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ABSTRACT
In this paper, we focus on the problem of feature location for fam-
ilies of related software products realized via code cloning. Lo-
cating code that corresponds to features in such families is an im-
portant task in many software development activities, such as sup-
port for sharing features between different products of the family
or refactoring the code into product line representations that elim-
inate duplications and facilitate reuse. We suggest two heuristics
for improving the accuracy of existing feature location techniques
when locating distinguishing features – those that are present in one
product variant while absent in another. Our heuristics are based on
identifying code regions that have a high potential to implement a
feature of interest. We refer to these regions as diff sets and com-
pute them by comparing product variants to each other. We exem-
plify our approach on a small but realistic example and describe
initial evaluation results.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing; D.2.13 [Software Engineering]: Reusable Software—Reuse
Models

General Terms
Design, Algorithms

Keywords
Software product lines, software maintenance, feature location.

1. INTRODUCTION
Software Product Line Engineering (SPLE) [2] is an engineer-

ing discipline supporting efficient development and maintenance
of related software products. It capitalizes on identifying and man-
aging common and variable product line features across a product
portfolio and promotes systematic software reuse by leveraging the
knowledge about the set of available features, relationships among
the features, and traceability between the features and software ar-
tifacts that implement them.
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While SPLE promotes systematic reuse of features between prod-
uct variants, in reality product families often emerge ad-hoc, when
companies have to release a new product that is similar, yet not
identical, to existing ones. In many cases, new products are created
using code cloning mechanisms (the “clone-and-own” approach)
when an existing product is copied and later modified indepen-
dently from the original version [6, 11, 4].

A feature implemented in one cloned variant might often be use-
ful for another. Thus, its code should be located and copied to
that different variant, promoting sharing of features between prod-
ucts [17]. Moreover, numerous approaches, e.g., [10, 1], advocate
refactoring of cloned program variants into “single-copy” represen-
tations, eliminating duplications and explicating variabilities (e.g.,
the annotative or compositional SPLE approaches [8]). Identify-
ing traceability between product features and artifacts that realize
those features can help with such refactorings: in many cases, the
set of features is known upfront and is specified by the product doc-
umentation whereas the relationship between the features and their
corresponding implementation is rarely documented.

Feature location techniques aim at solving this problem by lo-
cating pieces of code that implement a specific program function-
ality, a.k.a. a feature. Numerous feature location approaches that
are based on static program analysis, dynamic analysis, informa-
tion retrieval (IR) techniques, change set analysis, or a combina-
tion of several aforementioned techniques are extensively studied
in the literature [3, 16]. Obviously, each of the existing feature lo-
cation techniques can be used for locating features of products in a
product family when treating these related products as singular in-
dependent entities. However, leveraging any available information
that can help improve accuracy of existing feature location tech-
niques can be beneficial, as the accuracy of many contemporary
techniques is still low (for example, see [13]).

In this paper, we propose to extend the set of heuristics used by
feature location techniques when locating distinguishing features –
those that are present in one but not all variants of a product family
realized via code cloning. Our heuristics are based on additional
information available when considering multiple product variants
together. Such information can be obtained by comparing the code
of a variant that contains a particular feature of interest to the one
that does not. The comparison provides an initial “coarse-grained
partitioning” of a program into relevant and irrelevant parts and
assists the feature location process: the features of interest are im-
plemented in the unshared parts of the program, providing a clue
where to locate them. We thus detect and explicitly capture in-
formation about the unshared parts of the program as a separate
artifact, called a diff set, and propose heuristics that use this artifact
for improving the accuracy of feature location.

The remainder of this paper is structured as follows: In Section 2,
we illustrate and motivate the problem. In Section 3, we define diff
sets and outline the two heuristics based on them. Our preliminary
results are reported in Section 4. Section 5 discusses related work



Figure 1: A snippet of the automatic save File call graph.

in the area. We present possible directions of future work and con-
clude the paper in Section 6.

2. EXAMPLE
Consider the problem of locating the automatic save file fea-

ture in the code of the Freemind open source mind-mapping tool1,
previously studied in [15]. Figure 1 presents the relevant Free-
mind’s call graph snippet, where the four methods which contribute
to the feature implementation are shaded (elements #1-4). Cen-
tral to the implementation of the feature is the run method of the
MindMapMapModel’s sub-class doAutomaticSave (element #1)
which calls the saveInternal method (element #3), responsible
for performing the save operation itself. The doAutomaticSave
class is initiated by the MindMapMapModel’s constructor (element
#4), as shown in Figure 2. The constructor assigns values to several
configuration parameters related to the automatic save file func-
tion, initializes the doAutomaticSave class by calling its con-
structor (element #2) and then registers the class on the scheduling
queue. The scheduler (not shown in Figure 1) calls the run meth-
ods of all elements added to its queue, including the run method of
doAutomaticSave (element #1).

The implementation of the automatic save file feature is inte-
grated into the Freemind code and relies on additional program
elements. For example, element #3 also initiates a call to me-
thod save(Writer, MindMapMapModel) of FreeMindNodeModel
(element #5), which, in turn, calls element #6 – save(Writer,
MindMapMapModel). Element #3 itself is called by MindMap−
MapModel’s save(File) (element #7), which is called by MindMap−
Controller’s actionPerformed(ActionEvent) (element #8).
These methods are not relevant to the feature implementation be-
cause they handle a user-triggered save operation instead of au-
tomatic save. In fact, element #8 initiates calls to additional 24
methods, all of which are irrelevant to the implementation of the
feature. In Figure 1, irrelevant methods are not shaded.

Comparing the variant of the Freemind software that has the au-
tomatic save file feature to another one, that does not have that
feature, produces a set of unshared elements that distinguish be-
tween the variants – the diff set. In Figure 1, unshared elements are
denoted by solid-line boxes while common ones have dotted-line
boxes. Since our goal is to detect the feature that is present in one
but absent in another variant of the software, all relevant methods
are “by definition” in the unshared parts of the code. Methods that
are common to both variants, such as elements #5 and #6, can thus
be safely ignored, as they do not contribute to the automatic save
but rather a previously present user-triggered save functionality, re-
lied upon by the automatic save file feature.

1http://freemind.sourceforge.net

public MindMapMapModel( MindMapNodeModel root, 

                        FreeMindMain frame ) { 

  // automatic save: 

  timerForAutomaticSaving = new Timer(); 

  int delay = Integer.parseInt(getFrame(). 

    getProperty("time_for_automatic_save")); 

  int numberOfTempFiles = Integer.parseInt(getFrame(). 

    getProperty("number_of_different_files_for_automatic_save")); 

  boolean filesShouldBeDeletedAfterShutdown = Tools. 

    safeEquals(getFrame(). 

    getProperty("delete_automatic_save_at_exit"),"true"); 

  String path = getFrame().getProperty("path_to_automatic_saves"); 

   

  timerForAutomaticSaving.schedule(new doAutomaticSave( 

    this, numberOfTempFiles, 

    filesShouldBeDeletedAfterShutdown, dirToStore), 

    delay, delay); 

  ); 

} 

. . . 

. . . 

Figure 2: The automatic save File code snippet.

Unshared code may also include elements not relevant to the
studied feature, e.g., element #7. In fact, Freemind’s automatic
save file feature is implemented by four methods, while there are
353 unshared methods between the variants. Thus, elements present
in a specific part of the code should not be considered relevant auto-
matically. Instead, existing feature location techniques should use
this information to enhance their heuristics.

3. DIFF-SET BASED HEURISTICS
Feature location techniques are commonly evaluated by their

precision – the fraction of elements deemed relevant among those
reported, and recall – the fraction of reported relevant elements
among all those deemed relevant.

In this section, we define a notion of a diff set – an artifact captur-
ing unshared parts of the program of interest. We then describe two
heuristics aimed to improve precision and recall of feature location
techniques using diff sets: filtering and score modification.

DEFINITION 1. Let P and P̄ be program variants. A diff set of
P compared to P̄ (denoted by ∆P[P̄ ]) is a set of all elements of P
that do not have corresponding elements in P̄ . That is, ∆P[P̄ ] is a
set of all elements of P that are either different or absent from P̄ .

Filtering. Since we focus on distinguishing features of a program
P , i.e., those that exist in P but not in another variant P̄ , we know
a priori that all code of such features is present in P but absent
in P̄ . That is, the implementation of such features fully resides in
diff sets. Thus, all those elements retrieved by a feature location
technique that do not reside in diff sets are false-positives: they do
not contribute directly to the feature of interest and should not be
returned to the user. As such, we propose to filter elements that do
not reside in diff sets before returning feature location results to the
user. Filtering can significantly improve the precision of existing
feature location techniques without hurting their recall.

For the example in Section 2, the precision of a feature location
technique that retrieves elements #1-8 as the result of locating auto-
matic save file feature is 50%: only four shaded elements are really
relevant to this feature (rather than to the manual save file feature
which automatic save file uses). Considering the corresponding diff
set, which contains five elements denoted by a solid-line boxes (el-
ements #1-4, and 7), helps improve the precision to at least 80%:
elements #5,6 and 8, even if retrieved during feature location can
be filtered from the list of results.

In addition, filtering can help increase the number of relevant
elements reported in the top ten highest ranked results – another
often used metric inspired by the study in [20], which shows that
users are generally unlikely to look at more than ten elements in a
list. Such metric is suitable for the techniques that assign numeric



rank to the retrieved elements, representing their deemed relevance
to the feature of interest. Leaving out elements that definitely do
not contribute to the feature of interest can help push more relevant
results up in the list.
Score Modification. While filtering is applicable to any feature lo-
cation approach, focusing on a specific family of approaches (e.g.,
dynamic or static) can bring up additional improvements to the
heuristics that they use.

We consider a family of feature location algorithms that employ
an iterative, multi-staged program exploration approach, returning
to the user a ranked list of relevant program elements. Such algo-
rithms, e.g., Dora [7] or Suade [14], usually traverse the program
structure, following program relationships such as method calls,
data access/accessed-by relationships, type hierarchies and others.
Analyzed program elements are scored based on their lexical and/or
syntactical properties, and elements that are scored above a preset
relevance threshold are returned to the user. Scoring is also used
to determine which elements should be further traversed in the next
iteration of the algorithm since they have a high chance to lead the
analysis to additional relevant elements, and which are “dead ends”
where the exploration should stop. For example, while traversing
the call graph in Figure 1, a feature location technique might score
each element based on its lexical similarity to a given query that
describes a feature (e.g., automatic save file) and based on its struc-
tural proximity to other elements already determined to be relevant.
The resulting score for each element represents the degree of rele-
vance to the feature that is being detected.

Elements that reside in diff sets are more likely to be relevant to
the feature of interest. Thus, we propose a score modification strat-
egy aimed to increase the score of those elements in order to im-
prove the recall of a given feature location technique. We increase
the score of the elements in diff sets proportionally to their original
score, calculated by the original feature location algorithm, instead
of uniformly assigning a high score to all diff set elements. This is
done in order to avoid a high number of false-positives, and thus
a decrease in precision, as many elements in diff sets might not be
relevant to the feature being located.

For the example in Figure 1, consider evaluating relevance of the
element #3 w.r.t. the automatic save file feature, if the relevance
threshold is 0.6. While the lexical similarity of this element to the
“automatic save file” query, together with its structural proximity
to other elements deemed relevant, is relatively low, e.g., 0.5, in-
creasing the score of this element by 30% would push it above the
relevance threshold. Thus, the feature location algorithm would
determine it to be “relevant” to the feature in question, as desired.
Increasing the score of the element #7 that has a lower initial score
assigned by the original algorithm, e.g., 0.4, by 30% will not push
it above the relevance threshold even though this element is also
located in the diff set.

4. INITIAL EVALUATION
Subjects and Methodology. For evaluating our diff-set based ap-
proach, we are exploring a set of open source programs whose fea-
tures were identified and studied earlier [13, 15]. These studies
analyzed new functionality introduced by a specific software re-
lease (and thus absent in a previous version). The new functionality
came in the form of program patches or bug fixes described in the
projects’ documentation or in online tracking systems.

Even though the main focus of our work is on features in differ-
ent variants of a product family realized via code cloning, releases
of a program mimic the qualities of such families when locating
distinguishing features. Figure 3 sketches the cloning process in
a family of related products, in which variants are created by du-
plicating a specific version and continuing its development inde-
pendently from the original. For example, products P2 and P3 are
created by cloning the existing product P1 at points 2 and 4, re-
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Figure 3: Cloned product variants.

spectively. After cloning, both new and existing products continue
to involve independently from each other. Furthermore, product P2

itself is cloned at point 5 to create another variant – P4.
When studying distinguishing features of a variant, instead of

comparing it to another variant that lack those features, we can
focus on comparing it to an earlier version that does not contain the
features. For example, when studying distinguishing features of
P4, instead of comparing it to P2 at point 9, we can compare it to
P2 at point 5, from which P4 was cloned. In fact, comparing P4 to
P2 in these two points yields the exact same diff set: the evolution
of P2 is irrelevant because we are only interested in those features
that are present in P4 and absent in P2. Thus, for our analysis,
we focus on versions of a program and use an earlier release to
represent a variant that does not contain the feature of interest.

That is, we produced diff sets for the analyzed case studies by
comparing the analyzed program variant P to an earlier release P̄
which does not contain the feature of interest. To automate the
comparison, we adapted a Java difference detection tool CHANGE-
DISTILLER [5] that extracts fine-grained source code changes be-
tween subsequent revisions of Java classes, based on calculating
differences of their abstract syntax trees. As the result, we obtained
a set of elements that are new or modified in P , compared to P̄ .
Observations. We analyzed the examples introduced by the study
of Revelle and Poshyvanyk [13]. In their work, the authors fo-
cused on ten IR-based feature location approaches combined with
static and dynamic techniques, and compared the results returned
by each of the approaches to those produced manually by human
evaluators. Specifically, the authors measured the percentage of
elements perceived as "relevant" by human evaluators out of the
top ten results reported by each of the evaluated techniques. The
study demonstrated that contemporary feature location techniques
are able to find only 12.5% to 30% of relevant elements in their top
ten results, returning a large number of false-positives.

Unfortunately, the source code of the studied feature location
approaches was not available to us. Thus, we were unable to mea-
sure the exact improvement in the precision and recall, as well as
in the number of relevant elements returned by each of the tech-
niques in its ten top ranked results, once the approaches have been
enhanced with heuristics based on diff sets. However, we observed
that around 80% of elements perceived as “not relevant” by the
human evaluators in [13] corresponded to elements that did not
change between program versions. This confirmed that our diff
set-based heuristics can help improve the accuracy of a variety of
feature location approaches.

We are now implementing the diff-set-based score modification
for two tools whose source code was made available to us by their
authors – Dora [7] and Suade [14]. An initial comparison of origi-
nal vs. enhanced versions of these tools yields promising results.

5. DISCUSSION AND RELATED WORK
Numerous existing feature location approaches are extensively

surveyed in [3, 16]. The approaches are largely divided into dy-
namic which collect information about a program at runtime, and
static which do not involve program execution. Most dynamic ap-
proaches are based on analyzing two sets of traces – those pro-
duced by scenarios that activate a feature of interest and those that
do not. Elements are considered “relevant” if they appear only in
the former set. While execution trace partitioning is similar to our



partitioning of a program into common and unshared parts, the two
strategies are orthogonal, potentially extending each other. Also,
our approach does not require program execution.

Static feature location techniques look for desired results by lever-
aging program dependencies such as data or control flow or lexical
similarity of the code to a query describing the feature of interest.
These works do not explicitly address the issue of finding distin-
guishing features, and thus are orthogonal to our approach and can
be extended by it.

Project documentation together with configuration management
systems might help determine code that corresponds to features.
However, detailed logs associating code with high-level features
are rarely available. Several works attempted to discover features
by analyzing commit operations. For example, CVSSearch [18] an-
alyzed CVS log comments that describe the change made to the
committed lines of code. Given a user query, the tool returns all
lines of code that are mapped to comments containing at least one
of the query words. Unlike CVSSearch, our approach does not rely
on the availability of meaningful comments and is applicable even
when no change tracking is present.

Yoshimura et al. [19] detect variability in a software product line
using its evolution history. The work assumes that each product
consists of individual components, and evolution entails an up-
date to these. Components that are frequently modified together
when creating one product from another are deemed to represent
a product line variability point, which can also be perceived as a
feature. We also attempt to detect elements that are introduced to-
gether and thus correspond to features that distinguish one product
from another, as opposed to elements that are frequently commit-
ted together by the developer. However, we do not employ statis-
tical techniques that require analyzing extensive historical data but
rather suggest a simple heuristic for using common and unshared
parts of code obtained from comparing program variants.

Kästner et al. [9] also deals with migration of a legacy system not
designed as a software product line into a product line representa-
tion. Even though we share a similar goal of identifying product
line features, our approach is for systems realized via code cloning,
whereas the approach in [9] assumes “single-copy” legacy code.

6. CONCLUSIONS AND FUTURE WORK
Feature location is one of the most common activities undertaken

by developers during software maintenance and evolution [12]. The
goal of feature location is to retrieve those (and only those) ele-
ments that are relevant to the feature being detected. However, in
practice, all feature location techniques are heuristic and thus un-
able to provide a clear cut distinction between relevant and irrele-
vant elements.

In this paper, we focused on locating distinguishing features of
software product families realized via code cloning. That is, we
aimed to find those features that are present in one variant of the
program and absent in another. While in product families the map-
ping of features to product variants is usually well documented,
locating the code of a feature in a given product variant is still
challenging and, in many cases, inaccurate. Our approach is based
on explicitly capturing the information obtained when comparing a
product variant that has the feature of interest to another one that
does not, and using that information to enhance the set of heuris-
tics employed by existing feature location techniques. We believe
that our approach helps increase the number of relevant elements
identified by feature location, as well as to reduce the number of
false-positive results.

As a future work, we intend to fully implement the outlined ap-
proach and evaluate its effectiveness on a set of realistic case stud-
ies. We are also interested in exploring additional usages of the
collected information on program differences, as well as additional
heuristics that can be derived for handling feature location in prod-
uct lines.
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