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Abstract

Consider a program with m statements and n predicates,
where the predicates are derived from the conditional state-
ments and assertions in a program, as well as from implicit
run-time safety checks. An observable state is an evaluation
of the n predicates under some state at a program statement.

The goal of predicate-complete testing (PCT) is to cover
every reachable observable state (at most m × 2n of them)
in a program. PCT coverage is a new form of coverage
motivated by the observation that certain errors in a pro-
gram only can be exposed by considering the complex depen-
dences between the predicates in a program and the state-
ments whose execution they control. PCT coverage sub-
sumes many existing control-flow coverage criteria and is
incomparable to path coverage.

To support the generation of tests to achieve high PCT
coverage, we show how to define an upper bound U and
lower bound L to the (unknown) set of reachable observable
states R. These bounds are constructed automatically using
Boolean (predicate) abstraction over modal transition sys-
tems and can be used to guide test generation via symbolic
execution. We define a static coverage metric as |L|/|U |,
which measures the ability of the Boolean abstraction to
achieve high PCT coverage. Finally we show how to in-
crease this ratio by the addition of new predicates.

1 Introduction

Control-flow-based test generation generally has as its goal
to cover all the statements or branches in a program. There
are various control-flow adequacy criteria that go beyond
branch coverage, such as multiple condition coverage, the ul-
timate of which is path coverage. Errors that go undetected
in the face of 100% statement or branch coverage may be due
to complex correlations between the predicates (that con-
trol the execution of statements) and the statements (that
affect the value of these predicates) of a program. However,
paths are notoriously difficult to work with as a coverage
metric because there are an unbounded number of them in
programs with loops, which characterizes most interesting
programs in existence.

∗ A revised version of this paper will appear in the proceedings
of the 2004 Third International Symposium on Formal Methods
for Components and Objects (FMCO 2004), Leiden, The Nether-
lands, November 2-5.

So, we seek an alternative to path coverage that has its
“exhaustive” quality but induces a finite (rather than infi-
nite) state space. We start with a fixed notation for atomic
predicates (not containing Boolean connectives), taken from
the relevant programming language. A predicate maps a
state to a Boolean value. For example, the predicate (x > 0)
observes whether or not variable x has a positive value in
a given state. Consider a program with m statements and
n predicates. These predicates can be drawn from the con-
ditional statements and assertions in a program, as well as
from implicit run-time safety checks (for checking for array
bounds violations or divide-by-zero errors, for example) or
from automated analysis or the programmer. An observ-
able state is an evaluation of the n predicates under some
program state at a statement. While the set of states in
a program is unbounded, the size of the set of observable
states (S) is at most (m× 2n).

We define the (theoretic) goal of predicate-complete test-
ing (PCT) to be to cover all reachable observable states.
The n predicates represent all the case-splits on the input
that the programmer has identified.1 In the limit, each of
the m statements may have different behavior in each of
the 2n possible observable states, and so should be tested in
each of these states. We show that PCT coverage subsumes
traditional coverage metrics such as statement, branch and
multiple condition coverage and that PCT coverage is in-
comparable to path coverage. PCT groups paths ending at
a statement s into equivalence classes based on the observ-
able states the paths induce at s.

Control-flow coverage metrics result from dividing a dy-
namic measure (for example, the number of statements ex-
ecuted by a test) into a static measure (for example, the
number of statements in a program). Clearly, such a met-
ric also can be defined for observable states. However, the
choice of (m×2n) as a denominator will not do, as we expect
many of the (m× 2n) states to be unreachable. (Statement
coverage does not suffer greatly from this problem because
most statements are reachable). For example, if the set of
predicates contains (x = 0) and (x = 1) then not all combi-
nations are possible. Furthermore, invariants established by
the program will further cut down the number of reachable
observable states.

Thus, we desire a way to define a better denominator
for PCT coverage. The main result of this paper is a way
to overapproximate and underapproximate the set of reach-

1Of course, the programmer may have missed certain cases–
specification-based testing would need to be used to determine the
absence of such case-splits.



able observable states (R) using the theory of modal tran-
sition systems and Boolean abstraction. The Boolean ab-
straction of a program with respect to its n predicates is
a non-deterministic program, whereas the original concrete
program is deterministic. We show how reachability analy-
sis of this abstract program yields an upper bound U for R
(R ⊆ U) as well as a lower bound L for R (L ⊆ R). The set
U is an overapproximation of R: any state outside U is not
a reachable observable state and need not (indeed, cannot)
be tested. This set U provides a better denominator than
(m × 2n). Conversely, the set L is an underapproximation
of R: any state in L must be a reachable observable state.
Any state in L must be testable.

The reachability status of states in U −L is unknown. If
a set of tests doesn’t cover some states in L, one should first
try to cover these states. We show how to use L to guide
symbolic path-based test generation to cover the untested
states in L. After covering L, one should work on bring-
ing the (static) ratio |L|/|U | closer to one by refining the
Boolean abstraction through the introduction of additional
predicates.

This paper is organized as follows. Section 2 compares
predicate-complete test coverage to other forms of control-
flow coverage. Section 3 gives an example to illustrate the
idea of upper and lower bounds to the set of reachable ob-
servable states. Section 4 precisely defines the system of
abstraction we will use to compute the upper and lower
bounds. Section 5 gives algorithms to compute these up-
per and lower bounds. Section 6 presents an algorithm that
uses the lower bound to guide test generation. Section 7
shows how to refine the upper and lower bounds in the run-
ning example to increase PCT coverage. Section 8 discusses
some of the implications of our results. Section 9 reviews
related work and Section 10 concludes the paper.

2 A Characterization of Predicate-complete Test
Coverage

This section compares PCT coverage with other forms of
control-flow coverage. In this comparison, we decompose
complex predicates into atomic predicates. So, the program
fragment

L1: if ((x<0)||(y<0)) S else T

contains two branches corresponding to the atomic predi-
cates (x<0) and (y<0). Based on this decomposition, the
concepts of branches, atomic predicates and conditions are
equivalent.

To recap, complete PCT coverage means that each reach-
able observable state of a program is covered by a test. This
implies that each (executable) statement is executed at least
once, so PCT subsumes statement coverage. PCT cover-
age requires that each predicate be tested so as to evaluate
to both true and false (of course this may not be possible
for unsatisfiable predicates such as (x!=x)), so it subsumes
branch coverage. PCT clearly also subsumes multiple con-
dition coverage and its variants. Considering the program
fragment given above, multiple condition coverage requires
every possible Boolean combination of (x<0) and (y<0) to
be tested at L1, which seems similar to PCT. But now, con-
sider the sequencing of two if statements:

L2: if (A || B) S else T
L3: if (C || D) U else V

// reachable observable states
L0: y = 0; // (L0,x<0) (L0,!(x<0))
L1: if (x<0) // (L1,x<0) (L1,!(x<0))
L2: skip; // (L2,x<0)

else //
L3: x = -2; // (L3,!(x<0))
L4: x = x + 1; // (L4,x<0)
L5: if (x<0) // (L5,x<0) (L5,!(x<0))
L6: y = 1; // (L6,x<0)

(a)

L1: if (p)
L2: if (q)
L3: x=0;
L4: B;

(a)

Figure 1: (a) A program that shows it is possible to attain
full PCT coverage without covering all feasible paths. (b) A
program that that shows it is possible to cover all feasible
paths without attaining full PCT coverage.

PCT requires that every Boolean combination over the set {
A, B, C, D } be tested at every statement in the program (six
in this case, the two if statements and the four statements S,
T, U and V). Multiple condition coverage only requires that
every Boolean combination over { A, B } be tested at L2
and that every that every Boolean combination over { C, D
} be tested at L3. Similarly, predicate-based test generation
[Tai03, Tai96] focuses on testing predicates in a program. It
considers correlations between predicates that appear in a
single conditional statement but does not consider correla-
tions between predicates that appear in different conditional
statements, as does PCT.

Of course, we can view paths as possible logical combina-
tions of predicates, so it is natural to ask how PCT relates to
path coverage. Since a program with n predicates can have
at most 2n paths, it seems like PCT might have the ability
to explore more behaviors (as it may explore m× 2n states
in the limit). In fact, we show PCT and path coverage are
incomparable, even for loop-free programs.

The program in Figure 1(a) shows that it is possible to
cover all reachable observable states in a (loop-free) program
without covering all feasible paths. In this program, we
assume that the uninitialized variable x can take on any
initial (integer) value. The reachable observable states of
this program are shown in the comments to the right of the
program. The set of tests { x → −1, x → 1 } covers all these
states. The test { x → −1 } covers the observable states

{ (L0,x<0), (L1,x<0), (L2,x<0), (L4,x<0), (L5,!(x<0)) }
via the path (L0,L1,L2,L4,L5), while the test { x → 1 } covers
the observable states

{ (L0,!(x<0)), (L1,!(x<0)), (L3,!(x<0)), (L4,x<0),
(L5,x<0), (L6,x<0) }

via the path (L0,L1,L3,L4,L5,L6). However, this set of tests
does not cover the feasible path (L0,L1,L2,L4,L5,L6), which
is covered by the test { x → −2 }.

Because of the assignment statement “x = -2;”, the set
of reachable observable states at label L4 (namely (L4,x<0))
cannot distinguish whether the executed path to L4 tra-
versed the then or else branch of the initial if statement.



void partition(int a[], int n) {
int pivot = a[0];
int lo = 1;
int hi = n-1;
assume(n>2);

L0: while (lo <= hi) {
L1: ;
L2: while (a[lo] <= pivot) {
L3: lo++;
L4: ;

}
L5: while (a[hi] > pivot) {
L6: hi--;
L7: ;

}
L8: if (lo < hi) {
L9: swap(a,lo,hi);
LA: ;

}
LB: ;

}
LC: ;
}

void partition() begin
decl lt,le,al,ah;
enforce ((lt=>le) & ((!lt&le)=>((al&!ah)|(!al&ah))));

lt,le,al,ah := T,T,*,*;
L0: while (le) do
L1: skip;
L2: while (al) do
L3: lt,le,al := (!lt ? F : *), lt, *;
L4: skip;

od
L5: while (ah) do
L6: lt,le,ah := (!lt ? F : *), lt, *;
L7: skip;

od
L8: if (lt) then
L9: al,ah := !ah,!al;
LA: skip;

fi
LB: skip;

od
LC: skip;
end

(a) (b)

Figure 2: (a) The partition function and (b) its Boolean program.

While PCT can track many correlations, assignment state-
ments such as the one above can cause PCT to lose track of
correlations captured by path coverage.

In this example, if we add the predicate (x==-2) to the
set of observed predicates then PCT coverage is equivalent
to path coverage, as PCT coverage will require the test {
x → −2 } in order to cover the reachable state (L2,x==-2). It
is an open question whether we can always find a minimal set
of predicates for which PCT coverage implies path coverage
(or decide that only infinitely many predicates will do).2

Figure 1(b) shows that it is possible to cover all feasible
paths in a (loop-free) program without covering all reachable
observable states. The program has three feasible paths:
(L1,L2,L3,L4), (L1,L2,L4) and (L1,L4). However, a test set of
size three that covers these paths clearly will miss either the
observable state (L4,!p&&q) or (L4,!p&&!q).

In summary, PCT coverage is a new type of coverage
criteria that subsumes statement, branch, multiple condi-
tion and predicate coverage. PCT has similarities to path
coverage but is strictly incomparable, as the above exam-
ples demonstrate. In Section 9 we compare PCT coverage
to several other control-flow coverage criteria.

3 Example

This section demonstrates upper and lower bounds to the
reachable observable states of a small function. Figure 2(a)
presents a (buggy) example of QuickSort’s partition func-
tion, a classic example that has been used to study test
generation [BEL75]. We have added various control points
and labels to the code for explanatory purposes. The goal
of the function is to permute the elements of the input ar-

2Thanks to Orna Kupferman for suggesting this question.

ray so that the resulting array has two parts: the values
in the first part are less than or equal to the chosen pivot
value a[0]; the values in the second part are greater than
the pivot value.

There is an array bound check missing in the code that
can lead to an array bounds error: the check at the while
loop at label L2 should be (lo<=hi && a[lo]<=pivot).3

This error only can be uncovered by executing the state-
ment “lo++” at label L3 at least twice.

There are thirteen labels in the partition function (L0-
LC), but an unbounded number of paths. Instead of rea-
soning in terms of paths, we will use predicates to ob-
serve the states of the partition function. Let us observe
the four predicates that appear in the conditional guards
of the function: (lo<hi), (lo<=hi), (a[lo]<=pivot), and
(a[hi]>pivot). An observed state thus is a bit vec-
tor of length four (lt, le,al,ah), where lt corresponds to
(lo<hi), le corresponds to (lo<=hi), al corresponds to
(a[lo]<=pivot), and ah corresponds to (a[hi]>pivot).
There only are ten feasible valuations for this vector, as six
are infeasible because of correlations between the predicates:

• If !(lo<hi)&&(lo<=hi) then (lo==hi) and so exactly
one of the predicates in the set { (a[lo]<=pivot),
(a[hi]>pivot) } must be true. Thus, the two valu-
ations FTFF and FTTT are infeasible.

• Since (lo<hi) implies (lo<=hi), the four valuations
TFFF, TFTT, TFFT and TFTF are infeasible.

These correlations reduce the possible observable state space
from 13 ∗ 16 = 208 to 13 ∗ 10 = 130.

3The loop at L5 cannot decrement hi to take a value less than
zero because the value of variable pivot is fixed to be the value of
a[0]. One could argue that one would want to put a bounds check in
anyway.



TTTT TTTF FTTF FFTF TTFT FTFT FFFT TTFF FFFF FFTT

L0 x x x x x
L1 x x x x
L2 x x x x x x x x
L3 x x x x
L4 x x x x x x x x
L5 x x x x x
L6 x x x
L7 x x x x x
L8 x x
L9 x
LA x
LB x x
LC x

Figure 3: The reachable states of the Boolean abstraction of the partition function with respect to the four predicates in
that function. The Boolean values in each column correspond to the variables lt, le, al and ah, respectively.

3.1 Boolean Abstraction

Figure 2(b) shows the Boolean abstraction of the partition
function with respect to the four observed predicates, en-
coded as a Boolean program [BR00]. This program can be
automatically constructed using software predicate abstrac-
tion technology [BMMR01]. The Boolean program has one
variable (lt, le, al, ah) corresponding to each predicate.
Statements in the Boolean program conservatively update
each Boolean variable to track the value of its correspond-
ing predicate. The enforce statement is a global assumption
that rules out the six infeasible valuations mentioned above.

Boolean programs contain parallel assignment state-
ments. The first such assignment in the Boolean program
captures the effect of the statements before label L0 in the
partition function:

lt,le,al,ah := T,T,*,*;

This assignment statement sets the values of variables lt
and le to true because the C code before label L0 estab-
lishes the conditions (n>2), (lo==1), and (hi==n-1), which
implies that (lo<hi). The variables al and ah are non-
deterministically assigned true or false (*) since the initial
values in the input array are unconstrained.

The while loop at label L0 constrains le to be true if
control passes into the body of the loop, as le is the vari-
able corresponding to the predicate (lo<=hi). The state-
ment “lo++” at label L3 translates to the parallel assignment
statement in the Boolean program:

lt,le,al := (!lt ? F : *), lt, *;

The translation of “lo++” shows that:

• if the predicate (lo<hi) is false before the statement
“lo++” then this predicate is false afterwards; other-
wise, the predicate takes on an unknown value (*);

• if the predicate (lo<hi) is true before “lo++” then the
predicate (lo<=hi) is true after; otherwise, if (lo<hi)
is false before then (lo<=hi) is false after.

• the predicate (a[lo]<=pivot) takes on an unknown
value (*) as result of the execution of “lo++”.

The assignment statement “hi--” at label L6 is similarly
translated. The effects of the call to the swap procedure at
label L9 are captured by the assignment statement “al,ah
:= !ah,!al” because this call swaps the values of the ele-
ments a[lo] and a[hi].

The Boolean program is an abstraction of the C program
in the following sense: any state transition c → c′ in the C
program is matched by a corresponding transition a → a′

in the Boolean program, where a is the abstract state corre-
sponding to c and a′ is the abstract state corresponding to c′.
However, there may be state transitions in the Boolean pro-
gram that are not matched by transitions in the C program.
In this sense, the Boolean program has more behaviors than
the C program (the Boolean program overapproximates the
behaviors of the C program).

3.2 Upper and Lower Bounds

Figure 3 shows the reachable states of the Boolean program
(computed using the Bebop model checker [BR00]). There
is a row for each of the thirteen labels in the Boolean pro-
gram (L0 to LC) and a column for each of the ten possible
valuations for the Boolean variables (lt,le,al and ah). There
are 49 reachable states in the Boolean program, denoted by
the “x” marks in the table. These 49 states represent the
upper bound U to the set of reachable observable states in
the partition function. States outside U cannot be tested
because they are unreachable in the Boolean program, and
thus in the partition function.

Figure 4 shows the reachable state space of the Boolean
program as a graph. Each of the 49 states is uniquely la-
beled LX:ABCD, where LX is the label (program counter),
and A, B, C and D are the values of the Boolean variables
lt, le, al, and ah. The (four) initial states are denoted
by ovals. Each edge in the graph represents a transition
between two reachable states of the Boolean program. In-
formally, a solid edge represents a transition that must occur
in the partition function, while a dotted edge represents
a transition that may occur in the partition function. We
will formally define these transitions later. Consider the ini-
tial state L0:TTTT. This abstract state corresponds to all
concrete states that satisfy the expression:

(lo<hi) && (a[lo]<=pivot) && (a[hi]>pivot)



LC:FFFF

LB:FFFF

L0:FFFF

LB:TTTT

L0:TTTT

LA:TTTT

L9:TTFF

L8:FFFF

L8:TTFF

L7:FFFF

L5:FFFF

L7:TTFF

L5:TTFF

L7:FFFT

L5:FFFT

L7:FTFT

L5:FTFT

L7:TTFT

L5:TTFT

L6:FFFT

L6:FTFT

L6:TTFT

L4:FFFF

L2:FFFF

L4:TTFF

L2:TTFF

L4:FFTF

L2:FFTF

L4:FTTF

L2:FTTF

L4:TTTF

L2:TTTF

L4:FTFT

L2:FTFT

L4:TTFT

L2:TTFT

L4:TTTT

L2:TTTT

L3:FFTF

L3:FTTF

L3:TTTFL3:TTTT

L1:TTFF

L1:TTTF

L1:TTFT

L1:TTTT

L0:TTFFL0:TTTFL0:TTFT

Figure 4: The reachable state space of the Boolean program (representing the upper bound U to the set of reachable observable
states of the original program). The ovals represent the initial states IA = { L0:TTFT, L0:TTTT, L0:TTTF, L0:TTFF }.
The ovals and rectangles comprise the lower bound L, while the plaintext nodes represent the set U − L.

States satisfying this condition will cause the body of the
outer while loop (label L1) and the body of the first inner
while loop (label L3) to execute. This is reflected in the
state space by the sequence of must-transitions L0:TTTT
→ L1:TTTT → L2:TTTT → L3:TTTT.

The set of nodes in Figure 4 represent the states that
comprise the upper bound U (|U | = 49). The ellipses and
rectangles comprise the lower bound L (|L| = 43).4 The
nodes rendered in plaintext represent those states that are
in U−L. The exact reachability status of the concrete states
corresponding to these abstract states is in question.

The ratio |L|/|U | measures the ability of the abstraction
to guide test generation to cover the observable states of a
program. In this example, the ratio is 43/49. If we achieve
a ratio of 1.0, then we have precisely characterized the set of
reachable observable states. We wish to increase the ratio
|L|/|U | through the process of abstraction refinement. As we
will see, it is possible to reach a ratio of 1.0 for the partition
function through the addition of three predicates.

4We will explain the coloring of the rectangles later.

4 Formalizing Abstraction

In this section, we define the concepts of concrete and ab-
stract transition systems that we will use to compute the
upper and lower bounds, U and L, to the set of reachable
observable states R of a program.

4.1 Concrete Transition Systems

We represent a deterministic sequential program by a con-
crete transition system (CTS) as follows:

Definition 4.1: (Concrete Transition System). A concrete
transition system is a triple (SC , IC ,−→) where SC and IC

are non-empty sets of states and −→⊆ SC × SC is a transi-
tion relation satisfying the following constraints:

• SC = {halt, error} ∪ TC ;

• IC ⊆ TC is the set of initial states;

• ∀sc ∈ TC , |{s′c ∈ SC | sc −→ s′c}| = 1



There are two distinguished end states, halt and error, which
correspond to execution terminating normally and going
wrong, respectively. These two states have no successor
states. All other states have exactly one successor. Thus, a
CTS models a program as a set of traces.

4.2 Abstract Transition Systems

Modal Transition Systems (MTSs) [GR03] are a formalism
for reasoning about partially defined systems that we will
use to model (Boolean) abstractions of CTSs. We general-
ize modal transition systems to tri-modal transition systems
(TTSs) as follows:

Definition 4.2: (Tri-Modal Transition System). A TTS is

a tuple (S,
may−→,

must+−→ ,
must−−→ ) where S is a nonempty set of

states and
may−→⊆ S×S,

must+−→ ⊆ S×S and
must−−→ ⊆ S×S are

transition relations such that
must+−→ ⊆may−→ and

must−−→ ⊆may−→.

A total-onto abstraction relation5 ρ induces an abstract TTS
MA from a CTS MC as follows [God03]:

Definition 4.3: (Precise Abstraction Construction). Let
MC = (SC , IC ,−→) be a CTS. Let SA be a set of abstract
states and ρ be a total-onto abstraction relation over pairs
of states in SC ×SA. Let match+ and match− relate states
in SC × SA as follows:

match+(sc, s
′
a) = ∃(s′c, s′a) ∈ ρ : sc −→ s′c

match−(s′c, sa) = ∃(sc, sa) ∈ ρ : sc −→ s′c

A TTS MA = (SA,
may−→A,

must+−→A ,
must−−→A ) is constructed from

MC , SA and ρ as follows:

(a) sa
may−→A s′a iff ∃(sc, sa) ∈ ρ : match+(sc, s

′
a);

(b) sa
must+−→A s′a iff ∀(sc, sa) ∈ ρ : match+(sc, s

′
a);

(c) sa
must−−→A s′a iff ∀(s′c, s′a) ∈ ρ : match−(s′c, sa).

It is easy to see that the definition of MA satisfies

the constraints of a TTS, namely that
must+−→A⊆may−→A and

must−−→A⊆may−→A.
We have emphasized the “iff” (if-and-only-if) text to

make a point that we assume it is possible to create a most
precise abstract TTS MA from a given CTS MC . In general,
this assumption does not hold for infinite-state MC . It does
hold for the partition function and other code examples
we consider here.

Figure 5 illustrates the three types of transitions in a
TTS MA constructed from a CTS MC via the above defi-
nition. In this figure, the grey nodes represent states in SC

and edges between these nodes represent transitions in −→.
The dotted ovals around the nodes represent an abstract
state that these concrete states map to under the abstrac-
tion relation ρ. Let us examine the four cases in Figure 5:

5A total-onto relation over D×E contains at least one pair (d, e),
e ∈ E, for each element d ∈ D (it is total) and at least one pair
(d′, e′), d′ ∈ D, for each element e′ ∈ E′ (it is onto).

c d a

c’ d’ a’

MC MA

ρ

ρ

c d a

c’ d’ a’

MC MA

ρ

ρ

a

a’

ρ

ρ

(a) (b)

c d a

c’ d’ a’

ρ

ρ

(c) (d)

c d

c’ d’

b

b b

b

+

_

Figure 5: Illustrations of (a) a may-transition; (b) a must+-
transition; (c) a must−-transition; (d) a transition that is a
must+-transition and a must−-transition.

• Case (a) shows a transition a
may−→A a′. May-transitions

are depicted as dashed edges. This transition exists
because concrete state d maps to a (under ρ) and tran-
sitions to d′ via d −→ d′, where d′ maps to a′. Thus,
match+(d, a′) holds. Note, however that match+(c, a′)
does not hold, nor does match−(c′, a). Therefore, in

this case, there is no transition a
must+−→A a′ or a

must−−→A a′.

• Case (b) shows a transition a
must+−→A a′, depicted as

a solid edge with a “+” label. This transition exists
because for all states x ∈ {b, c, d} (mapping to a under
ρ), match+(x, a′) holds. This is due to the existence of
the transitions b −→ d′, c −→ d′ and d −→ d′. That is,
must+-transitions identify a total relation between sets
of concrete states corresponding to a and a′. Note that
match−(c′, a) does not hold, so there is no transition

a
must−−→A a′.

• Case (c) shows a transition a
must−−→A a′, which exists be-

cause for all states x′ ∈ {c′, d′} (mapping to a′ under ρ),
match−(x′, a) holds. That is, must−-transitions iden-
tify an onto relation between sets of concrete states cor-
responding to a and a′. These transitions are depicted
as solid edges with “-” labels.

• Case (d) shows the case in which there are both transi-

tions a
must+−→A a′ and a

must−−→A a′. Let a
must#−→A a′ denote

the fact that a
must+−→A a′ and a

must−−→A a′. These transi-
tions are depicted as bold edges.

In the example, of Figure 4, we have only
must#−→A -transitions

(bold edges) and may-transitions (dotted edges).



4.3 Predicate Abstraction

Predicate abstraction maps a (potentially infinite-state)
CTS into a finite-state TTS via a finite set of quantifier-free
formulas of first-order logic Φ = {φ1, · · · , φn}. A bit vector
b of length n (b = b1 · · · bn, bi ∈ {0, 1}) defines an abstract
state whose corresponding concrete states are those satisfy-
ing the conjunction 〈b, Φ〉 = (l1 ∧ · · · ∧ ln) where li = φi if
bi = 1 and li = ¬φi if bi = 0. We write s |= 〈b, Φ〉 to denote
that 〈b, Φ〉 holds in state s.

Definition 4.4: (Predicate Abstraction of a CTS). Given
a CTS MC = (SC , IC ,−→) and a set of predicates Φ =
{φ1, · · · , φn}, predicate abstraction defines the total-onto
abstraction relation ρ and the set of abstract states SA:

• ρ ∈ (SC , {0, 1}n), where (s, b) ∈ ρ ⇐⇒ s |= 〈b, Φ〉
• SA = {b ∈ {0, 1}n | ∃(s, b) ∈ ρ}

which define the finite-state abstract TTS MA = (SA,
may−→A

,
must+−→A ,

must−−→A ) (per Definition 4.3). We assume that SA con-
tains abstract states haltA and errorA that are in a one-to-
one relationship with their counterparts halt and error from
SC .

Algorithms for computing the may- and must+-transitions
of a predicate abstraction of an MTS are given by Godefroid,
Huth and Jagadeesan [GHJ01]. Computation of the must−-
transitions can be done in a similar fashion Computation
of the most precise abstract transitions is undecidable, in
general. As usual, we assume the existence of a complete
theorem prover that permits the computation of the most
precise abstract transitions.

We review the basic idea here. Let WP (s, e) be the weak-
est pre-condition of a statement s with respect to expression
e and let SP (s, e) be the strongest post-condition of s with
respect to e [Gri81]. (For any state c1 satisfying WP (s, e)
the execution of s from c1 results in a state c2 satisfying e.
For any state c1 satisfying e the execution of s from c1 results
in a state c2 satisfying SP (s, e)). Let P1 and P2 be the con-
cretization of two bit vectors b1 and b2 (i.e., P1 = 〈b1, Φ〉 and
P2 = 〈b2, Φ〉). Statement s induces a may-transition from
b1 to b2 if ∃V : P1 ∧WP (s, P2), where V is the set of free
variables in the quantified expression. Statement s induces
a must+-transition from b1 to b2 if ∀V.P1 =⇒ WP (s, P2).
Finally statement s induces a must−-transition from b1 to
b2 if ∀V.P2 =⇒ SP (s, P1).

In order to show relations between the reachable states of
MA and MC , it is useful to define a concretization function
γ mapping states in SA to states in SC :

Definition 4.5: (Concretization Function). Let ρ : SC×SA

be an abstraction relation. Let

γρ(A) = {sc | ∃sa ∈ A : (sc, sa) ∈ ρ}
be the concretization function mapping a set of abstract
states to its corresponding set of concrete states.

Using this function we define the set of initial abstract
states IA of MA as the set satisfying the formula

IC = γρ(IA)

When ρ is understood from context we will use γ rather than
γρ.

L0: y = 0;
L1: if (x<0)
L2: skip;

else
L3: x = -2;
L4: x = x + 1;
L5: if (x<0)
L6: y = 1;

(L0,x<0)

(L1,x<0)

(L0,!(x<0))

(L1,!(x<0))

(L2,x<0) (L3,!(x<0))

(L4,x<0)

+

(L5,x<0)

_

(L5,!(x<0))

(L6,x<0)

Figure 6: (a) The program from Figure 1(a) and (b) its
abstract transitions.

4.4 Example

Figure 6(a) shows the program from Figure 1(a) and its set
of (reachable) abstract transitions. Let us consider the state-
ments in the program and the abstract transitions that they
induce. The assignment statement at L0 is “y=0”. We have
that SP (y=0,(x<0)) = WP (y=0,(x<0)) = (x<0). Therefore,

we have a must#-transition (L0,x<0)
must#−→ (L1,x<0). For

similar reasons, we have the must#-transition (L0,!(x<0))
must#−→ (L1,!(x<0)).

The next statement is the if-statement at label L1.
Because this statement branches exactly on the predicate
(x<0), it induces the must#-transitions:

(L1,x<0)
must#−→ (L2,x<0)

(L1,!(x<0))
must#−→ (L3,!(x<0))

The statement at label L2 is a skip and so has no affect on

the state, inducing the transition (L2,x<0)
must#−→ (L4,x<0).

The assignment statement at label L3 is reachable
only when !(x<0) is true. It assigns the value -2 to
variable x. We have that WP (x=-2,(x<0)) = (-2<0),
which reduces to true. This means that there is a

must+-transition (L3,!(x<0))
must+−→ (L4,(x<0). How-

ever, WP (x=-2,!(x<0)) = (!(-2<0)), which reduces to
false. So there can be no transition from (L3,!(x<0)) to
(L4,!(x<0)). Now, let us consider strongest post-conditions.
We have that SP (x=-2,!(x<0)) = !(-2<0), which reduces to
false, so there can be no must−-transition from (L3,!(x<0))
to (L4,(x<0).

We now consider the assignment statement at label L4
which is reachable only under (x<0) and which increments
variable x. Because SP (x=x+1,(x<0) = (x<1) and the set of
states satisfying (x<0) is a subset of the set of states satis-

fying (x<1), there is a must−-transition (L4,x<0)
must−−→

(L5,x<0). There is no must+-transition between these
states because WP (x=x+1,(x<0) = (x<-1) and the set of
states satisfying (x<0) is not a subset of the set of states sat-
isfying (x<-1). The assignment statement induces a may-

transition (L4,x<0)
may−→ (L5,!(x<0)). because this tran-



sition only takes places when variable x has the value -1
before the increment and the (resulting) value 0 after the
increment.

Finally, there is a must#-transition (L5,x<0)
must#−→

(L6,x<0) because the if-statement at label L5 tests exactly
the condition (x<0).

5 Defining Predicate-Complete Test Coverage

Recall that the goal of predicate-complete testing (PCT) is
to cover all reachable observable states, as defined by the
m statements and n predicates Φ = {φ1, · · · , φn} in the
program represented by the CTS MC . The set of reachable
observable states R is unknown, so we will use the Boolean
(predicate) abstraction of MC with respect to Φ to construct
an abstract TTS MA (see Definition 4.4).

In this section, we show how to analyze MA to compute
both upper and lower bounds to R. To do so, we find it
useful to define a reachability function for a transition sys-
tem. Let S be a set of states and δ be a transition relation
of type S × S. We define the reachability function over δ
and X ⊆ S as the least fixpoint of:

reach[δ](X) = X ∪ reach[δ](δ(X))

where δ(X) is the image of set X under δ.
We now define reachability in a CTS: Let MC be a CTS.

We denote the set of states reachable from states in T (T ⊆
SC) as:

reachC(T ) = reach[−→](T )

That is, reachability in MC is simply defined as the transi-
tive closure over the transitions in MC , starting from states
in T .

5.1 Upper Bound Computation

May-reachability in TTS MA defines the upper bound U .
Let MC be a CTS and let MA be an abstract TTS de-
fined by abstraction relation ρ (via Definition 4.3). Consider
(sc, sa) ∈ ρ. The upper bound is defined as:

U = reach[
may−→A](IA)

That is, U is simply defined as the transitive closure over the
may-transitions in MA from the initial states IA. It is easy to
see that reachC(IC) ⊆ γ(U), as the may-transitions of MA

overapproximate the set of transitions in MC (by Definition
4.3). Since the reachable observable states R are contained
in reachC(IC), we have that U is an overapproximation of
R.

5.2 Pessimistic Lower Bound Computation Lp

A set of abstract states X ⊆ SA is a lower bound of R ⊆ SC

if for each xa ∈ X, there is a (xc, xa) ∈ ρ such that xc ∈
reachC(IC).

We present the computation of the lower bound in two
steps. First, we define the pessimistic lower bound (Lp),
which makes no assumptions about MC . In the next section,
we define the optimistic lower bound (Lo), which assumes

that MC does not diverge. We define Lp as:

Lp = { va | ∃ta, ua :

ta ∈ reach[
must−−→A ](IA) ∧

(ta
may−→A ua ∨ ta = ua) ∧

va ∈ reach[
must+−→A ]({ua}) }

That is, an abstract state va is in Lp if there is a (possibly
empty) sequence of must−-transitions leading from sa ∈ IA

to ta, there is a may-transition from ta to ua (or ta is equal
to ua), and there is a (possibly empty) sequence of must+-
transitions from ua to va.

We now show that for each va ∈ Lp, there is a (vc, va) ∈ ρ
such that vc ∈ reachC(IC). That is, Lp is a lower bound to
R. The proof is done in three steps, corresponding to the
three parts of the definition of Lp:

• First, consider a sequence of must−-transitions leading
from sa ∈ IA to ta in MA. Each must−-transition

xa
must−−→A ya identifies an onto relation from γ(xa) to

γ(ya). That is, for all concrete states yc mapping to
ya, there is a transition xc −→ yc such that xc maps
to xa. The transitive closure of an onto relation yields
an onto relation. So, for all tc mapping to ta, we know
that tc ∈ reachC(IC).

• Second, by the construction of MA from MC there is a

may-transition ta
may−→A ua only if there exists a tran-

sition tc −→ uc, where states tc and uc map to ta and
ua, respectively. Since for all tc mapping to ta we know
that tc ∈ reachC(IC), it follows that if there is a may-

transition ta
may−→A ua then there is some uc mapping

to ua such that uc ∈ reachC(IC).

• Third, consider a sequence of must+-transitions lead-
ing from ta to va in MA. Each must+-transition

xa
must+−→A ya identifies an total relation from γ(xa) to

γ(ya). That is, for all concrete states xc mapping
to xa, there is a transition xc −→ yc such that yc

maps to ya. The transitive closure of a total relation
yields a total relation. So, for all tc mapping to ta,
we know that there is a vc mapping to va such that
vc ∈ reachC({tc}).

This completes our proof that for each va ∈ Lp, there is a
vc mapping to va such that vc ∈ reachC(IC).

5.3 Optimistic Lower Bound Computation Lo

The optimistic computation of the lower bound (Lo) as-
sumes that the program under consideration doesn’t diverge
(contain an infinite loop). We leave the problem of detect-
ing non-termination to testing (which is typically done by
defining some timeout threshold after which a computation
is declared to be non-terminating).

We capture those states that must be reached (assum-
ing convergence) using the idea of postdominance [All70].
In our context, a state ta postdominates sa in MA if ev-
ery path of may-transitions from sa to a vertex in the set



{haltA, errorA} contains ta. Postdominance in MA is define
as the greatest fixpoint to the following set of equations:

pdA(haltA) = {haltA}

pdA(errorA) = {errorA}

pdA(sa) = {sa} ∪ T
sa

may−→As′a
pdA({s′a})

Using Lp and pdA, we define Lo as follows:

Lo = {xa | xa ∈ pdA(wa) ∧ wa ∈ Lp}
It is easy to prove that if MC contains no diverging com-

putations then for all states wc mapping to wa, if xa ∈
pdA(wa) then there is a state xc mapping to xa such that
xc ∈ reachC({wc}). Therefore, assuming that MC contains
no diverging computations, we have that for each xa ∈ Lo,
there is a xc mapping to xa such that vc ∈ reachC(IC).

We define the lower bound L as L = Lo.

5.4 Putting It All Together

Let MA be the TTS constructed from concrete TTS MC

(via predicate abstraction on the set of predicates Φ, which
induces an abstraction relation ρ). Let IC be the set of initial
concrete states of MC and let IA be the corresponding set
of initial abstract states of MA (induced by ρ).

In Figure 4, the ovals represent the initial abstract states

IA = { L0:TTFT, L0:TTTT, L0:TTTF, L0:TTFF }
In Figure 4, all the nodes in the graph represent the set
U while the rectangular nodes represent the set L and the
plaintext nodes represent the set U −L. The shading of the
rectangular nodes indicates the following:

• The white rectangular nodes represent those ab-
stract states reachable from IA via a sequence
of must−-transitions (in our example, these are

must#-transitions which are, by definition, must−-
transitions). For example, consider the initial state
L0:TTTF. There is a path of must#-transitions

L0:TTTF
must#−→A L1:TTTF

must#−→A L2:TTTF
must#−→A

L3:TTTF.

• The light-grey rectangular nodes (green in color) repre-
sent those abstract states only reachable via a sequence
of must−-transitions, followed by one may-transition,
followed by a sequence of must+-transitions. Thus, the
set of ovals plus the set of white and light-grey rectan-
gular nodes represents the set Lp. Consider the may-

transition L3:TTTF
may−→A L4:FTTF, which continues

the path given above. Covering this transition is the
only way in which the state L4:FTTF can be reached.
Then there is a path of must#-transitions (which,
by definition, also are must+-transitions): L4:FTTF
must#−→A L2:FTTF

must#−→A L3:FTTF. So, these three nodes
are colored light-grey.

• Finally, the dark-grey rectangular nodes (red in color)
represent those states in Lo −Lp. These are the states
that must be reached under the assumption that the
program does not diverge. In our example path, all the
transitions leaving state L3:FTTF are may-transitions.

Since any path to this state must contain a may-
transition, the set Lp will not contain any of the may-
successors of the state L3:FTTF. However, the state
L4:FFFF is in Lo and so is colored dark-grey, as ev-
ery path from L3:FTTF eventually leads to L4:FFFF
(assuming loops terminate).

The path given above is one of the paths that leads to an
array bounds error. Note that in this path the label L3 is
covered twice, once by the state L3:TTTF and then by the
state L3:FTTF. In the first state, we have that (lo<=hi),
(a[lo]<=pivot) and (a[hi]<=pivot). At label L3, lo is in-
cremented by one. The path dictates (via the may-transition

L3:TTTF
may−→A L4:FTTF) that the value of lo and hi are

now equal. Because (a[hi]<=pivot) the loop at label L2
continues to iterate and we reach the second state, L3:FTTF,
in which we have that (lo==hi) and (a[lo]<=pivot) and
(a[hi]<=pivot). When lo is incremented the second time,
its value becomes greater than hi, whose value still is the
index of the last element of the array. Thus, the next access
of a[lo] (see state L2:FFFF) will cause an array bounds
violation.

6 Test Generation

The goal of test generation is to cover all the states in the
lower bound L (plus any additional states, if we are lucky).
Our test generation process consists of three steps:

• Path Generation: we use the set Lp to guide test gen-
eration. In particular, using this set, we identify a set
of paths that are guaranteed to cover all states in Lo

(if the program doesn’t go wrong or enter an infinite
loop).

• Symbolic Execution: we use symbolic execution on this
set of paths in order to generate test data to cover these
paths;

• Observe Test Runs: the program under test is run
against this set of tests to check for errors and collect
the set of executed observable states.

6.1 Path Generation

Let IA be the set of initial abstract states in MA. Consider
the set of states Lp. The goal of the path generation phase
is to enumerate all paths from IA consisting of a sequence
of must−-transitions followed by one (and perhaps no) may-
transition, while covering no state more than once. This can
be done by a simple depth-first search procedure. The idea
is that if we generate tests to cover these paths then we are
guaranteed that the rest of the states in Lo will be covered
if the execution of program does not go wrong (uncover an
error) or diverge.

In Figure 4, using such a depth-first search identifies ten
paths. These ten paths through Lp are uniquely identified by
their beginning and ending vertices, as shown in the column
“Path Endpoints” in Figure 7.

6.2 Symbolic Execution

Each of the ten paths induces a straight-line C “path” pro-
gram that we automatically generated by tracing the path
through the partition function. Consider the path from
L0:TTTF to the L4:TTFF:



Generated Bounds
Path Endpoints Input Array Error?

(L0:TTTT, L4:FTFT) { 0, -8, 1 } no
(L0:TTTT, L4:TTFT) { 0, -8, 2, 1 } no
(L0:TTTT, L4:TTTT) { 0, -8, -8, 1 } no
(L0:TTTF, L4:TTFF) { 1, -7, 3, 0 } no
(L0:TTTF, L4:FTTF) { 0, -7, -8 } YES
(L0:TTTF, L4:TTTF) { 1, -7, -7, 0 } YES
(L0:TTFT, L7:TTFF) { 0, 2, -8, 1 } no
(L0:TTFT, L7:FTFT) { 0, 1, 2 } no
(L0:TTFT, L7:TTFT) { 0, 3, 1, 2 } no
(L0:TTFF, L0:TTTT) { 1, 2, -1, 0 } no

Figure 7: The results of test generation for the running ex-
ample.

partition(int a[],int n) {
pivot = a[0]; // prelude
lo = 1; // prelude
hi = n-1; // prelude
assume(n>2); // prelude

assume(lo<=hi); // L0:TTTF -> L1:TTTF
; // L1:TTTF -> L2:TTTF
assume(a[lo]<=pivot); // L2:TTTF -> L3:TTTF
lo=lo+1; // L3:TTTF -> L4:TTFF

assert(! ((lo<hi)&&(lo<=hi)&&
!(a[lo]<=pivot)&&!(a[hi]>pivot))

);
}

Figure 8: The “path” program corresponding to the
path L0:TTTF → L1:TTTF → L2:TTTF → L3:TTTF →
L4:TTFF.

L0:TTTF → L1:TTTF → L2:TTTF → L3:TTTF
→ L4:TTFF

and its corresponding path program (see Figure 8). There
are four transitions between labels in this path. The tran-
sition L0:TTTF → L1:TTTF corresponds to the expression
in while loop at label L0 evaluating to true. This is mod-
eled by the statement assume(lo<=hi) in the path program
in Figure 8. The four statements corresponding to the four
transitions are presented after the “prelude” code in Fig-
ure 8. The assert statement at the end of the path program
asserts that the final state at label L4 (TTFF) cannot occur,
which of course is not true.

We used CBMC [CKY03], a bounded-model checker for
C programs to generate a counterexample to the assertion
that the state L4:TTFF cannot occur. CBMC produces
an input array a[] and array length n that will cause the
assert statement to fail, proving that L4:TTFF is reach-
able. For the generated path program of Figure 8, CBMC
finds a counterexample and produces the input array { 1,
-7, 3, 0 }, as shown in the second column of Figure 7.

6.3 Observe Test Runs

Instrumentation of the original program both collects the
executed observable states for each test run and checks for
array bounds violations. In our example, there are ten runs,
two of which produce array bounds violations (because the
lo index is incremented past the end of the input array and

then a[lo] is accessed), as shown in the third column of
Figure 7.

The set of observed states resulting from executing all
ten tests contains all the states in Figure 4 except four of
the states in U − L (in particular, L5:FFFT, L6:FFFT and
L7:FFFT and L3:FFTF) and the state L2:FFFF, which is
unreachable due to an array bounds violation.

Fixing the error in the program and rerunning our entire
process results in an upper bound U with 56 states and a
lower bound L of 37 states. Test generation succeeds in
covering all 37 states in the lower bound L and causes no
array bounds errors. Additionally, these tests cover 6 of the
19 tests in U − L. This leads us to consider whether or not
the remaining states in U−L are reachable at all and to the
problem of refining the upper and lower bounds.

7 Refinement of Lower and Upper Bounds

We now consider the problem of bring the lower bound L and
upper bound U closer together. We focus our attention on
the observable states in U −L that were not covered by the
test generation process of the previous section. The main
question we wish to answer for these states is whether or
not they are reachable in the original program. We can use
automated machinery (such as the SLAM toolkit [BR02])
to try and answer this undecidable problem but, for many
cases, will need to involve the programmer or tester.

Consider the state L7:FFFT from Figure 4, which is in
U − L and was not covered by any test. The concretization
of this abstract state is

lo>hi && a[lo]>pivot && a[hi]>pivot

Notice that partition function, while having an array
bounds error, does correctly maintain the invariant that all
array elements with index less than the variable lo have
value less than or equal to pivot. However, in the above
state, we have that hi<lo and a[hi]>pivot. Thus, it is not
possible to reach this state.

We submit that rather than ignore abstract states whose
concrete counterparts are unreachable, it is important to
introduce new predicates to try and eliminate such states in
the abstraction. The reason is that these unreachable states
often will point to boundary conditions that have not yet
been tested. In order to eliminate the state L7:FFFT we will
introduce three new predicates into the Boolean abstraction
(in addition to the four already there) in order to track the
status of the array when the variable lo takes on the value
hi+1:

(lo==hi+1), (a[lo-1]<=pivot), (a[hi+1]>pivot)

These predicates track an important boundary condition
that was not observed by the initial four predicates.

With these additional predicates, the generated Boolean
abstraction has matching lower and upper bounds (actually
Lp = U) and our test generation process covers all reachable
observable states. As mentioned before, we can not expect
to be able to achieve matching lower and upper bounds in
general. Also, it is an open question how to generate such
predicates automatically. Currently, the SLAM toolkit is
not able to generate the above three predicates.



8 Discussion

We now consider what it means when set of states in the
upper bound U and the pessimistic lower bound Lp are the
same (U = Lp). We refer to this condition as “state simu-
lation”, as it means that every abstract state in the upper
bound is observable by some execution of the concrete pro-
gram.

We find it useful to informally describe the states repre-
sented by these two sets using regular expressions:

• U = [IA](
may−→A)∗;

• Lp = [IA](
must−−→A )∗(

may−→A)?(
must+−→A )∗

That is, U is the set of abstract states reachable (from the
initial set of abstract states IA) via a sequence of may-
transitions, while Lp is the set of states reachable from IA

via a sequence of must−-transitions, followed by a most one
may-transition, followed by a sequence of must+-transitions.

Given a path pa of abstract transitions in MA contain-
ing more than one may-transition (not matched by a must-
transition), it is impossible to know (without analysis of
MC) whether or not there exists a corresponding feasible
execution path pc in MC . This is why the definition of Lp

permits at most one may-transition (not matched by a must-
transition).

State simulation is weaker than bisimulation [Mil99],
which for deterministic systems (as we consider here) re-
duces to trace equivalence. An abstract TTS MA bisimu-
lates a CTS MC if each may-transition in MA is matched

by a must+-transition (i.e.,
may−→A=

must+−→A ). It is easy to see
that if MA bisimulates MC then every abstract state in U
is reachable via a sequence of must+-transitions. Therefore,
U = Lp. Our use of must−-transitions followed by a most
one may-transition is the way in which we weaken bisimula-
tion to state simulation.

Under state simulation, every abstract state sa in U is
reachable via a sequence of must−-transitions, followed by a
most one may-transition, followed by a sequence of must+-
transitions (which characterizes Lp). As we have shown pre-
viously, the existence of this sequence in MA implies the ex-
istence of an execution trace in MC in which sa is observed.
This implies that there is a finite set of tests sufficient to
observe all states in U . Since U is an upper bound to the
set of reachable observable states R this set of tests covers
all states in R as well (that is, R = U = Lp).

The upper bound U is, by construction, sound (that is,
R ⊆ U). State simulation implies that the least fixpoint
of the may-abstraction induced by the set of observation
predicates is complete (that is, U ⊆ R). [GRS00]6 In other
words, the set U is equal to the set of observable states that
would be encountered during the (infinite) computation of
the least fixpoint over the concrete transition system MC

(with respect to the set of initial states IC). This trivially
follows from the fact that Lp = U . It follows that state sim-
ulation is a sufficient test for determining the completeness
of a may-abstraction.

To summarize, the condition of state simulation (U =
Lp) joins together the worlds of abstraction and testing.
State simulation implies both a sound and complete ab-
stract domain that can be completely covered by a finite
set of tests.

6More precisely, relatively complete since we assume that abstract
transitions can be computed precisely.

9 Related Work

Related work breaks into a number of topics.

9.1 Control-flow Coverage Criteria

We have already compared PCT coverage with statement,
branch, multiple condition, predicate and path coverage (see
Section 2). We now consider other alternatives to path cov-
erage, namely linear code sequence and jump (LCSAJ) cov-
erage and data-flow coverage based on def-use pairs. An
LCSAJ represents a sequence of statements (which may con-
tain conditional statements) ending with a branch. An LC-
SAJ is an acyclic path (no edge appears twice) through a
control-flow graph ending with a branch statement. As we
have shown, PCT coverage is incomparable to path coverage
for loop-free programs, so it also is incomparable to LCSAJ
coverage. The goal of def-use coverage is to cover, for each
definition d of a variable x and subsequent use u of variable
x, a path from d to u not containing another definition of x.
If there is such a path from d to u then there is an acyclic
path from d to u that doesn’t contain another definition of x,
so again PCT coverage is incomparable to def-use coverage.

9.2 Symbolic Execution and Test Generation

The idea of using paths and symbolic execution of paths to
generate tests has a long and rich history going back to the
mid-1970’s [BEL75, How76, Cla76, RHC] and continuing to
the present day [JBW+94, GBR98, GMS98]. Recently, Chli-
pala et al. proposed using counterexample-driven refinement
to guide test generation [CHJM04]. The major contribution
of our work over previous efforts in this area is to guide test
generation using Boolean abstraction and the computation
of upper and lower bounds to the set of reachable observable
states.

A classic problem in path-based symbolic execution is the
selection of program paths. One way to guide the search for
feasible paths is to execute the program symbolically along
all paths, while guiding the exploration to achieve high code
coverage. Clearly, it is not possible to symbolically execute
all paths, so the search must be cut off at some point. Of-
ten, tools will simply analyze loops through one or two iter-
ations [BPS00]. Another way to limit the search is to bound
the size of the input domain (say, to consider arrays of at
most length three) [JV00], or to bound the maximum path
length that will be considered, as done in bounded model
checking [CKY03]. An experiment by Yates and Malevris
provided evidence that the likelihood that a path is feasi-
ble decreases as the number of predicates in the path in-
creases [YM89]. This led them to use shortest-path algo-
rithms to find a set of paths that covers all branches in a
function.

In contrast to all these methods, our technique uses the
set of input predicates to bound the set of paths that will
be used to generate test data for a program. The predicates
induce a Boolean abstraction that guides the selection of
paths.

Other approaches to test generation rely on dynamic
schemes. Given an existing test t, Korel’s “goal-oriented”
approach seeks to perturb t to a test t′ cover a particular
statement, using function minimization techniques [Kor92].
The potential benefit of Korel’s approach is that it is dy-
namic and has an accurate view of memory and flow depen-



dences. The downside of his approach is that test t may be
very far away from a suitable test t′.

Another dynamic approach to test generation is found
in the Korat tool [BKM02]. This tool uses a function’s pre-
condition on its input to automatically generate all (noniso-
morphic) test cases up to a given small size. It exhaustively
explores the input space of the precondition and prunes large
portions of the search space by monitoring the execution of
the precondition. For an example such as the partition
function that has no constraints on its input, the Korat
method may not work very well. Furthermore, it requires
the user to supply a bound on the input size whereas our
technique infers the input size.

Harder, Mellen and Ernst [HME03] propose using opera-
tional abstractions (properties inferred from observing a set
of test executions) to guide the generation and maintenance
of test suites. This is similar in spirit to predicate-complete
testing but unsound (the properties inferred are “likely” in-
variants but not guaranteed to hold in general). In contrast,
our use of predicate abstraction and reachability analysis in
the abstract domain computes a (sound) overapproximation
to the set of reachable observable states of a program. Fur-
thermore, the invariants we can establish about a program’s
behavior involve arbitrary boolean expressions over atomic
predicates whereas Harder et al. limit themselves to atomic
predicates and implications between atomic predicates.

9.3 Three-valued Model Checking

Our work was inspired by the work on three-valued model
checking by Bruns, Godefroid, Huth and Jagadeesan [BG99,
GHJ01, GR03]. Their work shows how to model incomplete
(abstract) systems using modal transition systems (equiv-
alently, partial Kripke Structures), as we have done here.
It then gives algorithms for model checking temporal logic
formula with respect to such systems. Given an MTS, these
algorithms can determine whether a temporal logic formula
is definitely true, definitely false or unknown with respect
to the MTS.

Our computation of lower and upper bounds achieves a
similar result but infers reachability properties of a concrete
TTS MC from analysis of an abstract TTS MA. The lower
bound L characterizes those observable states that are def-
initely reachable, the upper bound U (more precisely, its
inverse S−U) characterizes those observable states that are
definitely not reachable, and the reachability status of states
in U − L are unknown.

To achieve a precise lower bound for reachability, we gen-
eralized the definition of must-transitions given for MTS to
account for three types of must-transitions: must+ (which
correspond to must-transitions in an MTS), must− and
must#.

In model checking of abstractions of concrete transition
systems, one is interested in proving that a temporal prop-
erty holds for all concrete execution paths starting from
some initial abstract state. This is the reason why only
must+-transitions are used in model checking of modal tran-
sitions systems. For reachability, one is interested proving
the existence of some concrete execution path starting from
some initial abstract state. Thus, must−-transitions are of
interest.

10 Conclusion

We have presented a new form of control-flow coverage
that is based on observing the vector consisting of a pro-
gram’s conditional predicates, thus creating a finite-state
space. There are a number of open questions to con-
sider. First, what is a logical characterization of tri-modal
transition systems? Second, how can one automate the
refinement process to bring the lower and upper bounds
closer? (It is well known that the set of must-transitions
is not generally monotonically non-decreasing when pred-
icates are added to refine an abstract system. Recently,
Shoham and Grumberg [SG04] and Alfaro, Godefroid and
Jagadeesan [dAGJ04] independently proposed a new form
of must-transition that permits monotonic refinement of ab-
stractions.) Finally, how does this technique work in prac-
tice?
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