
Abstract Analysis via Symbolic Executions

by

Aws Albarghouthi

A thesis submitted in conformity with the requirements
for the degree of Master’s of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2010 by Aws Albarghouthi

Abstract

Abstract Analysis via Symbolic Executions

Aws Albarghouthi

Master’s of Science

Graduate Department of Computer Science

University of Toronto

2010

Multicore technology has moved concurrent programming to the forefront of computer

science. In this thesis, we look at the problem of reasoning about concurrent systems with

infinite data domains and non-deterministic input, and develop a method for verification

and falsification of safety properties of such systems. Novel characteristics of this method

are (a) constructing under-approximating models via symbolic execution with abstract

matching and (b) proving safety using under-approximating models. We compare our

approach with recent related work from literature and show that our approach is generally

superior both at verification and falsification.

ii

To my Grandfather,

iii

Acknowledgements

I would like to thank Ou Wei for helping me come up with the initial idea and kickstart

the project. I would like to thank Arie Gurfinkel whose knowledge, insights, and

patience were invaluable in every stage of this project. I would also like to thank my

supervisor Marsha Chechik for her support, encouragement, and unparalleled

excitement. Thanks to the many friends who made my master’s experience, simply,

amazing.

Finally, I would like to thank my parents for their infinite love and support.

iv

Contents

1 Introduction 1

2 Overview 4

3 Preliminaries 9

4 Abstract Analysis of Symbolic Executions 12

4.1 Algorithm . 12

4.2 Soundness and Monotonicity . 17

4.3 Comparison with Weak Reachability . 22

5 Implementation and Experimental Results 24

6 Related Work 28

7 Conclusion and Future Work 30

Bibliography 31

v

List of Figures

1.1 A simple two-process mutual exclusion protocol with inputs x and y. . . 3

2.1 Abstract analysis of symbolic executions. 5

2.2 (a) Symbolic execution of the program in Fig. 1.1; (b) its corresponding

abstract transition system Ma; (c) a modified abstract transition system

M ′
a. 8

4.1 Refinement loop (main function). 13

4.2 Symbolic execution with abstract matching. 14

4.3 safe-fragment check . 16

4.4 Splitting symbolic states. 16

5.1 Experimental results: ASE vs. UR [22]. 25

5.2 Experimental results: programs with unspecified initial states and non-

deterministic input. 27

vi

Chapter 1

Introduction

Concurrency has moved to the forefront of computer science due to the fact that future

speedups of software rely on exploiting concurrent executions on multiple processor cores.

Thus, the problem of creating correct concurrent programs is now paramount. Reasoning

about such programs, i.e., determining whether properties of interest hold or fail in them,

has always been difficult, especially if we consider “realistic” programs with infinite data

domains (i.e., integer variables) and non-deterministic input. An example of such a

program is the simple two-process mutual exclusion protocol shown in Fig. 1.1, where

integer variables x and y are set non-deterministically (see Chapter 2 for more detail).

Approaches to reason about concurrent systems can be split into four categories. (1)

“Classical” model-checking techniques, e.g., [17], were created to enumerate all reachable

states of the program. Such techniques provide both verification and falsification infor-

mation and are very effective when the state-space of the program is finite. However, they

do not scale well for programs with large state-spaces and do not apply to those with in-

finite state-spaces. (2) Techniques like [3, 15, 6] build an over-approximation of program

behaviours, via static analysis. These techniques can handle large/infinite state-spaces,

are effective for verification purposes, but are not particularly well suited for finding bugs.

(3) Techniques like [23, 22, 2, 20] explore an under-approximation of feasible program be-

1

Chapter 1. Introduction 2

haviours. These techniques are often inexpensive and very effective for finding bugs; they

are, however, often unable to prove correctness of programs. (4) Recently, researchers

have been exploring the combination of under- and over-approximation by combining

dynamic and static analysis techniques, respectively. Examples of this approach include

[22] and the Yogi project [21]. These techniques are effective both for verification and

for falsification of safety properties but, with the exception of [22], have been limited to

sequential programs [27, 14, 18, 13, 11]. Our work fits into this category.

In this thesis, we propose a novel approach for automatically checking safety prop-

erties of reactive concurrent programs with non-deterministic input and infinite data

domains. Handling these features allows us to target programs with infinite state-spaces,

uninitialized variables, and communication with an external environment (e.g., user in-

teraction). Our approach combines symbolic execution (to deal with non-deterministic

input) and predicate abstraction (to deal with infinite data domains) in an abstraction-

refinement cycle. Symbolic exploration proceeds along a path until it discovers two

symbolic states that match to the same abstract state – the process is called abstract

matching [16]. It produces an under-approximating abstract model that is more precise,

in terms of feasible program behaviours it captures, than under-approximation techniques

based on must transitions [23], concrete model checking and abstract matching [22], and

weak reachability [2]. Since we only explore feasible program behaviours, all errors we

encounter are real. We then analyse the abstract model to determine if it is also an over-

approximation of the concrete program. If so, we conclude safety; otherwise, we refine

the abstraction, adding predicates not to remove spurious counterexamples (as in the

CEGAR framework [7]) but to enable us to explore more feasible program behaviours.

To our knowledge, this is the first software verification algorithm combining symbolic ex-

ecution with predicate abstraction and refinement. Our contributions are thus as follows:

(i) a novel method for improving precision of under-approximating models by construct-

ing them via a combination of symbolic execution and abstract matching; (ii) a novel

Chapter 1. Introduction 3

Process 1

t1 : pc1 = 1 −→ b := b+ 1, pc1 := 2

t2 : pc1 = 2 ∧ x ≤ y ∧ b = 2 −→ pc1 := 3

t3 : pc1 = 3 −→ x := nondet, pc1 := 2

Process 2

t4 : pc2 = 1 −→ b := b+ 1, pc2 := 2

t5 : pc2 = 2 ∧ x > y ∧ b = 2 −→ pc2 := 3

t6 : pc2 = 3 −→ y := nondet, pc2 := 2

Figure 1.1: A simple two-process mutual exclusion protocol with inputs x and y.

technique for proving safety using under-approximating models; (iii) an implementation

based on [22] and an empirical evaluation comparing the two approaches.

The rest of this thesis is organized as follows. In Chapter 2, we give a general overview

of the approach, illustrating it on the example in Fig. 1.1. We define the notation and

provide background for the remainder of the thesis in Chapter 3. Chapter 4 presents our

approach in more detail, and Chapter 5 describes our implementation and experimental

results. Chapter 6 compares our approach with related work. We conclude in Chapter 7

with the summary of our contributions and suggestions for future work.

Chapter 2

Overview

In this chapter, we illustrate our approach on a simple two-process mutex protocol shown

in Fig. 1.1. The protocol is written in a simple guarded command language. Initially,

variables x and y are undefined (i.e., they can have an arbitrary value), b is 0, pc1 is 1,

and pc2 is 1. Process 1 starts at pc1 = 1, increments b, and moves to pc1 = 2 (transition

t1). At pc1 = 2, it waits until b becomes 2 and x is less than or equal to y and proceeds to

its critical section at pc1 = 3 (transition t2). At pc1 = 3, it sets x non-deterministically

(modelling input) and returns to pc1 = 2 (transition t3). Process 2 behaves analogously

but uses process counter pc2 and resets variable y in its critical section. We aim to show

that this protocol satisfies the mutual exclusion property: a state where pc1 = 3∧pc2 = 3

is not reachable.

The high-level overview of our approach is shown in Fig. 2.1. To determine whether

a safety property ψ holds in a program P , we compute an abstract transition system,

Ma, of P w.r.t. some initial set of predicates Φ0 using symbolic execution with abstract

matching. The state-space of Ma is an under-approximation of reachable states of P .

If an error is found during this step, we report P as unsafe and terminate. Otherwise,

Ma |= ψ, and Ma is passed to the analysis phase which checks, via two separate steps,

whether the state-space of Ma is also an over-approximation of P . If so, we are able to

4

Chapter 2. Overview 5

Figure 2.1: Abstract analysis of symbolic executions.

conclude that P is safe. Otherwise, we refine the set of predicates and repeat the entire

process.

Our approach follows an abstraction-refinement loop, but differs from the standard

CEGAR framework [7] in two ways: (1) we compute an under-approximating abstraction

of P (using symbolic execution); (2) we do not rely on counterexamples to perform the

refinement. In the rest of this chapter, we discuss each step of our approach in turn.

Symbolic Execution with Abstract Matching.

Fig. 2.2(a) shows a symbolic execution tree of the program in Fig. 1.1. The initial set

of predicates, Φ0 = {x ≤ y, b = 2}, consists of all the predicates from the guards of

the program. A symbolic state consists of the current values of variables conjoined with

the path condition that has to be satisfied in order to reach this state. In Fig. 2.2(a),

each state is represented as a box, with values of variables in the order (pc1, pc2, x, y, b)

appearing in the top and the path condition – in the bottom. For example, state s1 is

(pc1 = 1, pc2 = 1, x = x0, y = y0, b = 0) ∧ (x0 ≤ y0), where x0 and y0 are symbolic

constants representing the initial value of x and y, respectively.

We use traditional symbolic execution with one additional constraint: in each sym-

bolic state, each predicate from Φ0 must be either satisfied or refuted. If necessary, we

Chapter 2. Overview 6

split a symbolic state by strengthening its path condition. For example, the initial state

of the program in Fig. 1.1, s0 = (pc1 = 1, pc2 = 1, x = x0, y = y0, b = 0), neither satis-

fies nor refutes the predicate x ≤ y. Thus, it is split into states s1 and s2 that satisfy

and refute x ≤ y, respectively. They become the new initial states. Similarly, states s5

and s6 are obtained by splitting a symbolic successor of s4. Our constraint ensures that

each symbolic state corresponds to (or matches with) a unique valuation of all of the

predicates in Φ0. We call such a valuation an abstract state, and define a function α(s)

mapping a symbolic state s into an abstract state.

The symbolic execution proceeds along a path until it discovers two states s and s′

that match the same abstract state a, i.e., α(s) = α(s′) = a. For example, the symbolic

path starting at s1 and passing through s3 is stopped at s5. Following [22], we call

this process abstract matching. Since the domain of α is finite, symbolic execution with

abstract matching is guaranteed to terminate. Of course, execution also aborts whenever

it encounters an error state.

An abstract transition system Ma is obtained from the symbolic execution tree by

adding a transition between two abstract states a and a′ iff there is a transition between

two states s and s′ in the symbolic execution tree, and α(s) = a and α(s′) = a′. The

abstract transition system Ma for the execution tree in Fig. 2.2(a) is shown in Fig. 2.2(b).

In the figure, each state is a valuation to (pc1, pc2, x ≤ y, b = 2). For example, α(s1) = a1

and α(s2) = a2. An error state is unreachable in Ma, so it is passed to the analysis phase.

Analysis: safe-fragment.

This check is based on a notion of an exact transition. A transition between two abstract

states a and b is exact iff every concrete state corresponding to a can transition to a

concrete state corresponding to b. For example, transition a4 → a5 in Ma is exact

(denoted by a solid line) whereas transition a1 → a3 in Ma is inexact (denoted by a

dotted line).

Chapter 2. Overview 7

We say that a set of states Q, called a fragment, of an abstract transition system Ma

is exact iff (a) there is no outgoing transition from Q to other states in Ma, and (b) all

internal transitions within Q are exact. Intuitively, all executions from concrete states

corresponding to an exact fragment Q are trapped in it. We say that an exact fragment

Q is safe iff it does not contain error states, i.e, it approximates a part of the state-space

of P that cannot reach an error.

safe-fragment determines whether all paths in Ma are eventually trapped in a safe

exact fragment. This is reduced to checking whether the transitions inside and between

all nontrivial strongly connected components of Ma are exact. If so, Ma is an over-

approximation of P (see Chapter 4.2); therefore, none of the executions of P can reach

error and thus P is safe.

The check succeeds in our example. This is easily verified by looking at Fig. 2.2(b),

where all paths are trapped in the safe exact fragment consisting of the states a4, a5, a6,

and a7. Thus, the program in Fig. 1.1 satisfies the mutual exclusion property.

Analysis: inductive-invariant.

This check determines whether the state-space of Ma is an inductive invariant: i.e., it is

closed under applying transitions of P . If so, the state-space of Ma over-approximates

that of P , and thus P is safe. This check is complimentary to safe-fragment described

above (see Chapter 4.2). If it fails, we move to the refinement phase.

Refinement.

In this phase, we generate new predicates to refine inexact transitions of Ma. The re-

finement is based on computing preimage and is similar to the commonly used weakest

precondition-based refinement. Although not needed in our running example, we illus-

trate refinement using the inexact transition a1
t1−→ a3 of Ma in Fig. 2.2(b). First, we

compute the preimage of a3 w.r.t. transition t1, resulting in (pc2 = 2 ∧ x ≤ y ∧ b 6= 1).

Chapter 2. Overview 8

(a)

11TF

21TF 12TF

22TT

32TT

22FT

23FT

11FF

21FF 12FF

(b)
11TFFT

21TFTT 12TFTT

22TTTT

32TTTT

22FTTT

23FTTT

11FFFT

21FFTT 12FFTT

(c)

Figure 2.2: (a) Symbolic execution of the program in Fig. 1.1; (b) its corresponding

abstract transition system Ma; (c) a modified abstract transition system M ′
a.

Second, we add only the predicate b 6= 1 to Φ0 since program counter pc2 is represented

explicitly, and we already have x ≤ y.

In the remainder of the thesis, we formalize the above notions and evaluate the effi-

ciency of our approach.

Chapter 3

Preliminaries

This chapter outlines the definitions and notation used in this thesis.

Program

We use a guarded command language to specify programs. A program P is a tuple

(V, I, T), where V is a finite set of integer variables, I(V) is an initial condition, and T

is a finite set of transitions. Each transition t ∈ T is of the form gt −→ et, where gt

is a Boolean expression over the variables V , and et is a set of concurrent assignments.

Each assignment is of the form x := linExp or x := nondet, where x is a variable in

V , linExp is an expression from linear arithmetic over variables in V , and nondet is a

special expression used to denote non-deterministic input.

Preimage and Strongest Postcondition

Let φ be a formula over program variables. The preimage of φ w.r.t. a transition t,

pre(φ, t) = ∃s′ · (s t−→ s′ ∧ s′ |= φ), is a formula describing the set of all states which can

reach a state satisfying φ via t. The strongest postcondition of φ w.r.t. a transition t,

sp(φ, t) = ∃s′ · (s′ t−→ s ∧ s′ |= φ), is a formula describing the set of all states that are

reachable via t from a state satisfying φ.

9

Chapter 3. Preliminaries 10

Transition System

A transition system over a finite set of atomic propositions AP and a set of transition

labels T is a tuple (S,R, S0, L), where S is a (possibly infinite) set of states, R ⊆ S×T×S

is the transition relation, S0 ⊆ S is the set of initial states, and L : S → 2AP is a labelling

function, mapping each state to the set of atomic propositions that hold in it. For clarity,

we write s
t−→ s′ to denote R(s, t, s′). A maximal path is either an infinite sequence of

states s1, s2, · · · , where s1 ∈ S0 and for every i ≥ 1, R(si, t, si+1) holds for some t ∈ T ;

or a finite sequence of states s1, · · · , sn where s1 ∈ S0, for every 1 ≤ i < n, R(si, t, si+1)

holds for some t ∈ T , and there do not exist s′ ∈ S and t ∈ T such that R(sn, t, s
′).

The concrete semantics of a program P = (V, I, T) is a transition system C(P) =

(S,R, S0, L) over some atomic propositions AP and the set of program transitions T ,

where S = 2V→Z, S0 = {s ∈ S | s |= I}, and s
t−→ s′ for some t ∈ T iff s |= gt and

s′ ∈ et(s). By s |= gt, we mean that the valuation of variables in s satisfies the Boolean

expression gt, and et : (V → Z)→ 2(V→Z) is a function which computes all possible states

resulting from applying the assignments to some state. Finally, L(s) = {φ ∈ AP | s |= φ}.

Predicate Abstraction

Let Φ = {φ1, · · · , φn} be a set of predicates over program variables. The predicate

abstraction αΦ is a function from concrete states to Boolean formulae (abstract states)

over predicates in Φ. Given a concrete state s, αΦ(s) =
∧
φ∈Φs

φ ∧
∧
φ∈Φs
¬φ, where

Φs = {φ ∈ Φ | s |= φ} and Φs = Φ \ Φs. A concretization function γΦ takes a Boolean

formula over Φ and returns the set of concrete states satisfying the formula. Given a

Boolean formula ψ over Φ, γΦ(ψ) = {s ∈ S | s |= ψ}. For a set of states X, we write

αΦ(X) to mean
∨
{αΦ(s) | s ∈ X}.

A transition a1
t−→ a2, where a1 and a2 are abstract states is a must transition iff

∀s ∈ γΦ(a1) · ∃s′ ∈ γΦ(a2) s.t. s
t−→ s′. A transition is a may transition iff ∃s ∈

γΦ(a1) · ∃s′ ∈ γΦ(a2) s.t. s
t−→ s′. In this thesis, we call must transitions exact, and

Chapter 3. Preliminaries 11

transitions that are may but not must – inexact. A transition a1
t−→ a2 is exact iff

a1 ⇒ pre(a2, t).

Simulation Relation

Given two transition systems M = (S,R, S0, L) over AP and M ′ = (S ′, R′, S ′0, L
′) over

AP ′ ⊆ AP , we call ρ ⊆ S × S ′ a simulation relation between M and M ′ iff for all s ∈ S

and s′ ∈ S ′, if ρ(s, s′)0 then: (1) L(s) ∩ AP ′ = L(s′), and (2) ∀r ∈ S s.t. R(s, t, r) holds

for some label t, ∃r′ ∈ S ′ s.t. R(s′, t′, r′) holds for some label t′, and r, r′ are related by

ρ. M ′ simulates M iff exists a simulation relation ρ s.t. ∀s ∈ S0 · ∃s′ ∈ S ′0 where ρ(s, s′)

holds.

Φ-maximal path

Let C be a concrete path c1, · · · , cn such that for all 1 ≤ i ≤ n, ci
t−→ ci+1 for some

transition t. C is Φ-maximal, where Φ is a set of predicates, iff ∃i ∈ [1 · · ·n). αΦ(cn) =

αΦ(ci) and ∀k, j ∈ [1 · · ·n]. (k > j ∧ αΦ(cj) = αΦ(ck))⇒ k = n and j = i

Chapter 4

Abstract Analysis of Symbolic

Executions

In this chapter, we describe our algorithm in detail, discuss its properties, and comapre

the precision of our under-approximating models with other under-approximating models.

4.1 Algorithm

Our abstraction-refinement based verification algorithm is implemented by the function

Refine (Fig. 4.1) which does symbolic execution followed by safe-fragment and inductive-

invariant checks and refinement (see Fig. 2.1). It uses two helper functions: symbol-

icExec (Fig. 4.2), to do symbolic execution with abstract matching and to compute the

explored abstract transition system, and safeFragment (Fig. 4.3), to prove safety of

the abstract transition system.

Refine initializes the set Φ with all the predicates in the program’s guards and in

the safety property ψ (line 2), and enters the execute-analyse-refine loop (lines 3–13). It

uses symbolicExec (line 5) to compute the abstract transition system. It terminates

with false if an error state is found (line 6); otherwise, it performs the safe-fragment check

(line 7) followed, if needed, by the inductive-invariant check (lines 9–13). The Boolean

12

Chapter 4. Abstract Analysis of Symbolic Executions 13

1: function Refine(P,ψ)

2: Φ← predicates from guards in P and ψ

3: while true do

4: inductive← true

5: (fin, inf, A0)← symbolicExec(P,Φ) . symbolic execution

6: if a state in (fin, inf,A0) satisfies ¬ψ then return false

7: if safeFragment(fin, inf) then return true . safe-fragment

8: A← all states in (inf,fin, A0)

9: for all (a1, t, a2) ∈ (fin ∪ inf) do . inductive-invariant

10: if ¬(a1 ⇒ pre(a2, t)) then

11: add predicates in pre(a2, t) to Φ . refinement

12: if ¬(sp(a1, t)⇒
∨
A) then inductive← false

13: if inductive then return true

Figure 4.1: Refinement loop (main function).

Chapter 4. Abstract Analysis of Symbolic Executions 14

variable inductive holds the result of inductive-invariant. If it is false after inductive-

invariant (line 13), then Refine repeats symbolic execution with new predicates added

to Φ; otherwise, it returns true.

1: function symbolicExec(P,Φ)

2: symbStack ← empty stack . Each item on the stack is a set of states

3: push splitState(s0,Φ) on symbStack

4: A0 ← {αΦ(s) | s ∈ splitState(s0,Φ)}

5: (fin,inf,trans)← (∅, ∅, ∅)

6: while symbStack is not empty do

7: S ← top of symbStack

8: choose s ∈ S s.t. for some t, s |= gt

9: if no such transition exists or transitions exhausted then

10: fin← fin ∪ allPaths(S, trans)

11: trans← tail of trans

12: pop symbStack

13: continue

14: result← Exec(s, et)

15: S′ ← splitState(result,Φ)

16: for all {s′ ∈ S′ | αΦ(s′) = αΦ(s) or ∃t · (αΦ(s′), t′) ∈ trans} do

17: fin← fin ∪ stem((αΦ(s), t, αΦ(s′)), trans)

18: inf← inf ∪ loop((αΦ(s), t, αΦ(s′)), trans)

19: S′ ← S′ \ {s′}

20: if S′ 6= ∅ then

21: push S′ on symbStack

22: trans← prepend (αΦ(s), t) to trans

23: return (fin, inf, A0)

Figure 4.2: Symbolic execution with abstract matching.

Chapter 4. Abstract Analysis of Symbolic Executions 15

symbolicExec performs depth-first symbolic execution with abstract matching. It

uses the stack symbStack of sets of symbolic states to keep track of the current path. A

symbolic state s over a set of variables V is a tuple (f, PC), where f is a function mapping

each program variable to an integer or symbolic constant, and a path condition PC is a

set of constraints over symbolic and integer constants. A symbolic state s denotes the set

of concrete states it represents. For example, the state ({x 7→ x0, y 7→ y0}, {y0 > 0, x0 >

y0}) denotes the set of concrete states where y is strictly greater than 0 and x is strictly

greater than y.

Let x be a variable in V and s = (f, PC) a symbolic state. The symbolic execution

is done by the function Exec (line 14 of Fig. 4.2) using the following rules: if et is

x := nondet then the result is the state s′ = (f [x → z], PC), where z is fresh symbolic

constant (i.e., is not used in any symbolic state so far) and f [x → z](a) is z if x = a

and f(a) otherwise; if et is x := u for some expression u, then the result is the state

s′ = (f [x→ z], PC ′), where z is fresh and PC ′ = PC ∪ (z = u[f(v1)/v1, · · · , f(vn)/vn]);

if et is a concurrent assignment, the result is obtained by the obvious generalization of

the base rules.

Recall that we require that a symbolic state satisfies or refutes each predicate in Φ.

We enforce this using splitState that takes a symbolic state as input and returns a set

of states that satisfy our constraint. The näıve implementation is to recursively split a

state s by taking a predicate from p ∈ Φ that is neither satisfied nor refuted by s and

creating two new states by adding p and ¬p to the path constraint of s, respectively.

This is highly inefficient.

Instead, we reduce the problem to predicate abstraction as shown in Fig. 4.4. Basi-

cally, we compute a predicate abstraction of a symbolic state s and then split s using

all the minterms in the result1. For example, consider the symbolic state s = ({x 7→

x0, y 7→ y0}, {y0 = 0}) over V = {x, y}, and let Φ = {x > 0, y > 0}. Predicate ab-

1A minterm is is a conjunction of literals containing all predicates in Φ.

Chapter 4. Abstract Analysis of Symbolic Executions 16

1: function safeFragment(fin,inf)

2: worklist← inf

3: while worklist 6= ∅ do

4: (a, t, b)← remove element from worklist

5: if ¬(a⇒ pre(b, t)) then return false

6: T ← {(a′, t′, b′) ∈ fin | a′ ∈ {a, b}}

7: fin← fin \ T

8: worklist← worklist ∪ T

9: return true

Figure 4.3: safe-fragment check

function splitState(s)

S ← ∅, X ← αΦ(s)

for all minterms x ∈ X do

S ← S ∪ (f, PC ∪ x[f(v1)/v1, · · · , f(vn)/vn])

return S

Figure 4.4: Splitting symbolic states.

straction of s over Φ has two minterms: {x > 0 ∧ y ≤ 0, x < 0 ∧ y ≤ 0}. This leads

to two new symbolic states {(f ′, PC ′), (f ′′, PC ′′)}, where f ′′ = f ′ = {x 7→ x0, y 7→ y0},

PC ′ = {y0 = 0, x0 > 0, 0 ≤ 0}, and PC ′′ = {y0 = 0, x0 ≤ 0, 0 ≤ 0}. Of course, tau-

tologies like 0 ≤ 0 are discarded when the expression is simplified. This has the same

worst-case complexity as the näıve approach, but allows us to use recent advances in

predicate abstraction (such an AllSAT SMT solver).

In symbolicExec, the variable trans keeps an abstraction of the path from the initial

state to states at the top of symbStack as a list of tuples (a, t), where a is an abstract

state and t a transition. Whenever symbolicExec reaches a state whose abstraction

has been seen before on the current path (i.e., either it is the same as a predecessor

Chapter 4. Abstract Analysis of Symbolic Executions 17

or it appears in trans – line 16), it stops current exploration and backtracks. At this

point, trans is a lasso-shaped abstract path. Functions stem and loop are used to

extract the transitions that occur on the stem of the path, stored in set fin and the loop

of the path, stored in inf. For example, consider the symbolic execution tree shown in

Fig. 2.2(a). When symbolicExec takes the transition s4
t3−→ s5 (corresponding to the

abstract transition a5
t3−→ a4 in the abstract model in Fig. 2.2(b)) it discovers a loop. Then,

trans = [(a4, t2), (a3, t4), (a1, t1)], stem(trans, (a5, t3, a4)) = {(a1, t1, a3), (a3, t4, a4)}, and

loop(trans, (a5, t3, a4)) = {(a4, t2, a5), (a5, t3, a4)}.

When symbolicExec reaches a set of symbolic states where no transition can be

taken (line 9), the transitions leading to that set of states are added to fin using the

allPaths function. For example, assume trans = [(a2, t2), (a1, t1)] and S = {a3, a4}.

Then, allPaths(S, trans) = {(a1, t1, a2), (a2, t2, a3), (a2, t2, a4)}.

safeFragment works by locating the fragment of the abstract model that is reached

by all execution paths. This is done by finding all transitions in or reachable from inf.

If all of these transitions are exact, then we conclude safety. Otherwise, we proceed to

inductive-invariant.

In inductive-invariant (lines 9–13 of Refine), for every state which is the source of an

inexact transition t, we check if its strongest postcondition w.r.t. t is a subset of the set

of abstract states explored (line 12). If so, the explored abstract states over-approximate

the set of reachable concrete states, and thus we can conclude safety. Otherwise, we go

back to the symbolic execution stage, but now with new predicates added from preimages

of destination states of inexact transitions (line 11 of Refine).

4.2 Soundness and Monotonicity

Our algorithm only reports real errors. This is ensured by restricting symbolic execution

to explore only symbolic states with satisfiable path constraints. Theorem 4.2.2 states

Chapter 4. Abstract Analysis of Symbolic Executions 18

that the algorithm is also sound for safety properties Of course, since property checking

is undecidable, the algorithm is incomplete.

In the rest of this chapter, we represent the abstract state-space explored by symbo-

licExec by a transition system Ma = (Sa, Ra, Sa0 , L
a), where AP = Φ, Sa is the set of

all states appearing in (fin,inf, A0), Ra is the set of all transitions appearing in fin ∪ inf,

Sa0 = A0, and for x ∈ Sa, La(x) = {φ ∈ Φ | x |= φ}.

Lemma 4.2.1. Let Π be the set of all maximal paths of some program P . Let Φ be some

set of predicates over the variables in P . Then, for every π ∈ Π that has a Φ-maximal

prefix, symbolicExec only traverses the prefix of π that is Φ-maximal. For every π ∈ Π

that has no Φ-maximal prefix, symbolicExec traverses the whole path.

Proof. Choose a π ∈ Π that has a Φ-maximal prefix. Let c1, · · · , cn be the Φ-maximal

prefix of π. symbolicExec must start from a symbolic state s1 that includes c1 (line 3).

Through splitState, αΦ(s1) ⇔ αΦ(c1). Let t be the transition between c1 and c2. We

know that s1 |= gt and therefore, symbolicExec executes et from s1 gets to a state s2

(after splitting the resulting state) where αΦ(s2)⇔ αΦ(c2). This process continues until

we reach the symbolic state sn. symbolicExec backtracks only when (1) no transition

can be taken (line 9), (2) or two symbolic states along the path correspond to the same

abstract state (line 16). From c1, · · · , cn, we know that the first condition does not

occur on any point upto sn. Therefore, backtracking only occurs when symbolicExec

reaches sn, because for all 1 ≤ i ≤ n, αΦ(si) ⇔ αΦ(ci) and, by definition of Φ-maximal

path, no two states ci and cj, where i, j ∈ {1, · · · , n − 1}, and i 6= j, exist such that

αΦ(ci) = αΦ(cj). It follows trivially from above that if a path has no Φ-maximal prefix,

symbolicExec traverses the whole path. If a path has no Φ-maximal prefix, then it

is finite, since there is a finite number of abstract states and if it was infinite, then

at least two states along the path match must to the same abstract state. Therefore,

symbolicExec only backtracks when it reaches the end of the path (line 9).

Chapter 4. Abstract Analysis of Symbolic Executions 19

Theorem 4.2.2 (Soundness). Let ψ be a safety property, P be a program satisfying ψ,

and Mc = (S,R, S0, L) be a transition system of P . W.l.o.g., assume that every state in

S is reachable from S0. Assume that Refine declares Ma as safe (i.e., terminates on

line 7 or 13). Let Ma = (Sa, Ra, Sa0 , L
a) be the abstract transition system constructed by

symbolicExec in the last iteration of Refine. Then, (i) if Refine terminates after

safe-fragment (line 7), then Ma simulates Mc; (ii) if Refine terminates after inductive-

invariant (line 13), then Sa over-approximates S (i.e., ∀s ∈ S · αΦ(s) ∈ Sa).

Proof. First, assume termination due to safe-fragment.

Then the explored abstract system Ma simulates the concrete system Mc. To show that,

let ρ ⊆ S × Sa be the simulation relation such that ρ = {(s, αΦ(s))|s ∈ S}. We have to

show the following:

1. For every s0 ∈ S0, (s0, αΦ(s0)) ∈ ρ: This is trivial as the algorithm explores every

αΦ(s0) for every s0 ∈ S0 (line 4 of symbolicExec).

2. For any two states (s1, a1) ∈ ρ, if R(s1, t, s2) for some s2 ∈ S and some transi-

tion t, then (s2, αΦ(s2)) is in ρ: Let ρ(s1, a1) where s1 ∈ S and a1 ∈ Sa. Assume

R(s1, t, s2), but not Ra(a1, t, a2), where a2 = αΦ(s2). From symbolicExec, we

know that some s ⊆ γΦ(a1) has been reached where s is a symbolic state. Since

a1 |= gi, symbolicExec must have applied the transition t on the state s. But

a2 6∈ Sa, so the application of et on s must have resulted in an abstract state other

than a2. Therefore, by definition of inexact transitions, the transition t from a1 is in-

exact. If a1 is in inf or reachable from states in inf, then the algorithm should not

have terminated with “program is safe” (because of line 5 of safeFragment).

Otherwise, a1 must be outside the safe fragment (i.e., in fin when safeFrag-

ment reaches line 9). From our assumption that the algorithm terminated with

safe-fragment, we know that all transitions in the worklist when safeFragment

terminates are exact. Therefore, if we continue execution on an any symbolic execu-

Chapter 4. Abstract Analysis of Symbolic Executions 20

tion path, we will never visit states outside the safe fragment. From Lemma 4.2.1,

this means that for every π ∈ Π, all abstract states a, such that αΦ(s) = a and s

is a concrete state in π, must have been discovered by symbolicExec. Therefore,

a1
t−→ a2 is discovered by symbolicExec.

Second, assume termination due to inductive-invariant.

This means that safe-fragment did not prove safety. Assume that s ∈ S and αΦ(s) 6∈

Sa. Without loss of generality, assume that there exists s′ ∈ S such that αΦ(s′) ∈ Sa

and s′
t−→ s for some transition t. Then sp(αΦ(s′), ti)⇒

∨
Sa is not valid, since s is in S,

but not in
⋃
a∈Sa γΦ(a). This contradicts the assumption that the algorithm terminated

with “program is safe” in line 18 of Refine. Thus, ∀s ∈ S. αΦ(s) ∈ Sa.

In contrast with other under-approximating approaches, e.g., [22, 2], our algorithm

explores more states in each successive iteration than in a previous one. That is, the

exploration is monotonically increasing. This ensures steady progress towards an error

state (if one exists). Intuitively, we get this by keeping an abstract visited table per each

path, as opposed to a unique global table as in [22].

Theorem 4.2.3 (Monotonicity). Let Φ and Φ′ be two sets of predicates s.t. Φ ⊆ Φ′. Let

P be a program, and C and C ′ be the concrete states of P explored by symbolicExec

under Φ and Φ′, respectively. Then, C ⊆ C ′.

Proof. Let Π be the set of all maximal paths of P . From Lemma 4.2.1, for every π ∈ Π,

symbolicExec will traverse a prefix of π that is Φ-maximal. Without loss of generality,

choose some π ∈ Π such that π has a Φ-maximal prefix. Let the Φ-maximal prefix of π be

c1, · · · , cm. Then, there exists a state ck other than cm such that αΦ(cm) = αΦ(ck). When

running symbolicExec with Φ′, if αΦ′(cm) = αΦ′(ck) still holds, then the same prefix

c1, · · · , cm of π will be traversed by symbolicExec. Otherwise, c1, · · · , cm will not be

Φ′-maximal, and therefore symbolic execution will continue beyond cm, exploring more

concrete states. This is because simply adding new conjuncts to two unequal conjunctions

Chapter 4. Abstract Analysis of Symbolic Executions 21

of predicates can not make them equal. And this means that no two unequal concrete

states ci and cj can match to the same abstract state over Φ′ if they do not match to

the same abstract state over Φ. Similarly, in the case of finite paths that do not have a

Φ-maximal prefix, adding extra predicates can not create a Φ′-maximal prefix.

Therefore, for every π ∈ Π, if πΦ is the prefix of π explored for the predicates Φ, then, for

Φ′, symbolicExec explores a prefix πΦ′ of π such that πΦ′ equals πΦ or πΦ is a prefix

of πΦ′ .

In contrast, our approach is not monotonic for proving safety: adding new predicates

may cause an exact transition used by safe-region check to become inexact [10, 22, 2]. In

the future, we hope to solve this problem by using an abstract domain of tri-vectors.

As discussed in Chapter 2, the two checks, safe-fragment and inductive-invariant, are

incomparable. We prove this below.

Theorem 4.2.4. There is an abstract model Ma constructed by symbolicExec that

passes exactly one of safe-fragment and inductive-invariant checks.

Proof. First, we give an example where safe-fragment holds but inductive-invariant fails.

Consider Ma in Fig. 2.2(b). Recall that it passes safe-fragment check. It fails inductive-

invariant since it is not closed under strongest postcondition: sp(a1, t1) = (pc1 = 2∧pc2 =

1∧x ≤ y∧ b 6= 2)∨ (pc1 = 2∧pc2 = 1∧x ≤ y∧ b = 2); the second disjunct is not covered

by an explored abstract state.

Second, we give an example where inductive-invariant holds but safe-fragment fails.

Consider M ′
a shown in Fig. 2.2(c). It is obtained from symbolically executing a program

obtained by replacing transition t3 by t3 : pc1 = 3 −→ pc1 := 2, x := x+1 in the protocol

in Fig. 1.1, and assuming that Φ includes predicates b = 0, b = 1, and predicates from

the guards. All transitions of M ′
a, with the exceptions of the two transitions from a5, are

exact. safe-fragment fails on M ′
a. inductive-invariant does not: the only interesting case is

that sp(a5, t
′
3) = (pc1 = 2∧pc2 = 2∧ b = 2) is covered by explored abstract states. �

Chapter 4. Abstract Analysis of Symbolic Executions 22

We have shown that our algorithm is sound and explores the concrete state-space

monotonically. We have also shown that the two safety checks, safe-fragment and inductive-

invariant, are incomparable. Hence, both are required.

4.3 Comparison with Weak Reachability

Our under-approximating models produced by symbolicExec are more precise com-

pared to models produced by concrete model checking with abstract matching [22]. This

is a result of our search strategy: our algorithm backtracks when it finds two states that

match to the same abstract state on the same path. On the other hand, [22] backtracks

when it reaches a state which matches to an abstract state that has been visisted on any

path (i.e. in a globally visisted abstract table). Compared to approaches based on only

must transitions, e.g., [23], our algorithm is more precise as it does not only explore must

transitions, but may transitions as well.

We now show that an under-approximating abstract model built using symbolic ex-

ecution is at least as precise as an under-approximation defined by weak reachability [2]

(Theorem 4.3.1 below). By precision, we mean the set of feasible behaviours in the ab-

stract model. A state an is weakly reachable from a1 if a1 →∗must− ak →∗must an. This

means that a2 is reachable from a1 via zero or more must- transitions, and a3 is reachable

from a2 via zero or more must transitions. A transition i between two abstract states a1

and a2 is must- iff for all s ∈ γφ(a2), there exists a state s′ ∈ γφ(a1) such that s′
i−→ s.

Theorem 4.3.1. Let Φ be a set of predicates which includes guards of a program P .

If a state a′ is weakly reachable from an abstract initial state a in P under Φ, then

symbolicExec explores a′ as well. Furthermore, for some programs, symbolicExec

explores abstract states that are not weakly reachable.

Proof. Let an be weakly reachable from an initial state a1, s.t. a1 →∗must− ak →∗must an.

By definition of weak reachability, there exists a non-spurious concrete path c1, · · · , cn

Chapter 4. Abstract Analysis of Symbolic Executions 23

s.t. for all 1 ≤ i ≤ n, αΦ(ci) = ai. We first prove that our algorithm visits every weakly

reachable state, breaking the proof into two cases:

1. Assume that ai 6= aj for any i, j s.t. i 6= j. Then ci 6= cj for any i, j. Thus,

c1, · · · , cn does not have a Φ-maximal prefix, and therefore by Lemma 4.2.1, all

states in ai will be visited.

2. Assume existence of loops, i.e., ai = aj for some i, j s.t. i 6= j. Until there are no

loops in the path, we perform the following: (1) Find two states ai and aj where

ai = aj and i 6= j. (2) Remove all states al from the path, where i < l ≤ j. This

process ensures that a1 and an are not removed. By the definition of the regular

expression a1 →∗must− ak →∗must an, no matter how many states we remove, we still

have a path a1 →∗must− ak →∗must an such that an is weakly reachable from a1 and

no state ai occurs twice. By condition 1, our algorithm will visit state an.

We now prove that there are cases where our algorithm finds abstract states that are not

weakly reachable. Consider the program P :

pc = 1 ∧ x > 0→ pc := 2, x := x− 1

Assume that the initial states are (pc = 1 ∧ x > 0) and we have the set of predicates

{pc = 1, pc = 2, x > 0}. symbolicExec takes the only transition in the program and

discovers all the reachable abstract states of P : (pc = 1 ∧ x > 0), (pc = 2 ∧ x > 0), and

(pc = 2 ∧ x ≤ 0). On the other hand, weak reachability does not find any transitions

from (pc = 1 ∧ x > 0) since the abstract transitions between states (pc = 1 ∧ x > 0)

and (pc = 2 ∧ x > 0) and between states (pc = 1 ∧ x > 0) and (pc = 2 ∧ x ≤ 0) are

not must or must- transitions.

Chapter 5

Implementation and Experimental

Results

We’ve implemented our algorithm in OCaml on top of the implementation of Pasareanu

et al. [22]. We used GiNaC [4] for symbolic execution, MathSAT4 [5] for computing

predicate abstraction, Simplify [9] for checking exactness of transitions and computing

inductive invariants, and Bradley’s implementation of Cooper’s method for quantifier

elimination1. In all of our experiments, we added predicates only from those inexact

transitions that are in the set inf (returned by symbolicExec) or reachable from it.

In Fig. 5.1, we compare effectiveness of our abstract analysis of symbolic executions

approach (referred to as ASE) with that of the under-approximation refinement algorithm

of [22] (referred to as UR). We indicate whether the safety property of interest (ψ) is

true (t) or false (f) and report the number of iterations (Iter.), the number of theorem

prover queries (Prvr. Qurs.), the total number of predicates used (Preds.), the total

amount of time needed, and the number of concrete and abstract states explored in the

final iteration. In cases where the experiment did not finish after 15 minutes, the table

entries are “–”.

1Available at http://theory.stanford.edu/~arbrad/sware.html.

24

Chapter 5. Implementation and Experimental Results 25

Iter Prvr. Qurs. Preds. Time(s) Con/Abs States

Program ψ ASE UR ASE UR ASE UR ASE UR ASE UR

bakery2 t 3 4 141 367 8 10 0.347 0.452 52/33 49/36

RAX t 1 - 6 - 2 - 0.261 - 81/44 -

elev4 t 1 4 418 5789 13 19 1.013 8.146 468/378 468/456

elev5 t 1 5 1169 26252 15 23 3.459 44 1256/910 1253/1204

elev6 t 1 6 3156 105830 17 27 12.275 220.633 3248/2126 3224/3060

elev7 t 1 - 7116 - 19 - 40.867 - 8160/4862 -

elev8 t 1 - 15036 - 21 - 185.717 - 15200/9422 -

ticket2 t 4 4 135 120 8 8 0.609 0.404 22/9 12 / 9

ticket3 t 5 5 672 661 14 14 1.413 0.923 182/31 41/31

ticket4 t 6 6 4088 4061 23 23 33.51 5.143 5011/129 170/129

mesi t 16 16 6893 12172 47 47 36.61 49.627 18/18 18/18

berkley t 11 11 3113 4623 38 38 15.729 17.605 13/12 13/12

b bakery2-e f 1 2 0 74 2 5 0.178 1.188 80/80 193/193

ticket2-e f 1 2 0 11 2 5 0.073 0.155 12 / 9 26 / 17

ticket3-5 t 1 3 0 145 3 14 0.058 0.341 14/12 93/81

ticket3-10 t 3 8 152 1218 14 21 0.525 2.229 30/27 302/240

ticket3-15 t 8 13 1225 2090 21 26 3.107 5.15 47/44 507/395

ticket3-20 t 13 18 2500 3918 26 31 6.869 9.501 62/59 712/550

ticket3-25 t 18 23 3925 5493 31 36 13.038 15.821 77/74 917/705

ticket3-30 t 23 28 5500 7219 36 41 20.762 34.701 92/89 1112/860

ticket3-35 t 28 33 7225 9093 41 46 46.379 51.579 107/104 1327/1015

ticket3-40 t 33 38 9100 11118 46 51 71.462 82.974 122/119 1532/1170

RAX-5 t 5 5 46 123 12 20 0.373 0.363 50/49 170/170

RAX-10 t 10 10 146 483 17 35 0.988 1.528 90/89 350/350

RAX-15 t 15 15 296 1068 22 50 2.031 4.341 130/129 530/530

RAX-20 t 20 20 496 1878 27 65 3.675 9.934 170/169 710/710

RAX-25 t 25 25 746 2913 32 80 6.442 19.578 210/209 890/890

RAX-30 t 30 30 1046 4173 37 95 9.94 35.03 250/249 1070/1070

RAX-35 t 35 35 1396 5658 42 110 15.155 57.315 290/289 1250/1250

RAX-40 t 40 40 1796 7368 47 125 22.104 89.332 320/319 1430/1430

RAX-45 t 45 45 2246 9303 52 140 30.821 133.063 370/369 1610/1610

Figure 5.1: Experimental results: ASE vs. UR [22].

Chapter 5. Implementation and Experimental Results 26

Since UR can only handle a single concrete initial state and no non-deterministic

input, these are the characteristics of all programs in Fig. 5.1 2. We began by checking

the mutual exclusion property of the bakery protocol with two processors, where our

performance is a bit better than UR. On the other hand, ASE can prove that the Remote

Agent Experiment (RAX), as presented in [22], is deadlock-free in a single iteration,

while UR refines indefinitely. We then verified the elevator program, elevi, increasing

the number of floors i, against the property that the elevator cannot be on two separate

floors at the same time. We checked mutual exclusion of the ticketi protocol, increasing

the number of processes i, as well as correctness cache coherence protocols mesi and

berkley (these, along with their correctness properties, are taken from [8], restricting

the number of initial states to one). Our results show that ASE generally outperforms

UR in terms of the number of iterations and time it takes to prove safety. In the case of

ticketi where ASE requires the same number of iterations and predicates, ASE takes

more time as it explores more concrete states per iteration.

To illustrate the power of our approach at finding errors, we analysed defective ver-

sions, i.e., not satisfying mutual exclusion, of the bounded bakery (b bakery2-e) and

ticket (ticket2-e) protocols. We also checked whether a given ticket number X in the

ticketi protocol (ticketi-X) and a given counter value X in the RAX example (RAX-X)

are reachable. ASE terminates in fewer iterations than UR in the former case and in the

same number of iterations but significantly fewer predicates in the latter.

In Fig. 5.2, we report on the results of ASE for checking properties of programs

with unspecified initial states and/or non-deterministic input. Specifically, we verified

mutual exclusion of ticket, where the initial ticket number is set non-deterministically,

and bakery and peterson protocols, where each process stays in the critical section

for a non-deterministic amount of time. We also verified correctness of cache coherence

2ticket, bakery, and RAX are from [24]. elev is from [25]

Chapter 5. Implementation and Experimental Results 27

protocols, mesi and synapse, with undefined initial states3.

In summary, ASE can analyse a wide range of programs that manipulate arbitrary

integers and use non-deterministic input. And it can do so in less time, and considerably

fewer iterations or with significantly fewer predicates than UR.

Program ψ Iter. Prvr. Qurs. Preds. Symb/Abs States Time(s)

ticket2 t 4 523 12 5516/62 281.134

peterson2 t 1 24 4 700/38 424

bakery2 t 3 301 11 807/50 73.965

mesi t 2 260 13 112/14 3.56

synapse t 2 62 7 34/9 0.88

ticket2 f 1 0 2 12/10 0.104

ticket3 f 1 0 3 10/10 0.112

Figure 5.2: Experimental results: programs with unspecified initial states and non-

deterministic input.

3peterson and synapse is from [25]

Chapter 6

Related Work

The work by Pasareanu et al. [22] is the closest to ours. However, there are several

key differences. First, our approach explores the state-space monotonically. Second,

we use symbolic execution to deal with programs with arbitrary initial states and non-

deterministic input. Third, we use over-approximation much more aggressively leading

to a much faster convergence with fewer predicates. Comparison with other work is given

below.

Over-approximation based techniques (e.g., [3, 15, 6]) build an abstraction that has

more behaviours than the concrete system and prune infeasible computations via refine-

ment. In contrast, our refinement is based on extending the frontier of feasible program

behaviours. Most of such techniques, with the exception of [6], deal with sequential

programs only.

Under-approximation based techniques [22, 2, 19, 23] build an abstraction that has

fewer program behaviours than the concrete system. Our approach includes both reach-

able must and may transitions making the abstract models more precise than those that

have just must transitions (e.g., [23]) and must and reverse must transitions (e.g., [2]1).

The algorithm in [19] builds a finite bisimiluation quotient of the program under analysis,

1See Chapter 4.3

28

Chapter 6. Related Work 29

but unlike the global refinement employed by us and [22], uses a local refinement instead.

We leave a comparison of the efficiency of local and global refinements for future work.

Most recent automated software verification techniques that combine dynamic analy-

sis for detecting bugs and static analysis for proving correctness (e.g., [27, 13, 14, 11, 18])

concentrate on analysis of sequential programs. For example, [27] uses tests cases to ex-

plore an under-approximating abstract state-space with the hope of exploring all reach-

able abstract states but has no notion of refinement and thus the analysis may return false

positives. Like our work, [1] uses abstraction to bound symbolic execution of programs.

While this approach can handle programs with recursive data structures and arrays, its

goal is debugging rather than verification, and it does not involve refinement.

[18] improves error detection capabilities of the CEGAR framework [7] by using pro-

gram execution to drive abstraction-refinement. However, it does so by refining an over-

approximation and is restricted to sequential programs.

Directed automated random testing (DART) [13] and its successors, [26, 12], run the

program with random input, using path constraints to discover input that would exercise

alternative program paths. The Synergy algorithm [14] combines DART-like testing

with over-approximating abstractions, using results of tests to refine the abstract model

and using the abstract model to drive test case generation. The end result is either

a test case that reaches an error state, or an abstract model that simulates the pro-

gram. Whereas DART-like approaches attempt to cover all program paths, our approach

and [22, 27] attempt to cover all reachable abstract states. [11] presents a compositional

algorithm that combines DART and over-approximating techniques. DART-like testing

is used to create under-approximating (must) summaries of functions, and techniques

based on [3] are used to create over-approximating (may) summaries. The authors show

that alternating must and may summaries yields better results than must only or may

only summaries. However, these techniques are restricted to sequential programs.

Chapter 7

Conclusion and Future Work

We presented a novel verification algorithm that combines symbolic execution and pred-

icate abstraction in an abstraction-refinement cycle. Our approach applies to concurrent

programs with infinite data domain and non-deterministic input. Given a program and

a safety property, our algorithm executes the program symbolically, while building an

under-approximating abstract model. If an error is reached by symbolic execution, we

terminate and report it. Otherwise, we check whether the state-space of the abstract

model over-approximates all concretely reachable states. If the analysis fails, we refine

with new predicates and repeat the process. Not only do we handle a much wider range

of programs than related approaches, we also improve on the number of iterations and

the number of predicates used, whether the property of interest is true or false.

Our current implementation is a proof of concept – more work is needed to turn it

into robust verification tool that is applicable to a real programming language (such as

C) with complex features (e.g., structured and recursive data types, pointers, recursion,

etc.). It is also interesting to see whether the approach extends to termination (and

non-termination) properties. A promising direction is to use the under-approximation to

derive either a ranking function or a counterexample to termination. We leave exploring

these for future work.

30

Bibliography

[1] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. Symbolic

execution with abstraction. International Journal on Software Tools for Technology

Transfer (STTT), 11(1):53–67, 2009.

[2] Thomas Ball, Orna Kupferman, and Greta Yorsh. Abstraction for Falsification.

In CAV ’05: Proceedings of the 17th International Conference on Computer Aided

Verification, pages 67–81, 2005.

[3] Thomas Ball and Sriram K. Rajamani. The slam toolkit. In CAV ’01: Proceedings of

the 13th International Conference on Computer Aided Verification, pages 260–264,

London, UK, 2001. Springer-Verlag.

[4] C. Bauer, A. Frink, and R. Kreckel. Introduction to the GiNaC Framework for

Symbolic Computation with the C++ Programming Language. Journal of Symbolic

Computation, 33:1–12, 2002.

[5] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and

Roberto Sebastiani. The MathSAT 4 SMT Solver. In CAV ’08: Proceedings of

the 20th International Conference on Computer Aided Verification, pages 299–303,

2008.

[6] S. Chaki, E.M. Clarke, A. Groce, S. Jha, and H. Veith. Modular Verification of

Software Components in C. IEEE Transactions on Software Engineering, 30(6):388–

402, June 2004.

31

Bibliography 32

[7] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Ab-

straction Refinement. In Proceedings of 12th International Conference on Computer-

Aided Verification (CAV’00), volume 1855 of LNCS, pages 154–169, 2000.

[8] Giorgio Delzanno. Automatic Verification of Parameterized Cache Coherence Pro-

tocols. In Proceedings of 12th International Conference on Computer-Aided Verifi-

cation (CAV’00), pages 53–68, 2000.

[9] David Detlefs, Greg Nelson, and James Saxe. Simplify: a Theorem Prover for

Program Checking. Journal of the ACM (JACM), 52(3):365–473, 2005.

[10] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using

modal transition systems. In CONCUR ’01: Proceedings of the 12th International

Conference on Concurrency Theory, pages 426–440, London, UK, 2001. Springer-

Verlag.

[11] P. Godefroid, A.V. Nori, S.K. Rajamani, and S.D. Tetali. Compositional May-Must

Program Analysis: Unleashing the Power of Alternation. In POPL ’10: Proceedings

of the 37th annual ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, year = 2010.

[12] Patrice Godefroid. Compositional dynamic test generation. In POPL ’07: Pro-

ceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 47–54, New York, NY, USA, 2007. ACM.

[13] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated

Random Testing. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference

on Programming language design and implementation., pages 213–223, 2005.

[14] Bhargav Gulavani, Thomas Henzinger, Yamini Kannan, Aditya Nori, and Sriram Ra-

jamani. Synergy: a new algorithm for property checking. In SIGSOFT ’06/FSE-14:

Bibliography 33

Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of

software engineering, pages 117–127, New York, NY, USA, 2006. ACM.

[15] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In POPL’02:

Proceedings of the 29th SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pages 58–70, January 2002.

[16] Gerard Holzmann and R. Joshi. Model-Driven Software Verification. In Proceedings

of the SPIN Workshop (SPIN’04), volume 2989 of LNCS, pages 76–91, 2004.

[17] G.J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5), 1997.

[18] D. Kroening, A. Groce, and E. Clarke. Counterexample Guided Abstraction Re-

finement via Program Execution. In ICFEM’04:Proceedings of the 6th International

Conference on Formal Engineering Methods, pages 224–238, 2004.

[19] David Lee and Mihalis Yannakakis. Online Minimization of Transition Systems. In

STOC’92: Proceedings of the 24th Annual ACM Symposium on Theory of Comput-

ing, pages 264–274, 1992.

[20] M. Musuvathi and S. Qadeer. CHESS: Systematic Stress Testing of Concurrent

Software. In LOPSTR’06: Proceedings of 16th International Symposium on Logic-

Based Program Synthesis and Transformation, volume 4407 of LNCS, pages 15–16,

July 2006.

[21] Aditya Nori, Sriram Rajamani, SaiDeep Tetali, and Aditya Thakur. The Yogi

Project: Software Property Checking via Static Analysis and Testing. In TACAS’09:

Proceedings of the Conference on Tools and Algorithms for the Construction and

Analysis of Systems, volume 5505 of LNCS, pages 178–181, 2009.

Bibliography 34

[22] C. Pasareanu, R. Pelanek, and W. Visser. Concrete Model Checking with Abstract

Matching and Refinement. In CAV ’05: Proceedings of the 17th International Con-

ference on Computer Aided Verification, volume 3576 of LNCS, pages 52–66, 2005.

[23] Corina Pasareanu, Matthew Dwyer, and Willem Visser. Finding Feasible Counter-

examples when Model Checking Abstracted Java Programs. In TACAS’01: Proceed-

ings of the Conference on Tools and Algorithms for the Construction and Analysis

of Systems, volume 2031 of LNCS, pages 284–298, April 2001.

[24] Corina S. Pasareanu, Radek Pelánek, and Willem Visser. Predicate abstraction with

under-approximation refinement. Logical Methods in Computer Science, 3(1), 2007.

[25] Radek Pelánek. Beem: Benchmarks for explicit model checkers. In Dragan Bosnacki

and Stefan Edelkamp, editors, Proceedings of the SPIN workshop (SPIN’07), volume

4595 of Lecture Notes in Computer Science, pages 263–267. Springer, 2007.

[26] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine for c. In

ESEC/FSE-13: Proceedings of the 10th European software engineering conference

held jointly with 13th ACM SIGSOFT international symposium on Foundations of

software engineering, pages 263–272, New York, NY, USA, 2005. ACM.

[27] Greta Yorsh, Thomas Ball, and Mooly Sagiv. Testing, Abstraction, Theorem Prov-

ing: Better Together! In ISSTA’06: Proceedings of International Symposium on

Software Testing and Anlaysis, pages 145–156, 2006.

