
Test Generation using Model Checking   

Hung Tran
931470260
Prof Marsha Chechik



Abstract
Testing in the software industry is, in general an ad hoc task.  There are guidelines to
follow but in most cases  do not cover sufficient portions of the software product.  Recent
work has been done to automatically generate test cases such that designers are no
longer responsible for designing the test cases but ensuring that the specification of the
software is valid.  These formal specifications are then used as inputs into the automatic
test generation tools, the results of the tool would be a set of test cases that do a better
job at covering the range of tests than current non-automated methodologies.
In this paper, we surveay a few such techniques that use model checking technologyas the
test generation engine.  There are two areas of interest we intend to cover.  First is the
actual test generation.  We discuss a couple techniques that alter the specification to
force the model checker to output counter-examples that are then used as test cases for
the software application.
Second we examine a few methods that attack automated generation from a state space
perspective.  That is the specifications that are designed for practical industrial products
typically contain far too many states for the model checker to verify to completion.  These
methods attempt to reduce the state space while maintaining sufficient details that test
generation is still possible.

1 Introduction

The testing phase of many software engineering process is generally the final part of the software project;
and since being first to market and having a large set of functionality seems to carrys more weight than
high quality software, testing is taking on less importance.  In turn some errors in the program may not be
uncovered until it reaches the customer.  This is not to say that testing isn’t preformed, but to say that
testing isn’t performed as rigorously as it should be.  Inherent in this is that the test cases used to test these
software applications are designed by the developers, who traditionally do not have a good understanding
of the product as a whole.

Out of this little discussion there are two areas in testing that should be addressed:  Running the test cases
and designing the test bed that are run.  A solution to runing the tests would be to automate the testing
process – as with the build process.  This is a pretty trivial problem, most software companies automate
their testing in some shape or form, and may additionally have a team that is dedicated to testing the
product.

The second area that was addressed is designing the test cases.  It would be desireable to automate this
process as well, thus removing the human error factor.  Thus, we would like tools that can automatically
generate test cases, but to do this generation we would need something to generate from, either the program
code or a specification.  Most test generation tools though use formal specifications because they would
have been completed at the beginning of the software cycle whereas the program code is constanly
changing; therefore would not be good to base off.

The use of formal specifications in the software development process has many advantages.  Firstly the
meaning of the specification is precise and unambiguous.  Secondly, we may use mathematical proofs to
rigorously demonstrate aspects of the specification.  Formal specifications have been used for test
generation for non-object-oriented software, and lately for object–oriented systems.  Yet some of the chief
drawbacks to applying formal methods are the difficulty of conducting formal analysis and the perceived or
actual payoff in project budget.  Testing is a substantial part of the software budget, and formal methods
offer an opportunity to significantly reduce testing costs, thereby making formal methods more attractive
form the budget perspective.

Automated software test generation also greatly reduces the costs of software testing. Deriving tests from
specifications is particularly useful for bodies developing software standards, e.g., W3C, OMG, IEEE, and



ANSI. The goal of these groups is specification development, while the goal of associated companies is
software implementation.

Test generation tools though, are not as mature in the software industry as other development tools.  There
are several reasons for this:  Completely automated test generation methods fail mainly due to complexity.
Even for small examples, they generate a large amount of test cases that cannot be handled in practice.
Other problems are related to the fact that specification based test generation is not applicable equally in all
stages of the software cycle.  Some of these tools utilize model checkers for their ability to generate counter
examples.   Model checkers though, have had some success when applied to protocols and hardware
designs, but there are fewer success stories with software design.

The focus of this paper is to survey the current research in using model checking to generation test cases.
This will touch on areas such as the methodology of properly testing software, the use of model checking to
generate tests suits and specialization of specification to suit the needs of test generation. We will also look
at how this can be utilized for object oriented software since the software industry trand has been towards
object oriented design of is applications.  Part of the areas we must look at with model checking is test
selection.  Since this is an automated process, a large number of test cases can be generated, we must
devise also how to properly select the test cases such that they can correctly validate the system using
minimal test cases.
We will examine research in both these areas individually

2 Testing Methodology
The overall goal of testing is to provide confidence in the correctness of a program.  The only way to
guarantee a program’s correctness is to execute it on all possible inputs, but this is usually impossible.  The
most feasible alternative then, is to build a test set that has enough significance to find the maximum
number of errors, so that a test that passes gives confidence to the programmer that the program meets its
specification, thus correctness.

In general such test sets come in two flavours, specification-based or black box testing and program-based
or white box testing.  The black box test method (sometimes called behavioral testing) is an approach to
find errors in a program by validating its functionalities, without analyzing the details of its code, but by
using the specification of the system.  The goal is to answer the question:  “Does a program satisfy its
specification?” or, in accordance to the goal of testing, to find if a program does not satisfy its
specification.  Behavioral tests are much simpler than white box testing because it removes the details of
the structure, thus testing at higher levels of abstraction.  Additionally, black box testing can test whether a
program does not correctly implement incorrect behavior; meaning because of misunderstanding, the
program implements a variant of the desired behavior.

White-box testing (also know as structural testing) strategies include designing tests such that every line of
source code is executed at least once, or requiring every function to be individually tested.  Since
behavioural techniques do not use knowledge of the structure of the system, they cannot produce test sets
that are as good as structural techniques.  For instance there may be parts of the program that are defective
because of the implementation or parts of the program may be insensitive to certain inputs.  These kinds of
problems may not show up in behavioural tests.

In practice, it hasn't proven useful to use a single test design method.  A mixture of different methods
should be used such that the program isn't hindered by the limitations of a particular test method.  Some
call this "grey-box" or "translucent-box" test design.  Having said that, there are various testing techniques
at different levels of abstraction that make use of one or both these testing methods.

At the lowest level of thesting, we have what is called unit testing.  Whereby each function, module or class
is individually tested.  Unit testing has the best ability to control the execution and observe faults of the
unit.  But, it does not give information about the correct behavior of the system as a whole.



Testing a specific feature together with other newly developed features is know as integration testing.
Testing the interface of two components explores how components interact with each other.  Integration
testing inspects not only the variables passed between two components, but also the global variables.  This
test phase assumes the components and the objects they manipulate have all passed their local unit tests.
With unit testing the only method was structural testing, either method can be used for integration testing.

System testing is designed to reveal defects that cannot be attributed to individual components, or to the
interaction among components and other objects.  System testing is concerned with issues and behaviors
that can only be exposed by testing the entire integrated system or a major part of it.  In practice, blackbox
testing is predominatly used for system testing.  The obvious reason is that the number of possible paths
that are required to structurally test a program is far too large to handle.

In general formal specifications are defined such taht it is implementation independent.  Thus automated
test generation using formal specifications cannot easily perform structural testing.  This also implies that
unit testing isn’t easily handled by model checkers.  Therefore the focus will be on behavioral testing from
a systems level and occasionally an integration level.

2.1 Standard Test Selection Techniques

Having looked at various levels of abstraction of testing we now see how one would like to approach the
testing.   We could the test the message flows of a system, or states changing, or various other approaches.
The following are some of the more frequently used test selection techniques:

2.1.1 Path testing

The most important and widely used testing techniques are based on path testing. This kind of testing uses
the flow graph model, which is a graph that captures the flow of processing of the program. The most
common kind of flow graphs is derived from the code of a program unit, called control flow graphs.
Transaction flow graphs are flow graphs that specify the high-level behaviour of a whole system. Coverage
criteria for path testing attempt to cover all paths, all nodes, or all edges.
2.1.2 Dataflow testing

Flow graphs can be annotated with extra information regarding the definition and use of data variables.
These are data flow graphs, and the corresponding testing techniques are called dataflow testing. Dataflow
criteria attempt to cover all def-use paths, all def-use pairs, all defs, or all uses, among others.

2.1.3 Eventflow testing

Event flows are motivated by data-flow testing.  A related step is a step in transition of the design state-
machine model with a related event.  A prelated path is defined as a path through the model that starts with
the first related step, ends with the second related step, and between them there are not other related steps.

2.1.4 State-based testing

State-based testing uses finite state machines (FSM) and various extensions. FSMs typically appear as the
specification of the behaviour of systems or objects. They can also be derived from the code with difficulty.
FSM models can be tested using path coverage criteria, but there are more sophisticated techniques
specifically for them.

2.2 Coverage criteria

How much detail or rigor should be applied to the testing .  Stated differently, how large and diverse should
the test be be?  Based on certain assumptions of the system the rigor of testing can vary.

A coverage criterion is an assumption about how defects are distributed in the program in relation to the
program model.  In order to obtain reasonable sizes for test sets, rather strong assumptions must be made.
These assumptions are based on the following intuitive notions about programs and defects:



• Almost correct programs - programs tend to be almost correct and we only need to worry about a
few ways that a program can go wrong.

• Uniform behaviour - programs treat similar inputs similarly. This is a reasonable assumption, but
depends on the definition of "similar".

• Errors in special cases - programs tend to work for the general case, but not special cases. This
leads, for example, to strategies that test all cases of a program once.

2.2.1 Uniformity assumption

One kind of assumption is the uniformity assumption. We assume that if the program behaves correctly for
one input in a class, then it will behave correctly for all inputs in that class. For example, using a control
flowgraph model, the statement coverage criteria assumes that if the program passes a test case that
exercises a particular statement, then the program will pass all tests that exercise that statement. That is
why we assume the program is correct when all statements have been covered by test cases.
2.2.2 Continuity assumption

Another assumption based on the same notion is the continuity assumption: we define a distance metric
between inputs, and we assume that if a program is correct for a test case then it will be correct for all test
cases that are within a certain distance of that test case.

2.2.3 Regularity assumption

A third kind of assumption based on this notion is the regularity assumption. Here we assume that if the
program behaves correctly for all inputs of a certain complexity, then it will behave correctly for all inputs
of greater complexity as well. This assumption is based on the fact that programs handle complex inputs by
recursively handling simpler inputs. Thus, we may decide to test program with only lists less than 10
elements long, and assume it works for longer lists.

2.2.4 Fault model assumption

The fault model assumption is based on the notion that we only have to test for a limited set of possible
errors. We are given a model of the required program and a set of models of possible implementations,
some of which are correct, but most are erroneous. We want to make sure that the program does not
implement an erroneous model. Using this assumption, for each erroneous model, we select a test case on
which it differs from the correct model.

For example, if the requirements are given as a finite state machine (FSM), and we assume that the
program implements some FSM with at most k states, then we select test cases that distinguish all FSM of
at most k states that are not equivalent to the required FSM.

2.2.5 Mutation

Another example of a fault model is to apply mutation operators to the required model, and then select test
cases that distinguish the correct model from variant models. Usually, we only distinguish mutants obtained
by a single mutation because we assume that the implementation is almost correct. This greatly reduces the
number of tests required, as well as simplifying test generation.

The first three assumptions do not contain the properties to help i the goal with automation of test
generation.  However, the fault model and mutation assumptions are a good fit in the model checking
paradigm.

3 Testing Object-Oriented Software
In the previous section we discussed testing for the general software program.  Testing object oriented
programs though are quite different because it is recognized that a component that has been adequately
tested in one environment is not always sufficiently tested for any other environment.  This implies that we



need a detailed investigation of the limitations of the different testing phases: unit testing, integration
testing etc.  Furthermore, although the parent was deemed correct previously; its methods must be retested
when it is subclassed.  It remains to be determined what is the best method for doing this.  In certain object-
oriented languages, multiple inheritances is allowed, making for a very messy test case. [6] suggest that the
whole hierarchy tree be flattened and then test the class of interest.

Additionally, the conventional way of testing software by decomposing into procedures does not hold for
the object-oriented world.  Part of the reason is that conventional software systems are layered, which made
the dependencies easy to trace.  In the OO world there isn’t a true layering within the software system and
therefore the communication paths are not as easily traceable.  In the object-oriented paradigm the methods
are much smaller thus the inter-method invocations become more abundant, as well as communication
between and within classes.  Hence the correctness of individual methods within a class can be determined
easier, but the interaction between classes and methods are not as easily resolved.
Previously we defined different levels of testing abstractions for conventional software; here we define
their equivalent in the object-oriented world.

There are arguments that testing object-oriented software is very similar to testing traditional software, or
that it is even simplified, and that it does not require specific strategies.  However, testing should take into
account the specifics of the object-oriented developments methods, and the structure of object-oriented
software.  Traditional strategies need adaptation to be fit for object-oriented systems.  There have been
proposals of testing object-oriented software, but they lack the theoretical basis necessary to ensure the
quality of the development, and especially the meaning of a pass case.

As before, there are two methods on how component interaction should be tested:  structural and
behavioural testing [4].  Structural testing focuses on intra-class interactions.  It considers classes as test
units, and aims at testing the interactions of the methods of a single object[2].  The levels of granularity
coincide with the scope of granularity coincide with the scope of program units, from the compiler point of
view.  In this approach, the basic units of test are the classes, which are integrated into systems or possibly
into subsystem.  Behavioural tests is focused on object communication.  Behavioural testing considers the
meaningful subsequence of system operations as test units, and verifies how the methods of different
objects interact to provide a system operation.



There is no basic unit testing for object-oriented software, but there are many kinds of integration unit
testing:

• Object integration tests the cooperation of the methods of the object management part of one class
with one object of this class.  This kind of testing checks that an object satisfies its specification
(or, of course, to find counterexamples where it does not) for the object management part.  Object
integration testing may of course include creators, which are class methods.

• Class integration tests the cooperation of the methods of the class management part of one class
with several objects of the same class.  The methods of a class are tested in integration to check
the class management part of a class. Models from which test data can be derived for object
integration and class integration must consider the union of these models.

• Cluster integration tests the collaboration of all methods of several classes with instances of these
classes.  It is required when objects are too closely tied to be tested individually.  Models from
which test data can be derived for cluster integration are the same as for object and class
integration, but cluster integration must consider the union of these models.

The introduction of stubs should be avoided by introducing a test order that allows the integration of
already tested components.  This minimizes the testing effort and focuses the test process on successive
enrichments of the specification.

The first step is to focus on a particular unit of interest, the focus, that we want to test in detail.  This unit
can be an object, class or cluster.  From figure 2 the focus is A, which uses the units B and C.  The unit A
can be tested using already tested implementations of B and C or stubs that simulate the behaviour of B and
C.

The test environment is the set of all the units visibly used by the focus of interest.  This test environment
includes all units that are directly and indirectly used.  The test environment must also include the subtypes
of used units because of the possibility of substitution.

OZTest is a framework for semi-automated generation of object oriented programs that addresses some of
these issues.  It uses Object-Z as the formal specification language.  Object-Z is a model based object-
oriented specification language.  The system is designed on the premise that the software to be tested is
developed in an OO language from an Object-Z specification.  The OO language this system uses in this
first iteration is Eiffel, potentially other OO languages will be incorporated.  One of the phases in OZTest is
called configuration flattening, which essentially is flattening of the hierachy structure of each individual
classes.  OZTest scans each class and stores various attributes in a configuration file.  When it comes across
an inherited class, it first stores those attributes in memory and for each parent mentioned in the child class,
the parent configuration file is loaded, and any renaming of is preformed.  Each parent that is loaded has
itself already been flattened.  Thus all inherited methods are retested in this new context.  Test shells1 are
generated from the Object Z specification.  For further detail on OZTest see Fletcher and Sajeev [7].

The FREE approach2 is adapted from a protocol verification technique with formally proven fault finding
abilities.  This strategy tests the transition of variables from certain sets of values to other sets of values.
The abstract states of an object are partitions of the state-space of the object, that is, the set of possible
values of the object’s variables.  The partitioning is based on predicates in the decision statements in the
code.  A method can cause the object to change its abstract state.  These states and transition define the
object’s state machine.  Different state-based testing criteria are used to cover the state-machine.
The idea of the FREE method is to cover the tree of possible transitions from the initial state, without
revisiting a state twice.  Additionally, it makes the decision to “flatten” the class hierarchy, thus the
methods of the parent classes are re-tested in all the derived classes.

The state-based approach extends to testing object interactions. A subsystem is composed of individual
communicating state machines.  One way of testing the interaction is to regard the subsystem as a large
                                                          
1 Test shells are test cases without an oracle to determine the correctness of the results
2 This method  is provided by RBSC Corporation one of their online articles.  R.V. Binder; The FREE
Approach to Testing Object-Oriented Software: An Overview; www.rbsc.com/pages/FREE.html



state machine. This is the approach used in FREE. The same testing criteria can be used for the global state
machine. However, due to the complexity of the model, very large numbers of complex tests would be
obtained.

4 Model Checkers
Normally, a model checker is used to analyze a finite-state representation of a system for property
violations.  If the model checker analyzes all reachable states and detects no violations, then the property
holds.  However, if the model checker finds a reachable state that violates the property, it returns a
counterexample – a sequence of reachable states beginning in a valid initial state and ending with the
property violation.  In this technique the model checker is used as an oracle to compute the expected
outputs and the counterexamples it generates are used as test sequences.

4.1 Counterexamples Generation
Next we illustrate [5] that uses a similar approach.  To create the counterexamples it uses mutation analysis.
[6] also uses model checking to create counterexamples, calling it tweaking of the specification trap
properties.

4.1.1 Test Generation using mutation Operators
This strategy uses a model checker to generate tests by applying mutation analysis.  Mutation analysis is a
white-box method for developing a set of test cases which is sensitive to any small syntactic change to the
structure of a program.  It is a black box test if the test cases are generated from the specification and not
from the program code.  The rationale is that if a test set can distinguish a program from a slight variation,
the test set is exercising that part of the program adequately.

This technique was implemented using  SMV.

The approach of this method is to begin with a system specification and through finite modeling turn it into
a specification suitable for a model checker.  Mutation operators are applied to the state machine or the



constraints yielding a set of mutant specifications.  The model checker processes the mutants one at a time.
When the model checker finds an inconsistency, it generates a counterexample.   The set of
counterexamples is reduced by eliminating duplicates and dropping any counterexamples whish is a
“prefix” of another, longer counterexample.  The counterexamples contain both inputs and expected values
and so can automatically be converted to complete test cases. (The test cases generate executable test code,
including a test harness and drivers.)

Two categories of mutation operators are identified:
• Changes to the state machine.  Since counterexamples comes from the state machine, a good

implementation should diverge from corresponding tests.  That is, when given the inputs
specified by such a test, a correct implementation should respond with different results than
those recorded in the counterexample.  These are referred to as failing tests – tests that the
implementation is expected to fail.

• Changes to the temporal logic constraints.  In this category, since the counterexamples comes
from the original (correct) state machine, a correct implementation should follow the indicated
sequence of states and results.   Here we assume a deterministic specification, otherwise the test
cases generated from a mutation would not be useful.  Thus the implementation is expected to
pass these tests.

There are four types of mutation operators used.
1. Addition of a condition to the state machine
2. Deleting a condition where there are multiple conditions
3. Replacing a property substatement with another valid substatement
4. Replacing a property substatement with an invalid substatement

For example given that a transition in the specification:
Next(v):= case c1: e1; c2: e2; ... esac;

The first type of mutation operators would alter condition ci by joining some value e to it.
The second type of mutation operators would remove a condition from ci if there are multiple joined
conditions.
Given a CTL property:

SPEC AG (x=modei → ...) & (ci & x=modei) ...
The third mutation operator would replace modei with another valid mode of x.
The forth operator would replace x=modei with an invalid one, for example !( x=modei).

Only temporal logic properties that yield counterexamples when violated are modified.  Existential
assertions that fail are of no interest.  For example suppose that the state machine is modified such that an
assertion indicating a given state must be reached is no longer true, counter examples for such cases would
be difficult to generate.  Therefore all existential assertions are removed.

This test code is executed with implementation source which also records coverage.  The test code records
which results are processed to become a final report of coverage, to show how comprehensive the tests are.
This method checks that the implementation fails the cases in which it should fail, and passes when it
should pass.  Figure 2, shows the flow of this technique.  See [5] for a detailed description.

4.2 State Reduction
There are a few techniques that have been used to solve the state explosion problem within model
checking.  Here we look at a couple techniques that attempt to solve it from the point of view of testing.

4.2.1 Finite Focus



The authors of mutation test generation used a relatively small example to illustrate this procedure.  Had an
industrial sized model been used an obvious problem would be that the model checker would be unable to
handle the state space.  This limitation is one of the primary reasons that model checkers have not gained
acceptance in the software industry.  Finite focus attempts to address this limitation.

Finite focus[10] attempts to preform reduction from the point of view of automated test generation.  Thus
in traditional model checking where the goal is property analysis and verification, the reductions may
summarize states and discard details of transitions.  The reduced model may not be precise but it would be
useful for the analysis and verification.  In terms of automated test generation, in finite focus technique the
details may be retained in order to determine if an implementation behaves properly.  The tests generated
are accumulated from different precise reductions.

A typical abstraction is to map variables with large or unbounded domains to a fixed subset of possible
values.  From the test generation perspective, the ranges simply need to cover values which may be
interesting when used in actual test cases.

For example assume that we are modelling the withdrawal and deposit from a bank account of $1.  The
area of interest is when the balance in the account is around $1. If this was analysed manually, the focus
would naturally be on what happens when the balance is close to zero and ignore, temporarily large
balances.  Thus amounts greater than $2 would not be of much interest and would be mapped to an “other”
state.  However, the model checker should know that any set of operations in which the balance exceeds $2
should be ignored.  The loss of accuracy in states where the balance is greater $2 is resolved by adding a
“soundness” state variable which becomes unsound if the state becomes “other,” .  The model checker can
then ignore any unsound inconsistencies so that it only returns those which are problems in the full model.

Finite focus views a system specification as a pair of state machine and temporal logic constraints <S,T>.
To generate test cases using mutation operators, the reduction for finite focus(RFF) must be in a form that
can be analyzed by a model checker.  For test generation, the state machine S, is reflected as temporal logic
constraints to provide a description for subsequent mutation analysis.  Any existing temporal logic
constraints, T in the figure, may be added to the reflected constraints which describe the state machine.

Some finite number of states, focused around the initial state, are mapped to states in the reduced
specification.  All other states are mapped to a single “other” state.  The source and destination of each
transition are mapped likewise.  The function RFFT maps temporal logic constraints, and RFFs maps the
state machine.  The two functions, along with constraint rewriting (CR) for soundness, explained below,
make up RFF.

RFFS also adds a separate state machine with the initial state “sound”.  Whenever the reduced state machine
ends in the “other” state, this added machine goes unsound.  It remains unsound thereafter.   This step



yields a reduced state machine SR.  RFFT yields reduced temporal logic constraints, TR, but is less rigidly
determined than RFFS.  Together SR and TR answers to the finite specifications of  the mutation analysis
test generator above.

To generate counterexamples, the various mutation operators M are repeatedly applied to the temporal
logic constraints.  Then, in order to prevent unsound counterexamples the constraints are rewritten such that
they are always satisfied when the state is unsound.  This constraint rewriting, CR, yields mutated
constraints T’R.  Together SR and T’R are given to the model checker which computes a number of
counterexamples.   Soundness for test generation means that any counterexample of the reduced
specification (SR, T’R) is a valid trace of the original state machine specification, S.

4.2.2 Component Interaction Testing project
The component Interaction Testing method [1] uses formal models of component interactions, and formally
defined interaction testing criteria.  Formal interaction models are designed by re-using state-machine
models developed in object-oriented analysis and design.  This technique uses an extension of the Unified
Modeling Language, namely ObjectState.  The necessary interaction test cases are generated automatically
using model checking processes.

ObjectState is comprised of three sub-languages:  An architectural description language (ADL) with a
representation of components and connections, a behavioral language, with a finite state-machine
representation of the behavior of each component, and a data manipulation language, for detailed modeling
of the effect of transitions on local component data.

The formal basis for ObjectState models is provided by labeled transition systems (LTS).  The LTS
formalism models distributed state, interface between components, sequences of interactions, and state-
based interactions.  It has mature theoretical foundations, efficient algorithms, and many existing tools.

Upon defining a formal model, formal coverage criteria can be defined.  There is no specifics as to which
coverage criteria is chosen, thus it leads us to believe that any of the set of coverage criteria mentioned
previously in section 2 can be used.  The Component Interaction project uses event flow as the test
selection criteria because it exercises user specified pairs of  “related interactions”.

Two algorithms are provided for test generation with this technique, the first is incremental test generation,
which takes advantage of the fact that test cases can be generated incrementally by parts.  Partial test cases,
with a subset of inputs and outputs are obtained and expanded to obtain a full test case.  When considering
a subset of inputs and outputs, the other inputs and outputs can be hidden in the system, and the system
reduced.  Thus to extract, each portion of the test case can require less effort than the entire test case at
once.   The algorithm selects one of the external ports in the ObjectState model, and hides all messages
from the remaining external ports.  Components are minimized, and a path to completion is determined.



The inputs and outputs along that path are extracted and a new LTS is created with that sequence of inputs
and outputs.  This new LTS is a portion of the final test case.

The new LTS is composed with the system, to constrain the behaviour of the system to be compatible with
the inputs and outputs selected so far.  It reduces the number of possible behaviours of the system and the
number of states for the model checker.  The algorithm iterates until no external ports remain.  The result of
the last search is a path with all the exernal inputs and outputs of the system and is hence the final test case.

The second algorithm removes redundant information while preserving all information necessary to
generate the test case.  For test case generation interactions with the environment are preserved.  Interaction
between components is not preserved, but only the effect of the interaction with the rest of the system.  If
two interactions do not move the other component into the same state, but equivalent states, then the two
interactions can be merged.  Since it is not known which states are equivalent until the interactions in the
other component have been merged, the algorithm must proceed iteratively; it optimistically merges
interactions initially, but when it processes the other component it may find it made a mistake.  Then it re-
processes the previous component.  The algorithm ends when it finds no more mistakes.  The algorithm
reduces each process individually in an iterative computation, which avoids state explosion problems.

5 Conclusion
Formal methods, typically used in the specification and analysis phases of software development, offer an
opportunity to reduce the cost of the testing phase.  We introduced a few techniques that utilize formal
methods to provide the backbone of software testing.  These techniques used model checking to verify
these specifications and provide counter examples to systems that did not meet the specification of the
model.

Additionally, model checking traditionally have been used to verify properties of specifications, but the
enormous state space of finite-state models of  industrial strength sofware specifications often lead to the
state explosion problem:  the model checker runs out of memory or time before it can analyze the complete
state space.  This occurs even when partial order and other methods for reducing the state space are applied.
Model checking is thus usually more effective in detecting errors and generating counterexamples then in
verifcation.

We saw that there is a lot of potential for model checking in automated test generation.  However, there is
still a lot that needs to be done before model checking techology is full utilized in software testing. There
are additional areas of improvement such as reduce cost and complexity and increase ease of use.
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