeue, empty] ∗ ·dequeue · [−empty] ∗ ·empty

)
∗ ·

[−enqueue] ∗ ·(enqueue · [−empty]∗)?

The first line of this formula checks that, once an enqueue has occurred, at least one

dequeue event occurs before an empty event. In other words, if no dequeue events are

sent between an enqueue and empty event, the QRE does not hold on the execution trace.

The second part encodes the possibility that the scope never occurs: the property also

holds if empty never occurs after enqueue. For reference, we have included a summary of

the QRE pattern and scope encodings in Appendix A.

2.3 Formalizing BPEL

In [30, 31], Foster specified how to map all BPEL 1.1 activities into LTS. For example,

Figure 2.10b shows the translation of the <invoke> activity bf defined in Figure 2.10a,

which returns a confirmation number. The activity is a sequence of two transitions:

the actual service invocation (invoke bf) and its return (receive bf). Foster’s translation

includes partner, activity and variable names in the labels, in order to include traceability

information, but we omit these in this thesis for simplicity.

Chapter 2. Preliminaries 34

(a)

(b)

Figure 2.9: Specification property system: (a) the pattern hierarchy and (b) pattern

scopes.

(a)

(b)

Figure 2.10: Book flight <invoke> activity (bf) (a) BPEL declaration (with compensa-

tion); and (b) the LTS translation of <invoke> activity (with output parameter).

Note that BPEL processes may have multiple <receive> activities. For such pro-

cesses, the BPEL engine non-deterministically chooses a creation point on execution. In

his thesis, Foster assumes that processes have only one creation point, the first <receive>

that appears in the process definition, and we make the same assumption in this thesis.

Conditional activities like <while> and <if> are represented as states with two out-

going transitions, one for each valuation of the activity condition. The LTSs for these

Chapter 2. Preliminaries 35

(a)

(b)

Figure 2.11: (a) BPEL conditional activities and their corresponding LTSs; (b) BPEL

structural activities and their corresponding LTSs.

two activities are shown in Figure 2.11a. Note that both LTSs have two transitions from

state 1: 1
expr true−→ 2 and 1

expr false−→ 3. <pick> is also a conditional activity, but can have

one or more outgoing transitions: one for each <onMessage> branch (there are two of

these in the example in Figure 2.11a. If multiple <onMessage> branches are simulta-

neously activated, the BPEL engine non-deterministically chooses which one should be

Chapter 2. Preliminaries 36

Figure 2.12: LTS L(TAS).

executed. <sequence> and <flow> activities result in the sequential and the parallel

composition of the enclosed activities, respectively (see Figure 2.11b). In the case of the

<flow> activity, the BPEL engine non-deterministically chooses the order in which to

execute the branches.

Thus, formally, we are going from a BPEL program B to its LTS translation L(B). The

set of labels Σ of L(B) is derived from the possible events in B: service invocations and

Chapter 2. Preliminaries 37

returns, <onMessage> events, <scope> entries, and condition valuations. For example,

Figure 2.12 shows L(TAS). This LTS has 24 states and 29 transitions.

Chapter 3

Specifying Correctness

The goal of this thesis is the creation of an industrial-strength monitoring framework.

The first milestone for achieving this goal is the creation of an adequate property speci-

fication language. This language must be expressive enough to capture the distributed,

interactive, and message-driven nature of web service applications, but must also be

amenable to efficient runtime monitoring.

In this chapter, we propose Web Sequence Diagrams (W-SD) [89], a language that, we

feel, meets these criteria. This language is a subset of UML 2.0 Sequence Diagrams (SD),

a feature-rich language without a formal semantics. In Section 3.1, we describe the syntax

of the subset of UML 2.0 sequence diagrams used for expressing properties of web service

conversations. We describe the semantics of our chosen subset of SDs and show how to

translate it into automata for runtime monitoring in Section 3.2. In Section 3.3, we show

that this language is sufficiently expressive to capture a wide variety of frequently used

properties, captured and catalogued in the Specification Pattern System (SPS) [28]. In

this section, we also show how to use the W-SD templates to specify properties of a new

application, the Loan Application System. Finally, in Section 3.5, we report on related

work studying UML 2.0 Sequence Diagrams as a specification language.

38

Chapter 3. Specifying Correctness 39

Figure 3.1: A W-SD describing a scenario of the TAS example.

3.1 Web Sequence Diagrams

As discussed in Chapter 2, Section 2.2.2.1, UML 2.0 Sequence Diagrams (SD) [77] can

be used to describe complex scenarios between different objects over time. Properties

of web service applications can be specified using SDs: service providers are modelled

as objects and service invocations and other system events are modelled as messages

between the corresponding objects. Basic SDs only contain messages between objects

(see Definition 2.8), and can be augmented by a number of operators to capture more

sophisticated scenarios. We describe some of these operators below:

• Compositional operators: Operators parallel (par) and alternatives (alt) are

used to compute intersection and union of two SDs, respectively. The operator

loop is used for repeating the scenario described by an SD multiple times, and opt

– for denoting an optional scenario, equivalent to alt with only one argument.

• Alphabet changing operators: Operators consider and ignore are used for

modifying the communicating alphabet of SDs.

• Critical operator: The critical operator is used to ensure atomicity of the en-

closed sequence.

• Assertion and negation operators: Operators assert and negate allow users to

express mandatory and forbidden system scenarios, respectively.

Chapter 3. Specifying Correctness 40

Figure 3.2: Visual representation of SD operators.

• Interaction use operator: SDs can be shared by reference, using the ref operator.

This is a shorthand for copying the contents of the referred SD where the ref

operator occurs, and is a new feature in UML 2.0.

Figure 3.2 shows how these operators are specified on an SD. Visually, all operators

except the alphabet changing operators are represented as boxes that enclose the opera-

tor’s arguments (alphabet changing operators appear below the SD name). The diagram

in Figure 3.1 shows an SD that uses the alt operator to describe two alternative scenar-

ios of the TAS system: in the top scenario, TAS first sends a car booking request (bc)

to CarSystem, and then a flight booking request (bf) to FlightSystem. In the bottom

scenario, TAS first tries to book a limo (bl), and then book a flight.

The grammar for our language, Web Sequence Diagrams (W-SD), is given in Fig-

ure 3.3 where BasicSD , par , alt , loop, critical , opt , negate, assert , consider , ignore and

ref are terminal symbols, and E is a set of SD messages. Since operators consider and

ignore change the communicating alphabet of SDs, they take a set E of messages as

an input argument. Note that every event that appears in a W-SD must be either sent

or received by the object that represents the application being analyzed, as messages

between partner services cannot be seen by the orchestrating web service.

Basic SDs are the building blocks of our language. The critical, alphabet changing,

interaction use, assert, and compositional operators, except for par, can be intermixed and

applied any number of times to Basic SDs. The use of negate and par operators, however,

Chapter 3. Specifying Correctness 41

SD ::= BasicSD | unaryOp SD | SD alt SD | negate NotAssertedSD |

NotAssertedSD par NotAssertedSD | assert SD

NotAssertedSD ::= BasicSD | unaryOp NotAssertedSD | negate NotAssertedSD |

NotAssertedSD alt NotAssertedSD |

NotAssertedSD par NotAssertedSD

unaryOp ::= considerE | ignoreE | loop | critical | opt | ref

Figure 3.3: Grammar of the W-SD language.

is restricted to sequence diagrams which do not use an assert operator. We discuss this

assumption and the rationale behind it in Section 3.2.4.2 and show in Section 3.3 that

even with this restriction, the resulting language remains very expressive.

Note that we often need to express complementation of an individual message or a

set of messages appearing on the same arrow. The negate operator is unsuitable for

complementing sets because it captures negative sequences of messages rather than set

complementation. Instead, we use the message complementation operator, originally

introduced in the Property Sequence Charts (PSC) language [6]. We denote the comple-

ment of a message m by ¬m and define it as the set of all messages that are potentially

exchanged between objects of the system except for m.

3.2 Formalizing Sequence Diagrams

In this section, we provide a formal description of semantics of W-SD. UML 2.0 SDs is

a very expressive language, without formal semantics. We adopt the automata-theoretic

approach of Alur and Yannakakis [4], where a Basic SD is transformed into a semantically

equivalent NFA (see Chapter 2, Theorem 2.1). Below we define the semantics of the W-

Chapter 3. Specifying Correctness 42

(a) (b)

Figure 3.4: NFA corresponding to: (a) the first argument of the alt operator of the W-SD

in Figure 3.1; and (b) the W-SD in Figure 3.1.

SD operators, which are given in terms of how these operators combine or affect the

NFAs corresponding to their SD arguments.

3.2.1 Compositional operators

The semantics of the compositional operators can be given in terms of the standard

operations defined on NFAs (e.g., see [47]). In particular,

• par corresponds to the parallel composition operator or the intersection operator

over NFA;

• alt corresponds to the union operator;

• loop corresponds to the Kleene star operator.

The theorem below, which follows from Theorem 2.1 and [47], shows that the set of

NFAs associated with SDs is closed under the compositional operators.

Theorem 3.1. Let S, S1 and S2 be SDs, and let S = S1 op S2, where op is a composi-

tional operator. Then, AS = AS1 op AS2.

For example, the automaton in Figure 3.4b corresponds to the sequence diagram in

Figure 3.1. This automaton is obtained by computing the union of the two Basic SDs

Chapter 3. Specifying Correctness 43

corresponding to the two alternative scenarios of the W-SD in Figure 3.1: the NFA

equivalent to the first argument of the alt operator is shown in Figure 3.4a, and its

construction is discussed in Chapter 2, Section 2.2.2.1. The automaton corresponding to

the second argument is constructed in a similar fashion and is not shown here.

Note that we have also added a self-loop to the initial state of the automaton in

Figure 3.4b, labelled with the underlying alphabet (Σ) of the W-SD in Figure 3.1. This

self-loop allows the automaton to guess when the scenario specified by the W-SD begins.

3.2.2 Alphabet changing operators

Operators consider and ignore are used to change the set of communicating alphabet of

an SD. Both of them receive an SD S and a set of events E as input, but consider adds

the elements in E to the set of events of S, whereas ignore removes the elements in E

from the set of events of S. Formally, let S and S ′ be SDs, E be a set of events, and

let AS = (Σ, Q, δ, {q0}, F) be the automaton associated with S. For S ′ = considerES,

AS′ = (Σ ∪ E,Q, δ, {q0}, F), and for S ′ = ignoreES, AS′ = (Σ \ E,Q, δ′, {q0}, F), where

δ′ =
(
δ ∩ (Q× (Σ \ E)×Q)

)
∪ {(q, ε, q′) | ∃σ ∈ E · (q, σ, q′) ∈ δ}

It is easy to see that the set of NFAs associated with SDs is closed under the operators

consider and ignore as well.

Recall that any missing transition at a state leads to an error state. Increasing the

input alphabet Σ of AS without changing the transition relation δ means that more

execution traces end up in the error state, while shrinking the input alphabet without

changing the transition relation means that more execution traces are accepted. For

example, the consider operator in Figure 3.1 extends the underlying alphabet, Σ, of the

automaton in Figure 3.4b from {!bc, ?bc, !bf, ?bf} to {!bc, ?bc, !bf, ?bf, !bl, ?bl}.

Chapter 3. Specifying Correctness 44

(a) (b) (c)

Figure 3.5: (a) A basic SD enclosed by a critical operator and its corresponding NFAs:

(b) before applying critical ; (c) after applying critical.

3.2.3 Critical operator

A critical region in a sequence diagram can be specified using the critical operator. A

critical region means that the scenarios of the region cannot be interleaved by other

messages and thus should be treated atomically. We formalize the semantics of this

operator as follows: if the first message of the critical region is observed, then the rest of

the behaviour must be observed as well, without seeing any intermediate messages.

Let S be an SD enclosed within a critical operator, and let AS be the automaton for

S. The automaton for critical S is obtained by adding a self-loop to every initial state

of AS labelled by Σ \ {e | ∃q0 ∈ I · q0 has an outgoing transition on e}. This self-loop

transition at the initial state allows the automaton to wait for a satisfying run to begin.

The initial state also becomes final.

For a sequence enclosed by a critical operator, once the first symbol of the sequence

has been seen, the entire sequence should be seen as well. For this reason, the self-loop

at the initial state of an automaton corresponding to a critical region is labelled by Σ

minus the initial symbols of the expected sequences. For example, Figure 3.5a shows a

sequence diagram with a critical operator, and Figure 3.5c – its corresponding automaton

(Figure 3.5b shows the automaton before the critical operator is applied). Similar to the

automaton in Figure 3.4b, we have added a self-loop to the initial state of the automaton

in Figure 3.5c to allow this automaton to guess when the scenario of interest begins.

Chapter 3. Specifying Correctness 45

3.2.4 Assertion and negation operators

The negate operator provides a mechanism for specifying undesirable (negative) scenarios,

and the assert operator allows us to specify desirable (positive) scenarios. Recall the two

requirements of the TAS system introduced in Chapter 1, Section 1.1.1: the system is to

make sure the customer has the transportation needed to get to her destination (this is

a desired behaviour which we refer to as P1) while keeping the costs down, i.e., she is

not allowed by her company to reserve an expensive flight and a limo (this is a forbidden

behaviour which we refer to as P2). The negate operator can be used to express safety

properties like P2, and the assert operator – finitary liveness properties like P1.

Various formal treatments of the semantics of the assert and negate operators are

given in the literature, e.g., [44, 41, 91]. These operators have a rich expressive power,

and yet their arbitrary combinations are not well understood. In particular, it is unclear

whether negating an asserted scenario should mean that this scenario is not required

to occur or that its negation has to occur. In this section, we define the semantics of

assert and negate operators in terms of NFAs. Our formalization allows us to arbitrarily

combine these operators as long as we never attempt to apply a negate operator to a

sequence diagram containing an asserted fragment.

3.2.4.1 The negate operator

As mentioned above, negate allows us to express safety properties. By applying negate

to an SD S, we indicate that the scenario represented by S is forbidden, and therefore,

a safe system should never produce it [41]. For example, consider Figure 3.6a which

shows a W-SD corresponding to the safety property P2. If the user picked air and ground

transportation, TAS attempts to book a flight and a car/limousine. A limousine should

never be booked (bl) after an expensive flight has been booked (expF), and vice versa.

So, there are two forbidden sequences of events: expF · bl and bl · expF; and this property

is expressed in W-SD by applying a negate operator to an alt operator over these two

Chapter 3. Specifying Correctness 46

(a) (b)

(c) (d) (e)

Figure 3.6: (a) A W-SD describing P2 and (b) its corresponding NFA before applying

negate; (c) A W-SD describing a part of P2 and its corresponding NFAs: (d) before

applying negate; and (e) after determinization and complementation.

forbidden event sequences. The resulting W-SD is shown in Figure 3.6a.

The negate operator over SDs is equivalent to the complementation operator of NFA.

Given an SD S and its corresponding automaton AS, we first add a self-loop transition

labelled Σ, i.e., the underlying alphabet of S, to the initial state of AS in order to enable

AS to guess when a satisfying run begins. Note that after adding this self-loop, AS

becomes non-deterministic. To obtain the automaton for the negated SD, we need to

first determinize AS, and then complement the result.

For example, the automaton corresponding to the W-SD in Figure 3.6a, after adding

the self-loop and before complementation, is shown in Figure 3.6b. We do not show the

complemented automaton for P2, which has 10 states and 33 transitions. Instead, we

show the automata corresponding to a simplified version of P2, that only includes one

of the arguments of the alt operator. The simplified W-SD is shown in Figure 3.6c, and

Chapter 3. Specifying Correctness 47

Figures 3.6d and 3.6e show the corresponding NFAs: before and after complementation,

respectively.

Note that since the sequence S is nonempty, the initial state of the complement of

AS is always accepting, and hence, the empty string is always in the language of the

complement of AS. This is expected because the negate operator holds (1) when the

negative scenario S does not completely occur, and (2) when no messages at all are

exchanged.

3.2.4.2 The assert operator

The meaning of the assert operator is given by the UML standard as follows [77], “the

sequences of the operand are the only valid continuations. All other continuations result

in invalid behaviour”. This interpretation has been formalized in different ways [44, 41].

The one that we have adopted is that of [44] which is described as follows: given an

asserted behaviour σ = σ0 . . . σn and a system behaviour σ′, every occurrence of σ0 in σ′

should be followed by the rest of σ. Thus, an SD with an assert is interpreted universally:

“for every run, once it satisfies the start of the sequence, it must complete the sequence

before termination”. Note that the difference between assert and critical is that the

former checks all possible suffixes of the input run to probe the sequence, whereas the

latter only checks the first occurrence of its sequence.

Harel and Maoz [44] use alternating automata with universal initial states to capture

this meaning of assert. Such automata accept a trace if all of the runs emanating from

their initial states are accepting. NFA, however, accept a trace when there exists an

accepting run emanating from the initial state. Rather than moving outside NFA (and

thus complicating the monitoring framework), we chose to reinterpret the acceptance for

the assert operator instead: an NFA for an asserted trace σ checks all suffixes of the

system traces, and if one is not accepted, a failure is reported. This “universal” treat-

ment is given to the entire sequence diagram, not just the part containing assert. This

Chapter 3. Specifying Correctness 48

(a) (b)

Figure 3.7: (a) A W-SD describing P1; and (b) its corresponding NFA after applying

assert.

works correctly as long as such NFAs are not complemented or composed (in parallel)

– the negation and parallel composition operators over automata with universally inter-

preted acceptance are different from those operators of NFA. While negation and parallel

composition operators for NFA are computed via subset construction and cross-product,

respectively, these operators for the alternating automata simply convert universal states

into existential or add an additional universal state, respectively [100]. Thus, we restrict

the application of negate and par to SDs that do not contain an assert, as described in

Section 3.1.

Since alternating automata can be converted into NFA with a possibly exponential

blow-up in size, we could have translated the assert operator directly into NFA. How-

ever, we chose not to do it to preserve the succinctness and relatively small size of our

monitoring automata.

Given the above discussion, the translation of assert operator is straightforward:

After deriving the NFA AS for SD S and adding a self-loop labelled Σ at its initial state,

the automaton for assert S is obtained by interpreting the initial state as universal (we

follow the notation of [44], denoting this state with a “∧”) and making it accepting.

For example, the W-SD in Figure 3.7a describes the liveness property P1 – the desirable

scenario ri · rd is enclosed in the scope of an assert operator. Figure 3.7b shows the

automaton corresponding to this W-SD.

Chapter 3. Specifying Correctness 49

(a) (b) (c) (d)

Figure 3.8: (a) An SD which references SD C ; (b) SD C ; (c) SD ex after copying the

content of SD C ; and (d) its corresponding NFA.

(a) (b) (c)

Figure 3.9: (a) An SD with message complementation; (b) the same SD after elimi-

nating the complement operator if its underlying alphabet Σ is {p, q, s, t}; and (c) its

corresponding NFA.

3.2.5 Interaction use operator

The ref operator is used for referring to an SD fragment from within another SD. Our

treatment of ref is to inline the SD being referenced, as illustrated in Figure 3.8.

3.2.6 Message complementation

The message complement operator has been adopted from [6]. If Σ is the set of messages

exchanged in an SD, and m ∈ Σ, then ¬m is Σ \ {m}. For a set {m,n} of messages,

¬{m,n} = Σ \ {m,n}. For example, let Σ = {p, q, s, t}. Then, ¬p = {q, s, t} and

¬{p, q} = {s, t}.

This operator, although not being part of UML 2.0, can be expressed in terms of UML

operators as follows: Let S ⊆ Σ be a set of messages. We replace ¬S by an SD fragment

in which the operator alt is applied to individual messages in Σ \ S. For example,

Chapter 3. Specifying Correctness 50

consider the SD in Figure 3.9a with a message ¬{p, q}, and let Σ = {s, t, p, q}. This SD

is equivalent to the one in Figure 3.9b where ¬{p, q} is replaced by an alt fragment in

which s and t are two alternative messages. The NFA for the sequence diagram without

message complement operators can be generated in a straightforward way following the

translation for the alt operator (see Figure 3.9c).

3.2.7 Generating Monitors from NFA

To be able to use an automaton AS obtained from an SD S for runtime monitoring, we

need to extend the language of AS to handle system behaviours over alphabets larger than

S. We do so by adding stuttering self-loops to the automaton’s states. Semantically, this

means that AS does not change its state when the input symbol is outside the alphabet

of S.

Definition 3.1 (Stuttering). Let Σsys be the set of system events, and let A = (Σ, Q,

δ, Q0, F) be an NFA s.t. Σ ⊆ Σsys . The automaton A′ = (Σsys , Q, δ
′, Q0, F) is the

stutter-closed form of A w.r.t. Σsys if δ′ = δ ∪ {(q,Σsys\Σ, q) | ∀ q ∈ Q}.

The transformation of Definition 3.1 is language-preserving:

Theorem 3.2. Let A = (Σ, Q, δ, Q0, F) be an NFA, and let Σsys s.t. Σ ⊆ Σsys be

given. Let A′ be the stutter-closed form of A w.r.t. Σsys (see Definition 3.1). Then for

every trace σ ∈ Σsys , σ ∈ L(A′) iff σ ↓Σ ∈ L(A) (see Definition 2.3).

Proof. The proof follows from the fact that the construction of Definition 3.1 does not

change the state-space of A:

Chapter 3. Specifying Correctness 51

(a) (b)

Figure 3.10: Monitors corresponding to: (a) the simplified version of P2 shown in Fig-

ure 3.6c; and (b) P1.

σ ∈ L(A′)

⇔ (By definition of language acceptance in A′)

∃q0, . . . , qn+1 ∈ Q · q0 ∈ Q0 ∧ qn+1 ∈ F ∧ ∀σi ∈ σ · δ′(qi, σi, qi+1)

⇔ (By definition of δ′)

∃q0, , qn+1 ∈ Q · q0 ∈ Q0 ∧ qn+1 ∈ F ∧ ∀σi ∈ σ ↓Σ ·δ(qi, σi, qi+1)

⇔ (By definition of language acceptance in A)

σ ↓Σ∈ L(A)

�

For example, the monitor corresponding to the W-SD in Figure 3.6c is shown in

Figure 3.10a. The language accepted by this monitor is

Σ∗sys \
(
Σ∗sys ·!expF · (Σ∗sys \ Σ)∗·?expF·

(Σ∗sys \ Σ)∗·!bl · (Σ∗sys \ Σ)∗·?bl · Σ∗sys
)

That is, this monitor rejects a trace that begins with a system notification that the

current flight is expensive (expF) (perhaps with some events not in the vocabulary of this

W-SD before or after this event), followed by a limousine booking (bl), finally followed

by arbitrary events in the system. Thus, the behaviours during which an expensive flight

and a limousine are booked (in that order) are rejected; these correspond to violations

of the simplified version of property P2.

Chapter 3. Specifying Correctness 52

The monitor for the W-SD in Figure 3.7a is shown in Figure 3.10b. Its language is

(
(Σsys\!ri)∗ ·(!ri · (Σsys \ Σ)∗·?ri · (Σsys \ Σ)∗

·!rd · (Σsys \ Σ)∗·?rd)∗
)∗

This monitor accepts traces that either do not exhibit !ri at all, or, if !ri has been seen, ex-

hibit the entire sequence ?ri·!rd·?rd. Traces not accepted by this monitor violate property

P1 of the TAS system.

Note that we do not add stuttering self-loops to the critical regions because behaviour

specified in critical regions cannot be interleaved by other messages.

3.2.8 Complexity of the translation

Currently, our framework permits the definition of properties that depend only on the

order and occurrence of system events. The size of an automaton AS corresponding

to a basic SD S, i.e., the number of states in AS, is O(nk), where n is the number of

events and k is the number of objects [4]. Applying the W-SD operators does not cause

a significant increase in the size of the resulting automata except for the cases where

we need to to determinize these automata which can exponentially increase their state-

spaces. However, in our experience, the generated automata have been very small (see

Section 3.3.3). Obviously, it remains to be seen whether the approach scales to larger

web service systems and more complex properties.

By monitoring the actual data exchanged by conversation participants, we could

check richer properties that depend on such data. We cannot use the existing automata

translations for data-exchange properties directly, because the resulting automata would

be too large to be useful for monitoring. Instead, we are currently investigating the use

of Parameterized NFA [7] (PNFA) to create more succinct monitors, as single PNFA

transitions represent sets of NFA transitions.

Chapter 3. Specifying Correctness 53

3.3 Sequence Diagram Templates for Temporal Logic

Property Patterns

In this section, we study the expressive power of the W-SD language by using it to express

temporal logic property patterns [26]. Property patterns (see Chapter 2, Section 2.2.2.2)

have been shown to capture a wide variety of commonly used properties, and being able to

express property patterns is a good indication of the expressive power of a new language,

e.g., [6, 105]. In Sections 3.3.1 and 3.3.2, we introduce several W-SD templates and show

how they can encode the SPS property patterns. We end this section by showing how to

use the W-SD templates to specify properties of a new case study, the Loan Application

System, in Section 3.3.3.

3.3.1 Mapping Property Patterns

In this section, we provide the W-SD templates for the SPS patterns (see Figure 3.11),

and show how these templates are used to express patterns in the SPS hierarchy. Note

that the actual direction of the arrows is determined when a template is instantiated.

• Absence: message p cannot occur in a given scope. This can be expressed as

shown in Figure 3.11a.

• Existence: a message p must occur in a given scope. This can be expressed as

shown in Figure 3.11b.

• k−Bounded Existence: message p can occur at most k times in a given scope.

We can check the existence of at most k messages using the loop operator. After the

loop, we need to check that p does not occur, which corresponds to the Absence

pattern (see Figure 3.11c).

• Universality: only a sequence p∗ of messages can occur in a given scope. This is

equivalent to checking for the absence of complement messages (see Figure 3.11d).

Chapter 3. Specifying Correctness 54

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.11: Property pattern mappings for SDs: (a) Absence; (b) Existence; (c)

Bounded Existence; (d) Universality; (e) Response; (f) Response Chain (2 stim-

ulus – 1 response); (g) Response Chain (1 stimulus – 2 response); (h) Until; and (j)

Precedence Chain (2 cause – 1 effect). The directions of the arrows are determined

when a template is instantiated, and (s, t) means message s followed by message t.

• Response: message p (stimulus) must be followed by message s (response), in

a given scope. A response can occur without stimuli, so the stimulus is repre-

sented using a regular message, whereas the response is mandatory. The existence

of stimulus/response pairs are checked in an infinite loop, as there can be many

stimulus/response pairs in one execution trace (see Figure 3.11e).

• Response Chain: a sequence p1, . . . , pn of messages must be followed by the se-

quence q1, . . . , qm of messages, in a given scope. We show two examples of this pat-

Chapter 3. Specifying Correctness 55

tern: p responds to s, t (see Figure 3.11f), and s, t responds to p (see Figure 3.11g).

This pattern has the same basic form as Response.

– p responds to s, t: 2 stimulus – 1 response. The critical operator is used to

enclose the message sequence s, t, to ensure atomicity of this sequence. An

assert cannot be used since the stimulus sequence is optional.

– s, t responds to p: 1 stimulus – 2 response. The message sequence now oc-

curs within the assert operator, so an additional critical operator would be

superfluous.

• Until: This pattern is not part of the SPS; however, it is used to specify the

Precedence patterns. A sequence p∗ of messages occurs until the first occurrence

of message q, in a given scope (see Figure 3.11h). This pattern, formalized using a

single “until” temporal operator [20], can be refuted in one of two ways: either q

never occurs, or after seeing a finite number of p messages (expressed using loop 1,

n), neither a p nor a q message occurs (expressed as ¬{p, q}).

• Precedence: a message s (cause) precedes a message p (effect), as shown in Fig-

ure 3.11i. This pattern allows the cause part to occur without the effect. We

describe this pattern in W-SD by expressing the two possible cases that this pat-

tern specifies: a) p never occurs, or b) p never occurs before s. The first case

corresponds to checking absence of p; the second – to checking ¬p U s (the “until”

template), since we want to be sure that no p messages are sent before the first s

message.

• Precedence Chain: a sequence p1, . . . , pn of messages must precede the sequence

q1, . . . , qm of messages, in a given scope. We show an example of this pattern, 2

cause – 1 effect, p is preceded by s, t (see Figure 3.11j). This pattern is implemented

using the Absence and Until patterns, just like in the Precedence pattern. The

Chapter 3. Specifying Correctness 56

(a) (b) (c) (d)

Figure 3.12: Scope mapping for sequence diagrams, where P represents the property

being scoped: (a) Before R; (b) After Q; (c) Between Q and R; and (d) After Q

until R.

implicit negate operators in the Absence and Until patterns handle the message

sequences, so there is no need to add critical operators.

In the SDs in Figure 3.11, symbols p, q, s, and t can denote complex SDs rather than

just the individual messages. In this case, we treat these symbols as placeholders and use

a ref operator for the SDs that should be inserted in their place, and replace message

complementation by negation.

3.3.2 Mapping Property Scopes

We now show how to express property patterns involving scopes which are used to define

the traces over which a property will be monitored. Scopes can be simple messages

or more complex scenarios in our specification language. The ref operator is used to

introduce scope delimiters in the corresponding locations. For example, to apply the

Before R scope to property P , the scope delimiter R is inserted after the property

we wish to verify (see Figure 3.12a). In the case of the After Q scope, the delimiter

is inserted before the property (see Figure 3.12b). Finally, both the Between (see

Figure 3.12c) and the After-until (see Figure 3.12d) scopes add before/after delimiters.

In the After-until scope, the property is valid even if the “until” part does not occur.

Therefore, the second delimiter in this scope is optional. Thus, there is an implicit opt

operator in each scope delimiter.

Chapter 3. Specifying Correctness 57

Figure 3.13: Workflow describing the high-level steps of the LAS system.

3.3.3 Specifying Properties of the Loan Application System

In this section, we present a complete example of how to specify properties.

The Loan Application System (LAS) is distributed as a sample application with the

IBM R© WebSphere R© Integration Developer v6.0.2. Users enter loan application informa-

tion (name, taxpayer id, loan amount) through a web page, and are eventually informed

of the status of their applications. The LAS workflow first checks if the user’s credit score

is valid, and will decline their loan request if the user has a bad credit score, i.e., less

than 750. A credit score is considered valid if it is between 300 and 850. If the credit

score is good, the workflow then checks the loan amount: loans for $50,000 or less are

automatically approved; loans for larger amounts are earmarked for manual approval.

Chapter 3. Specifying Correctness 58

P LAS
1 The credit score should always be valid, i.e., between 300 and 850.

P LAS
2 The credit score should eventually be checked if the loan amount is greater

than zero.

P LAS
3 A loan cannot be granted if the loan amount is less than or equal to zero.

P LAS
4 After checking that the applicant has a good credit score, a loan cannot be

granted if the loan amount is less than or equal to zero.

P LAS
5 No-one can get a loan without first going through a credit check.

Table 3.1: Several properties of the LAS system.

3.3.3.1 BPEL Model

Figure 3.13 shows a BPEL diagram that implements the previously described LAS work-

flow. The LAS system interacts with four partners: the web service CreditCheck, imple-

mented in Java, and three human tasks (FollowUpDeclinedApp, CompleteTheLoan and

ProcessTheApplication). Specifically, the CheckCredit activity in Figure 3.13 invokes

the CreditCheck partner, which uses the taxpayer id to retrieve the corresponding credit

score. The human tasks CompleteTheLoan, ProcessApplication and FollowUp follow the

application results Approved, ManualApproval and Declined, respectively. The two condi-

tional activities ScoreEvaluation and AutoApprovalTest are assigned values by a local rule

group that checks the credit score and the loan amount.

3.3.3.2 Properties

Since the LAS system is a composition of several distributed business processes, its cor-

rectness depends on the correctness of its partners and their interactions. For example,

the system should guarantee that every request is eventually acknowledged and none are

lost or blocked indefinitely, or that loans are only given to customers with a good credit

score. However, in the provided LAS application, the CreditCheck module assigns a

Chapter 3. Specifying Correctness 59

(a) (b)

Figure 3.14: P LAS
1 : Absence pattern. (a) A W-SD describing the property and (b) the

resulting monitor.

credit score at random, without using the customer identifier, thus preventing the overall

system from satisfying this property. Table 3.1 shows some properties of the LAS system.

We now show how to express these properties using W-SD:

Property P LAS
1 : “The credit score should always be valid, i.e., between 300 and 850.”

We express this property using the W-SD Absence pattern (see Fig. 3.11(a)): our

property holds if there are no scenarios where an invalid credit score is returned

in response to a check credit score request. In the LAS system, MnPs sends a check

credit score request (ckCtSe), to CtCk. In response, CtCk sends the customer’s credit

score (ctSe) to MnPs. A creditScoreNotValid (ctSeNV) message is sent if the value is

not in the correct range (300–850). This property is expressed in W-SD by apply-

ing a negate operator to the sequence !ckCtSe.?ckCtSe.!ctSe.?ctSe.!ctSeNV.?ctSeNV.

The resulting W-SD is shown in Figure 3.14a, and the resulting monitor is shown

in Figure 3.14b.

Property P LAS
2 : “The credit score should eventually be checked if the loan amount is

greater than zero.”

We express this property using the W-SD Existence pattern (see Fig. 3.11(b)): the

property holds if the credit score is checked after the system is notified that the loan

Chapter 3. Specifying Correctness 60

(a) (b)

Figure 3.15: P LAS
2 : Existence pattern. (a) A W-SD describing the property and (b) the

resulting monitor.

(a) (b)

Figure 3.16: P LAS
3 : Absence pattern. (a) A W-SD describing the property and (b) the

resulting monitor.

amount is greater than zero. In the LAS system, the main process MnPs first checks

the predicate “loan amount is > 0”, sending a loanAmountOkay (lnAtOK) message if

the condition holds, and a loanAmountNotOkay (lnAtNO) message otherwise. In or-

der to check the customer’s credit, MnPs must then send a checkCreditScore (ckCtSe)

message to the CtCk component. Thus, the desired scenario is !lnAtOK.?lnAtOK.

!ckCtSe.?ckCtSe, which is enclosed in an assert operator in Figure 3.15a. Fig-

ure 3.15b shows the monitor corresponding to this W-SD.

Property P LAS
3 : “A loan cannot be granted if the loan amount is less than or equal to

zero.”

Like P LAS
1 , we express this property using the Absence pattern: P LAS

3 holds if there

Chapter 3. Specifying Correctness 61

(a) (b)

Figure 3.17: P LAS
4 : Absence pattern, Scope After. (a) A W-SD describing the property

and (b) the resulting monitor, obtained by concatenating the NFAs for the scope and

P LAS
3 .

are no scenarios where a loan is granted after the system has been warned that the

loan amount is less than or equal to zero. As mentioned before, the LAS system

sends a loanAmountNotOkay (lnAtNO) if the predicate “loan amount is > 0” is false.

A loan is considered granted if it is manually or automatically approved, which can

be monitored by checking if the main process MnPs sends a completeTheLoan (ceLn)

or processTheApplication (psAn) message. See Figure 3.16a for the corresponding

W-SD; the resulting monitor is shown in Figure 3.16b.

Property P LAS
4 : “After checking that the applicant has a good credit score, a loan cannot

be granted if the loan amount is less than or equal to zero.”

This property is equivalent to the property P3 with the After Q scope, where Q is

“checking for a good credit score”. To express it, we introduce the scope delimiter

Q before the property P LAS
3 , as seen in Fig. 3.12b. The W-SD corresponding to P LAS

4

is shown in Figure 3.17a and consists of two parts: (1) scope Q and (2) property

P LAS
3 , i.e., the fragment specified by a ref operator which should be replaced by the

SD for P LAS
3 . The resulting monitor is shown in Figure 3.17b.

Chapter 3. Specifying Correctness 62

(a) (b) (c)

Figure 3.18: P LAS
5 : The Precedence pattern. (a) A W-SD for checkCredit ; (b) A W-SD

for loanGranted ; (c) A W-SD showing application of the Precedence pattern.

Id Pattern/Scope # Partners # Events # States # Transitions

P LAS
1 Absence 2 6 7 18

P LAS
2 Existence 2 4 5 9

P LAS
3 Absence 4 8 8 23

P LAS
4 Absence; Scope After 4 10 12 27

P LAS
5 Precedence 4 8 28 95

Table 3.2: Sizes of W-SD LAS monitors.

Property P LAS
5 : “No-one can get a loan without first going through a credit check.”

At this point, we have identified common scenarios that occur in the LAS system:

SDs creditCheck (see Figure 3.18a) and loanGranted (see Figure 3.18b). We can

now express property P LAS
5 using the Precedence pattern: SD creditCheck must

precede SD loanGranted. Note that the SD creditCheck is not optional and must

occur for the property to hold. The SD for P LAS
5 is shown in Figure 3.18c.

Table 3.2 shows the details of the W-SD specifications of the LAS properties. In this

table, column “Id” contains a unique identifier for each property; “Property” is the actual

property to be checked; “# Partner” corresponds to the number of partners involved in

the corresponding SD; “# Events” is the number of events sent between partners in the

SD; “# States” corresponds to the number of states in the corresponding automaton;

Chapter 3. Specifying Correctness 63

(a) (b)

Figure 3.19: Expressing property P3: (a) using the existing alphabet of the TAS system;

(b) with additional events.

and “# Transitions” is the number of transitions in the monitor. Note that all of the

constructed automata have fever than 100 transitions, so we expect that monitoring will

not produce a significant performance overhead. We describe our experience monitoring

this application in Chapter 6, Section 4.2.1.

3.4 Overcoming the Assertion Restriction

In Section 3.2, we provided a transformation from our language, W-SD, to NFA, showing

that it can capture safety and finitary liveness properties. Our transformation further

shows that W-SD is not more expressive than regular expressions, i.e., the language

recognized by NFA.

The main restriction in W-SD is that we do not allow the nesting of asserts within

the scope of negates. For example, let us consider the following property (P3) of the TAS

system: “If the customer requests a flight, but the system cannot book one, inform the

customer”. This property can be expressed as a UML 2.0 Sequence Diagram but not in

W-SD. The reason for this limitation is the chosen set of events of the TAS system: flight

bookings are handled using only one event, bf. Thus, failure to book a flight means that

we did not get a confirmation number from the FlightSystem. Since it is not clear how

Chapter 3. Specifying Correctness 64

long TAS should wait before declaring a failure, we have to express the property using an

assert inside a negate, as shown in Figure 3.19a, which is not allowed in our language.

However, this restriction is mainly syntactic, because we can always push the negate

operator down to the atomic level, and reformulate the sequence diagram into a seman-

tically equivalent one in which negate is not applied within the scope of assert. In our

example, the problem can be fixed by adding two additional events to the TAS system

that give a reason why the flight booking failed: timeout (produced if a confirmation

number is not received by a certain time) and error (produced if the booking could not

be made). With these events, property P3 can be expressed as shown in Figure 3.19b,

which is within the SD language.

Note that after removing the negate operator, the resulting sequence diagram may

have brand new scenarios: to do the removal, we need to elicit the set of all possi-

ble scenarios complementary to the scenario enclosed by the negate. The process of

enumeration and analysis of all possible alternative scenarios obviously requires domain

knowledge and thus cannot be automated in general. However, the online nature of our

monitoring framework allows us to register for and collect the alternative scenarios with

ease.

3.5 Related Work

Like other partial-order scenario-based formalisms such as MSCs [53] and LSCs [23],

UML Sequence Diagrams are enjoying an increasing usage as a specification language.

In this section, we summarize some work studying UML 2.0 Sequence Diagrams as a

specification language.

Lettrari and Klose [60] show how UML 1.3 Sequence Diagrams can be used to check

properties of UML models. UML 1.3 SDs allow only simple event sequences, so the

language formalized in [60] is a small subset of our specification language.

Chapter 3. Specifying Correctness 65

Ameedeen and Bordbar [5] show how a subset of UML 2.0 SDs can be transformed into

Free Choice Petri nets, enabling the use of the corresponding analysis techniques. This

SD subset is only used to specify possible system behaviours, and thus does not include

the negate and assert operators. This work also assumes that sending and receiving

an event happen simultaneously. While this assumption works well for synchronous

systems, it does not hold for most web applications which rely on message queues for

communication.

Autili et al. [6] propose a Property Sequence Chart (PSC) language, which is an ex-

tended notation of a subset of UML 2.0 SDs. PSC enables expressing safety and liveness

properties by assigning attributes fail and required to messages. This is equivalent to ap-

plying operators negate and assert to individual SD message, respectively. The semantics

of PSC is given using Büchi automata, designed to operate on infinite execution traces.

Since we consider only finite executions of web services, automata over finite words are

sufficient and significantly easier to implement.

STAIRS [46] is a trace-based requirement specification methodology that also uses

extended UML 2.0 SDs. Trace scenarios are classified into positive (mandatory and

potential), negative, and inconclusive. Negative traces are captured using the negate

operator. STAIRS does not use assert and instead defines a new mandatory choice

operator, xalt, to express the requirement that both alternatives be present in a choice. In

our work, we enable expression of mandatory and forbidden behaviours without extending

the language.

Grosu and Smolka [41] interpret positive and negative UML 2.0 Sequence Diagrams

as safety and liveness properties and give formal semantics for such diagrams using safety

and liveness automata, respectively. Their approach does not use the assert operator and

defines automata over infinite traces.

Harel and Maoz [44] define Modal Sequence Diagrams (MSD), an extension of UML

2.0 Sequence Diagrams. The semantics of negate and assert operators in MSD is given via

Chapter 3. Specifying Correctness 66

the universal/existential distinction made by the Live Sequence Charts (LSCs) [23]. In

this formalism, diagrams, messages and constraints can be defined as either hot(universal)

or cold (existential), and the semantics of MSDs is given via alternating weak word

automata (AFA). This formalism includes not only non-deterministic choices of NFA

(the language into which we translated SDs) but universal choices as well [44]. Given

that any AFA can be translated to an (exponentially larger) NFA [100], we believe that

SDs and LSCs have the same expressive power. These languages, however, differ in their

syntactic and usability properties. Specifically, LSCs are more succinct because they

can freely combine non-deterministic and universal choices. However, SDs are easier to

implement and use in a monitoring framework because of the existence of several efficient

packages for manipulating NFAs. Moreover, unlike LSCs, the syntax of SDs conforms to

UML 2.0 and hence many existing UML tools can be used to capture and display these

diagrams. Finally, an existential, constant, subset of LSCs has been expressed in terms

of NFA [45]. It is a strict subset of SDs, not allowing universal traces.

While we concentrated on specifying behavioural properties of interactions between

partners, Bultan [15] identified Collaboration Diagrams (CSs) and Conversation Proto-

cols (CPs) as more appropriate formalisms for specifying such properties as realizability

and synchronizability, which he then checks using model-checking. These formalisms

are simpler than UML 2.0 Sequence Diagrams and are appropriate for expressing such

special-purpose properties.

3.6 Summary

In this chapter, we presented W-SD, a subset of UML 2.0 SDs that can be used as a

language for specifying properties of BPEL applications. Specifications expressed in W-

SD permit the analysis of orchestrations involving multiple partners, from the point of

view of the orchestrating service. We demonstrated the expressiveness of this subset by

Chapter 3. Specifying Correctness 67

successfully mapping all the Specification Property System patterns into our SD subset.

In the rest of this thesis, we continue to use property patterns, but work with simpler

safety and liveness properties, presented in Section 4.1.2.

Chapter 4

Monitoring and Recovery

In Chapter 1, we identified three major challenges facing the development of an online

monitoring and error recovery framework for web service applications: Specification,

Runtime Monitoring and Error Recovery. In the previous chapter, we focused on the

Specification challenge, by proposing a Sequence Diagram-based language for specifying

properties. In this chapter, we jointly address the monitoring and recovery challenges –

given an application path which led to a failure and a monitor that detected it, our goal

is to compute a set of suggestions, i.e., plans, for recovering from these failures. To this

end, we have developed various techniques for computing recovery plans from runtime

errors.

In the rest of this thesis, we consider behavioural correctness properties to be scenarios

that the system should or should not exhibit as simple safety and liveness properties,

instead of the more complex scenarios expressed in W-SD. The decomposition into safety

and liveness is essential for recovery, as different techniques are used to compute recovery

plans for each type of property. We cannot algorithmically decompose arbitrary W-SD

properties into safety and liveness, so this simplification allows us to cleanly present

the connection between the type of property that was violated, and the type of plans

that can be generated for this violation. As discussed in Chapter 1, Section 1.5, we

68

Chapter 4. Monitoring and Recovery 69

Figure 4.1: A schematic view on plan generation.

focus on two types of plans. For violations of properties capturing forbidden behaviour,

a recovery plan should attempt to return the application to an earlier state, one at

which an alternative path that potentially avoids the fault is available. For violations

of properties capturing desired behaviours, merely going back is insufficient to ensure

that the system can produce the desired behaviour. In this case, we compute plans

that attempt to redirect the application towards executing new activities that may lead

to the satisfaction of the property in question. Figure 4.1 (replicated from Chapter 1)

schematically shows the second type of plans.

In this chapter, we express properties using the Specification Pattern System (SPS)

(see Chapter 2, Section 2.2.2.2), converting the high-level patterns into Quantified Regu-

lar Expressions (QRE) (see Chapter 2, Section 2.2.1.3) and then to finite-state automata.

We then use the automata to enable conformance checking of finite execution traces and

recovery, should a violation be detected. This monitoring part of our framework is based

on the work presented by Yuan Gan in her M.Sc. thesis [37]. Gan’s monitoring frame-

work checks behavioural conformance by creating monitors and then eavesdropping on

conversations between the application being monitored and the server it runs on. This

approach is adequate for reporting property violations, but not for error recovery. The

reason is that in some cases, the application terminates before a property violation is

reported, at which point there is nothing to recover from.

Before we can formalize our strategies for monitoring, and computing recovery plans,

we need to introduce various concepts, like change states and goal transitions, as well as

various preprocessing steps, like creating a model of the application with compensation.

Chapter 4. Monitoring and Recovery 70

We do this in Section 4.1. In Section 4.2, we give an overview of Gan’s framework,

and explain how it must be adapted in order to permit error recovery. We then present

our techniques for generating recovery plans for forbidden and desired behaviours in

Sections 4.3 and 4.4, respectively. Finally, we present related work on runtime monitoring

and error recovery in Section 4.6.

4.1 Preprocessing

The inputs to the Preprocessing stage of our framework are the BPEL program B and the

set of properties expressed using SPS patterns. We begin with converting B into a formal

representation, L(B), which is a Labelled Transition System (LTS) (see Section 2.3). We

then enrich it with transitions on compensation actions to get LC(B) (see Section 4.1.1).

In Section 4.1.2, we discuss the translation of user-specified properties into monitors.

Finally, in Section 4.1.3 we formalize change states and potential goal transitions and

provide an algorithm for computing these statically on L(B).

4.1.1 Formalizing BPEL Compensation

As described in Section 2.3, we have adopted Foster’s [30] formalization of BPEL using

Labelled Transition Systems. Thus, formally, a BPEL program B is represented by its

LTS translation L(B) = (S,Σ, δ, I), where the set of labels Σ is derived from the possible

events in B: service invocations and returns, <onMessage> events, <scope> entries, and

condition valuations. The set of states S and the transition relation δ are those produced

by the translation.

In order to reason about termination, we have added a new state t to S, and a new

system event TER to Σ. This state is reached from any state of S via a TER event:

∀s ∈ S \{t}, (s,TER, t) ∈ δ. This TER event currently represents all possible termination

causes. Since the BPEL standard treats service timeouts differently, we can, in principle,

Chapter 4. Monitoring and Recovery 71

(a)

(b)

Figure 4.2: (a) BPEL definition of flight booking service invocation (bf), including its

compensation; and (b) LTS translation of the bf activity and its compensation (bold).)

distinguish between the termination of the orchestrating service (regular or due to an

error) and partner service timeouts, and thus, can reason about service timeouts by

introducing another special event, TIMEOUT. However, we cannot determine whether a

service that timed out will eventually respond, or if it definitely cannot respond.

In order to capture BPEL’s compensation mechanism, we introduce additional, back-

wards transitions. For example, the compensation for bf, specified in Figure 4.2a, is

captured by adding the transition 3
invoke cancelF−→ 1 as shown in Figure 4.2b. Taking this

transition effectively leaves the application in a state where bf has not been executed.

However, the program state may or may not revert to its original state after the compen-

satory action completes its execution, as this depends on the definition the compensatory

action. For example, cancelF cancels the booked flight, but does not reset the reservation

confirmation number, which is increased by one each time a booking is made. We denote

by τ an “empty” action, allowing undoing of an action without requiring an explicit

compensation action. For example, transitions labelled with condition valuations are

compensated by τ .

Note that we have made a major assumption that compensation returns the applica-

tion to one of the states that has been previously seen. Thus, given a BPEL program B

and its translation to LTS L(B) = (S,Σ, δ, I), we translate B with compensation into an

Chapter 4. Monitoring and Recovery 72

LTS LC(B) = (S,Σ ∪ Σc, δ ∪ δc, I), where Σc is the set of compensation actions (includ-

ing τ) and δc is the set of compensation transitions. Although service providers define

compensation per service, compensation is defined per action in a BPEL specification.

In other words, two different invocations of the same service may be compensated in

different ways. For this reason, for each compensatable transition (s, a, s′) ∈ δ, there is

an inverse transition (s′, ac, s) ∈ δc, where ac is the compensation action associated to

the action a in the BPEL specification.

Figure 4.3 shows LC(TAS). To increase legibility, we do not show the termination state

t and transitions to it. Also, we only show one transition for each service invocation,

abstracting the return transition and state. In this notation, the LTS in Figure 4.2b has

two transitions: 1
bf−→ 3 and 3

cancelF−→ 1. This allows us to visually combine an action and

its compensation into one transition, labelled in the form a/ā, where a is the application

activity and ā is its compensation. In other words, each transition s
a/ā←→ t in Figure 4.3

represents two transitions: (s, a, t) ∈ δ and (t, ā, s) ∈ δc.

For example, the <pick> activity (labelled in Figure 2.4) corresponds to state 2 of

Figure 4.3. The choice between onlyCar and carAndFlight is represented by two outgoing

transitions from this state: (2, onlyCar, 3) and (2, carAndFlight, 6). Since these actions do

not affect the state of the application, they are compensated by τ . The <flow> activity

(scope enclosed in bold, blue lines labelled in Figure 2.4) results in two branches,

depending on the order in which the air and ground transportation are executed. The

compensation for these events is also τ .

4.1.2 From Properties to Monitors

Apart from the system to be monitored, our framework also takes as input the set of

properties that the application must satisfy. These properties, provided by the developer,

are then used to monitor the run, detect errors and guide the production of recovery

plans. Our framework also includes an (optional) ranking of the properties in the order

Chapter 4. Monitoring and Recovery 73

Figure 4.3: LTS LC(TAS): downward and upward arrows show forward and compensation

logic, respectively.

of importance. As with any other property-based specification, it is possible that the

property list is incomplete (i.e., some system requirements are not captured) or even

inconsistent (i.e., satisfying the entire set of requirements is not possible).

As mentioned in Chapter 3, Section 3.6, we restrict ourselves to simpler safety and

liveness properties in this chapter, instead of more complex properties specified in W-

SD. These properties are expressed using the Specification Pattern System [26] (see Sec-

Chapter 4. Monitoring and Recovery 74

tion 2.2.2.2 for an overview), and we use the Quantified Regular Expression (QRE) (see

Section 2.2.1.3) encoding of these patterns to produce monitoring automata. For exam-

ple, the properties of the TAS system can be formalized as follows:

Property P1: “if requested (ri), TAS will guarantee that the transportation booked

reaches the customer’s destination (rd), regardless of the type of transportation

chosen” describes a positive behaviour (the destination must be reached). This

property can be expressed using the Response pattern in a Global scope, and the

resulting QRE property is:

P1 = [−ri] ∗ ·(ri · [−rd] ∗ ·rd · [−ri]∗)∗

Property P2: “the user cannot book both a limousine (bl) and an expensive flight

(expF)” describes a negative scenario that should be avoided (a limousine and an

expensive flight are booked). To express this using patterns, we use two instances

of the Absence pattern in the After scope: A limousine should never be booked

(bl) after an expensive flight has been booked (expF) and vice versa. In QRE, we

get a pair of properties:

P2a = [−bl] ∗ · (bl · [−expF]∗)?

P2b = [−expF] ∗ · (expF · [−bl]∗)?

When monitoring the application, we need to make sure that both P2a and P2b hold

in order to comply with the requirement P2.

In order to be verified, properties are translated into deterministic finite automata

(DFAs), which we call “monitors”. Different algorithms to perform such a translation

from a QRE formula exist in the literature [47]. The translation we use generates a

monitor that accepts the bad computations of the application – those on which the

property fails to hold.

Chapter 4. Monitoring and Recovery 75

For example, Figure 4.4a shows the monitor built for the property pattern: “s re-

sponds to p after q until r”. State 4 of the monitor (coloured red and shaded horizontally)

is an accepting state, since if we reach it, a violation has been seen: there was a q and

later a p (bringing the monitor to state 3), but this p was not followed by s either be-

cause r appeared first, or because the application terminated. State 2 (coloured green

and shaded vertically) is a good state: if we reach it after p was seen, it means that a

response by s occurred as needed. Σ is the alphabet of the monitor, i.e., it includes every

event occurring in the application, as defined in Section 2.3.

Similar monitors are built for our example properties P1 and P2. Monitor A1 in

Figure 4.4b represents P1: if the application terminates before rd appears, the monitor

moves to the (error) state 3. State 1 is a good state since the monitor enters it once the

booked transportation reaches the destination (rd). Monitor A2 in Figure 4.4c represents

both P2a and P2b. It enters its error state (4) when either a limo was booked and later

an expensive flight (corresponding to the violation of P2a), or an expensive flight was

booked first and then a limo (violating P2b). We formalize (coloured) monitors below.

Definition 4.1 (Recovery Monitor). A recovery monitor is a 5-tuple A = (S,Σ, δ, I, F),

where (S,Σ, δ, I) is an LTS and F ⊆ S is a set of final states.

A accepts a word a0a1a2...an−1 ∈ Σ∗ iff there exists an execution s0a0s1a1s2...an−1sn

of A such that a0 ∈ I and sn ∈ F . In our case, the accepted words correspond to bad

computations, and the set F of accepting states represents error states.

Let A = (S,Σ, δ, I, F) be a monitor. In order to facilitate recovery, we assign colours

to states in S. Accepting states are coloured red, signalling violation of the property.

State 3 of Figure 4.4b and state 4 in Figures 4.4c and 4.4a are red states (also shaded

horizontally). Yellow states are those from which a red state can be reached through a

single transition. Formally, for a state s ∈ S,

colour(s) = yellow if ∃a ∈ Σ, s′ ∈ F · (s, a, s′) ∈ δ.

Chapter 4. Monitoring and Recovery 76

(a) (b) (c)

Figure 4.4: Monitors: (a) for a property pattern “s responds to p after q until r”, (b) A1,

and (c) A2. Red states are shaded horizontally, green states are shaded vertically, and

yellow states are shaded diagonally.

In addition, we also colour yellow those states whose successors are all yellow.

colour(s) = yellow if ∀a ∈ Σ,∀s′ ∈ S · (s, a, s′) ∈ δ ⇒ colour(s′) = yellow.

State 2 in Figure 4.4b, states 2 and 3 in Figure 4.4c and state 3 in Figure 4.4a are yellow

states (also shaded diagonally).

The green colour is used for states that can serve as good places to which a recovery

plan can be directed. We define green states to be those states that are not red or yellow,

but that can be reached through a single transition from a yellow state. Formally,

colour(s) = green iff (colour(s) 6= red) ∧ (colour(s) 6= yellow) ∧

(∃a ∈ Σ, ∃s′ ∈ S · (colour(s′) = yellow) ∧ ((s′, a, s) ∈ δ)).

State 1 in Figure 4.4b, as well as state 2 in Figure 4.4a are coloured green (also shaded

vertically). Note that not all monitors have green states. For example, in A2 of Figure 4.4c

every yellow state (2 and 3) has outgoing transitions only to yellow or red states. Thus

these states are “inescapable”, and the monitor has no green states. A monitor with no

green states is called a safety monitor. Otherwise, it is called a mixed monitor. Formally:

Definition 4.2 (Safety Monitor). A recovery monitor A = (S,Σ, δ, I, F) is a safety

monitor if ∀s ∈ S \ F, colour(s) ∈ {white, yellow} and ∀s ∈ F, colour(s) = red

Definition 4.3 (Mixed Monitor). A recovery monitor A = (S,Σ, δ, I, F) is a mixed

monitor if ∀s ∈ S \ F, colour(s) ∈ {white, yellow} and ∀s ∈ F, colour(s) ∈ {red, green}

Chapter 4. Monitoring and Recovery 77

Given specification properties Φ1 − Φn, we translate them to a set A = {A1, ...,An}

of recovery monitors, denoting by AS the subset of A that includes all safety monitors.

In the rest of this thesis, when we say “monitor”, we mean “recovery monitor” (see

Definition 4.1) instead of W-SD monitor (as defined in Chapter 3, Section 3.2.7).

4.1.3 Identifying Goal Transitions and Change States

The last part of the preprocessing phase statically identifies strategic behaviours of the

application L(B), aimed to help find an efficient recovery plan when a violation is en-

countered. Goal transitions, defined in Section 4.1.3.1, are applications transitions that

may result in the (immediate) satisfaction of some properties. Change states, defined in

Section 4.1.3.2, are application states from which alternative behaviours can be executed.

See Sections 4.3 and 4.4 for details about how these application transitions and states

are used to compute recovery plans.

4.1.3.1 Goal Transitions

In order to find a good recovery plan, we first need to compute a set of goal transitions,

that is, transitions taken by the application which (immediately) result in satisfaction of

some properties. We compute these on a per-property basis. Further, recall that only

liveness properties can be satisfied, which is indicated by the monitor reaching a green

state; safety properties can only be violated. Thus, for each mixed monitor A`i ∈ LM =

(Si,Σ, δi, Ii, Fi), we are looking for transitions in L(B) = (S,Σ, δ, I) corresponding to A`i

entering its green state(s). To find those, we compute the cross-product L(B)× A`i .

Definition 4.4 (Goal Transition). A transition (s, a, s′) ∈ δ is a goal transition iff

∃q, q′ ∈ Si · (s, q)
a−→ (s′, q′) ∈ δL(B)×A`

i
∧ colour(q) 6= green ∧ colour(q′) = green.

That is, s
a−→ s′ corresponds to taking a transition on a into a green state of A`i . The

resulting set of goal transitions is denoted by G(B,A`i):

Chapter 4. Monitoring and Recovery 78

(a) (b)

Figure 4.5: (a) A fragment of L(TAS) × A1; (b) LTS L(TAS), where goal transitions are

depicted by tiny-dashed transitions and change states are shaded diagonally in purple.

For example, consider a fragment of L(TAS)×A1 shown in Figure 4.5a. The green state

of A1 is state 4, with transition on rd leading to it. The only transition in L(TAS) × A1

satisfying the above definition is (4, 2)
rd−→ (5, 4), and thus G(TAS, A1) = {(4, rd, 5)}

(depicted by tiny-dashed transitions in Figure 4.5b).

When computing recovery plans, we need to direct the application towards taking its

Chapter 4. Monitoring and Recovery 79

goal transitions.

4.1.3.2 Change States

Given an erroneous run, how far back do we need to compensate before resuming forward

computation? If we want to avoid repeating the same error again, we need the applica-

tion to take an alternative path. States of L(B) that have actions executing which can

potentially produce a branch in control flow of the application are called change states.

Flow-changing actions are user choices, states modelling the <flow> activity (since

each pass through this state may produce a different interleaving of actions), and those

service calls whose outcomes are not completely determined by their input parameters

but instead depend on the implicit state “of the world”. This characteristics of services

is sometimes referred to as idempotence, since multiple invocations of the same service

yield the same results. Thus, non-idempotent service calls also identify change states.

For example, cheapF is a call to determine whether a given flight is cheap and, unless the

specification of what cheap means changes, returns the same answer for a given flight.

On the other hand, bf books an available flight, and each successive call to this service

can produce different results. Non-idempotent service calls are identified by the BPEL

developer as XML attributes in the BPEL program.

Definition 4.5 (Change State). A state is a change state if it is identified by: 1) a

<flow> activity, 2) a <pick> activity, or 3) a non-idempotent service call.

We denote by C(B) the set of all change states in the LTS of the application B.

For example, in the LTS in Figure 4.3, state 6 corresponds to the <flow> activity and

represents the different serialization order of the branches. States 2, 12 and 15 model

user choices. Non-idempotent partner calls are bf, bc, bl, and thus

C(TAS) = {1, 2, 3, 6, 7, 12, 13, 15, 16, 18, 23, 24},

identified in Figure 4.5b by purple diagonal shading.

Chapter 4. Monitoring and Recovery 80

A recovery plan should pass through at least one change state, to allow a change in

the execution.

Of course, it is possible that the computed recovery plan passes through a change

state which does not affect its outcome, i.e., is irrelevant to the encountered error and

its fix. We address computation of “relevant” change states in Chapter 6, Section 6.4.1.

4.2 Runtime Monitoring

In this section, we discuss two types of monitoring for BPEL applications: eavesdropping

and monitoring for recovery, in Sections 4.2.1 and 4.2.2, respectively. Eavesdropping is

a passive monitoring technique, i.e., the application continues execution even though a

property violation has been detected. On the other hand, monitoring for recovery is an

active technique, as it delays events that may cause property violations (and activates

recovery when a violation is detected).

4.2.1 Eavesdropping

The runtime monitoring component of our framework uses the set of monitors to analyze

the BPEL program B as it runs on a BPEL-specific Application Server. This component is

based on the runtime monitoring framework developed by Yuan Gan as part of her M.Sc.

thesis [37], which has been implemented within the IBM WebSphere business integration

products [49]. In Gan’s framework, the interception mechanism used is eavesdropping –

watching events as they pass between partners and updating monitors accordingly. In

other words, events in Σ are captured as they pass between the application server and

the program, and then immediately used to update the state of the monitors (events

are not stored). Monitors can be dynamically enabled (e.g., to monitor new properties)

and disabled (e.g., to reduce monitoring overhead). Since the application properties are

specified separately from the BPEL program, no code instrumentation is required in this

Chapter 4. Monitoring and Recovery 81

step, enabling non-intrusive (and scalable) online monitoring.

Experience: Monitoring the Loan Application System. The Loan Application

System (LAS), introduced in Chapter 3, Section 3.3.3, automates loan application process-

ing: the system uses a set of business rules to make decisions about loan applications.

The system takes as input a customer taxpayer id and the desired loan amount, pro-

ducing as output one of the following statuses: automatically accepted, automatically

rejected, or flagged for manual authorization. This system has been implemented using

BPEL (see Chapter 3, Figure 3.13). Table 3.1 shows some properties of the LAS system

that can be expressed using W-SD, and Table 3.2 shows the sizes of the corresponding

W-SD monitors. In this section, we report our experience on monitoring the application

(without recovery).

Since LAS is a sample application, its original developers simplified some of the busi-

ness logic, e.g., the CreditCheck component generates random credit scores rather than

access the credit bureau. We began by testing the system to see if the application was

correctly deployed. To do this, we ran it on two different taxpayer ids and three different

loan amounts, with the following specific input configurations:

c1 = <taxpayer id = 1234, loan amount = $10,000>,

c2 = <taxpayer id = 1234, loan amount = $60,000>,

c3 = <taxpayer id = 1888, loan amount = -$1,000>.

As the system is supposed to generate random valid credit scores, we ran the system 10

times with each configuration. For configuration c1, we expected to see some automatic

approvals of the loan, and some rejections, based on whether the good or the bad score

is generated. For c2, we expected some manual approvals of the loan (the loan amount is

above the automatic approval limit), and some rejections. Finally, since the loan amount

in c3 is invalid, we expected to see only loan rejections.

For configurations c1 and c2, the behaviour we observed was as expected: P LAS
1 , P LAS

2 , P LAS
5

Chapter 4. Monitoring and Recovery 82

always held and P LAS
3 , P LAS

4 held when the loan was granted. However, for all executions

of c3, the system automatically approved the loan, meaning that properties P LAS
3 and

P LAS
4 were violated. For all executions of c3, the system produced the following faulty

execution trace:

FT = (MnPs, ckCtSe, MnPs), (MnPs, ctSeOK, CtCk), (MnPs, ckLnAt, MnPs),

(MnPs, lnAtNO, CtCk), (MnPs, ceLn, CeLn)

where each triple (Sender ,m,Receiver) denotes a partner Sender sending a message

m to a partner Receiver . The (MnPs, lnAtNO, CtCk) triple in this trace indicates that

the loan amount is less than or equal to zero. In other words, the main process MnPs

checked the predicate “loan amount is > 0”, and sent a loanAmountNotOkay (lnAtNO)

message because the predicate did not hold. Therefore, this trace depicts a failure of P LAS
3

because it includes an invalid behaviour, the acceptance of the invalid loan, indicated by

the subtrace (MnPs, ckLnAt, MnPs), (MnPs, lnAtNO, CtCk), (MnPs, ceLn, CeLn). As P LAS
4 is a

scoped version of P LAS
3 , it also fails on this trace.

To identify the cause of the violations, we examined the BPEL diagram in Figure 3.13

to see that the trace FT is produced if the LAS system obtains the taxpayer’s credit

score, checks if the credit score is greater than 750 (ScoreEvaluation), checks if the loan

amount is greater than zero (input validation), and checks if the loan amount is less than

$50,001 (AutoApprovalTest). The ScoreEvaluation should only occasionally be true, as the

CreditCheck component generates random credit scores. However, we obtained trace

FT every time the system was run with the taxpayer id 1888, i.e., the system always

approved a negative loan.

We traced this behaviour to two problems. The first, identified after looking at the

BPEL code of the LAS system, was that the application did not use the results of the

input validation, allowing requests for negative loans to go through. The second problem

was only identified after examining the source code for the CreditCheck partner. Instead

of ignoring the taxpayer id and generating a random credit score, this component always

Chapter 4. Monitoring and Recovery 83

returns a good credit score when the taxpayer id ends with “888”. Combined, these two

problems yielded the approval of the loan for configuration c3 every single time.

Overall, our experience showed that the system can handle simultaneous failure of

several monitors and allowed us to specify interesting properties which led to the discovery

of two real faults in the LAS system.

4.2.2 Monitoring for Recovery

While adequate for identifying and reporting property violations, eavesdropping is insuf-

ficient for recovery. For example, we do not want to execute a TER event before knowing

whether its execution causes any monitor violations, since we cannot reverse application

termination. We also want to avoid executing other events that may directly lead to mon-

itor violation, since these events will be inevitably compensated during recovery. Thus,

instead of allowing all events to pass, our monitoring component delays the delivery of

events that cause termination or property violation. If no violation is detected during

analysis, the event is delivered and execution continues as usual. Otherwise, the event is

not delivered and recovery is initiated (see Chapter 5, Section 5.2.2 for details).

Another difference with [37] is that we store intercepted events. For the LTS of the

application L(B) = (S,Σ, δ, I), we store the trace of the execution:

T = s0
a0−→ s1

a1−→ ...
an−1−→ sn.

We say that T is a successful trace iff ∀Ai ∈ A, a0a1...an−1 is rejected by Ai. T is a failure

(or an error) trace iff ∃Ai ∈ A s.t. a0a1...an−1 is accepted by Ai. In such a case, state

sn is an error state of the application. In addition to T, we also store traces TA1 ...TAn

that correspond to the executions of the monitors A1...An, respectively. These are used

in the recovery phase (see Sections 4.3 and 4.4). Note that all traces corresponding to

a single execution differ in their states (e.g., application states are different from states

of each monitor) but agree on the events which got executed. In what follows, traces

Chapter 4. Monitoring and Recovery 84

Figure 4.6: LTS L(TAS), showing traces t1 (dotted) and t2 (dashed).

corresponding to the application have no superscripts, whereas monitor traces are super-

scripted.

For example, consider the execution of TAS in which the customer chooses the

air/ground option (carAndFlight), and then tries to book the flight before the car. In

this example, there is a communication problem with the flight system partner, and the

invocation of the cf service time outs. This scenario corresponds to the trace t1, depicted

Chapter 4. Monitoring and Recovery 85

by dotted transitions in Figure 4.6. In addition to t1, our tool stores tA11 and tA21 – the

corresponding traces of the enabled monitors:

t1 = 1
ri−→ 2

carAndFlight−→ 6
getFlight−→ 7

bf−→ 8
cf−→ 9,

tA11 = 1
ri−→ 2

carAndFlight−→ 2,
getFlight−→ 2

bf−→ 2
cf−→ 2,

tA21 = 1
ri−→ 1

carAndFlight−→ 1
getFlight−→ 1

bf−→ 1
cf−→ 1.

The application server detects that the cf invocation timed out, and sends a TER

event (not shown in Figure 4.6) to the application. Our framework intercepts this TER

event and determines that executing it turns t1 into a failing trace, because the monitor

A1 would enter its error (red) state 3. In response, our framework does not deliver the

TER event to the application, and instead initiates recovery.

In another scenario, the customer attempts to arrive at her destination via a limo

(bl) and an expensive flight (expF). This corresponds to the trace t2, depicted by dashed

transitions in Figure 4.6 (the traces of the monitors are omitted):

t2 = 1
ri−→ 2

carAndFlight−→ 6
getCar−→ 15

limo−→ 16
bl−→ 17

getFlight−→ 18
bf−→ 19

cf−→ 20
exp true−→ 21

expF−→ 4.

As the monitor A2 has a transition on expF to an error state, our framework delays

the execution of this event from application state 21. In this example, executing expF

will make A2 enter its error state 4, so t2 is also a failing trace. The expF event is not

delivered, and the recovery phase is activated.

4.3 Recovery Plans for Safety Property Violations

Once an error has been detected during runtime monitoring, the goal of the recovery

phase is to suggest a number of recovery plans that would lead the application away

from the error.

Chapter 4. Monitoring and Recovery 86

r18 = 4
τ−→ 21

τ−→ 20
τ−→ 19

cancelF−→ 18 r6 = r15
τ−→ 6

r16 = r18
τ−→ 17

cancelL−→ 16 r2 = r6
τ−→ 2

r15 = r16
τ−→ 15 r1 = r2

τ−→ 1

(a)

(b)

Figure 4.7: (a) Plans for TAS for recovery from the safety violation of trace t2; (b) XML

version of recovery plan r18.

Definition 4.6 (Plan). A plan is a sequence of actions. A BPEL recovery plan is a

sequence of actions consisting of user interactions, compensations (empty or not) and

calls to service partners.

Recovery plans differ depending on the type of property that failed. We treat safety

properties below, and recovery from liveness properties is described in Section 4.4.

4.3.1 Computing Plans

The recovery procedure for a safety property violation receives LC(B) – the LTS of the

running application B with compensation (see Section 4.1.1), T – the executed trace

ending in an error state e (see Section 4.2) and C(B) – the set of change states (see

Section 4.1.3.2).

In order to recover, we need to “undo” a part of the execution trace, executing

available compensation actions, as specified by δc. We do this until we either reach a

state in C(B) or the initial state of LC(B). Multiple change states can be encountered

along the way, thus leading to the computation of multiple plans.

For example, consider the error trace t2 described in Section 4.2 and shown in Fig-

Chapter 4. Monitoring and Recovery 87

ure 4.6. {1, 2, 6, 15, 16, 18} are the change states seen along t2. This leads to the recovery

plans shown in Figure 4.7a. We add state names between transitions for clarity and refer

to plans as to mean “recovery to state s”. A given plan can also become a prefix for

the follow-on one. This is indicated by using the former’s name as part of the definition

of the latter. For example, recovery to state 16 starts with recovery to state 18 and

then includes two more backward transitions, the last one with a non-empty compensa-

tion. Plan r18 can avoid the error if, after its application, the user chooses a cheap flight

instead of an expensive one. Executing plan r15 gives the user the option of changing

the limousine to a rental car, and plan r2 – the option of changing from an air/ground

combination to just renting a car. Both of these behaviours do not cause the violation

of A2.

Computed plans are then converted to BPEL for presentation to the user. For ex-

ample, plan r18 is shown in Figure 4.7b. The chosen plan can then be applied (see

Section 5.2.3), allowing the program to continue its execution from the resulting change

state.

4.3.2 Analysis

In what follows, let B be a BPEL application, L(B) = {S,Σ, δ, I} be the LTS that

represents B, and C(B) be the set of change states of application B. Let LC(B) = {S,Σ∪

Σc, δ ∪ δc, I} be the LTS of application B with compensation, where Σc is the set of

compensation actions and δc the set of compensation transitions, computed as described

in Section 4.1.1.

Let T = s0
a0−→ s1

a1−→ ...
an−1−→ sn be an execution trace, where sn = e (the error

state), As be the safety monitor that identified the violation, and ri = sn
cn−1−→ sn−1

cn−2−→

...
ci−→ si be a safety recovery plan for T that leaves the application in state si, where ck

compensates ak and si ∈ C(B). Finally, let CT(B) be the set of change states that appear

in T: CT(B) = {s|(s, a, s′) ∈ T ∧ s ∈ C(B)}.

Chapter 4. Monitoring and Recovery 88

Definition 4.7 (Adequate Compensation). Let B be a BPEL application and LC(B) =

{S,Σ ∪ Σc, δ ∪ δc, I} be the LTS of application B with compensation (as defined above).

A transition (s, a, s′) ∈ δ has adequate compensation when used in application B if

in the representative LTS LC(B) there is a transition (s′, aC , s) ∈ δC, where aC is the

compensation action for a. Actions compensated by τ (the empty action) are always

adequately compensated.

Definition 4.8 (Compensated Execution Trace). Let T = s0
a0−→ s1

a1−→ ...
an−1−→ sn be

an execution trace, where sn = e (the error state), and ri = sn
cn−1−→ sn−1

cn−2−→ ...
ci−→ si

be a safety recovery plan for T. The compensated execution trace Tri is the result of

applying ri to T, assuming that none of the participating services timeout. In other

words, Tri = s0
a0−→ s1

a1−→ ...
ai−1−→ si.

Proposition 4.1. Let T = s0
a0−→ s1

a1−→ ...
an−1−→ sn be an execution trace, where

sn = e (the error state), As be the safety monitor that identified the violation, and

ri = sn
cn−1−→ sn−1

cn−2−→ ...
ci−→ si be a safety recovery plan for T.

If compensation for actions ai, ..., an−1 is adequate, and the default BPEL compensa-

tion order is observed at runtime, then the compensated execution trace Tri will be the

i-length prefix of T, i.e., Tri = s0
a0−→ s1

a1−→ ...
ai−1−→ si, where si ∈ C(B). State si is a

change state because of the definition of recovery plans for safety violations.

This proposition follows from Definitions 4.7 and 4.8. Since the default BPEL com-

pensation respects the forward execution order during compensation, compensating the

tail of the execution trace leaves the application in the state from which the tail sequence

of actions was executed.

The exact number of plans is determined by the number of change states encountered

along the trace. Since each new plan includes the previous one, the maximum number of

plans computed by our tool is set by user preferences either directly (“compute no more

than 3 plans”) or indirectly (“compute plans of up to length 20” or “compute plans while

the overall sum of compensation actions is less than 10”).

Chapter 4. Monitoring and Recovery 89

Worst Case Analysis. In the worst case, the maximum number of plans and the

maximum plan length are both at least n, |CT(B)| = n − 1, and each transition in T is

compensatable. In other words, each non-error state in T is a change state, and each one

is reachable from the current error state. According to our approach, we compute one

recovery plan for each state in CT(B), so computing recovery plans for safety violations

is linear in the size of the error trace T.

In the average case, we expect that the maximum number of plans will be smaller

than the size of the average execution trace, since execution traces contain many BPEL-

induced actions that are not used to identify change states. We also expect that develop-

ers will set the maximum number of plans to be generated to a relatively small number

(e.g., five) thus making recovery plan generation very feasible in practice.

Finally, note that plan r16 which cancels the limo would lead to rebooking it right

away which may still leave the possibility of booking an expensive flight and violating

the property P2. The reason why this plan might not be as useful as others is that

computation of change states in Section 4.1.3.2 treats all non-idempotent service calls as

the same, whereas not all might be relevant to the satisfaction of properties of interest.

In Chapter 6, Section 6.4.1 we discuss the computation of relevant change states, as well

as evaluate the effectiveness of this technique in reducing the number of plans computed.

4.4 Recovery Plans from Mixed Property Violations

Failure of a mixed monitor during execution means that some required actions have not

been seen before the application tried to terminate, and the recovery plan should attempt

to perform these actions.

The recovery procedure receives:

• A`, the monitor that identified the violation,

• LC(B), the LTS of the application,

Chapter 4. Monitoring and Recovery 90

• G(B,A`), the set of goal transitions corresponding to A`,

• T, the executed trace ending in an error state e, and

• C(B), the set of change states.

A recovery plan effectively “undoes” actions along T, starting with e and ending in

a change state (otherwise, the plan would not be executable!) and then “re-plans” the

behaviour to reach the goal (see Figure 4.1 for a schematic view of the overall process).

Our solution adapts techniques from the field of planning [29], described in the rest of

this section.

4.4.1 Recovery as a planning problem

A planning problem is a triple P = (D, i,G), where D is the domain, i is the initial state,

and G is a set of goal states.

In addition to P , a planner often gets as input k – the length of the longest plan to

search for, and applies various search algorithms to find a plan of actions of length ≤ k,

starting from i and ending in one of the states in G. Typically, the plan is found using

heuristics and is not guaranteed to be the shortest available. If no plan is found, the

bound k can be increased in order to look for longer plans.

To convert a recovery problem into a planning problem, we use LC(B) as the domain

and e as the initial state. The third component needed is a set of goal states. Recall that

G(B,A`) is a set of goal transitions. We define Gs(B,A
`) = {s | ∃a, s′ ·(s, a, s′) ∈ G(B,A`)}.

That is, Gs(B,A
`) is a set of sources of transitions in G(B,A`). We can now define the

planning problem

P(B,A`,T) = (LC(B), e,Gs(B,A
`))

Note that when a plan p to a goal state s is computed, we need to extend it with an

additional transition, p
a−→ s′ to account for (s, a, s′) ∈ G(B,A`). For example, consider

the trace t1 of Figure 4.6, described in Section 4.2, in which monitor A1 fails. We define

Chapter 4. Monitoring and Recovery 91

(a) (b)

Figure 4.8: (a) a simple LTS and (b) its encoding as the planning graph of size 3.

the planning problem P(TAS, A1, t1) = (LC(TAS), 9, {4}), where 9 is the initial state (see

Figure 4.3) and Gs(TAS, A1) = {4} (see Section 4.1.3.1). The resulting plan p should be

expanded to p
rd−→ 5.

Unfortunately, not every trace returned by solving P(B, A`,T) is acceptable: the

recovery plans for liveness violations should also go through change states. Thus, we

cannot simply use a planner as a “black box”.

Instead, we look at how planners encode the planning graph and then manipulate

the produced encoding directly, to add additional constraints. Consider the LTS in

Figure 4.8a, which is the planning domain, with s as both the initial and the goal state.

The planning graph expanded up to length 3 is shown in Figure 4.8b and is read as

follows: at time 1 we begin in state s1. If action a occurs (modelled as a2), then at time

2 we move to state t (modelled as proposition t2 becoming true); otherwise, we remain in

state s (i.e., proposition s2 is true). If action b occurs while we are in state t (modelled

as b3), then at time 3 we move to state s. Two plans of length 2 are extracted from

this graph: a2, b3, corresponding to executing a first, followed by b, and “do nothing” –

a planner-specific treatment of a sequence of no-ops.

Several existing planners, such as BlackBox [54], translate the planning graph into

a CNF formula and then use a SAT solver, such as SAT4J [12], to find a satisfying

assignment for it. Such an assignment, if found, represents a plan. For example, the

CNF encoding of the planning graph in Figure 4.8b is as follows:

Chapter 4. Monitoring and Recovery 92

flts = (¬no-op s2 ∨ s1) ∧ (¬a2 ∨ s1) ∧ (¬no-op s3 ∨ s2)

∧(¬b3 ∨ t2) ∧ (¬s2 ∨ no-op s2) ∧ (¬t2 ∨ a2)

∧(¬no-op s3 ∨ s3) ∧ (¬b3 ∨ s3) ∧ (s1) ∧ (s3).

Note that it explicitly models pre- and post-conditions of the execution of actions.

Such a formula is passed to a SAT solver which produces a satisfying assignment s, if

one exists. The desired plan is extracted from s by taking propositions that correspond

to actions and that are assigned positive values in s. For the above example, these are

a2, b3 and “do nothing”.

Our approach has been inspired by existing work a related problem – that of auto-

matically creating new web service compositions that accomplish non-trivial tasks [67,

73, 68, 94]. In this case, the planning domain is the set of available web services, the

goal is a specification of the desired behaviour, and plans are service compositions that

accomplish the desired behaviour. Research in this area has focused on using different

planning techniques to solve this problem in an efficient manner, dealing with the non-

deterministic behaviour of web services, the partial observability of their internal status,

and the specification of complex goals expressing temporal conditions and preference re-

quirements. In this thesis, we do not use planning to generate new service compositions,

but use it instead to explore existing applications. However, the approach presented

here can be augmented with the work presented in [73, 68, 94], especially in the case

when there is not enough compensation or redundancy in the application to permit the

computation of recovery plans according to our approach.

In what follows, we first discuss how to produce a single recovery plan using a SAT-

based approach (Section 4.4.2) and then show how to extend it to produce multiple plans

(Section 4.4.3).

Chapter 4. Monitoring and Recovery 93

4.4.2 Producing a single recovery plan

Let fP be the encoding of the planning problem P(B,A`,T) produced by an existing

planner. We augment fP to follow our “undo until a change state and then redo” approach

by adding conjuncts to fP with the purpose of restricting its solutions. For efficiency, some

additional filtering is done after all plans have been computed (see Section 4.4.5).

1. We want to make sure a recovery plan visits at least one of the change states

encountered on the execution trace T. Let S(T) be the set of states on T. We define

C(T) = S(T) ∩ C(B) to be the change states that appear on T and denote by c1, ..., cn the

propositions that correspond to states in C(T). If k is the maximum length of the plan

which is being searched for, propositions cj1, cj2, ..., cjk correspond to expansions of cj to

times 1 ... k. For example, consider Figure 4.8 again. If t is a change state and k = 3,

then propositions t1, t2, t3 in flts correspond to expansions of t to times 1, 2, 3. We define

c = (c1
1 ∨ ... ∨ c1

k ∨ ... ∨ cn1 ... ∨ cnk), or, in the case of our example, c = (t1 ∨ t2 ∨ t3). This

formula is true when at least one of the change states in C(T) is part of the plan.

2. In order to further lead the planner towards the “undo and then redo” plans, we

want to make sure that the only compensations used in the plan correspond to actions

in the original trace T. More formally, let TC be the set of compensation actions corre-

sponding to the actions in T, and let Σc \ TC be all other compensation actions. Let a

be a formula which excludes (timed versions) of actions in Σc \ TC: i.e., neither of these

compensation actions is true at any step in the plan. For example, for trace t1 over the

LTS LC(TAS) (see Figure 4.3), formula a would exclude all compensations except cancelF

and τ .

We now build a new propositional formula, based on fP:

R0(fP) = fP ∧ c ∧ a

R0(fP) describes the original planning problem for P(B,A`,T), and in addition requires

that at least one of the change states is visited and no compensation actions for events

Chapter 4. Monitoring and Recovery 94

p0 = 9
τ−→ 8

cancelF−→ 7
τ−→ 6

τ−→ 2
onlyCar−→ 3

bc−→ 4

p1 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp true−→ 10

expF−→ 11
getCar−→ 12

car−→ 13
bc−→ 4

p2 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp false−→ 14

cheapF−→ 11
getCar−→ 12

car−→ 13
bc−→ 4

p3 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp false−→ 14

cheapF−→ 11
getCar−→ 12

limo−→ 24
bl−→ 4

(a)

(b)

Figure 4.9: (a) Plans for TAS of length ≤ 10 for recovery from the mixed property

violation of trace t1; (b) XML version of recovery plan p0.

that did not occur in T appear in the plan.

4.4.3 Producing multiple recovery plans

Let π0 be the plan produced for R0(fP) (see Section 4.4.2), leading to a goal state g ∈

Gs(B,A
`). To give the user options for recovery, we want to produce other plans, different

from π0. The simplest way to do this is to remove g from G(B,A`) and repeat the process

described in Section 4.4.2. The new plan will necessarily lead to a different goal transition

and thus will be different from π0. However, this method cannot produce multiple plans

to the same destination.

Instead, we constrain R0(fP) to explicitly rule out π0. For example, to rule out the

plan a, b for the LTS in Figure 4.8a, we use R0(flts) computed in Section 4.4.2 and modify

it as

R1(flts) = R0(flts) ∧ (¬a2 ∨ ¬b3)

This guarantees that the plan, if found, is different from the previously found one in at

Chapter 4. Monitoring and Recovery 95

least one action. This encoding does not prevent the generation of time-stuttering equiv-

elent plans. For example, if the planning graph corresponding to the LTS in Figure 4.8a

is expanded to 4 or more time steps, then the plan (no-op s2 ∧ a3 ∧ b4) is also generated.

This is the same plan as (a2 ∧ b3), except delayed by one time step. In order to avoid

generating time-stuttering equivalent versions of the same plan, we must add stronger

constraints, e.g., plans cannot contain no-op values and must start at time 2. We leave

this as future work.

We continue this way, restricting Ri(fP) with the set of previously computed plans to

get Ri+1(fP), until the number of desired plans is reached or until no new plan can be

found, that is, Rj(fP) is not satisfiable for some j.

We now apply this method to the TAS problem and the error trace t1 shown in

Figure 4.3 and ending in state 9. Looking for plans up to length 10, we get plans p0, p1

and p2 shown in Figure 4.9a. And, as mentioned earlier, each plan is extended with the

last goal transition 4
rd−→ 5.

Plan p0 is the shortest: if unable to obtain a price for the flight, cancel the flight and

reserve the car instead. Plans p1 and p2 also cancel the flight (since 8 is not a change state

whereas 7 is) and then proceed to re-book it and book the car, regardless of the flight’s

cost. Increasing the plan length, we also get the option of taking the getCar transition

out of state 6, book the car and then the flight.

The produced plans are than ranked based on the length of the plan and the cost

of compensation actions in it. For example, plan p0 is the shortest and the additional

compensation, for action carAndFlight, is of zero cost. Thus, it is ranked the highest. Of

course, this plan does not take into account the time the user will spend driving rather

than flying, so she may choose one of the alternative plans instead.

Chosen plans are then converted to BPEL for execution. The compensation part of

the plan is similar to the one shown in Figure 4.7b, and the re-planning part consists of

a sequence of BPEL <invoke> operations. The XML translation of plan p0 is shown in

Chapter 4. Monitoring and Recovery 96

Figure 4.9b.

4.4.4 Analysis

In this section, we described how to compute a plan p which first compensates the trace

until a change state is reached and then computes an alternative path to a certain goal.

Under which conditions can we guarantee that executing such a plan effectively leaves

the system in a desired state?

In what follows, let B be the BPEL application, L(B) = {S,Σ, δ, I} be the LTS

that represents B, and C(B) be the set of change states of application B. Let LC(B) =

{S,Σ∪Σc, δ∪δc, I} be the LTS of application B with compensation, where Σc is the set of

compensation actions and δc the set of compensation transitions, computed as described

in Section 4.1.1.

Let T = s0
a0−→ s1

a1−→ ...
an−1−→ sn, where sn = e, be a trace of the program leading to

an error, A` be the mixed monitor that detected the violation and Gs(B,A
`) be the set

of goal transitions corresponding to A`. Let p = (pi, pm) be a mixed recovery plan for T

that tries to lead the application to the goal state sm through the change state si. The

first part of the plan, pi, compensates trace T, leaving the application in state si, and

the second part, pm, is a trace that leads to the state sm ∈ Gs(B,A
`) when executed

from si, i.e., pi = sn
cn−1−→ sn−1

cn−2−→ ...
ci−→ si, where ck compensates ak and si ∈ C(B),

and pm = si
b0−→ sj

b1−→ sj+1
b2−→ ...

bm−1−→ sm.

Let Tpi be the compensated execution trace resulting from the application of pi to

T according to Definition 4.8. If we assume that compensation for actions ai, ..., an−1 is

adequate, and that the default BPEL compensation order is observed at runtime, then,

according to Proposition 4.1, the execution of pi leaves the application in state si.

Definition 4.9 (Updated Execution Trace). Let T be an execution trace, p = (pi, pm) be

a mixed recovery plan and Tpi be the compensated execution trace (as defined above). The

updated execution trace Tpm is the result of applying the sequence of actions associated

Chapter 4. Monitoring and Recovery 97

to pm to the compensated execution trace Tpi, assuming that none of the participating

services timeout.

In other words, the updated execution trace Tpm is the result of executing the se-

quence b0b1...bm from state si. Note that BPEL applications considered in this thesis

have several sources of non-determinism (from <pick> and <flow> activities). In the

proposition below, we define suficient conditions under which the trace produced as a

result of executing pm reaches the goal state.

Proposition 4.2. Let T be an execution trace, p = (pi, pm) be a mixed recovery plan and

Tpm be the updated execution trace (as defined above).

If compensation for actions ai, ..., an−1 is adequate, the default BPEL compensation

order is observed at runtime, the user acts as suggested by the plan in the case of ex-

ternal choices, and the suggested <flow> activity interleavings are executed, then the

updated execution trace Tpm is the result of compensating actions aiai+1...an−1, leaving

the applicatin in state si, and then executing pm, leaving the application in state sm, i.e.,

Tpm = s0
a0−→ s1

a1−→ ...
ai−1−→ si

b0−→ sj
b1−→ sj+1

b2−→ ...
bm−1−→ sm, where si ∈ C(B) and

sm ∈ Gs(B,A
`).

This proposition follows from Definitions 4.7 and 4.8, as well as the fact that we

expect both the user and the BPEL engine to execute the suggested actions. Of course,

ensuring that a particular execution of the <flow> is chosen is difficult – and in fact, often

unnecessary. A better approach might be to make property automata more permissive to

allow them to reach green states under different orderings of relevant events. However,

we leave such cases as future work, and formally define successful plan execution below.

Definition 4.10 (Successful Mixed Recovery Plan). Let T be an execution trace, p =

(pi, pm) be a mixed recovery plan and Tpm be the updated execution trace (as defined

above). A mixed recovery plan p is successful on an execution trace T iff the execution

Chapter 4. Monitoring and Recovery 98

of the updated execution trace Tpm on the mixed monitor A` (the monitor that detected

the violation) leaves A` in a state s, where colour(s) = green.

Worst Case Analysis. SAT-based planning is an NP-hard problem [54]. However,

due to advances in the SAT community, checking satisfiability has a good average case

performance, allowing the solution of problem instances involving tens of thousands of

variables and millions of constraints.

As with violations of safety properties, the maximum number of plans we compute for

mixed violations is controlled by the user either directly or indirectly, by controlling the

maximum plan length. In the second case, the maximum number of plans is also indirectly

determined by the number of change states encountered along the trace and the number

of goal transitions reachable from these change states. If nc change states and ng goal

transitions are reachable from the error state within k steps, then the maximum number

of plans of at most length k is nc × ng. We check the satisfiability of an increasingly

larger SAT instance in order to compute each new plan, since we add a set of constraints

for each plan found. This process continues until all plans of length k are found, or the

maximum number of plans is reached. In the average case, we expect that the maximum

number of plans will be much smaller than the number of application change states

and goal transitions. As in the case of safety property violations, we expect that the

application developer will limit the maximum number of plans to a small number (≤ 5)

to avoid overwhelming users with a large number of plans. The maximum plan length

should depend on how far apart the application goal transitions are, since we want to

ensure that at least one goal transitions is reachable from each possible error state.

4.4.5 Discussion

Precision. Our treatment of goal transitions effectively means that we model satisfaction

of the required sequence of actions of a liveness property by executing the last event in

Chapter 4. Monitoring and Recovery 99

the sequence. Thus, our approach may include some plans that do not result in the

satisfaction of the desired property (we did not encounter this problem in the examples

reported in Section 6). One way to approach this problem that we intend to investigate

in the future is to define goal traces, based on the computation tree of L(B). While this

will lead to the extra precision in plan generation, we expect to pay a potentially steep

price in performance.

In addition, we can aim to limit the number of recovery plans computed by taking

two issues into consideration: (a) making sure that the plan goes through only “relevant”

change states, i.e., those that affect the computation of the violating trace, and (b)

removing those plans that result in the violation of one of the safety properties. We

describe and evaluate these optimizations in Chapter 6, Section 6.4.

Controlling unnecessary compensations. Plans p1, p2 and p3 seem to be doing an

unnecessary compensation: why cancel a flight and then re-book it if the check flight

service call failed? The reason is that the application developer identified service call cf

as idempotent. That is, she determined that executing this service again cannot change

the flow of control of the application, and thus further compensations are necessary.

Of course, every service call can fail, and thus none are truly idempotent. Yet, having

too many change states would undermine the effectiveness of our framework. We believe

that the tradeoff we have made in this paper is reasonable but intend to revisit this issue

as we gain more experience with the approach.

Furthermore, as plan lengths get large, the planner can generate plans with com-

pensation loops which involve doing an action and then immediately undoing it. For

example, in recovering from a violation in trace t1 in LTS LC(TAS), shown in Figure 4.6,

the plan may include booking a flight and then cancelling it several times (i.e., going

between states 7 and 8 of LC(TAS). Clearly, such situations should be avoided. We could

have encoded a corresponding formula as the SAT problem, conjoining it to R0(fP): “at

any point in the plan, when a non-compensatory action appears, all follow-on actions

Chapter 4. Monitoring and Recovery 100

should not include compensation”. However, we feel that this modification should make

SAT computation significantly less efficient. Instead, we filter computed plans so that

the ones with compensation loops are not presented to the user.

Can generated plans still fail? There are a number of reasons our plans can fail.

The first one, addressed earlier in this subsection, are due to the inherent imprecision of

our handling of required event sequences. The second reason is that any service in the

recovery plan can fail; thus, the application will be unable to reach its goal, prompting

further planning and recovery. Finally, for recovery of safety properties, it is possible

that all paths from a change state may still lead the application to an error state. This

problem can probably be addressed using additional static analysis.

4.5 Monitoring and Recovery for Other Languages

Our interest in BPEL was motivated by our interaction with IBM. However, BPEL is

a very verbose language, making large BPEL programs hard to read/debug, and BPEL

tool support leaves a lot to be desired (e.g., memory-intensive IDEs, non-standard visual

representation of the language). There is also the issue of its formal semantics: the

official BPEL specification is in natural language. Subsets of the language have been

formalized using, for example, labelled transition systems [30], Petri nets [96] and guarded

automata [16]. However, certain parts of the language (like compensation) have not

been formally specified. For example, in this thesis, we only formalized simple event-

based compensation without data. For these reasons, as well as our belief that our

monitoring and recovery framework is of general interest, we are interested in extending

our framework to other languages.

For example, consider the specific case of Orc [56, 71], a general purpose programming

language that allows the concise encoding of concurrent and distributed applications. Orc

was originally presented as a process calculus, but has now evolved into a full program-

Chapter 4. Monitoring and Recovery 101

ming language. Sites provide uniform access to local and external services – a site is a

proxy for either a Java class (allowing access to the methods of the instanced class) or a

web service (allowing access to the service through its published interface). Using simple

concurrency primitives, programmers can orchestrate the invocation of sites to achieve a

goal, while managing timeouts, priorities, and failures. van der Aalst et al. [98] proposed

a set of workflow patterns that characterize the kinds of control flow that appear fre-

quently in workflow processes. Most of these patterns are available in both BPEL [104]

and Orc [21].

Like BPEL, Orc allows both synchronous and asynchronous communication with

web services (through sites). Kitchin et al. [56] defined Orc’s semantics using labelled

transition systems, similar to Foster’s BPEL formalization (see Chapter 2, Section 2.3).

Wehrman et al. [103] extended Orc’s semantics to allow reasoning about delays, which

are introduced explicitly by time-based constructs or implicitly by network delays. This

means that we can tell the difference between halted and pending site calls: a call is in a

halted state if the corresponding site indicates that it will never respond to the call; and

a call is pending if the site has neither returned a value, nor indicated that the call has

been halted. These two states can be distinguished using otherwise, one of the available

concurrency primitives.

These characteristics make Orc the ideal process specification language for our frame-

work. Unfortunately, Orc is missing two fundamental concepts required by our frame-

work. The first is the ability to compensate executed tasks. As discussed in Section 7.2.2,

BPEL allows arbitrary, user-defined compensation, which we limit to individual activity

compensation. This limitation allows us to easily formalize and reason about compensa-

tion, and the recovery plans we generate can attempt to reverse parts of the error trace.

In an unpublished proposal, Coons [22] proposes transactional Orc, which would allow

site-specific rollbacks. However, this proposal has not yet been officially adopted and the

current version of Orc does not natively provide any form of compensation specification.

Chapter 4. Monitoring and Recovery 102

The second is the ability intercept events, as well as execute plans. Orc is implemented

in Java, so we may be able to accomplish this using an existing Java Virtual Machine

monitoring framework, like the one proposed by Orlando and Russo [79]. This remains

as future work.

4.6 Related Work

In this section, we first survey the research on runtime monitoring in the context of web

services, classified according to the axes defined in Chapter 1, Section 1.2.1. We then

present a summary of the error recovery work presented in Chapter 1, Section 1.2.2,

focusing on the work by Carzaniga et al. [17], which is the most similar to ours in terms

of automatically generated recovery plans.

4.6.1 Runtime Monitoring

Initial work in the area focused on offline runtime monitoring frameworks for web service

applications (e.g., [65, 66, 97]); however, recent work has overwhelmingly focused on

the development of online monitoring frameworks that, like in our method, monitor the

system as it runs (e.g., [9, 10, 62, 81, 63, 42, 43]).

In the offline monitoring framework proposed by Mahbub and Spanoudakis [65, 66],

expected choreographies, as well as assertions about individual service invocations, are

expressed using Event Calculus (EC) [83]. This specification is then formalized as a set

of integrity constraints over a temporal deductive database. System events are collected

at runtime and stored in this database – a violation of the integrity constraints indicates

a violation of the EC specification. Since event timestamps are stored, this framework

can reason about timing and lost messages. van der Aalst et al. [97] built an offline

monitoring framework using DecSerFlow, a graphical language for expressing properties,

similar to our patterns, but not allowing nesting. Properties specified in this language are

Chapter 4. Monitoring and Recovery 103

turned into LTL properties, and a specialized model checker is used to statically check

whether stored event logs satisfy these properties.

The online frameworks described in [9, 10, 62, 63] are restricted to local properties.

Li et al. [62] specify properties using Interaction Constraints (IC) [61] – another pattern-

based language like ours, but without pattern nesting. In this language, new events must

be introduced in order to reason about sequences of events. Just as in our framework,

these properties are turned into monitoring automata that are updated at runtime. The

frameworks proposed by Baresi et al. [9, 10] and Lohmann et al. [63] check service pre-

and postconditions associated with external service invocations. These two frameworks

are more invasive than ours, as properties (specified using simple predicate logic) are

checked by inserting assertions at the relevant program locations.

The approach introduced by Pistore et al. [81] is the closest to our monitoring frame-

work with respect to the type of properties that can be checked. Global properties

are specified in LTL, which is somewhat more expressive than our input properties (al-

though may prove more difficult to use [27]). Monitoring is accomplished through Ac-

tiveBPEL [1], an open source, aspect-oriented BPEL engine – monitors are expressed as

aspects and dynamically woven into the monitored process.

Hallé and Villemaire in [42, 43], suggest a monitoring framework where data-aware

properties are written in LTL enriched with first-order quantifications (LTL-FO+). Gen-

erating runtime monitoring automata for such an expressive language is significantly more

complex than in our framework, and monitors must be generated on-the-fly because of

exponential blowup due to data representation.

4.6.2 Recovery and Self-Healing

The majority of the error recovery frameworks surveyed in Chapter 1, Section 1.2.2 focus

on statically defined recovery plans, i.e., the developer specifies possible recovery plans

in response to predetermined error conditions, before the application starts running.

Chapter 4. Monitoring and Recovery 104

The allowed recovery actions are: retrying a service invocation [36, 25, 11], finding an

alternative but equivalent service [36] that can replace the faulty service, generating

an interface adaptor [93] when an interface mismatch is detected, stopping execution

and notifying users that an error has occurred [11], and executing alternative/predefined

execution sequences [72, 43].

The framework proposed by Carzaniga et al. [17] is the closest to ours in terms of

error recovery, as the authors also attempt to automatically compute recovery plans

for runtime errors. This framework exploits redundancy in web applications to find

workarounds when errors occur, assuming that the application is given as a finite-state

machine (without compensation), with an identified error state as well as the “fallback”

state to which the application should return (one per error).

A workaround is a path in the finite-state machine starting at the error state and

ending at a fallback state. Before computing all the possible workarounds for an error,

the current error transitions are removed from the application model. In some cases, this

makes the fallback state unreachable, and additional system events must be inserted to

make the model connected again. The approach then exhaustively generates all possible

workarounds, prioritizing them solely by length.

Fallback states are manually identified by the developer, whereas our method attempts

to compute an approximation of these states using user-specified properties of the system

(goal transitions). Our framework also attempts to filter out unusable recovery plans

(those that do not include change states) and ranks the remaining ones. In Chapter 6,

Section 6.2, we provide a detailed comparison of our approach with the work of Carzaniga

et al. [17]. Specifically, we reverse-engineered the two Flickr examples from [17], ran them

through our framework and then compared the number and quality of the plans obtained

by the two frameworks.

Chapter 4. Monitoring and Recovery 105

4.7 Summary

In this chapter, we described our framework for runtime monitoring and recovery of

web service conversations. The monitoring portion is non-intrusive, running in parallel

with the monitored system and intercepting interaction events during runtime. It does

not require any code instrumentation, does not significantly affect the performance of the

monitored system, and enables reasoning about partners expressed in different languages.

We have then used BPEL’s compensation mechanism to define and implement an online

system for suggesting, ranking and executing recovery plans. In the next chapter, we

report on our implementation of this framework.

Chapter 5

Tool Support

In this chapter, we describe the implementation of the monitoring and recovery frame-

work presented in Chapter 4. Our tool is called RuMoR, which stands for RUntime

MOnitoring and Recovery. We have implemented RuMoR on top of the IBM Web-

Sphere product suite, using a series of publicly available tools and several short (200-300

lines) new Python or Java scripts. It takes as input the target BPEL application, en-

riched with the compensation mechanism allowing us to undo some of the actions of the

program, and a set of properties (specified as desired/forbidden behaviours) that need to

be maintained by the application as it runs. We discuss the architecture of our tool in

Section 5.1, and discuss the implementation of the tool in Section 5.2. When runtime vi-

olations are discovered, RuMoR automatically proposes and ranks recovery plans which

users can then select for execution.

5.1 Architecture

We show the architecture of our framework in Figure 5.1. In this diagram, rectangles

are components of our framework, and ovals are artifacts. We have also grouped the

components and artifacts by phase: preprocessing – green, with a symbol; runtime

monitoring – yellow, with a symbol; and recovery – blue, with a symbol. Artifacts

106

Chapter 5. Tool Support 107

Figure 5.1: Architecture of the framework.

with a thick border are the initial inputs to our framework. The preprocessing and

runtime monitoring phases of our framework are the same for both safety and mixed

properties, but different components are required for generating plans from the two types

of properties.

Developers create properties for their web services using property patterns and sys-

tem events. During the preprocessing phase, the Property Translator (PT) component

receives the specified properties and turns them into monitors (as described in Chap-

ter 4, Section 4.1.2). The LTS Extractor (LE) component extracts an LTS model from

the BPEL program (see Chapter 2, Section 2.3) and creates a second LTS model with

compensation (described in Chapter 4, Section 4.1.1). The LTS Analyzer (LA) computes

goal links and change states using the techniques described in Chapter 4, Section 4.1.3.

During the execution of the application, the Event Interceptor (EI) component inter-

cepts application events and sends them to the Monitor Manager (MM) for analysis (see

Chapter 5. Tool Support 108

Chapter 4, Section 4.2 for details). For events that appear in the monitored properties,

the EI extracts key information related to the operation invocation: message sender and

receiver, whether the invocation is synchronous or asynchronous, whether the message

can cause property violation, etc. EI then packs all this information together with the

timestamp of when the events were intercepted, and sends them to the message queue

associated with MM. The MM pops events off the queue, updating the state of each

active monitor until an error has been found (which activates the recovery phase and

resets the event queue) or all partners terminate. MM also stores the intercepted events

for recovery.

During the recovery phase, artifacts from both the preprocessing and the runtime

monitoring phases are used to generate recovery plans. In the case of safety properties,

the Safety Plan Generator generates recovery plans that can only compensate executed

activities (see Chapter 4, Section 4.3). For mixed properties, plans can compensate exe-

cuted activities and execute new activities. In this case, the Mixed Plan Generator first

generates the corresponding planning problem and then modifies it in order to generate

as many plans as required (see Chapter 4, Section 4.4).

All computed plans are presented to the application user through the Violation Re-

porter (VR), and the chosen plan is executed by the Plan Executor (PE). If no monitor

is violated during the execution of the chosen plan (MM updates the states of the active

monitors during the plan execution), the framework switches back to runtime monitoring.

We describe these components in more detail in the next section.

5.2 Implementation

In this section, we discuss the implementation of each RuMoR module, as well as the

expected input and output for each module. Selected scripts are listed in Appendix B,

while sample input and output files can be found in Appendix C. Both RuMoR and

Chapter 5. Tool Support 109

our case studies are available online at http://www.cs.toronto.edu/fm/RuMoR/.

5.2.1 Preprocessing

As the developer is responsible for the preprocessing phase, we have implemented this

part of our framework as a WebSphere Integration Developer plugin.

Property Translator provides a graphical interface for specifying properties using prop-

erty patterns and application events. Properties are translated into QREs, from which

we generate a set of monitors A, as explained in Chapter 4, Section 4.1.2. These monitors

are stored in the Aldebaran [13] format for use by the rest of the components.

LTS Extractor receives as input a BPEL program B in the BPEL4WS XML format.

We use the WS-Engineer extension [33] to LTSA [64] to translate B into an LTS L(B) and

then export it in the Aldebaran format [13], with an .aut extension. Since WS-Engineer

does not support the full handling of BPEL compensations, we built our own .aut-to-.aut

Python script (see Appendix B, Listing B.1) which uses B and L(B) to produce LC(B) as

described in Chapter 4, Section 4.1.1. Traceability between the BPEL and the resulting

LTS is established by the WS-Engineer’s encoding of BPEL scopes into names of LTS

actions. This traceability allows us to convert the computed plans back to BPEL.

LTS Analyzer receives as input the application monitors and LTS L(B) (both in the

Aldebaran format). We wrote another Python script (see Appendix B, Listing B.3) that

computes the cross-product between the application and each Ai in A \AS and uses these

cross-products to identify goal links, as described in Chapter 4, Section 4.1.3.1. This com-

ponent also checks which service invocations of B have been marked as non-idempotent,

and uses this information to identify the application change states (as described in Chap-

ter 4, Section 4.1.3.2).

Chapter 5. Tool Support 110

5.2.2 Runtime Monitoring

The monitoring phase is implemented on top of the IBM WebSphere Process Server,

a BPEL-compliant process engine for executing BPEL processes and a built-in Service

Component Architecture (SCA), which is a particular instantiation of SOA.

The Event Interceptor (EI) is deployed on the process server and establishes a bridge

through which our runtime monitoring framework communicates with the server to obtain

information about the web service execution. On the process server, SCA is responsible

for the invocation of native SCA service components and for the binding and interaction

with external services. EI monitors interactions within the SCA application server run-

time environment, and is responsible for observing and routing these invocation requests

and responses to MM. If EI observes an event that may cause termination or a property

violation (in other words, a monitor currently in a yellow state transitions to a red state

on that event), the event is first forwarded to MM for analysis. If no violation is de-

tected, the execution continues as normal. Otherwise, EI stops forwarding events to the

corresponding application instance until a recovery plan is executed. This may cause a

noticeable delay during execution, especially if the event does not cause a violation and

the application must now execute the remaining events on the queue. This delay has not

been a problem in our experiments thus far, but we have not yet studied the impact of

this delay in larger, more complex applications, which we leave as future work.

Monitor Manager receives A – the set of monitors produced by the PT component.

During execution, monitors can be enabled/disabled through MM. A new copy of each

active monitor is created for each new instance of the application. The MM component

registers itself as a listener to EI, updating the state of all active monitors when a

new event is received. MM also stores the current execution trace for each application

instance. In the case of a monitor violation, MM broadcasts the violated monitor Av and

the corresponding error trace T, initiating recovery.

Chapter 5. Tool Support 111

5.2.3 Recovery

The recovery phase is also implemented on top of the IBM WebSphere Process Server.

This allows us to avoid recomputing recovery plans by keeping a centralized hash of

property violations and computed recovery plans. The maximum plan length (k) and

the maximum number of plans (n) are the configuration parameters of the framework.

Safety Plan Generator receives as input k, n, LC(B), C(B), and T. We use a new

Python script (see Appendix B, Listing B.4) to determine which visited change states

are reachable from the error state e on LC(B), within the maximum plan length, and the

set of recovery plans RP is produced as a by-product of this check.

Mixed Plan Generator receives as input k, n, LC(B), C(B), G(B,Av), Av, and T.

We use another Python script (see Appendix B, Listing B.5) to translate LC(B) into

a planning problem (LC(B), e,Gs(B,A
v)) (see Chapter 4, Section 4.4). The planning

problem is expressed in STRIPS [29] – an input language to the planner Blackbox [54]

which we use to convert it into a SAT instance. The maximum plan length is used to

limit the size of the planning graph generated by Blackbox, effectively limiting the size of

the plans that can be produced. We use a new Java script (see Appendix B, Listing B.6)

to successively modify the initial SAT instance in order to produce alternative plans.

It calls the satisfiability solver SAT4J, extracts plans from the satisfying assignments

produced by SAT4J, ranks them and converts them to the BPEL4WS XML format for

displaying and execution. SAT4J is an incremental SAT solver, i.e., it saves results from

one search and uses them for the next. For our method of generating multiple plans,

where each SAT instance is more restricted than the previous one, this is particularly

useful, leading to efficient analysis.

Violation Reporter (VR) receives as input Av and a list of BPEL plans RP. VR

generates a web page snippet with violation information, as well as a form for selecting a

recovery plan. A snippet generated for a violation of P1 is shown in Figure 5.2. Developers

must include this snippet in the default error page, so that the computed recovery plans

Chapter 5. Tool Support 112

Figure 5.2: snippet.jsp, an automatically generated code snippet that contains the

computed recovery plans.

can be shown when an error is detected. Figure 5.3a shows the (simplified) source code

of such an error reporting page, where the bold line has the instruction to include the

snippet. After the recovery plans have been computed, the snippet is displayed as part

of the application, and the user must pick a plan to continue execution (r in the case

of safety properties, p otherwise). Figure 5.3b shows a screen shot of error.jsp after

recovery plans for P1 have been computed.

Plan Executor receives as input a BPEL plan. In IBM WebSphere Integration Devel-

oper v7 [50], developers can also add <collaboration> scopes to their processes. These

special scopes, inspired by the work on dynamic workflows [99], can be used to alter the

application logic at runtime. Statically, we add a <collaboration> scope to each process

before execution, and, at runtime, the BPEL plan chosen by the user is set as the logic

of this scope. EI also intercepts application events during the execution of the recov-

ery plan, and a new recovery plan must be chosen if the current one causes a monitor

violation.

Chapter 5. Tool Support 113

(a)

(b)

Figure 5.3: error.jsp: (a) relevant code snippet and (b) page displayed on a browser.

5.3 Summary

In this chapter, we described the implementation of RuMoR, an instantiation of the

runtime monitoring and recovery framework presented in Chapter 4. RuMoR is built

on top of the IBM WebSphere product suite, using a series of publicly available tools

and several short (200-300 lines) new Python or Java scripts (available in Appendix B).

We applied our tool to several web service applications. We describe these applications

in Chapter 6, as well as report on our experience on recovery from property violations.

Chapter 6

Case Studies

In this chapter, we report on three case studies that we have conducted in order to

validate our runtime monitoring and recovery framework: the Travel Booking System

(TBS), Flickr Visibility (FV) and Flickr Comments (FC). For each of these, we include

a description of their BPEL implementation, as well as a set of simple properties and

scenarios that violate these properties. The Travel Booking System is an adaptation

of the system presented in [38]. The two Flickr case studies originally appeared in [17],

where several aspects of the Flickr system are modelled as finite-state models. The Flickr

properties and violating scenarios were extracted from the application descriptions in [17].

We monitored each case study using the RuMoR framework. In the TBS case study

(see Section 6.1), we show how to recover from multiple seeded problems. Experience with

this larger, more complex system shows that our approach is both effective and scalable.

In Section 6.2, we compare the plans generated using RuMoR to those reported in [17].

In Section 6.3, we discuss the scalability of our framework, as well as the quality of the

recovery plans produced. Although our approach generates mostly desirable plans, users

can still be overwhelmed by the number of plans produced. Our experience with recovery

suggested a couple of techniques for reducing the number of plans generated, which we

formalize in Section 6.4, where we also show the results of applying these techniques to

114

Chapter 6. Case Studies 115

the TBS system.

6.1 Travel Booking System

The Travel Booking system (TBS) provides travel booking services over the web. In a

typical scenario, a customer enters the expected travel dates, the destination city and

the rental car location – airport or hotel. The system searches for the available flights,

hotel rooms and rental cars, placing holds on the resources that best satisfy the customer

preferences. If the customer chooses to rent a car at the hotel, the system also books the

shuttle between the airport and the hotel. If the customer likes the itinerary presented to

him/her, the holds are turned into bookings; otherwise, the holds are released. Figure 6.1

shows the BPEL implementation of this system.

6.1.1 BPEL Model

TBS interacts with three partners (FlightSystem, HotelSystem and CarSystem), each

offering the services to find an available resource (flight, hotel room, car and shuttle),

place a hold on it, release a hold on it, book it and cancel it. Booking a resource is

compensated by cancelling it (at a cost of 8 out of 10), and placing a hold is compensated

by a release (at a cost of 2). All external service calls are non-idempotent.

The workflow begins by <receive>’ing input (receiveInput), followed by <flow> with

two branches, as the flight and hotel reservations can be made independently. The

branches are labelled and :) find and place a hold on a flight,) place a hold

on a hotel room (this branch has been simplified in this case study). If there are no

flights available on the given dates, the system will prompt the user for new dates and

then search again (up to three tries). After making the hotel and flight reservations,

the system tries to arrange transportation (see the <pick> activity labelled): the user

<pick>’s a rental location (pickAirport or pickHotel), and the system tries to place holds

Chapter 6. Case Studies 116

Figure 6.1: BPEL implementation of the Travel Booking System.

on the required resources (car at airport, or car at hotel and a shuttle between the airport

and hotel).

Once ground transportation has been arranged, the reserved itinerary is displayed

to the user (displayTravelSummary), and at this point, the user must <pick> to either

book or cancel the itinerary. The book option has a <flow> activity that invokes the

booking services in parallel, and then calls two local services: one that checks that the

hotel and flight dates are consistent (checkDates), and another that generates an invoice

(generateInvoice). The result of checkDates is then passed to local services to determine

whether the dates are the same (sameDates) or not (notSameDates). The cancel option is

just a <flow> activity that invokes the corresponding release services. Whichever option

Chapter 6. Case Studies 117

is picked by the user, the system finally invokes another local service to inform the user

about the outcome of the travel request (informCustomer).

6.1.2 Properties

Some correctness properties of TBS are P TBS
1 : “there should not be a mismatch between

flight and hotel dates” (expressing a safety property, or a forbidden behaviour), P TBS
2 :

“a car reservation request will be fulfilled regardless of the location (i.e., airport or ho-

tel) chosen” (expressing a bounded liveness property or a desired behaviour), and P TBS
3 :

“ground transportation must not be picked before a flight is reserved” (forbidden be-

haviour). These are expressed using property patterns [26], converted into quantified

regular expressions (QRE) [78] and then become monitoring automata.

Property P TBS
1 : This property can be expressed using two nested instances of the Ab-

sence pattern in an After scope: Absence of a date mismatch event (notSameDates)

After both a flight and hotel have been booked (bookFlight and bookHotel, in any

order). The resulting QRE properties are:

P TBS
1a = [−bookFlight]∗·

(
bookFlight·[−bookHotel]∗·(bookHotel·[−notSameDates]∗)?

)
?

P TBS
1b = [−bookHotel]∗·

(
bookHotel·[−bookFlight]∗·(bookFlight·[−notSameDates]∗)?

)
?

When monitoring the application, we need to make sure that both P TBS
1a and P TBS

1b

hold in order to comply with the requirement P TBS
1 .

Property P TBS
2 : This property can be expressed using an instance of the Response

pattern in a Global scope: Globally hold a car (holdCar) in Response to a rental

location selection (pickAirport or pickHotel). The resulting QRE property is:

P TBS
2 = [−pickAirport, pickHotel] ∗ ·((pickAirport|pickHotel) · [−holdCar] ∗ ·holdCar·

[−pickAirport, pickHotel]∗)∗

Chapter 6. Case Studies 118

(a) (b)

(c)

Figure 6.2: Monitors: (a) ATBS1 , (b) ATBS2 and (c) ATBS3 . Red states are shaded horizontally,

green states are shaded vertically, and yellow states are shaded diagonally.

Property P TBS
3 : This property can be expressed using an instance of the Existence

pattern in a Before scope: Existence of flight reservation (holdFlight) Before the

rental location selection (pickAiport or pickHotel). The resulting QRE property is:

P TBS
3 = [−pickAirport, pickHotel]∗|

(
[−pickAirport, pickHotel, holdFlight]∗·holdFlight·Σ∗

)

6.1.3 Preprocessing

The monitoring automata for the three properties are shown in Figure 6.2. ATBS
1 , ATBS

2

and ATBS
3 have 5, 3 and 3 states, and 10, 6 and 5 transitions, respectively. ATBS

1 , ATBS
2 and

ATBS
3 have 0, 1 and 1 green states, 1, 1 and 1 yellow states, and finally, 1, 1 and 1 red

states.

The monitor ATBS
1 in Figure 6.2a enters its error state (5) when the application deter-

mines that the hotel and flight booking dates do not match (the hotel and flight can be

booked in any order). The monitor ATBS
2 in Figure 6.2b represents property P TBS

2 : if the

application terminates (i.e., sends the TER event) before holdCar appears, the monitor

Chapter 6. Case Studies 119

Scenario k Change states Variables Clauses Plans Time (s)

t1 6 8 135 254 1 0.01

8 8 798 10,355 5 0.13

13 8 1,398 25,023 13 0.27

tTBS1 5 2 – – 2 0.01

10 5 – – 5 0.02

15 8 – – 8 0.02

20 12 – – 12 0.02

25 13 – – 13 0.02

30 13 – – 13 0.02

tTBS2 5 4 108 464 0 0.01

10 7 883 30,524 2 0.14

15 10 1,456 74,932 8 1.37

20 10 2,141 135,047 18 4.72

25 10 3,298 246,210 60 29.16

30 10 5,288 464,654 68 61.34

Table 6.1: Plan generation data for the TAS and TBS systems. “–” mark cases which

are not applicable, such as references to SAT for recovery from forbidden behaviour

violations.

moves to the (error) state 3. State 1 is a good state since the monitor enters it once a car

has been placed on hold (holdCar). The monitor ATBS
3 in Figure 6.2c represents property

P TBS
3 : it enters the good state 3 once a hold is placed on a flight (holdFlight), and enters

its error state 2 if the rental location (pickAirport or pickHotel) is picked before a flight is

reserved (holdFlights).

The LTS L(TBS) has 52 states and 67 transitions, and |Σ| = 33, which makes TBS

double the size of the TAS example (the LTS is available in ALDEBARAN format in

Appendix C). 20 of the BPEL activities (highlighted with a symbol in Figure 6.1)

yield a total of 35 change states in the LTS. P TBS
2 (P TBS

3) is a mixed property, with three

(two) goal links corresponding to it.

Chapter 6. Case Studies 120

6.1.4 Experience: Recovery from a safety property violation

We generated a recovery plan for the following scenario (called trace tTBS1 , of length

k = 21) which violates property P TBS
1 : The application first makes a hotel reservation

(holdHotel) and then prompts the user for new travel dates (updateTravelDates), since

there were no flights available on the current travel dates. The car rental location is

the airport (pickAirport). The system displays the itinerary (displayTravelSummary) but

the user does not notice the date inconsistency and decides to book it. The TBS makes

the bookings (bookFlight, bookHotel and bookCar) and then checks for date consistency

(checkDates). Since the dates are not the same (notSameDates), we detect a violation of

P TBS
1 and initiate recovery.

We generated plans starting with length k = 5 and going to k = 30 in increments of

5. In order to generate all possible plans for each k, we chose n – the maximum number

of plans generated – to be MAX INT. Table 6.1 summarizes the results. A total of 13 plans

were generated, and the longest plan, which reaches the initial state, is of length 21 (and

thus the rows corresponding to k = 25 and k = 30 contain identical information). Since

tTBS1 violates a safety property, no SAT instances were generated, and the running time

of the plan generation is trivial.

The following plans turn tTBS1 into a successful trace: p1
A – cancel the flight reservation

and pick a new flight using the original travel dates, and p1
B – cancel the hotel reservation

and pick a new hotel room for the new travel dates. Our tool generated both of these

plans, but ranked them 11th and 12th (out of 13), respectively. They were assigned a low

rank due to the interplay between the following two characteristics of our case study: (i)

the actual error occurs at the beginning of the scenario (in the flight and hotel reservation

<flow>), but the property violation was only detected near the end of the workflow (in

the book flow), and (ii) tTBS1 passes through a relatively large number of change states,

and thus many recovery plans are possible.

The first of these causes could be potentially fixed by writing “better” properties –

Chapter 6. Case Studies 121

the ones that allow us to catch an error as soon as it occurs. We recognize, of course,

that this can be difficult to do. The second stems from the fact that not all service

calls marked as non-idempotent are relevant to P TBS
1 or its violation. In Section 6.4.1, we

present a method for identifying those non-idempotent service calls that are relevant to

the violation, i.e., their execution may affect the control flow of the current execution. By

reducing the number of change states considered, fewer recovery plans will be generated.

6.1.5 Experience: Recovery from a bounded liveness property

violation

The following scenario (we call it trace tTBS2 , with length 14) violates property P TBS
2 .

Consider an execution where the user reserves a hotel room (reserveHotel), and a flight

(reserveFlight). She then chooses to rent a car at the hotel (pickHotel), but no cars are

available at that hotel. TBS makes flight, hotel and shuttle reservations (holdFlight and

holdHotel), but never makes a car reservation (holdCar). The user does not notice the

missing reservation in the displayed itinerary (displayTravelSummary) and decides to book

it. The TBS tries to complete the bookings, first booking the hotel (bookHotel) and then

the car (bookCar). When the application attempts to invoke bookCar, the BPEL engine

detects that the application tries to access a non-initialized process variable (since there

is no car reservation), and issues a TER event. Rather than delivering this event to the

application, we initiate recovery.

We are again using n = MAX INT and varying k between 5 and 30, in increments of

5, summarizing the results in Table 6.1. The first thing to note is that our approach

generated a relatively large number of plans (over 60) as k approached 30. While in

general the further we move away from a goal link, the more alternative paths lead back

to it, this was especially true for TBS which had a number of <flow> activities. The

second thing to note is that our analysis remained tractable even as the length of the

plan and the number of plans generated grew (around 1 min for the most expensive

Chapter 6. Case Studies 122

Figure 6.3: Flickr Visibility: behavioural model from [17].

configuration).

Executing one of the following plans would leave TBS in a desired state: p2
A – attempt

the car rental at the hotel again, and p2
B – cancel the shuttle from the airport to the

hotel and attempt to rent a car at the airport. Unlike tTBS1 , the error in this scenario

was discovered soon after its occurrence, so plans p2
A and p2

B are the first ones generated

by our approach. p2
A actually corresponds to two plans, since the application logic for

reserving a car at a hotel is in a <flow> activity, enabling two ways of reaching the same

goal link. Plan p2
B was the 3rd plan generated.

The rest of the plans we generated compensate various parts of tTBS2 , and then try to

reach one of the three goal links. While these longer plans include more compensations

and are ranked lower than p2
A and p2

B, we still feel that it may be difficult for the user to

have to sift through all of them. As in the case of safety property violations, we can reduce

the number of plans generated by picking relevant change states. Furthermore, some of

the computed recovery plans, when executed, lead to violations of safety properties,

and thus should not be offered to the user. In Section 6.4.2, we present a method for

identifying such recovery plans that always lead to violations of safety properties.

Chapter 6. Case Studies 123

6.2 Flickr examples

In the case of the Travel Booking System, we were comparing the effectiveness of the

generated plans to our expectations. The goal of this section is to compare the effective-

ness of our framework to that of the most similar related work – the approach proposed

by Carzaniga et al. [17]. To do so, we took existing examples and ran them on our frame-

work. In Sections 6.2.2 and 6.2.1 we explain how we adapted the two Flickr examples

from [17], and in Section 6.2.3, we report our results and compare the two methodologies.

Although these case studies are originally from Web 2.0 applications, the work presented

in [17] does not not take these Web 2.0 characteristics into account, and we believe that

this is a valid comparison.

6.2.1 Flickr Visibility

Flickr is a web-based photo-management application. Photos are initially uploaded as

either public, family or private, and a photo’s visibility should be changeable anytime

using the setPerm function. The identified vulnerability is “when a photo is initially

loaded as private, its visibility cannot be changed to family at a later date”.

6.2.1.1 BPEL Model

We created the Flickr visibility system (FV) by reverse-engineering the behavioural model

in Figure 6.3 (given in [17]) and expressing it in BPEL (see Figure 6.4). The behavioural

model has four states: notOnFlickr, public, private and family. notOnFlickr is the initial

state. Executing the upload() operation (with a visibility parameter) from this state

leads to one of the three other states (public, private or family – we call these three

states “visibility states” in the rest of this section). The BPEL model FV, consists of 20

activities, of which 6 with explicit compensations.

Chapter 6. Case Studies 124

Figure 6.4: BPEL FV.

In Figure 6.4, the transitions from the initial state are modelled in the <scope>

called upload (labelled). In this scope, we call three different upload services depending

on the upload visibility: uploadPub, uploadPriv and uploadFam (equivalent to upload(),

upload(isPublic OFF) and upload(isFamily ON), respectively).

The transition relation between the visibility states specifies valid changes in the

Chapter 6. Case Studies 125

photo visibility. This has been modelled using case statements in the <scope> called

changePerm (labelled). In this scope, setPermPub, setPermPriv and setPermFam are

equivalent to setPerm(isPublic ON), {setPerm(isPublic OFF), setPerm(isFamily OFF)} and

setPerm(isFamily ON), respectively.

In order to check for the described vulnerability, we added a new activity (checkPerm)

to this model: after invoking setPerm to change the photo’s permission, we call checkPerm

to check whether the expected and actual permission settings of the photo are the same

(sending a permOk event if they are the same, and a permNotOk event if they are not).

We also defined compensation for FV. Since there were no transitions back to state

notOnFlickr, we assumed that the upload services do not have compensation. However,

compensation for the setPerm services is obvious – reversing the permission setting, e.g.,

setPerm(isPublic ON) is compensated by setPerm(isPublic OFF). The upload and setPerm

service calls are non-idempotent.

6.2.1.2 Properties

We expressed properties of the FV system: “If a user tries to set a photo’s visibility to X,

Flickr will guarantee that the photo will have the visibility X”, where X is each of the

possible visibilities. These became separate properties expressed using the Response

pattern in a Global scope:

P FV
1 : [−setPermPub] ∗ ·(setPermPub · [−permOk] ∗ ·permOk · [−setPermPub]∗)∗

P FV
2 : [−setPermFam] ∗ ·(setPermFam · [−permOk] ∗ ·permOk · [−setPermFam]∗)∗

P FV
3 : [−setPermPriv] ∗ ·(setPermPriv · [−permOk] ∗ ·permOk · [−setPermPriv]∗)∗

Property P FV
2 will “catch” the identified vulnerability in the case where a photo is

initially loaded as private.

Chapter 6. Case Studies 126

(a) (b) (c)

Figure 6.5: Monitors: (a) AFV1 , (b) AFV2 and (c) AFV3 . Red states are shaded horizontally,

green states are shaded vertically, and yellow states are shaded diagonally.

Figure 6.6: Flickr Comments: behavioural model from [17].

6.2.1.3 Preprocessing

The monitoring automata for the three properties are shown in Figure 6.5. The three

monitors are similar instances of same pattern, so they all have three states (one green,

one yellow and one red) and three transitions each.

Converted to LTS, the resulting model has 28 states and 37 transitions, and is available

in ALDEBARAN format in Appendix C. L(FV) is larger than the original behavioural

model since the LTS includes BPEL-induced actions such as entering scopes, and we used

if statements to model operation parameters.

6.2.2 Flickr Comments

Flickr lets users comment on uploaded photos. While any user can add a comment to

a public photo, only authorized users can comment on private and family photos. The

vulnerability identified in [17] is “after uploading a photo as public, no comments could

be added”.

Chapter 6. Case Studies 127

Figure 6.7: BPEL FC.

6.2.2.1 BPEL Model

Using the same process as for FV, we created the BPEL model FC (shown in Figure 6.7),

consisting of 18 activities (5 with compensations). This Flickr functionality subset is

modelled in BPEL as a <sequence> of two <scopes>: 1) upload the photo and set its

initial visibility (using setPermPub, setPermFam or setPermPriv) and set the comment

permissions (using setComON or setComOFF), and 2) allow the user to pick between add-

ing or delete-ing a comment (using addCom, delCom, respectively), and return a success

Chapter 6. Case Studies 128

Figure 6.8: Monitor AFC1 . Red states are shaded horizontally, green states are shaded

vertically, and yellow states are shaded diagonally.

message (addOK, delOK, respectively).

We also defined compensation for FC. Since all the transitions to the notOnFlickr

state in Figure 6.6 are on the delete event, we defined this event as the compensation for

upload. Similarly, delCom compensates addCom, and setComON compensates setComOFF

(and vice versa). The upload and addCom service calls are non-idempotent.

6.2.2.2 Properties

We expressed FC’s property “if a user adds a comment to a public photo that has com-

ments enabled, the comment should be successfully added to the photo’s comments”

using an instance of the Response Chain pattern.

P FC
1 : ([−uploadPub]∗·uploadPub[−setComON]∗·setComON·[−addCom]∗·addCom; [−addOk]∗

·addOk) ∗ ·[−uploadPub] ∗ ·(uploadPub · [−setComON] ∗ ·(setComON · [−addCom])?)?

6.2.2.3 Preprocessing

The monitoring automata for P FC
1 is shown in Figure 6.8. This monitor has five states

(two white, one green, one yellow and one red) and seven transitions. The resulting

LTS model has 18 states and 22 transitions, and is available in ALDEBARAN format in

Appendix C.

Chapter 6. Case Studies 129

Our approach [17]

App. k vars clauses plans time (s) length plans

FV 15 797 16,198 2 0.04 ≤ 2 1

22 1,436 33,954 4 0.74 ≤ 3 5

26 1,804 44,262 8 1.14 ≤ 4 13

42 3,276 85,494 40 3.12 ≤ 8 412

FC 4 42 159 1 0.01 ≤ 1 0

6 95 592 2 0.02 ≤ 2 2

12 321 3,248 4 0.15 ≤ 3 8

16 554 7,393 5 0.27 ≤ 4 22

20 856 14,427 13 1.38 ≤ 8 484

Table 6.2: Plan generation data for the Flickr examples.

6.2.3 Comparison with a Related Approach

The number of recovery plans generated for failed traces of FV and FC is shown in Ta-

ble 6.2. For example, for the plan length up to 26, we have generated 8 plans for FV.

The longest plan was of length 42. We looked at the effectiveness of the plan generation

process. For FV, one of the plans we generate for k = 22 is “compensate changes in visi-

bility until the photo becomes private again, set the photo visibility to public and change

visibility to family”, which corresponds to the workaround plan chosen by [17]. For FC,

the plan corresponding to the chosen workaround is “delete the problematic comment,

toggle the comments permission and then try to add the comment again”, generated

when k = 12.

To compare the precision of our approach, i.e., the number of plans generated, we

looked at the list of workaround sequences computed by [17] (see Table 6.2). The work in

[17] modelled the Flickr behaviour directly, and the model did not include BPEL-induced

actions such as entering scopes. Further, the workaround sequences did not include the

“going back” part – they were plans on how to execute a task starting from the initial

Chapter 6. Case Studies 130

state. Thus, the plans we generate are somewhat longer. For example, the workaround

sequences of length ≤ 2 correspond to our plans of length k = 15. With this adjustment,

Table 6.2 shows that we generate significantly fewer plans of the corresponding length.

We also generate every plan marked as desired in [17].

Our experience with the Flickr examples suggests that combining simple properties

with the compensation mechanism is effective for producing recovery plans.

6.3 Summary of Evaluation

In this section, we discuss the scalability of our framework, as well as the quality of the

recovery plans produced.

6.3.1 Scalability

To check whether SAT-solving done as part of the planning is the bottleneck of our

approach, we measured sizes of SAT problems for TAS, TBS, FV, and FC, listing them in

Tables 6.1 and 6.2. For all four systems, the number of variables and the number of

clauses grows linearly with the length of the plan, as expected, and the running time of

the SAT solver remains in seconds.

While the web applications we have analyzed have been relatively small, our experi-

ence suggests that SAT instances used in plan generation remain small and simple and

scale well as length of the plan grows. Given that modern SAT solvers can often handle

millions of clauses and given that individual web services are intended to be relatively

compact (with tens rather than thousands of partner calls), we have a good reason to

believe that our approach to plan generation is scalable to realistic systems.

A thorough experimental analysis would involve systematically modifying a control

application, and registering how changes to it affect the SAT instance generated for

liveness plans. For example, adding more <flow> activities adds more transitions to the

Chapter 6. Case Studies 131

application LTS, which in turn adds more clauses to the SAT encoding of the application.

We expect similar results when adding more <pick> activities, with varying amounts of

<onMessage> children. We are also interested in studying how the length and location

of the error trace, as well as the number of change states and goal transitions affect the

size of the SAT instance, as these artifacts determine how much of the planning graph is

encoded. This more thorough experiment would give us a better idea of how the structure

of the application and the error trace affect the scalability of our approach, and we plan

to conduct such an experiment in the near future.

6.3.2 Plan Quality

We conducted a preliminary study involving potential users of our framework to find

out whether RuMoR can compute plans that correspond to the recovery actions that

a typical user of the application might try once an error is detected. We also want to

determine how well our framework ranks plans.

We only included the TAS and TBS systems in this study since both of these systems

have a clear design and implementation. In contrast, the BPEL models of the Flickr

examples attempt to mimic the behavioural models presented in [17], which makes their

implementation unintuitive and hard to follow. Our methodology (per application) is

described below. Each application has two scenarios: a safety and a mixed property

violation.

1. We started by presenting the application, its BPEL model and properties to the

study participant.

2. We explained the concept of compensation, as well as recovery plan. We indicated

which activities in the BPEL model have compensation, as well as their cost.

3. We presented each application’s safety property violation scenario. We asked the

user to produce, by hand, at least three recovery plans for the scenario, being as

Chapter 6. Case Studies 132

specific as possible, and to rank these plans as well, in the order in which they

would try to execute them.

4. We asked the users to do the same for the mixed property scenario.

Currently, our study just had two participants, but we plan to conduct more interviews

in the short-term. Since there is not enough data to make any conclusive claims, in the

rest of this section we discuss the most interesting observations we have made thus far.

The raw data we collected is available in Appendix C.2.

Our participants produced at most three plans per scenario. In order to understand

why our participants reported so few plans, we compared the user-created and RuMoR

plans, trying to find semantically equivalent plans. What we found is that a single

user-created plan could be matched to multiple RuMoR plans. For example, one user

reported the following plan for t1: “cancel the flight, book a car, and then book another

flight” (see Appendix C.2, Section C.2.1, Subject #2, plan 2). Since the user does not

care whether the flight is cheap or expensive (since they booked a car), this user-reported

plan is equivalent to plans p1 and p2 in Figure 4.9a. This experience gives us an idea for

improving our framework – we do not want to present plans that differ in the occurrence of

side-effect-free actions, nor those that differ in the order in which activities are executed,

since both types of plans will likely lead the system to the same goal state and are thus

indistinguishable in their final result.

Another observation is that users were reticent to include compensation in their plans.

This anecdotal evidence backs up our intuition that plans with more compensation should

be ranked lower. Finally, we do not have enough data yet to do a precision/recall analysis

to determine how accurately our plans were ranked, but we can report that all user-

created plans were generated by RuMoR.

Overall, these are promising, but preliminary results. We cannot yet conduct a pre-

cision/recall analysis, but in the future, we plan to conduct more extensive user studies,

Chapter 6. Case Studies 133

Id Activity Label Predicate Non-idempotent service calls

1 <while> availableFlights <= 0&&tries < 3 getAvailableFlights labelled ,

2 <if> availableFlights > 0 getAvailableFlights labelled ,

3 <if> availableCars > 0 getAvailableRentalsAirport labelled

4 <if> consistent == true holdHotel, holdFlight, labelled , , respectively

Table 6.3: Predicates that appear on trace tTBS1 , and the non-idempotent service invoca-

tions that affect their values.

increasing the complexity of the studied applications, as well as increasing the amount

of study participants.

6.4 Optimization: Reducing the Number of Gener-

ated Plans

As discussed in Chapter 4, our tool attempts to produce a set of recovery plans for each

detected violation. However, in some cases this set includes unusable plans. In this

section, we look at techniques for filtering out two types of unusable plans: those that

require going through unnecessary change states, where re-executing the partner call

cannot affect the (negative) outcome of the trace (see Section 6.4.1), and those that fix

a liveness property at the expense of violating some safety properties (see Section 6.4.2).

6.4.1 Relevant Change States

Change states (see Chapter 4, Definition 4.5) are application states from which flow-

changing actions can be executed: states that model <flow> or <pick> activities, and

states from which non-idempotent service calls can be made.

Let us reexamine the trace tTBS1 from Section 6.1. This trace visited 13 change states,

of which 11 correspond to non-idempotent service calls. The two flow activities executed

on the trace identify two change states that coincide with two states already identified

Chapter 6. Case Studies 134

using non-idempotent service calls (holdHotel and bookCar). The remaining two change

states correspond to the two <pick> activities on the trace (a choice between rental

locations, and a choice between booking/cancelling the itinerary).

As <pick> and <flow> activities are flow-altering actions by definition, the change

states identified by these activities are always relevant to the current violation. On the

other hand, not all service calls marked as non-idempotent are relevant, i.e., their execu-

tion cannot modify the current execution trace. For example, bookFlight and bookHotel

are both non-idempotent service calls that appear in tTBS1 , and so define two recovery

plans. However, these two plans are not useful: after their execution, the application is

forced to complete the execution of tTBS1 in its entirety. This happens because none of

the later control predicates depend on the output produced by these service calls. This

example suggests a definition of relevant change state:

Definition 6.1 (Relevant Change State). A change state is relevant if and only if:

• the state is identified as a change state by a <flow> or <pick> activity, or

• the state is identified as a change state by a non-idempotent service call, and a

variable that appears in a control activity is data dependent on the outcome of this

service call.

In order to carry out the data dependency analysis on the application LTS, we must

first determine which BPEL activities define and use process variables, and how to map

this information to the LTS model. <invoke> and<assign> activities both define and use

variables. For example, the getAvailableFlights service call takes as input the travelRequest

variable (use) and modifies the availableFlights variable (definition). Both <while> and

<if> activities use the variables that appear in the activity’s predicate. <flow> and

<pick> do not use or define variables.

We can now define the following two sets of variables for each LTS transition

(s
a−→ s′): the set of variables defined by the action a (Def(s

a−→ s′)), and the set

Chapter 6. Case Studies 135

of variables used by action a (Use(s
a−→ s′)). Formally:

Def(s
a−→ s′) =

{inVar} if a represents <invoke . . . inputVariable = “inVar” . . .>

{fromVar} if a represents <assign><from>fromVar</from>. . .>

∅ otherwise

and

Use(s
a−→ s′) =

{outVar} if a represents <invoke . . . outputVariable = “outVar” . . .>

{toVar} if a represents <assign><to>toVar</to>. . .>

{v1, v2, . . . vn} if a represents a <while> or <if> branch, and

{v1, v2, . . . vn} appear in the corresponding <condition>

∅ otherwise

The set of variable definitions that occur on a trace is the union of the definitions that

occur on the individual transitions of the trace: for a trace T = s0a0s1a1s2 . . . an−1sn,

Def(T) =
⋃
i Def(si

ai−→ si+1). Now we can define direct data dependency : a transition v

is directly data dependent on another transition u if and only if v uses a variable defined

by u, and there is a path from u to v where this variable is not redefined.

Definition 6.2 (Directly Data Dependent). A transition (q
b−→ q′) is directly data de-

pendent on a transition (p
a−→ p′) if and only if there is a trace T = s0a0s1a1s2 . . . an−1sn

such that p′ = s0, q = sn and
(
Def(p

a−→ p′)
⋂

Use(q
b−→ q′)

)
− Def(T) 6= ∅.

For example, in Figure 6.1, the <if> activity labelled and the holdFlight service

call labelled are both directly data dependent on the getAvailableFlights service calls

at and .

We now informally define data dependency : a transition v is data dependent on an-

other transition u if and only if there exists a path from u to v that can be divided into

sections, where each section is directly data dependent on a previous section. For exam-

ple, the bookFlight service call is directly data dependent on the invocation of holdFlight,

so bookFlight is data dependent on both invocations of the getAvailableFlights service.

Now we can carry out the data dependency analysis on trace tTBS1 . This trace executed

Chapter 6. Case Studies 136

four control activities: 1) the <while> labelled , 2) the <if> labelled , 3) the <if>

labelled , and 4) the <if> labelled . Table 6.3 lists the corresponding predicates, as

well as the non-idempotent service calls that can affect the values of these predicates.

For example, the <while> condition is availableFlights <= 0&&tries < 3. This use of

the availableFlights variable is directly data dependent on both appearances of the non-

idempotent getAvailableFlights service. On the other hand, the tries variable is not data

dependant on any non-idempotent service calls, since it is a simple counter updated by

an <assign> statement inside the <while> activity.

The data dependency analysis for predicates 2 and 3 is similar to that of predi-

cate 1. Variable availableFlights also appears in predicate 2, so the non-idempotent ser-

vice calls marked as relevant are the same as predicate 1. Predicate 3 tests the value

of availableCars, which is directly data dependent on the non-idempotent service call

getAvailableRentalsAirport. In the case of predicate 4, the variable consistent is directly

data dependent on the idempotent service checkDates. The checkDates service call is

directly data dependent on the non-idempotent service calls holdHotel and holdFlight, as

these services modify reservationData, the input variable of the checkDates service. Thus,

predicate 4 is data dependent on holdHotel and holdFlight. These are summarized in

Table 6.3.

So, only five of the 10 non-idempotent service calls on trace tTBS1 are identified as

relevant. The <flow> and <pick> activities on trace tTBS1 identify another three relevant

change states, so RuMoR now generates a total of 0 (k = 5), 2 (k = 10), 5 (k = 15) and

8 (k = 20, 25, 30) plans for this trace. The desired plans p1
A and p1

B are still generated

(at k = 20, 25, 30), but are now ranked 6th and 7th (instead of 11th and 12th). These

two plans are still ranked low because of the amount of compensation they require, but

by omitting plans that cannot alter the control flow of the current execution, we reduced

the number of plans presented to the user by 50%.

We also carried out the same analysis on trace tTBS2 : six of the original 10 change states

Chapter 6. Case Studies 137

are marked as relevant. Since trace tTBS2 visits the same <pick> and <flow> activities

as tTBS1 , four of the relevant change states are those identified by these activities (two by

the two <pick> activities, and two by the two <flow> activities). Trace tTBS2 only visited

two control locations: the <if> labelled , and the <if> labelled . The predicates

for these activities are availableFlights > 0 and availableCars > 0. The availableFlights

variable is directly data dependent on the only invocation of the non-idempotent service

getAvailableFlights on this trace (labelled), and the availableCars variable is directly data

dependent on the non-idempotent invocation of the getAvailableRentalsHotel service (la-

belled). Thus, the remaining two relevant change states correspond to non-idempotent

service calls.

6.4.2 Avoiding Forbidden Behaviours

Our second method aims to remove those plans that result in the system performing

behaviour which is explicitly forbidden. That is, we use safety properties to help filter

recovery plans for liveness properties. As described in Chapter 4, Section 4.4, given

a trace T that violates a mixed property, we compute a plan P which first “undoes”

the trace until a change state and then computes an alternative path to a certain goal.

P is unsuitable if the path from the initial state going through this change state and

continuing via the computed alternative path towards the goal (shown using a thick line

in Figure 6.9 and denoted TP) is forbidden. That is, there exists a safety monitor Ai which

enters an error state when executed on TP.

The simplest method, presented here, applies the filtering w.r.t. safety properties

after the set of recovery plans has already been produced. That is, given a trace T and

a plan P, we can compute TP and simulate every safety monitor on it, removing P from

consideration if any monitor fails.

The path from the initial state to the change state used in P can be very long, and

thus we feel that simulating each monitor on the entire trace TP is very inefficient. We

Chapter 6. Case Studies 138

Figure 6.9: Schematic view of recovery plan P (replicated from Chapter 1), showing TP

(thick line), the path from the initial state that corresponds to P.

also cannot execute monitors backwards from the error state of T along the “undo” part

of P: while our monitors are deterministic, their inverse transition relations do not have

to be deterministic, making the execution in reverse problematic.

Instead, we aim to maintain enough data during the execution of the trace T in

order to be able to restart monitors directly from the change state, moving along the

new, recomputed path of the plan. To do so, as T executes, we record the states of all

monitors in the system in addition to the states and transitions of the application. Thus,

for each state s of the application reached during the execution of trace T, we store a

tuple (s, sA1 , ..., sAn), where sAi is a state of the monitor Ai as the application is in state

s. To check whether P is a valid plan, we go directly to the change state sc in P, extract

the tuple (sc, sA1 , sA2 , ..., sAn) stored as part of T and then simulate each safety monitor Ai

starting it from the state sAi along P which starts at state sc.

As an example, consider the TBS system and trace tTBS2 , described in Section 6.1,

violating the property P TBS
2 . Our approach produces over 60 plans to recover from this

violation, for plan lengths k ≥ 25 (see Table 6.1). Consider the plan that goes back all

the way until encountering the change state associated with the call to getAvailableFlight,

cancelling the booked flights on the way. Afterwards, this plan attempts to rebook a

flight, but fails to do so. It continues executing, and tries to pick a car at the airport

instead. However, this plan violates property P TBS
3 (i.e., monitor ATBS3 would enter its error

state upon seeing an action pickAirport). Thus, we automatically filter this plan out and

do not present it to the user.

Chapter 6. Case Studies 139

Scenario k Baseline Relevant Avoiding Forbidden Both

(from Table 6.1) Change States Behaviours improvements

change states plans change states plans plans plans

tTBS1 5 2 2 0 0 – –

10 5 5 2 2 – –

15 8 8 5 5 – –

20 12 12 8 8 – –

25 13 13 8 8 – –

30 13 13 8 8 – –

tTBS2 5 4 0 2 0 0 0

10 7 2 4 2 2 2

15 10 8 6 5 8 5

20 10 18 6 15 11 8

25 10 60 6 41 32 23

30 10 68 6 41 38 23

Table 6.4: Results of applying both improvements (separately, and then combined) to the

TBS case study. “–” marks cases which are not applicable, since the second improvement

only applies to bounded liveness properties.

Overall, applying this approach to recovery for trace tTBS2 reduces the number of plans

from over 60 to 41. Furthermore, combining it with the computation of the relevant

change states, the number of plans is further reduced to 23 (see Table 6.4). While this

number is still relatively large, it presents a considerable improvement and enables the

user to pick a desired plan more easily. Of course, the usability of the approach is further

significantly improved by limiting the maximum length of the plans produced, but such

improvements are orthogonal to the ones studied in this thesis.

6.5 Summary

In this chapter, we reported on our experience of applying RuMoR to four case studies.

Our framework successfully detected property violations and generated desired recovery

Chapter 6. Case Studies 140

plans. Our experience with the Flickr examples suggests that combining simple properties

with the compensation mechanism is effective for producing recovery plans. While the

web applications we have analyzed have been relatively small, our experience suggests

that SAT instances used in plan generation remain small and simple and scale well as

length of the plan grows. Finally, the two proposed optimizations reduced the number

of computed plans, without discarding relevant plans.

Chapter 7

Conclusion and Future Work

In this chapter, we summarize the contributions made in this thesis and outline directions

for future research.

7.1 Summary

In this thesis, we have presented techniques to address several challenges facing the

dynamic analysis of web service applications. These challenges range from making the

process of property specification more amenable to developers, to automating the process

of computing and applying recovery plans for runtime errors. We have explored these

challenges in the specific context of BPEL.

In Chapter 3, we have presented W-SD, a subset of UML 2.0 SDs that can be used as

a language for specifying properties of web service applications. Specifications expressed

in W-SD permit the analysis of orchestrations involving multiple partners, from the point

of view of the orchestrating service. We demonstrated the expressiveness of this subset by

successfully mapping all the Specification Property System patterns into our SD subset.

In Chapter 4, we have presented our framework for runtime monitoring and recovery

of web service applications. The monitoring portion is non-intrusive, running in parallel

with the monitored system and intercepting interaction events during runtime. It does

141

Chapter 7. Conclusion and Future Work 142

not require any code instrumentation, does not significantly affect the performance of the

monitored system, and enables reasoning about partners expressed in different languages.

We have then used BPEL’s compensation mechanism to define and implement an online

system for suggesting, ranking and executing recovery plans.

In Chapter 5, we described the implementation of RuMoR, an instantiation of our

runtime monitoring and recovery framework. RuMoR is built on top of the IBM Web-

Sphere product suite, using a series of publicly available tools and several short new

scripts.

In Chapter 6, we reported on our experience of applying RuMoR to three case stud-

ies. RuMoR successfully detected property violations and efficiently generated desired

recovery plans. We compared the plans generated by RuMoR to those generated by the

recovery framework proposed by Carzaniga et al. [17] – in our experience, our property-

guided error recovery framework was able to produce better (and fewer) plans than a

framework that does not take properties into account. While the web applications we

have analyzed have been relatively small, our experience also suggests that SAT instances

used in plan generation remain small and simple and scale well as length of the plan grows.

Finally, we have presented two optimizations that reduce the number of computed plans,

without discarding relevant plans.

7.2 Future Work

The work presented in this thesis suggests various future research directions in the area

of dynamic web service analysis. In this section, we outline some of these directions and

their connection to this thesis.

7.2.1 Improving Tool Support

The following is a list of short-term improvements we plan to carry out:

Chapter 7. Conclusion and Future Work 143

1. We have evaluated our approach on relatively small and simple examples. While

we expect web service applications to be small, it is still important to conduct

further case studies to assess scalability and, more importantly, usability of our

approach. The latter issue is extremely important, since users will not execute

plans they do not understand. With this in mind, we have designed the Violation

Reporter component (see Chapter 5) so that violation reporting and plan suggestion

are seamlessly integrated into the monitored application. However, we still need to

address plan presentation issues. For example, we do not want to present plans that

only differ in the order in which certain activities are executed, since executing any

of these plans will likely lead the system to the same goal state. We will attempt to

use partial-order reduction [95, 80] to compute representative plans in this situation.

We also plan to study how to reorder the events in the executed trace in order to

minimize the amount of compensation required by the computed recovery plans.

2. Throughout Chapter 4, we have identified several precision issues related to the

identification of goals and change states. We intend to apply static analysis tech-

niques to help improve it and conduct further experiments to better understand

the tradeoffs between the more expensive analyses and the effective computation

of recovery plans. For example, since we over-approximate goal transitions by only

identifying the last event that must occur in order to observe a desired behaviour,

our framework may suggest plans that do not ensure the completion of the desired

behaviour. We can remedy this situation by extending goal transitions to include a

larger suffix of the desired behaviour, thus improving the chances that the suggested

plans actually execute the desired behaviour.

3. We are also interested in improving our use of SAT solving for better plan gen-

eration, e.g., by studying how to encode forbidden behaviours as part of the SAT

problem rather than filtering them out after the plan has been generated (see

Chapter 7. Conclusion and Future Work 144

Chapter 6, Section 6.4.2). One way of doing this is to use the safety properties to

statically produce a new model of the application where behaviours that likely lead

to property violation have been removed, and then use this model for computing

plans. Another issue is the use of incremental SAT solving. We currently use an

incremental SAT solver to generate multiple plans for a fixed plan length k. How-

ever, we do not reuse the results of this process when computing plans of length

k+ 1. Since many plans at k+ 1 may be simple extensions of plans of length k, we

expect that this improvement may significantly reduce plan computation times.

4. The work in this thesis concentrates on the efficient computation of recovery plans,

and we have only included a preliminary study on plan quality and usability (see

Chapter 6, Section 6.3.2). In future, we plan to conduct a more conclusive study

about plan quality.

5. We are also currently using a simplistic metric to rank plans; we believe plan ranking

can be greatly improved through analysis of user histories. For example, we can use

machine learning techniques to classify users according to their histories, thus also

ranking plans according to how popular these have been amongst previous users of

the application.

6. The current version of RuMoR can only analyze BPEL applications running on

the IBM WebSphere Process Server [51]. Recall from Chapter 5 that two Ru-

MoR components interact directly with the BPEL engine: the Event Interceptor

and the Plan Executor. Since the current implementation of these components

includes IBM intellectual property, we cannot make them available online. We

are in the process of designing stand-alone versions of them. For example, the

Event Interceptor component can be implemented as a wrapper web service that

records registered events between the application and the BPEL engine. The Plan

Executor component is harder to generalize because of the static nature of BPEL

Chapter 7. Conclusion and Future Work 145

applications. We currently rely on dynamic workflows [99] to execute plans, but

we are investigating whether aspect-orientation can be used instead (e.g., like are

available in ActiveBPEL [1]).

7.2.2 Reasoning about Data-Aware Properties

Currently, our framework only permits the definition of properties that depend on the

occurrence and order of system events. By monitoring the actual data exchanged by

conversation participants, we could check richer properties that depend on such data.

We cannot use the existing automata translations for data-exchange properties directly,

because the resulting automata would be too large to be useful for monitoring. Hallé

and Villemaire [42, 43] deal with this problem by generating data-aware monitors on-

the-fly (see Chapter 4, Section 4.6). This approach is adequate for monitoring, but may

significantly affect the scalability of the recovery plan generation process. Recall from

Chapter 4 that we use monitors to compute goal transitions, and in Chapter 6, we use

monitors to reduce the number of plans presented to the user. Runtimes for these two

procedures will significantly increase if monitors need to be constantly regenerated.

The size of the monitors is not the only issue that arises from making our framework

data-aware. We currently model compensation as going back to states visited earlier in

the run. While this model is simple, clean and enables effective analysis, the BPEL com-

pensation mechanism allows users to execute arbitrary compensation sequences, which

may or may not restore the state of the application. For example, if we model the

amount of money the user has as part of the state, then booking and then cancelling a

flight brings her to a different state – the one where she has less money and no flight.

Thus, extending our framework to situations where compensation affects data remains a

challenge, since the application model is no longer statically available. In order to reason

about data and more complex compensation, we need to augment the model of the appli-

cation with state information collected at runtime. This directly affects the computation

Chapter 7. Conclusion and Future Work 146

of goal transitions and change states, which can no longer be precomputed. We may be

able to increase the efficiency of this process by carrying out some static analysis on the

application model, e.g., if all the paths out a state definitively lead to an error, then this

state cannot be a change state.

7.2.3 Monitoring and Recovery for Smart Web Service Inter-

actions

In this thesis, we have described how to monitor and recover from violations in the tradi-

tional web setting, where applications are predefined and are deployed on the server. An

emerging paradigm is that of the smart internet, which focuses on user-centric applica-

tions. Advances in web technologies have made possible web applications that combine

the “media-rich power of the traditional desktop with the deployment and content-rich

nature of web applications” [3]. New web applications are highly configurable, result-

ing in different user experiences for different users. For example, Gmail (Google’s email

service) introduces new features to different users at different times in order to analyze

the usability of these features, and users can themselves choose to activate or deactivate

certain features. The Smart Internet proposal by Ng et al. [74] attempts to formalize

the concept of user-centric applications. In this proposal, users maintain lists of personal

goals (defined in [74] as matters of concern (MOC)) that persist between individual ses-

sions with various services. These constraints are used to customize existing applications

in order to satisfy individual users’ requirements.

Our proposed framework can be easily adapted to this paradigm, as we describe

below:

1. User MOCs are obvious candidates for liveness properties for our framework. They

essentially describe user desires to get something accomplished, e.g., making a

purchase of a great gift. In addition, users operate under a variety of constraints,

Chapter 7. Conclusion and Future Work 147

such as making sure that they stay within their budget or that the gift’s arrival

day is before Christmas. Thus, we feel that user properties in the smart internet

model are effectively MOCs subject to constraints. In our model, constraints are

described using safety properties and MOCs – using liveness properties.

However, our approach, as presented, has a limitation: the properties need to

be expressible by end users. While the pattern-based approach certainly makes

property expression easier than the traditional, logic-based approach, it still may

not be appropriate for the end users.

2. In our approach, compensation and its cost are defined statically in BPEL. In order

to move our approach to the smart internet model, compensation and its cost should

be user-specified (e.g., to account for cases where some users pay smaller fees for

a transaction cancellation, be that for a stop payment or for cancelling a flight).

Unfortunately, we are not aware of existing technology which allow such dynamic,

user-centred compensation definition and configuration.

3. Finally, in the traditional model of internet, applications are created and tested by

software developers. In the smart internet domain, the standard notion of testing

as means of quality assurance cannot be applied, since each user has her own

version of the application, with its own MOC, constraints and compensation. Thus,

monitoring is the only way to ensure correctness of such applications. However, we

cannot centrally monitor all these different versions of the application and MOCs

and still expect to keep a low monitoring overhead. Our work so far has assumed

that all partners operate within the same process server and thus a centralized

monitoring and recovery is a viable option. In practice, most web services are

distributed, requiring distributed monitoring and recovery. Techniques for turning

a centralized monitor into a set of distributed ones, running in different process

servers, have been investigated by the DESERT project [52], but we leave the

Chapter 7. Conclusion and Future Work 148

problem of distributed plan generation and execution for future work.

Overall, while there are a number of hurdles to overcome to make behavioural monitor-

ing and recovery truly usable for the smart internet paradigm, we feel that this approach

is a promising way of ensuring quality of user-centric web systems where the level of

customization does not allow effective testing.

Bibliography

[1] Active Endpoints. BPEL Open Source Engine. htt://www.activebpel.org, Ac-

cessed August 2010.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison Wesley, 1986.

[3] Jeremy Allaire. Macromedia Flash MX: A Next-Generation Rich Client. White

paper, Macromedia, March 2002. Available online (14 pages).

[4] Rajeev Alur and Mihalis Yannakakis. Model Checking of Message Sequence Charts.

In Proceedings of 10th International Conference on Concurrency Theory (CON-

CUR’99), volume 1664 of LNCS, pages 114–129. Springer, 1999.

[5] Mohamed Ariff Ameedeen and Behzad Bordbar. A Model Driven Approach to

Represent Sequence Diagrams as Free Choice Petri Nets. In Proceedings of the

2008 12th International IEEE Enterprise Distributed Object Computing Conference

(EDOC’08), pages 213–221. IEEE Computer Society, 2008.

[6] Marco Autili, Paola Inverardi, and Patrizio Pelliccione. A Scenario Based Notation

for Specifying Temporal Properties. In Proceedings of the 2006 ICSE Interna-

tional Workshop on Scenarios and State Machines: Models, Algorithms, and Tools

(SCESM’06), pages 21–28, 2006.

149

Bibliography 150

[7] Jorge A. Baier and Sheila A. McIlraith. Planning with First-Order Temporally

Extended Goals using Heuristic Search. In Proceedings of 21st National Confer-

ence on Artificial Intelligence (AAAI’06) and the 18th Innovative Applications of

Artificial Intelligence Conference (IAAI’06). AAAI Press, July 2006.

[8] Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti, and Claudio

Schifanella. Verifying the Conformance of Web Services to Global Interaction Pro-

tocols: A First Step. In Proceedings of International Workshop on Web Services

and Formal Methods (WS-FM’05), volume 3670 of LNCS, pages 257–271, 2005.

[9] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart Monitors for Composed

Services. In Proceedings of 2nd International Conference on Service Oriented Com-

puting (ICSOC’04), pages 193–202, November 2004.

[10] Luciano Baresi and Sam Guinea. Towards Dynamic Monitoring of WS-BPEL Pro-

cesses. In Proceedings of 3rd International Conference on Service Oriented Com-

puting (ICSOC’05), pages 269–282, 2005.

[11] Luciano Baresi and Sam Guinea. Dynamo and Self-Healing BPEL Compositions

(research demonstration). In Proceedings of the 29th International Conference on

Software Engineering (ICSE’07), pages 69–70. IEEE Computer Society, 2007. Com-

panion Volume.

[12] Daniel Le Berre and Anne Parrain. SAT4J. http://www.sat4j.org/, Accessed

August 2010.

[13] Marius Bozga, Jean-Claude Fernandez, Alain Kerbrat, and Laurent Mounier. Pro-

tocol Verification with the ALDÉBARAN Toolset. International Journal on Soft-

ware Tools for Technology Transfer, 1(1-2):166–184, 1997.

[14] Yuriy Brun and Nenad Medvidovic. Fault and Adversary Tolerance as an Emergent

Property of Distributed Systems’ Software Architectures. In Proceedings of the

Bibliography 151

2007 Workshop on Engineering Fault Tolerant Systems, (EFTS’07), pages 1–7,

September 2007.

[15] Tevfik Bultan. Modeling Interactions of Web Software. In Proceedings of the

2nd International Workshop on Automated Specification and Verification of Web

Systems (WWV’06), pages 45–52, 2006.

[16] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation specification:

a new approach to design and analysis of e-service composition. In WWW ’03:

Proceedings of the 12th International Conference on World Wide Web, pages 403–

410, New York, NY, USA, 2003. ACM.

[17] Antonio Carzaniga, Alessandra Gorla, and Mauro Pezze. Healing Web Applications

through Automatic Workarounds. International Journal on Software Tools for

Technology Transfer, 10(6):493–502, 2008.

[18] Betty H. C. Cheng, Rogério de Lemos, David Garlan, Holger Giese, Marin Litoiu,

Jeff Magee, Hausi A. Müller, and Richard Taylor. SEAMS 2009: Software engineer-

ing for adaptive and self-managing systems. In 31st International Conference on

Software Engineering, (ICSE’09), Companion Volume, pages 463–464, May 2009.

[19] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee,

Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Gio-

vanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina

Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer,

Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park,

Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle.

Software Engineering for Self-Adaptive Systems: A Research Roadmap. In Soft-

ware Engineering for Self-Adaptive Systems, pages 1–26, 2009.

Bibliography 152

[20] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT

Press, 1999.

[21] William R. Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow patterns

in Orc. In Paolo Ciancarini and Herbert Wiklicky, editors, Proceedings of the 8th

International Conference (COORDINATION ’06), volume 4038 of Lecture Notes

in Computer Science, pages 82–96. Springer, 2006.

[22] Katherine E. Coons. Transactional Orc. Unpublished proposal, May 2008.

[23] Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence

Charts. Journal of Formal Methods in System Design (FMSD), 19(1):45–80, 2001.

[24] Declan McCullagh. Amazon.com experiences hours-long outage. http://news.

cnet.com/8301-1023_3-20009241-93.html, Accessed August 2010.

[25] Glen Dobson. Using WS-BPEL to Implement Software Fault Tolerance for Web

Services. In 32nd EUROMICRO Conference on Software Engineering and Advanced

Applications (EUROMICRO-SEAA’06), pages 126–133, August, 2006.

[26] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property Specifi-

cation Patterns for Finite-State Verification. In Proceedings of the 2nd Workshop

on Formal Methods in Software Practice (FMSP ’98), pages 7–15. ACM, March

1998.

[27] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Prop-

erty Specifications for Finite-State Verification. In Proceedings of 21st International

Conference on Software Engineering (ICSE’99), pages 411–420. ACM, May 1999.

[28] Matthew B. Dwyer, Vicki Carr, and Laura Hines. Model Checking Graphical User

Interfaces using Abstractions. In Proceedings of the 6th European Software Engi-

neering Conference held jointly with the 5th ACM SIGSOFT International Sympo-

Bibliography 153

sium on Foundations of Software Engineering (ESEC ’97/FSE-5), pages 244–261.

Springer-Verlag New York, Inc., 1997.

[29] Richard Fikes and Nils J. Nilsson. STRIPS: A New Approach to the Application of

Theorem Proving to Problem Solving. Journal of Artificial Intelligence, 2(3/4):189–

208, 1971.

[30] Howard Foster. A Rigorous Approach to Engineering Web Service Compositions.

PhD thesis, Imperial College, 2006.

[31] Howard Foster, Wolfgang Emmerich, Jeff Kramer, Jeff Magee, David Rosenblum,

and Sebastian Uchitel. Model Checking Service Compositions under Resource Con-

straints. In Proceedings of the the 6th Joint Meeting of the European Software En-

gineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering (ESEC-FSE ’07), pages 225–234. ACM, 2007.

[32] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Model-based Ver-

ification of Web Service Compositions. In Proceedings of 18th IEEE International

Conference on Automated Software Engineering (ASE’03), pages 152–163. IEEE

Computer Society, 2003.

[33] Howard Foster, Sebastián Uchitel, Jeff Magee, and Jeff Kramer. LTSA-WS: a

Tool for Model-Based Verification of Web Service Compositions and Choreogra-

phy. In Proceedings of the 28th International Conference on Software Engineering

(ICSE’06), pages 771–774, May 2006.

[34] Xiang Fu, Tevfik Bultan, and Jianwen Su. Conversation Protocols: A Formalism for

Specification and Verification of Reactive Electronic Services. In Proceedings of the

Eighth International Conference on Implementation and Application of Automata

(CIAA’03), pages 188–200, July 2003.

Bibliography 154

[35] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of Interacting BPEL Web

Services. In Proceedings of the 13th International Conference on World Wide Web

(WWW’04), pages 621–630, May 2004.

[36] Maria Grazia Fugini and Enrico Mussi. Recovery of Faulty Web Applications

through Service Discovery. In Proceedings of the 1st SMR-VLDB Workshop, Match-

making and Approximate Semantic-based Retrieval: Issues and Perspectives, 32nd

International Conference on Very Large Databases, pages 67–80, September 2006.

[37] Yuan Gan. Runtime Monitoring of Web Service Conversations. Master’s thesis,

University of Toronto, Department of Computer Science, March 2007.

[38] Yuan Gan, Marsha Chechik, Shiva Nejati, Jon Bennett, Bill O’Farrell, and Julie

Waterhouse. Runtime Monitoring of Web Service Conversations. In Proceedings of

the 2007 conference of the Centre for Advanced Studies on Collaborative Research

(CASCON’07), pages 42–57, November 2007.

[39] Naghmeh Ghafari, Arie Gurfinkel, Nils Klarlund, and Richard Trefler. Algorithmic

Analysis of Piecewise FIFO Systems. In Proceedings of 7th International Conference

on Formal Methods in Computer-Aided Design (FMCAD’07), pages 45–52. IEEE

Computer Society, November 2007.

[40] Victor M. Glushkov. The Abstract Theory of Automata. Russian Mathematical

Surveys, 16(5):1–53, 1961.

[41] Radu Grosu and Scott A. Smolka. Safety-Liveness Semantics for UML 2.0 Sequence

Diagrams. In Proc. of ACSD’05, pages 6–14, 2005.

[42] Sylvain Hallé and Roger Villemaire. Runtime Monitoring of Message-Based Work-

flows with Data. In Proceedings of the 12th IEEE Enterprise Distributed Object

Computing Conference (ECOC’08), pages 63–72, 2008.

Bibliography 155

[43] Sylvain Hallé and Roger Villemaire. Browser-Based Enforcement of Interface Con-

tracts in Web Applications with BeepBeep. In Proceedings of Computer Aided

Verification (CAV’09), pages 648–653, 2009.

[44] David Harel and Shahar Maoz. Assert and Negate Revisited: Modal Semantics for

UML Sequence Diagrams. In Proceedings of ICSE’06 Workshop on Scenarios and

State Machines (SCESM’06), pages 13–20, 2006.

[45] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based Programming

using LSCs and the Play-Engine. Springer, 2003.

[46] Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen.

STAIRS: Towards Formal Design with Sequence Diagrams. Journal of Software

and System Modeling, 4:355–357, 2005.

[47] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-

guages and Computation. Addison Wesley, 1979.

[48] George E. Hughes and Max J. Creswell. An Introduction to Modal Logic. Methuen,

1968.

[49] IBM. WebSphere Business Integration Software. http://www-306.ibm.com/

software/info1/websphere/index.jsp?tab=products/businessint, Accessed

August 2010.

[50] IBM. WebSphere Integration Developer. http://www-306.ibm.com/software/

integration/wid/, Accessed August 2010.

[51] IBM. WebSphere Process Server. http://www-306.ibm.com/software/

integration/wps/, Accessed August 2010.

[52] Paola Inverardi, Leonardo Mostarda, Massimo Tivoli, and Marco Autili. Synthesis

of Correct and Distributed Adaptors for Component-Based Systems: an Automatic

Bibliography 156

Approach. In Proceedings of the 20th International Conference on Automated Soft-

ware Engineering (ASE’05), pages 405–409. ACM, 2005.

[53] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1996 (MSC96).

Technical report, ITU-TS, Geneva, 1996.

[54] Henry A. Kautz and Bart Selman. Unifying SAT-based and Graph-based Planning.

In Proceedings of the 16th International Joint Conference on Artificial Intelligence

(IJCAI’99), pages 318–325, 1999.

[55] Raman Kazhamiakin and Marco Pistore. A Parametric Communication Model

for the Verification of BPEL4WS Compositions. In Proceedings of International

Workshop on Web Services and Formal Methods (WS-FM’05), volume 3670 of

LNCS, pages 318–332, 2005.

[56] David Kitchin, William R. Cook, and Jayadev Misra. A language for task or-

chestration and its semantic properties. In Christel Baier and Holger Hermanns,

editors, Proceedings of the 17th International Conference on Concurrency Theory

(CONCUR ’06), volume 4137 of Lecture Notes in Computer Science, pages 477–

491. Springer, 2006.

[57] Stephen C. Kleene. Representation of Events in Nerve Nets and Finite Automata.

Automata Studies, Annals of Mathematical Studies, 34:3–41, 1956.

[58] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: Service-Oriented

Architecture Best Practices (The Coad Series). Prentice Hall PTR, Upper Saddle

River, NJ, USA, 2004.

[59] Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge. In

The ICSE’07 Workshop on the Future of Software Engineering (FOSE’07), pages

259–268, May 2007.

Bibliography 157

[60] Marc Lettrari and Jochen Klose. Scenario-Based Monitoring and Testing of Real-

Time UML Models. In Proceedings of the 4th International Conference on The

Unified Modeling Language, Modeling Languages, Concepts, and Tools (UML’01),

pages 317–328. Springer-Verlag, 2001.

[61] Zheng Li, Jun Han, and Yan Jin. Pattern-Based Specification and Validation of

Web Services Interaction Properties. In Proceedings of 3rd International Conference

on Service Oriented Computing (ICSOC’05), pages 73–86, 2005.

[62] Zheng Li, Yan Jin, and Jun Han. A Runtime Monitoring and Validation Frame-

work for Web Service Interactions. In Proceedings of the 17th Australian Software

Engineering Conference (ASWEC’06), pages 70–79. IEEE Computer Society, 2006.

[63] Marc Lohmann, Leonardo Mariani, and Reiko Heckel. A Model-Driven Approach

to Discovery, Testing and Monitoring of Web Services. In Luciano Baresi and

Elisabetta Di Nitto, editors, Test and Analysis of Web Services, pages 173–204.

Springer, 2007.

[64] Jeff Magee and Jeff Kramer. Concurrency - State Models and Java Programs. John

Wiley, 1999.

[65] Khaled Mahbub and George Spanoudakis. A Framework for Requirements Moni-

toring of Service Based Systems. In Proceedings of the 2nd International Conference

on Service Oriented Computing (ICSOC’04), pages 84–93. ACM, 2004.

[66] Khaled Mahbub and George Spanoudakis. Run-time Monitoring of Requirements

for Systems Composed of Web-Services: Initial Implementation and Evaluation Ex-

perience. In Proceedings of International Conference on Web Services (ICWS’05),

pages 257–265, July 2005.

Bibliography 158

[67] Drew V. McDermott. Estimated-Regression Planning for Interactions with Web

Services. In Proceedings of the Sixth International Conference on Artificial Intelli-

gence Planning Systems (AIPS ’02), pages 204–211. AAAI, 2002.

[68] Sheila A. McIlraith and Tran Cao Son. Adapting Golog for Composition of Seman-

tic Web Services. In Proceedings of the 8th International Conference on Principles

and Knowledge Representation and Reasoning (KR ’02), pages 482–496. Morgan

Kaufmann, 2002.

[69] Robert McNaughton and Hisao Yamada. Regular Expressions and State Graphs for

Automata. Electronic Computers, IEEE Transactions on, EC-9(1):39–47, March

1960.

[70] Robin Milner. Communication and Concurrency. Prentice-Hall, New York, 1989.

[71] Jayadev Misra, William Cook, and David Kitchin. Orc Language. http://orc.

csres.utexas.edu/index.shtml, Accessed August 2010.

[72] Stefano Modafferi, Enrico Mussi, and Barbara Pernici. SH-BPEL: a self-healing

plug-in for Ws-BPEL engines. In MW4SOC ’06: Proceedings of the 1st workshop

on Middleware for Service Oriented Computing (MW4SOC 2006), pages 48–53,

New York, NY, USA, 2006. ACM.

[73] Srini Narayanan and Sheila A. McIlraith. Simulation, Verification and Automated

Composition of Web Services. In Proceedings of the 11th International Conference

on World Wide Web (WWW ’02), pages 77–88. ACM, 2002.

[74] Joanna W. Ng, Mark Chignell, and James R. Cordy. The Smart Internet: Trans-

forming the Web for the User. In Proceedings of the 2009 Conference of the Center

for Advanced Studies on Collaborative Research (CASCON ’09), pages 285–296,

2009.

Bibliography 159

[75] OASIS. OASIS UDDI Specification TC. http://www.oasis-open.org/

committees/uddi-spec, Accessed August 2010.

[76] OASIS. Web Services Business Process Execution Language Version 2.0. http://

docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, Accessed August

2010.

[77] Object Management Group (OMG). Unified Modeling Language (UML 2.0). http:

//www.omg.org/spec/UML/2.0/, Accessed August 2010.

[78] Kurt M. Olender and Leon J. Osterweil. Cecil: A Sequencing Constraint Lan-

guage for Automatic Static Analysis Generation. IEEE Transactions on Software

Engineering, 16(3):268–280, March 1990.

[79] Salvatore Orlando and Stefano Russo. Java Virtual Machine Monitoring for

Dependability Benchmarking. In Proceedings of the Ninth IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing

(ISORC ’06), pages 433–440. IEEE Computer Society, 2006.

[80] Doron Peled. Combining Partial Order Reductions with On-the-fly Model-

Checking. In Proceedings of the 6th International Conference on Computer Aided

Verification (CAV ’94), pages 377–390. Springer-Verlag, 1994.

[81] Marco Pistore and Paolo Traverso. Assumption-Based Composition and Monitoring

of Web Services. In Luciano Baresi and Elisabetta Di Nitto, editors, Test and

Analysis of Web Services, pages 307–335. Springer, 2007.

[82] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of 18th Annual Sym-

posium on the Foundations of Computer Science (FOCS’77), pages 46–57, 1977.

Bibliography 160

[83] Murray Shanahan. The Event Calculus Explained. In Artificial Intelligence Today:

Recent Trends and Developments, volume 1600 of LNCS, pages 409–430. Springer,

1999.

[84] Jocelyn Simmonds, Shoham Ben-David, and Marsha Chechik. Guided Recovery for

Web Service Applications. In Proceedings of Eighteenth International Symposium

on the Foundations of Software Engineering (FSE’10), 2010. To appear.

[85] Jocelyn Simmonds, Shoham Ben-David, and Marsha Chechik. Monitoring and Re-

covery of Web Service Applications. In Joanna W. Ng, Mark Chignell, and James R.

Cordy, editors, Smart Internet, Lecture Notes in Computer Science. Springer, 2010.

To appear.

[86] Jocelyn Simmonds, Shoham Ben-David, and Marsha Chechik. Optimizing Compu-

tation of Recovery Plans for BPEL Applications. In Proceedings of 2010 Workshop

on Testing, Analysis and Verification of Web Software (TAV-WEB’10), 2010. To

appear.

[87] Jocelyn Simmonds, Shoham Ben-David, and Marsha Chechik. RuMoR: Moni-

toring and Recovery of BPEL Applications. In Proceedings of 25th IEEE/ACM

International Conference on Automated Software Engineering (ASE’10), 2010. To

appear.

[88] Jocelyn Simmonds, Marsha Chechik, Shiva Nejati, Elena Litani, and Bill O’Farrell.

Property Patterns for Runtime Monitoring of Web Service Conversations. In Pro-

ceedings of 8th International Workshop on Runtime Verification (RV ’08). Selected

Papers, pages 137–157, 2008.

[89] Jocelyn Simmonds, Yuan Gan, Marsha Chechik, Shiva Nejati, Bill O’Farrell, Elena

Litani, and Julie Waterhouse. Runtime Monitoring of Web Service Conversations.

IEEE Transactions on Service Computing, 2(3):223–244, 2009.

Bibliography 161

[90] Simon Moser and Michal Chmielewski. BPEL Project home. http://www.

eclipse.org/bpel/index.php, Accessed August 2010.

[91] Harald Störrle. Assert, Negate and Refinement in UML 2 Interactions. In Pro-

ceedings of Workshop on Critical Systems Development with UML (CSDUML ’03),

pages 79–94, 2003.

[92] The Open Group. The SOA Work Group. http://www.opengroup.org/soa/,

Accessed August 2010.

[93] Massimo Tivoli, Pascal Fradet, Alain Girault, and Gregor Goessler. Adaptor Syn-

thesis for Real-time Components. In Proceedings of the 13th International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS ’07), pages 185–200. Springer-Verlag, 2007.

[94] Paolo Traverso and Marco Pistore. Automated Composition of Semantic Web

Services into Executable Processes. In Proceedings of the International Semantic

Web Conference (ISWC ’04), pages 380–394, 2004.

[95] Antti Valmari. Stubborn Sets for Reduced State Space Generation. In Grzegorz

Rozenberg, editor, Proceedings of the 10th International Conference on Applications

and Theory of Petri Nets, volume 483 of Lecture Notes in Computer Science, pages

491–515. Springer, 1989.

[96] Wil M. P. van der Aalst, Marlon Dumas, Chun Ouyang, Anne Rozinat, and Eric

Verbeek. Conformance checking of service behavior. ACM Transactions on Internet

Technology, 8(3):1–30, 2008.

[97] Wil M. P. van der Aalst and Maja Pesic. Specifying and Monitoring Service Flows:

Making Web Services Process-Aware. In Luciano Baresi and Elisabetta Di Nitto,

editors, Test and Analysis of Web Services, pages 11–55. Springer, 2007.

Bibliography 162

[98] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and

Alistair P. Barros. Workflow patterns. Distributed Parallel Databases, 14(1):5–51,

2003.

[99] Wil M. P. van der Aalst and Mathias Weske. Case Handling: a New Paradigm for

Business Process Support. Data Knowledge Engineering, 53(2):129–162, 2005.

[100] Moshe Vardi. An Automata-Theoretic Approach to Linear Temporal Logic. In

Proceedings of 8th Banff Higher Order Workshop, volume 1043 of LNCS, pages

238–266. Springer, August 1996.

[101] W3C. SOAP Specifications. http://www.w3.org/TR/soap/, Accessed August

2010.

[102] W3C. Web Services Description Language (WSDL). http://www.w3.org/TR/

wsdl/, Accessed August 2010.

[103] Ian Wehrman, David Kitchin, William R. Cook, and Jayadev Misra. A timed

semantics of Orc. Theoretical Computer Science, 402(2–3):234–248, Aug 2008.

[104] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M. ter

Hofstede. Pattern-Based Analysis of BPEL4WS. QUT Technical report FIT-TR-

2002-04, Queensland University of Technology, Brisbane, 2002.

[105] Jian Yu, Tan Phan Manh, Jun Han, Yan Jin, Yanbo Han, and Jianwu Wang.

Pattern Based Property Specification and Verification for Service Composition. In

Proceedings of 7th International Conference on Web Information Systems Engi-

neering (WISE’06), pages 156–168, 2006.

Appendix A

QRE Property Patterns

1. Absence - event P does not occur:

• Globally: [−P]∗

• Before R: [−R] ∗ |[−P,R] ∗ ·R · Σ∗

• After Q: [−Q] ∗ ·(Q · [−P]∗)?

• Between Q and R: ([−Q] ∗ ·Q · [−P,R] ∗ ·R) ∗ ·[−Q] ∗ ·(Q · [−R]∗)?

• After Q until R: ([−Q] ∗ ·Q · [−P,R] ∗ ·R) ∗ ·[−Q] ∗ ·(Q · [−P,R]∗)?

2. Existence - event P occurs:

• Globally: [−P] ∗ ·P · Σ∗

• Before R: [−R] ∗ |[−P,R] ∗ ·P · Σ∗

• After Q: [−Q] ∗ ·(Q · [−P] ∗ ·P · Σ∗)?

• Between Q and R: ([−Q] ∗ ·Q · [−P,R] ∗ ·P · [−R] ∗ ·R) ∗ ·[−Q] ∗ ·(Q · [−R]∗)?

• After Q until R: ([−Q] ∗ ·Q · [−P,R] ∗ ·P · [−R] ∗ ·R) ∗ ·[−Q] ∗ ·(Q · [−P,R] ∗

·P · [−R]∗)?

3. Bounded Existence - event P occurs at most k times:

163

Appendix A. QRE Property Patterns 164

• Globally: (([−P] ∗ ·P)?)k · [−P]∗

• Before R: [−R] ∗ |(([−P,R] ∗ ·P)?)k · [−P,R] ∗ ·R · Σ∗

• After Q: [−Q] ∗ ·(Q · (([−P] ∗ ·P)?)k · [−P]∗)?

• Between Q and R: ([−Q]∗·Q·(([−P,R]∗·P)?)k·[−P,R]∗·R)∗·[−Q]∗·(Q·[−R]∗)?

• After Q until R: ([−Q] ∗ ·Q · (([−P,R] ∗ ·P)?)k · [−P,R] ∗ ·R) ∗ ·[−Q] ∗ ·(Q ·

(([−P,R] ∗ ·P)?)k · [−P,R]∗)?

4. Universality - specifying universality in an event-based formalism requires the iden-

tification of complementary events. The positive event, P, is defined such that after

an occurrence of P, states have the property. The negative event, N, is defined such

that after an ocurrence of N states fail to have the property. A Universality prop-

erty holds on a scope if a P event is seen prior to the beginning of the scope, with

no N event until after the end of the scope. We assume that the initial state has

the desired property:

• Globally [−N]∗

• Before R: [−R] ∗ |[−N,R] ∗ ·R · Σ∗

• After Q: [−Q] ∗ |([−Q] ∗ ·P)? · [−N,Q] ∗ ·Q · [−N]∗

• Between Q and R: (([−Q]∗·P)?·[−N,Q]∗·Q·[−N,R]∗·R)∗·[−Q]∗·(Q·[−R]∗)?

• After Q until R: (([−Q] ∗ ·P)? · [−N,Q] ∗ ·Q · [−N,R] ∗ ·R) ∗ ·([−Q] ∗ |([−Q] ∗

·P)? · [−N,Q] ∗ ·Q · [−N,R]∗)

5. Precedence - event S precedes event P:

• Globally: [−P] ∗ |([−S,P] ∗ ·S · Σ∗)

• Before R: [−R] ∗ |([−P,R] ∗ ·R · Σ∗)|([−S,P,R] ∗ ·S · Σ∗)

• After Q: [−Q] ∗ ·(Q · ([−P] ∗ |([−S,P] ∗ ·S · Σ∗)))?

Appendix A. QRE Property Patterns 165

• Between Q and R: [−Q] ∗ ·(Q · [−P,R] ∗ |([−S,P,R] ∗ ·S · [−R]∗)R · [−Q]∗) ∗

·(Q · [−R]∗)?

• After Q until R: [−Q] ∗ ·(Q · [−P,R] ∗ |([−S,P,R] ∗ ·S · [−R]∗)R · [−Q]∗) ∗ ·(Q ·

([−P,R] ∗ |([−S,P,R] ∗ ·S · [−R]∗)))?

6. Response - event S follows event P:

• Globally: [−P] ∗ ·(P · [−S] ∗ ·S · [−P]∗)∗

• Before R: [−R] ∗ |[−P,R] ∗ ·(P · [−S,R] ∗ ·S · [−P,R]∗) ∗ ·R · Σ∗

• After Q: [−Q] ∗ ·(Q · [−P] ∗ ·(P · [−S] ∗ ·S · [−P]∗)∗)?

• Between Q and R: [−Q] ∗ ·(Q · [−P,R] ∗ ·(P · [−S,R] ∗ ·S · [−P,R]∗) ∗ ·R ·

[−Q]∗) ∗ ·(Q · [−R]∗)?

• After Q until R: [−Q]∗ ·(Q · [−P,R]∗ ·(P · [−S,R]∗ ·S · [−P,R]∗)∗ ·R · [−Q]∗)∗

·(Q · [−P,R] ∗ ·(P · [−S,R] ∗ ·S · [−P,R]∗)∗)?

7. Precedence Chain

(a) Two cause events (S,T) precede one effect event (P):

• Globally: [−P] ∗ |([−P, S] ∗ ·S · [−P,T] ∗ ·T · Σ∗)

• Before R: [−R] ∗ |([−P,R] ∗ ·R · Σ∗)|([−P,R, S] ∗ ·S · [−P,R,T] ∗ ·T · Σ∗)

• After Q: [−Q] ∗ ·(Q · ([−P] ∗ |([−P, S] ∗ ·S · [−P,T] ∗ ·T · Σ∗)))?

• Between Q and R: [−Q] ∗ ·(Q · ([−P,R] ∗ |([−P,R, S] ∗ ·S · [−P,R,T] ∗ ·T ·

[−R]∗)) · R · [−Q]∗) ∗ ·(Q · [−R]∗)?

• After Q until R: [−Q] ∗ ·(Q · ([−P,R] ∗ |([−S,P,R] ∗ ·S · [−P,R,T] ∗ ·T ·

[−R]∗)) ·R · [−Q]∗)∗·(Q ·([−P,R]∗|([−P,R, S]∗·S · [−P,R,T]∗·T · [−R]∗)))?

(b) One cause event (P) precedes two effect events (S,T):

• Globally: [−P, S] ∗ ·((P · Σ∗)|(S · [−T]∗))?

• Before R: ([−R]∗)|([−P, S,R] ∗ ·((P · [−R]∗)|(S · [−T,R]∗))? · R · Σ∗)

Appendix A. QRE Property Patterns 166

• After Q: [−Q] ∗ ·(Q · ([−P, S] ∗ ·((P · Σ∗)|(S · [−T]∗))?))?

• Between Q and R: [−Q] ∗ ·(Q · [−P, S,R] ∗ ·((P · [−R]∗)|(S · [−T,R]∗))? ·

R · [−Q]∗) ∗ ·(Q · [−R]∗)?

• After Q until R: [−Q] ∗ ·(Q · [−P, S,R] ∗ ·((P · [−R]∗)|(S · [−T,R]∗))? ·R ·

[−Q]∗) ∗ ·(Q · ([−P, S,R] ∗ ·((P · [−R]∗)|(S · [−T,R]∗))?))?

8. Response Chain

(a) One reponse event (P) follows two stimuli events (S,T):

• Globally: ([−S] ∗ ·S · [−T] ∗ ·T · [−P] ∗ ·P) ∗ ·[−S] ∗ ·(S · [−T]∗)?

• Before R: [−R] ∗ |([−S,R] ∗ ·S · [−T,R] ∗ ·T · [−P,R] ∗ ·P) ∗ ·[−S,R] ∗ ·(S ·

[−T,R]∗)? · R · Σ∗

• After Q: [−Q]∗ ·(Q · ([−S]∗ ·S · [−T]∗ ·T · [−P]∗ ·P)∗ ·[−S]∗ ·(S · [−T]∗)?)?

• Between Q and R: ([−Q] ∗ ·Q · ([−S,R] ∗ ·S · [−T,R] ∗ ·T · [−P,R] ∗ ·P) ∗

·[−S,R] ∗ ·(S · [−T,R]∗)? · R) ∗ ·[−Q] ∗ ·(Q · [−R]∗)?

• After Q until R: ([−Q]∗·Q·([−S,R]∗·S·[−T,R]∗·T·[−P,R]∗·P)∗·[−S,R]∗

·(S · [−T,R]∗)? ·R) ∗ ·[−Q] ∗ ·(Q · ([−S,R] ∗ ·S · [−T,R] ∗ ·T · [−P,R] ∗ ·P)∗)?

(b) Two reponse events (S,T) follow one stimulus event (P):

• Globally:([−P] ∗ ·P · [−S] ∗ ·S · [−T] ∗ ·T) ∗ ·[−P]∗

• Before R: [−R]∗ |([−P,R]∗ ·P · [−S,R]∗ ·S · [−T,R]∗ ·T)∗ ·[−P,R]∗ ·R ·Σ∗

• After Q: [−Q] ∗ ·(Q · ([−P] ∗ ·P · [−S] ∗ ·S · [−T] ∗ ·T) ∗ ·[−P]∗)?

• Between Q and R: ([−Q] ∗ ·Q · ([−P,R] ∗ ·P · [−S,R] ∗ ·S · [−T,R] ∗ ·T) ∗

·[−P,R] ∗ ·R) ∗ ·[−Q] ∗ ·(Q · [−R]∗)?

• After Q until R: ([−Q] ∗ ·Q · ([−P,R] ∗ ·P · [−S,R] ∗ ·S · [−T,R] ∗ ·T) ∗

·[−P,R] ∗ ·R) ∗ ·[−Q] ∗ ·(Q · ([−P,R] ∗ ·P · [−S,R] ∗ ·S · [−T,R] ∗ ·T)∗)?

Appendix B

Additional Tool Support Details

Listing B.1: Partial listing of add comp.py
def add comp (app , comp) :

app = a p p l i c a t i o n LTS
3 # comp = hash o f { ac t i on => compensation} p a i r s

hash f o r s t o r i n g compensation t r a n s i t i o n s
comp tt = {}

8 # f o r every t r a n s i t i o n in t t
for f r om s ta t e in app . t t . keys () :

for sigma in (app . t t [f r om s ta t e]) . keys () :
t o s t a t e = app . t t [f r om s ta t e] [sigma]

13 # i f the t r a n s i t i o n ac t i on has a compensation act ion ,
add a t r a n s i t i o n to the compensation t r a n s i t i o n r e l a t i o n
i f comp . has key (sigma) :

i f not comp tt . has key (t o s t a t e) :
comp tt [t o s t a t e] = {}

18 i f not comp tt [t o s t a t e] . has key (comp [sigma]) :
comp tt [t o s t a t e] [comp [sigma]] = f rom sta t e

return comp tt

Listing B.2: Partial listing of NFA.py
class NFA:

def i n i t (s e l f , s t a t e s , alphabet , tt , s t a r t , accept s) :
s e l f . s t a t e s = s t a t e s
s e l f . s t a r t = s t a r t

5 s e l f . t t = t t
s e l f . d e l t a = (lambda s , a : s e l f . t t [s] [a])
s e l f . a ccept s = accept s
s e l f . a lphabet = alphabet
s e l f . c u r r e n t s t a t e = s t a r t

10 s e l f . f i n a l = []
s e l f . comp tt = {}

. . .
def c r o s s p roduc t (app , mon) :

t h i s method b u i l d s CP, the c r o s s product app X mon
15 # app = a p p l i c a t i o n LTS

mon = monitor LTS

a u x i l i a r y s e t o f s t a t e s

167

Appendix B. Additional Tool Support Details 168

s t a t e s = []
20 for s1 in app . s t a t e s :

for s2 in mon . s t a t e s :
s t a t e s . append ((s1 , s2))

CP s t a r t s t a t e
25 s t a r t = (app . s ta r t , mon . s t a r t)

CP alphabet
a lphabet = copy (app . a lphabet)
CP accept ing s t a t e s
accept s = []

30
reached = {}
reached [s t a r t] = True
l i s t o f CP s t a t e s to p roce s s
t o p r o c e s s = [s t a r t]

35
l i s t o f r eachab l e CP s t a t e s
new state s = [s t a r t]
CP t r a n s i t i o n r e l a t i o n
t t = {}

40
check which CP s t a t e s are r eachab l e from the CP s t a r t s ta te , and
cons t ruc t t t during t h i s check
while l en (t o p r o c e s s) :

remove a s t a t e from the p r o c e s s i n g l i s t
45 q = t o p r o c e s s . pop ()

f o r each symbol o f the alphabet , check i f we need to
add a t r a n s i t i o n to the CP
for c in app . a lphabet :

50 i f s t r (q [0]) not in app . t t :
continue

i f c in app . t t [s t r (q [0])] :
app next = app . t t [s t r (q [0])] [c]

55 else : app next = None

monitors have ’ Sigma ’ and ’ Sigma−{events } ’
t r a n s i t i o n s
i f c in mon . t t [s t r (q [1])] :

60 mon next = mon . t t [s t r (q [1])] [c]
e l i f ’Sigma’ in mon . t t [s t r (q [1])] or \

’Sigma -’ + c not in mon . t t [s t r (q [1])] :
mon next = q [1]

else :
65 mon next = None

i f both the a p p l i c a t i o n and the monitor t r a n s i t i o n
on a symbol , add t r a n s i t i o n to CP
i f app next i s not None and mon next i s not None :

70 t o s t a t e = (app next , mon next)
i f q not in t t :

t t [q] = {}
t t [q] [c] = t o s t a t e

else :
75 i f c not in t t [q] :

t t [q] [c] = t o s t a t e
else :

t t [q] [c] . append (t o s t a t e)
i f t o s t a t e not in reached :

80 reached [t o s t a t e] = True
t o p r o c e s s . append (t o s t a t e)
new state s . append (t o s t a t e)

return NFA(s t a t e s=new states , s t a r t=s ta r t , t t=tt , accept s=accepts , \
alphabet=alphabet)

Appendix B. Additional Tool Support Details 169

Listing B.3: Partial listing of compute cp.py: using NFA.cross product from Listing B.2
1 def g e t a p p s t a t e s (c p s t a t e s , f i n a l s t a t e s) :

f i n a l s t a t e s i s a l i s t o f red monitor s t a t e s or green monitor s t a t e s

i f l en (f i n a l s t a t e s) == 0 : return []

6 s t a t e s = []
for cp in c p s t a t e s :

i f i n t (cp [1]) in f i n a l s t a t e s :
i f i n t (cp [0]) not in s t a t e s : s t a t e s . append (cp [0])

11 return s t a t e s

i f name == "__main__" :
. . .

cp i s the c r o s s product o f the a p p l i c a t i o n and monitor LTSs
16 cp = NFA. c ro s s p roduc t (app nfa , mon nfa)

. . .
mon nfa . f i n a l [0] i s the s e t o f green monitor s t a t e s
good app s ta t e s = g e t a p p s t a t e s (cp . s t a t e s , mon nfa . f i n a l [0])
mon nfa . f i n a l [1] i s the s e t o f red monitor s t a t e s

21 bad app s ta te s = g e t a p p s t a t e s (cp . s t a t e s , mon nfa . f i n a l [1])
. . .

Listing B.4: Partial listing of gen safe plan.py
def compute plans (app , e r r o r s t a t e , e r r o r t r a c e , max plan , max len , change) :

computes s a f t e y recovery p lans
3 # app = a p p l i c a t i o n LTS

e r r o r s t a t e = a p p l i c a t i o n e r r o r s t a t e
e r r o r t r a c e = cur rent e r r o r trace , l i s t o f (f rom state , act ion , t o s t a t e)
tup les , s t o r ed from l a s t to f i r s t
max plan = maximum number o f recovery p lans

8 # max len = maximum length o f recovery plans
change = l i s t o f a p p l i c a t i o n change s t a t e s

l i s t o f computed plans
p lans = []

13 # current plan
plan = []

for t r i o in e r r o r t r a c e :
e x i t loop i f enough plans have been computed

18 i f l en (p lans) == max plan :
break

e x i t loop i f cur r ent t r a n s i t i o n does not have compensation
i f not app . comp tt . has key (t r i o [1]) :

23 break

plan . append (t r i o)
c t r += 1

28 # e x i t loop i f maximum plan length reached
i f c t r == max len :

break

i f the f r om sta t e i s a change s t a t e s
33 i f t r i o [0] in change :

s t o r e a copy o f the cur rent plan
plans . append (plan [:])

return plans

Appendix B. Additional Tool Support Details 170

Listing B.5: Partial listing of gen plan prob.py

def w r i t e a d l (fa , f i l ename , t t t y p e) :
t h i s method gene ra t e s the ADL encoding o f the LTS fa

3 # fa = LTS that w i l l encoded
f i l ename = f i l e where ADL encoding w i l l be s to r ed
t t t y p e = ” nfa ” or ” dfa ”

f i l e = open (f i l ename , "wb")
8 msg = ””” (d e f i n e (domain domain prop1)\n (: requ i rements : ad l)\n (: p r e d i c a t e s ”””

for s t a t e in so r t ed (f a . s t a t e s) :
msg += " (s" + s t r (s t a t e) + ")"

13 msg += ")\n\n"

f i l e . wr i t e (msg)

gene ra t e s a c t i o n s o f the form
(: ac t i on d i sp l ayResu l t

18 ## : pre cond i t i on (or (s1) (s2))
: e f f e c t (and
(when (s1) (and (not (s1)) (s3)))
(when (s2) (and (not (s2)) (s4)))
)

23 ##)

c o l l e c t a l l from−to p a i r s f o r each sigma , outgoing / incoming per s t a t e
p a i r s = {}
incoming = {}

28 outgoing = {}
i f t t t y p e == "nfa" :

for f r om s ta t e in f a . t t . keys () :
for sigma in (f a . t t [f r om s ta t e]) . keys () :

i f sigma not in p a i r s :
33 p a i r s [sigma] = []

p a i r s [sigma] . append ((i n t (f r om s ta t e) , \
f a . t t [f r om s ta t e] [sigma]))

e l i f t t t y p e == "dfa" :
38 pass

wri t e out formatted ac t i on statements
for sigma in f a . a lphabet :

s igma no dots = sigma . r e p l a c e ("." , "_")
43 f i l e . wr i t e (" (: action " + sigma no dots + "\n")

f i l e . wr i t e (" :parameters ()")
f i l e . wr i t e (" :precondition (or")
o n l y f i r s t = [item [0] for item in p a i r s [sigma]]
for item in o n l y f i r s t :

48 f i l e . wr i t e (" (s" + s t r (item) + ")")
f i l e . wr i t e (")\n")
f i l e . wr i t e (" :effect (and\n")
for item in p a i r s [sigma] :

f i l e . wr i t e (" (when (s" + s t r (item [0]) + ") \

53 (and (not (s" + s t r (item [0]) + ")) (s" + s t r (item [1]) + ")))\n")
f i l e . wr i t e (")\n)\n")

f i l e . wr i t e (")")
f i l e . c l o s e ()

58
def g e n e r a t e s t r i p s (sc r ipt cwd , dom pref ix , p r o b p r e f i x) :

use a d l 2 s t r i p s to convert ADL in to STRIPS
sc r ip t cwd = current working d i r e c t o r y
dom pref ix = f i l ename p r e f i x f o r domain f i l e

63 # p r o b p r e f i x = f i l ename p r e f i x f o r problem f i l e

run a d l 2 s t r i p s to ground the planning problem
r = os . system (sc r ip t cwd + "/adl2strips -linux -static -p " + scr ip t cwd + "/" + cwd + \

Appendix B. Additional Tool Support Details 171

"/ -o " + domain + " -f " + problem)
68

i f a d l 2 s t r i p s ran s u c c e s s f u l l y , c l ean up f i l enames
i f r == 0 :

s h u t i l . move(s c r ip t cwd + "/" + cwd + "/domain.pddl" , dom pref ix + \
"_strips.pddl")

73 s h u t i l . move(s c r ip t cwd + "/" + cwd + "/facts.pddl" , p r o b p r e f i x + \
"_strips.pddl")

def g e n e r a t e c n f (sc r ipt cwd , dom pref ix , p rob pre f i x , s ave va r s) :
use BlackBox to generate CNF encoding o f the planning problem

78 # sc r ip t cwd = current working d i r e c t o r y
dom pref ix = f i l ename p r e f i x f o r domain f i l e
p r o b p r e f i x = f i l ename p r e f i x f o r problem f i l e
save va r s = boolean value that i n d i c a t e s whether ac t i on <−> cn f v a r i a b l e
mapping must be s to r ed

83
cmd = [s c r ip t cwd + "/blackbox" , "-printcnf" , "-printmap" , "-o" , dom pref ix + \
"_strips.pddl" , "-f" , p r o b p r e f i x + "_strips.pddl" , "-t" , s t r (t)]

run blackbox , opening a pipe in order to p roce s s blackbox output
88 pipe = subproces s . Popen (cmd , stdout=PIPE) . stdout

f l a g = 0
a c t i o n v a r s = ""

act ion var map = ""

93
open f i l e where CNF encoding w i l l be s to r ed
f i l e = open ("sat__" + domain [0 : l en (domain)−5] + "__" + \
problem [0 : l en (problem)−5] + "__t_" + s t r (t) + ".cnf" , "wb")

98 for l i n e in pipe :
parse blackbox output

these l i n e s conta in the ac t i on <−> cn f v a r i a b l e mapping
i f f l a g == 0 and l i n e . s t a r t s w i t h ("a ") :

103 f i l e . wr i t e (l i n e . r e p l a c e ("a" , "c" , 1))
i f l i n e . f i n d ("noop") == −1 and l i n e . f i n d ("c_") :

a c t i o n v a r s += l i n e . s p l i t (" ") [1] + " "

act ion var map += l i n e . s p l i t (" ") [1] + " " \
+ l i n e . s p l i t (" ") [2]

108
t h i s l i n e marks the beg inning o f the CNF encoding
i f l i n e . s t a r t s w i t h ("Begin cnf") :

f l a g = 1
continue

113 i f f l a g == 1 :
t h i s l i n e marks the end o f the CNF encoding
i f l i n e . s t a r t s w i t h ("End cnf") : f l a g = 2
else : f i l e . wr i t e (l i n e)

118 f i l e . c l o s e ()

i f (s ave va r s == 1) :
f i l e = open ("av__" + domain [0 : l en (domain)−5] + "__" + \
problem [0 : l en (problem)−5] + "__t_" + s t r (t) , "wb")

123 f i l e . wr i t e (a c t i o n v a r s + "\n")
f i l e . wr i t e (act ion var map)
f i l e . c l o s e ()

Listing B.6: Partial listing of GeneratePlans.java: using SAT4J to produce multiple plans
public stat ic void main (St r ing [] a rgs) throws IOException {

// Creat ing SAT4J in s t anc e
I S o l v e r s o l v e r = SolverFactory . newDefault () ;

5 Mode l I t e rator mi = new Mode l I te rator (s o l v e r) ;

Appendix B. Additional Tool Support Details 172

s o l v e r . setTimeout (3 6 0 0) ; // 1 hour timeout
Reader reader = new InstanceReader (mi) ;
. . .

10 // Generated plans are s to r ed in t h i s array l i s t
ArrayList<Str ing> plans = new ArrayList<Str ing >() ;
boolean unsat = true ;

// Reading in SAT in s tance produced by gen plan prob . py
15 IProblem problem = reader . pa r s e In s tance (args [0]) ;

// While the SAT in s t anc e i s s a t i s f i a b l e . . .
while (problem . i s S a t i s f i a b l e ()) {

unsat = fa l se ;
20

// . . . get a new s a t i s f y i n g ass ignment
int [] model = problem . model () ;

// . . . and use ac t i on mapping to convert i t i n to a plan
25 VecInt newClause = new VecInt () ;

S t r ing newPlan = "" ;
for (int i = 0 ; i < act ionVars . l ength ; i++) {

i f (act ionVars [i] == l i m i t)
break ;

30 i f (problem . model (act ionVars [i])) {
newClause . push(−1 ∗ act ionVars [i]) ;
newPlan += " " + var mapping . get (act ionVars [i]) ;

}
}

35
// add new plan to l i s t o f plans , and new c o n s t r a i n t to SAT in s tanc e
p lans . add (newPlan) ;
s o l v e r . addClause (newClause) ;
i f (p lans . s i z e () == maxPlans)

40 break ;
}
. . .

}

Appendix C

Case Studies

C.1 BPEL files

Listing C.1: Trip Advisor System
<proce s s name="TripAdvisor" . . .

2 xmlns="http://docs.oasis -open.org/wsbpel /2.0/ process/executable">

<bpe l : pa r tne rL ink s>
<bpe l : pa r tne rL ink name="FlightService" . . . />
<bpe l : pa r tne rL ink name="CarService" . . . />

7 </ bpe l : pa r tne rL ink s>

<v a r i a b l e s>
<v a r i a b l e name="exp" type="xsd:boolean"/>

</ v a r i a b l e s>
12

<sequence name="main">
<r e c e i v e name="ri" opera t i on="ri" c r e a t e I n s t a n c e="yes"/>
<pick name="pickMode">

<onMessage opera t i on="onlyCar">
17 <invoke name="bc" opera t i on="bc" />

</onMessage>
<onMessage opera t i on="carAndFlight">

<f l ow name="bookTransport">
<sequence name="getFlight">

22 <invoke name="bf" opera t i on="bf" />
<invoke name="cf" opera t i on="cf" />
< i f name="If expensive">

<cond i t i on>bpws:getVariableData (’exp’)= s t r i n g (t rue ())
</ cond i t i on>

27 <invoke name="expF" opera t i on="ef" />
<e l s e>

<invoke name="cheapF" opera t i on="cf" />
</ e l s e>

</ i f>
32 </ sequence>

<pick name="getCar">
<onMessage opera t i on="rental">

<invoke name="bc" opera t i on="car" />
</onMessage>

37 <onMessage opera t i on="limo">
<invoke name="bl" opera t i on="limo" />

</onMessage>

173

Appendix C. Case Studies 174

</ pick>
</ f low>

42 </onMessage>
</ pick>
<invoke name="rd" opera t i on="rd" />

</ sequence>
</ proce s s>

Listing C.2: Travel Booking System
<b p e l : p r o c e s s name="TBS" targetNamespace="tbs" . . .

xmlns :bpe l="http://docs.oasis -open.org/wsbpel /2.0/ process/executable">

4 <bpe l : pa r tne rL ink s>
<bpe l : pa r tne rL ink name="client" />
<bpe l : pa r tne rL ink name="flightSys" />
<bpe l : pa r tne rL ink name="hotelSys" />
<bpe l : pa r tne rL ink name="carSys" />

9 <bpe l : pa r tne rL ink name="billing" />
</ bpe l : pa r tne rL ink s>

<b p e l : v a r i a b l e s>
<b p e l : v a r i a b l e name="travelRequest"

14 messageType="tns:TBSRequestMessage"/>
<b p e l : v a r i a b l e name="output"

messageType="tns:TBSResponseMessage"/>
<b p e l : v a r i a b l e name="reservationData"

messageType="tns:TBSReservation"/>
19 <b p e l : v a r i a b l e name="bookingData"

messageType="tns:TBSBooking"/>
<b p e l : v a r i a b l e name="tries" type="xsd:integer"/>
<b p e l : v a r i a b l e name="availableFlights" messageType="tns:TBSFlightInfo"/>
<b p e l : v a r i a b l e name="availableCars" messageType="tns:TBSCarInfo"/>

24 <b p e l : v a r i a b l e name="consistent" type="xsd:boolean"/>
</ b p e l : v a r i a b l e s>

<bpe l : s equence name="main">
<b p e l : a s s i g n>

29 <copy>
<from expr e s s i on="0"/>
<to v a r i a b l e="tries"/>

</copy>
</ b p e l : a s s i g n>

34 <b p e l : r e c e i v e name="receiveInput" partnerLink="client"

portType="tns:TBS"

opera t i on="initiate" v a r i a b l e="travelRequest"

c r e a t e I n s t a n c e="yes"/>

39 <b p e l : f l o w name="pickReservations">
<bpe l : s equence name="pickFlight">

<bpe l : i nvoke name="getAvailableFlights" i nputVar iab l e="travelRequest"

outputVar iab le="availableFlights" partnerLink="flightSys"

opera t i on="gaf" />
44 <b p e l : w h i l e name="While_available_lte_0_and_tries_lt_3">

<b p e l : c o n d i t i o n>$ a v a i l a b l e F l i g h t s . a v a i l a b l e F l i g h t s <= 0 and $ t r i e s < 3
</b p e l : c o n d i t i o n>

<bpe l : s equence name="flight_while">
<b p e l : a s s i g n>

49 <copy>
<from expr e s s i on="$tries + 1"/>
<to v a r i a b l e="tries"/>

</copy>
</ b p e l : a s s i g n>

54 <bpe l : i nvoke name="updateTravelDates" i nputVar iab l e="travelRequest"

outputVar iab le="travelRequest" partnerLink="client"

opera t i on="utd"/>
<bpe l : i nvoke name="getAvailableFlights" i nputVar iab l e="travelRequest"

Appendix C. Case Studies 175

outputVar iab le="availableFlights" partnerLink="flightSys"

59 operat i on="gaf" />
</ bpe l : s equence>

</ b p e l : w h i l e>
<b p e l : i f name="If_available_flights_gt_0">

<b p e l : c o n d i t i o n>$ a v a i l a b l e F l i g h t s . a v a i l a b l e F l i g h t s > 0
64 </ b p e l : c o n d i t i o n>

<bpe l : i nvoke name="holdFlight" i nputVar iab l e="availableFlights"

outputVar iab le="reservationData" partnerLink="flightSys"

opera t i on="hd_f" />
</ b p e l : i f>

69 </ bpe l : s equence>
<bpe l : s equence name="pickHotel">

<bpe l : i nvoke name="holdRoom" i nputVar iab l e="travelRequest"

outputVar iab le="reservationData" partnerLink="hotelSys"

opera t i on="hd_h" />
74 </ bpe l : s equence>

</ b p e l : f l o w>
<bpe l : s equence name="decideTransportation">

<b p e l : p i c k name="pickTransportation">
<bpel :onMessage partnerLink="client" opera t i on="carAirport">

79 <bpe l : s equence name="getCar1">
<bpe l : i nvoke name="getAvailableRentalsAirport"

i nputVar iab l e="travelRequest" outputVar iab le="availableCars"

partnerLink="carSys" opera t i on="gara" />
<b p e l : i f name="If_available_cars_gt_0">

84 <b p e l : c o n d i t i o n>$ ava i l ab l eCar s . ava i l ab l eCar s > 0
</ b p e l : c o n d i t i o n>

<bpe l : i nvoke name="holdCar" i nputVar iab l e="availableCars"

outputVar iab le="reservationData" partnerLink="carSys"

opera t i on="hd_c" />
89 </ b p e l : i f>

</ bpe l : s equence>
</ bpel :onMessage>
<bpel :onMessage partnerLink="client" opera t i on="carHotel">

<b p e l : f l o w name="getCarShuttle">
94 <bpe l : i nvoke name="holdShuttle" i nputVar iab l e="travelRequest"

outputVar iab le="reservationData" partnerLink="carSys"

opera t i on="hd_s" />
<bpe l : s equence name="getCar2">

<bpe l : i nvoke name="getAvailableRentalsHotelZone"

99 inputVar iab l e="travelRequest"

outputVar iab le="availableCars"

partnerLink="carSys" opera t i on="garhz" />
<b p e l : i f name="If_available_hotels_gt_0">

<b p e l : c o n d i t i o n>$ ava i l ab l eCar s . ava i l ab l eCar s > 0
104 </ b p e l : c o n d i t i o n>

<bpe l : i nvoke name="holdCar" i nputVar iab l e="availableCars"

outputVar iab le="reservationData" partnerLink="carSys"

opera t i on="hd_c" />
</ b p e l : i f>

109 </ bpe l : s equence>
</ b p e l : f l o w>

</ bpel :onMessage>
</ b p e l : p i c k>

</ bpe l : s equence>
114

<bpe l : i nvoke name="displayTravelSummary" i nputVar iab l e="reservationData"

partnerLink="billing" opera t i on="dts" />
<b p e l : p i c k name="Pick">

<bpel :onMessage partnerLink="client" opera t i on="cancel">
119 <b p e l : f l o w name="cancelReservations">

<bpe l : i nvoke name="releaseFlight" i nputVar iab l e="reservationData"

partnerLink="flightSys" opera t i on="rl_f" />
<bpe l : i nvoke name="releaseHotel" i nputVar iab l e="reservationData"

partnerLink="hotelSys" opera t i on="rl_h" />
124 <bpe l : i nvoke name="releaseCar" i nputVar iab l e="reservationData"

partnerLink="carSys" opera t i on="rl_c" />

Appendix C. Case Studies 176

</ b p e l : f l o w>
</ bpel :onMessage>
<bpel :onMessage partnerLink="client" opera t i on="book">

129 <bpe l : s equence name="bkRes_gi">
<b p e l : f l o w name="bookReservations">

<bpe l : i nvoke name="bookFlight" i nputVar iab l e="reservationData"

outputVar iab le="bookingData" partnerLink="flightSys"

opera t i on="bk_f" />
134 <bpe l : i nvoke name="bookHotel" i nputVar iab l e="reservationData"

outputVar iab le="bookingData" partnerLink="hotelSys"

opera t i on="bk_h" />
<bpe l : i nvoke name="bookCar" i nputVar iab l e="reservationData"

outputVar iab le="bookingData" partnerLink="carSys"

139 operat i on="bk_c" />
</ b p e l : f l o w>
<bpe l : i nvoke name="checkDates" i nputVar iab l e="reservationData"

outputVar iab le="consistent" partnerLink="billing" opera t i on="chD"/>
<b p e l : i f>

144 <b p e l : c o n d i t i o n>$ c o n s i s t e n t = true ()</ b p e l : c o n d i t i o n>
<bpe l : i nvoke name="sameDates" partnerLink="billing"

opera t i on="sameDates"/>
<b p e l : e l s e>

<bpe l : i nvoke name="notSameDates" partnerLink="billing"

149 operat i on="notSameDates"/>
</ b p e l : e l s e>

</ b p e l : i f>
<bpe l : i nvoke name="generateInvoice" i nputVar iab l e="bookingData"

partnerLink="billing" opera t i on="geIn" />
154 </ bpe l : s equence>

</ bpel :onMessage>
</ b p e l : p i c k>

</ bpe l : s equence>
<bpe l : i nvoke name="informCustomer" i nputVar iab l e="bookingData" outputVar iab le="output"

159 partnerLink="client" opera t i on="inCu" />
</ b p e l : p r o c e s s>

Listing C.3: Flickr Visibility
<b p e l : p r o c e s s name="flickr_visibility" targetNamespace="flickr_visibility" . . .

xmlns :bpe l="http://docs.oasis -open.org/wsbpel /2.0/ process/executable">

4 <bpe l : pa r tne rL ink s>
<bpe l : pa r tne rL ink name="client"

partnerLinkType="tns:flickr_visibility"

myRole="flickr_visibilityProvider"

partnerRole="flickr_visibilityRequester"

9 />
</ bpe l : pa r tne rL ink s>

<b p e l : v a r i a b l e s>
<b p e l : v a r i a b l e name="perm" type="xsd:string"/>

14 <b p e l : v a r i a b l e name="consistent" type="xsd:boolean"/>
</ b p e l : v a r i a b l e s>

<bpe l : s equence name="main">
<b p e l : r e c e i v e name="receiveInput" partnerLink="client"

19 portType="tns:flickr_visibility" opera t i on="initiate" v a r i a b l e="perm"

c r e a t e I n s t a n c e="yes" />
<b p e l : s c o p e name="upload">

<b p e l : i f name="if private">
<b p e l : c o n d i t i o n>$perm = "priv"</ b p e l : c o n d i t i o n>

24 <bpe l : i nvoke name="uploadPriv"></ bpe l : i nvoke>
<b p e l : e l s e>

<b p e l : i f name="If family">
<b p e l : c o n d i t i o n>$perm = "fam"</ b p e l : c o n d i t i o n>
<bpe l : i nvoke name="uploadFam"></ bpe l : i nvoke>

29 <b p e l : e l s e>

Appendix C. Case Studies 177

<bpe l : i nvoke name="uploadPub"></ bpe l : i nvoke>
</ b p e l : e l s e>

</ b p e l : i f>
</ b p e l : e l s e>

34 </ b p e l : i f>
</ b p e l : s c o p e>
<b p e l : s c o p e name="change_perm">

<b p e l : w h i l e name="While">
<bpe l : s equence>

39 <b p e l : i f name="If private">
<b p e l : c o n d i t i o n>$perm = "priv"</ b p e l : c o n d i t i o n>
<b p e l : p i c k name="Pick">

<bpel :onMessage opera t i on="change_pub">
<bpe l : i nvoke name="setPermPub"></ bpe l : i nvoke>

44 </ bpel :onMessage>
<bpel :onMessage opera t i on="change_fam">

<bpe l : i nvoke name="setPermFam"></ bpe l : i nvoke>
</ bpel :onMessage>

</ b p e l : p i c k>
49 <b p e l : e l s e>

<b p e l : i f name="If family">
<b p e l : c o n d i t i o n>$perm = "fam"</ b p e l : c o n d i t i o n>
<b p e l : p i c k name="Pick1">

<bpel :onMessage opera t i on="change_priv">
54 <bpe l : i nvoke name="setPermPriv"></ bpe l : i nvoke>

</ bpel :onMessage>
<bpel :onMessage opera t i on="change_pub">

<bpe l : i nvoke name="setPermPub"></ bpe l : i nvoke>
</ bpel :onMessage>

59 </ b p e l : p i c k>
<b p e l : e l s e>

<b p e l : p i c k name="Pick2">
<bpel :onMessage opera t i on="change_priv">

<bpe l : i nvoke name="setPermPriv"></ bpe l : i nvoke>
64 </ bpel :onMessage>

<bpel :onMessage opera t i on="change_fam">
<bpe l : i nvoke name="setPermFam"></ bpe l : i nvoke>

</ bpel :onMessage>
</ b p e l : p i c k>

69 </ b p e l : e l s e>
</ b p e l : i f>

</ b p e l : e l s e>
</ b p e l : i f>
<bpe l : i nvoke name="checkPerm" i nputVar iab l e="perm"

74 outputVar iab le="consistent"></ bpe l : i nvoke>
<b p e l : i f name="If consistent">

<b p e l : c o n d i t i o n>$ c o n s i s t e n t = true ()</ b p e l : c o n d i t i o n>
<bpe l : i nvoke name="permOk"></ bpe l : i nvoke>
<b p e l : e l s e>

79 <bpe l : i nvoke name="permNotOk"></ bpe l : i nvoke>
</ b p e l : e l s e>

</ b p e l : i f>
</ bpe l : s equence>

</ b p e l : w h i l e>
84 </ b p e l : s c o p e>

</ bpe l : s equence>
</ b p e l : p r o c e s s>

Listing C.4: Flickr Comments
<b p e l : p r o c e s s name="flickr_comments" targetNamespace="flickr_comments" . . .

xmlns :bpe l="http://docs.oasis -open.org/wsbpel /2.0/ process/executable">

4 <bpe l : pa r tne rL ink s>

<bpe l : pa r tne rL ink name="client"

partnerLinkType="tns:flickr_visibility"

Appendix C. Case Studies 178

myRole="flickr_visibilityProvider"

9 partnerRole="flickr_visibilityRequester"

/>
</ bpe l : pa r tne rL ink s>

<b p e l : v a r i a b l e s>
14 <b p e l : v a r i a b l e name="perm" type="xsd:string"/>

<b p e l : v a r i a b l e name="comments" type="xsd:boolean"/>
<b p e l : v a r i a b l e name="consistent" type="xsd:boolean"/>

</ b p e l : v a r i a b l e s>

19 <bpe l : s equence name="main">
<b p e l : r e c e i v e name="receiveInput" partnerLink="client"

portType="tns:flickr_visibility" opera t i on="initiate" v a r i a b l e="perm"

c r e a t e I n s t a n c e="yes" />
<b p e l : s c o p e name="upload">

24 <bpe l : s equence>
<b p e l : i f name="if private">

<b p e l : c o n d i t i o n>$perm = "priv"</ b p e l : c o n d i t i o n>
<bpe l : i nvoke name="uploadPriv"></ bpe l : i nvoke>
<b p e l : e l s e>

29 <b p e l : i f name="If family">
<b p e l : c o n d i t i o n>$perm = "fam"</ b p e l : c o n d i t i o n>
<bpe l : i nvoke name="uploadFam"></ bpe l : i nvoke>
<b p e l : e l s e>

<bpe l : i nvoke name="uploadPub"></ bpe l : i nvoke>
34 </ b p e l : e l s e>

</ b p e l : i f>
</ b p e l : e l s e>

</ b p e l : i f>
<b p e l : i f name="if comments">

39 <b p e l : c o n d i t i o n>$comments = true ()</ b p e l : c o n d i t i o n>
<bpe l : i nvoke name="setComON"></ bpe l : i nvoke>
<b p e l : e l s e>

<bpe l : i nvoke name="setComOFF"></ bpe l : i nvoke>
</ b p e l : e l s e>

44 </ b p e l : i f>
</ bpe l : s equence>

</ b p e l : s c o p e>
<b p e l : p i c k name="Pick">

<bpel :onMessage opera t i on="addComment">
49 <bpe l : s equence>

<bpe l : i nvoke name="addCom" outputVar iab le="result"/>
<b p e l : i f name="If added">

<b p e l : c o n d i t i o n>$ r e s u l t = "ok"</ b p e l : c o n d i t i o n>
<bpe l : i nvoke name="addOk"></ bpe l : i nvoke>

54 <b p e l : e l s e>
<bpe l : i nvoke name="addNotOk"></ bpe l : i nvoke>

</ b p e l : e l s e>
</ b p e l : i f>

</ bpe l : s equence>
59 </ bpel :onMessage>

<bpel :onMessage opera t i on="delComment">
<bpe l : s equence>

<bpe l : i nvoke name="delCom" outputVar iab le="result"/>
<b p e l : i f name="If deleted">

64 <b p e l : c o n d i t i o n>$ r e s u l t = "ok"</ b p e l : c o n d i t i o n>
<bpe l : i nvoke name="delOk"></ bpe l : i nvoke>
<b p e l : e l s e>

<bpe l : i nvoke name="delNotOk"></ bpe l : i nvoke>
</ b p e l : e l s e>

69 </ b p e l : i f>
</ bpe l : s equence>

</ bpel :onMessage>
</ b p e l : p i c k>

</ bpe l : s equence>
74 </ b p e l : p r o c e s s>

Appendix C. Case Studies 179

C.2 Plan Quality Study

Both subjects are currently Computer Science Ph.D students at the University of Toronto.

The plans are presented per violation and subject, in the order in which they would be

applied by the respective subject.

C.2.1 Trip Advisor System

Safety Property Violation: t2

• Subject #1:

1. Cancel limo, leaving system in state where user picks ground transporta-

tion.

2. Cancel flight, leaving system in state where user picks flight.

3. Cancel flight and limo, leaving system in state user picks transportation

mode.

• Subject #2:

1. Cancel limo, leaving system in state where user picks ground transporta-

tion.

2. Cancel flight, leaving system in state where user picks flight.

3. Cancel flight and limo, leaving system in state user picks transportation

mode.

Mixed Property Violation: t1

• Subject #1:

1. Cancel flight, inform user that a flight could not be booked.

2. Cancel flight, inform user that <flow> activity labelled must be re-

executed.

Appendix C. Case Studies 180

3. Restart entire system, informing user of problem.

• Subject #2:

1. Re-invoke cf service.

2. Cancel flight, re-execute <flow> activity labelled , booking a car and

then another flight.

3. Cancel flight, execute onlyCar branch of the <pick> activity labelled .

C.2.2 Travel Booking System

Safety Property Violation: tTBS1

• Subject #1:

1. Cancel the flight and hotel bookings, re-display the travel summary and

inform the user that the dates are inconsistent.

2. Cancel all bookings and reservations, and inform the user that there was

a date inconsistency.

• Subject #2:

1. Cancel hotel booking, without cancelling flight or car bookings.

2. Cancel all bookings and reservations, attempt to make new, consistent

reservations.

Mixed Property Violation: tTBS2

• Subject #1:

1. Cancel bookings, go back to <pick> activity labelled and suggest that

user re-execute pickHotel branch of this <pick> activity.

2. Cancel bookings, go back to <pick> activity labelled and suggest that

user execute pickAirport branch of this <pick> activity.

Appendix C. Case Studies 181

3. Cancel bookings, cancel hotel reservation, make new hotel reservation

(without changing flight reservation), re-execute pickHotel branch of the

<pick> activity labelled .

• Subject #2:

1. Cancel shuttle booking, book car from airport. Do not cancel anything

else.

2. Cancel shuttle and hotel bookings, hotel reservation, make a new hotel

reservation, attempt to book a car from new hotel.

3. Cancel everything.

