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Abstract

Exploration policies in Bayesian bandits maximize the average reward over problem
instances drawn from some distribution P . In this work, we learn such policies
for an unknown distribution P using samples from P . Our approach is a form of
meta-learning and exploits properties of P without making strong assumptions
about its form. To do this, we parameterize our policies in a differentiable way and
optimize them by policy gradients, an approach that is pleasantly general and easy
to implement. We derive effective gradient estimators and propose novel variance
reduction techniques. We also analyze and experiment with various bandit policy
classes, including neural networks and a novel softmax policy. The latter has regret
guarantees and is a natural starting point for our optimization. Our experiments
show the versatility of our approach. We also observe that neural network policies
can learn implicit biases expressed only through the sampled instances.

1 Introduction

A stochastic bandit [36, 9, 38] is an online learning problem where a learning agent sequentially
pulls arms with stochastic rewards. The agent aims to maximize its expected cumulative reward over
some horizon. It does not know the mean rewards of the arms a priori and learns them by pulling
the arms. This induces the well-known exploration-exploitation trade-off : explore, and learn more
about an arm; or exploit, and pull the arm with the highest estimated reward. In a clinical trial, the
arm might be a treatment and its reward is the outcome of that treatment for a patient.

Bandit algorithms are typically designed to have low regret, worst-case or instance-dependent, for
some problem class of interest to the algorithm designer [38]. While regret guarantees are reassuring,
this approach often results in algorithms that are overly conservative, since they do not exploit the
full properties of the problem class or objective. We explore an alternative view, which is to learn a
bandit algorithm. Specifically, we assume that the agent has access to bandit instances sampled from
an unknown distribution P and attempts to learn a bandit algorithm with a high Bayes reward, the
average reward over the instances drawn from P . In essence, we automate the learning of policies for
Bayesian bandits [16]. Our approach can be viewed as a form of meta-learning [55, 56, 11, 12] with
gradient ascent [25].

A classic approach to Bayesian bandits is to design Bayes optimal policies [27, 28], which take a
simple form for specific priors P . Our approach is more general, since it makes minimal assumptions
about P and optimized policies. It is also more computationally efficient and easier to parallelize.
However, we lose guarantees on Bayes optimality. Another line of work [48, 59, 49] bounds the
Bayes regret of classic bandit policies. These policies also have instance-dependent regret bounds
and thus are more conservative than our work, where we directly optimize the Bayes reward.

Overall, our aim is to make learning of bandit policies as straightforward as applying gradient descent
to supervised learning problems. We take the following steps toward this goal. First, we carefully
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formulate the problem of policy-gradient optimization of the Bayes reward of bandit policies. Second,
we derive the reward gradient and propose novel baseline subtraction methods that reduce the variance
of its empirical estimate. These methods are tailored to the bandit structure of our problem and are
critical to making our approach practical. Third, we show how to differentiate several softmax bandit
policies: Exp3, SoftElim, and neural networks with a softmax output layer. SoftElim is a new
algorithm where the probability of pulling an arm is directly parameterized. We prove that its n-round
regret is sublinear in n for any K-armed bandit, as in UCB1 [9] and Thompson sampling (TS) [54, 3].
However, unlike UCB1 and TS, SoftElim is easy to optimize. Finally, we evaluate our methodology
empirically on a range of bandit problems, highlighting the versatility of our approach. We also show
that neural network policies can learn interesting biases encoded in the prior distribution P .

2 Setting

This section introduces Bayesian bandits [27, 16]. To ease exposition, we first introduce multi-armed
bandits [36, 9, 38]. To simplify notation, we define [n] = {1, . . . , n}.

2.1 Stochastic Multi-Armed Bandit

A stochastic multi-armed bandit [36, 9, 38] is an online learning problem where a learning agent
interacts with the environment by pulling K arms in n rounds. In round t ∈ [n], the agent pulls arm
It ∈ [K] and observes its reward. We denote the reward of arm i in round t by Yi,t and the rewards
of all arms in round t by Yt = (Y1,t, . . . , YK,t). We assume that the rewards are drawn i.i.d. over
rounds as Yt ∼ P , where P is a joint probability distribution over rewards of all arms, with support
[0, 1]K . Since P fully characterizes the bandit problem, we call it a problem instance. We denote the
realized rewards in all n rounds by Y = (Yt)

n
t=1 ∈ [0, 1]K×n.

At a high level, all agents for solving bandit problems can be viewed as policies that map the history
of the agent to the pulled arm. The history of the agent at the beginning of round t is

Ht = (I1, . . . , It−1, YI1,1, . . . , YIt−1,t−1) ,

which is a vector of pulled arm indices and corresponding observations up to round t. The agent is a
randomized policy πw(· | Ht) ∈ ∆K , where ∆K is a K-dimensional probability simplex, w ∈ W
are policy parameters, andW is the set of feasible policy parameters. In this notation, πw(i | Ht)
is the probability that arm i is pulled in round t given history Ht and It ∼ πw(· | Ht). To simplify
notation, we write π instead of πw when the dependence on w does not have to be stressed. We also
define Ii:j = (I`)

j
`=i and I = I1:n.

The expected n-round reward of policy π in problem instance P is r(n, P ;π) = E [
∑n
t=1 YIt,t |P ].

Note that the expectation is over both realized rewards Y and pulled arms I . A typical goal is to
maximize r(n, P ;π), which is equivalent to regret minimization. The expected n-round regret of
policy π is defined as R(n, P ;π) = E

[∑n
t=1 Yi∗(P ),t − YIt,t

∣∣P
]
, where i∗(P ) = arg max i∈[K] µi

is the optimal arm in problem instance P with mean arm rewards µ = E [Yt |P ] for any t ∈ [n].

2.2 Bayesian Bandit

A Bayesian bandit [27, 16] is a bandit where a learning agent interacts with problem instances P
drawn i.i.d. from a known prior distribution P . In this work, the problem instance P is the K-armed
bandit in Section 2.1. The learning agent interacts as follows. First, the problem instance is drawn as
P ∼ P and all rewards in it are sampled as Y ∼ P . Then the agent starts interacting with instance P
for n rounds, starting from round 1. The agent does not know P or Y .

The quality of Bayesian bandit policies is measured by their n-round Bayes reward and regret. The
n-round Bayes reward of policy π is

r(n;π) = E [r(n, P ;π)] = E [
∑n
t=1 YIt,t] . (1)

When compared to Section 2.1, the expectation is also over problem instances P . Our goal is to
maximize r(n;πw) with respect to w. This is equivalent to minimizing the n-round Bayes regret

R(n;π) = E [R(n, P ;π)] = E
[∑n

t=1 Yi∗(P ),t − YIt,t
]
, (2)
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Algorithm 1 Gradient-based optimization of bandit policies.
1: Inputs: Policy parameters w0 ∈ W , number of iterations L, learning rate α, and batch size m

2: w ← w0

3: for ` = 1, . . . , L do
4: for j = 1, . . . ,m do
5: Sample P j ∼ P; sample Y j ∼ P j ; and apply policy πw to Y j to get Ij

6: Let ĝ(n;πw) be an estimate of∇wr(n;πw) from (Y j)mj=1 and (Ij)mj=1

7: w ← w + α ĝ(n;πw)

8: Output: Learned policy parameters w

where i∗(P ) is defined as in Section 2.1.

To clarify our setting, we give examples of a Bayesian bandit and a policy for solving it below.
Example 1 (Bernoulli bandit with a uniform beta prior). Let µ ∈ [0, 1]K be a vector of arm means and
y ∈ [0, 1]K be a vector of realized rewards. Then the reward distribution is P (y) =

∏K
i=1 Ber(yi;µi)

and the prior distribution over arm means is P(µ) =
∏K
i=1 Beta(µi; 1, 1).

Example 2 (ε-greedy policy). The algorithm is parameterized by w ∈ [0, 1] and works as follows. It
pulls the best empirical arm with probability 1− w and a random arm with probability w. That is,

πw(i | Ht) = (1− w)1
{
i = arg max j∈[K] µ̂j,t−1

}
+ w/K ,

where µ̂i,t is the empirical mean of arm i after t rounds.

The bandit policy πw in Example 2 and our objective in (1) showcase the two-level character of our
optimization problem. At the lower level, πw adapts to an unknown problem instance P , because it is
a function of the history Ht that depends on P . At the higher level, we optimize (1) through w, so
that πw adapts to P as efficiently as possible, on average over P ∼ P .

3 Bandit Policy Optimization

We propose a general and data-dependent algorithm for learning bandit policies. The key idea is to
maximize the Bayes reward r(n;π) by gradient ascent on sampled problem instances from P . Our
proposed algorithm, which we call GradBand, is presented in Algorithm 1. GradBand is initialized
with policy parameters w0. In each iteration, parameters of the last policy w are updated by gradient
ascent using ĝ(n;πw), an empirical estimate of the reward gradient at the last policy,∇wr(n;πw).
To compute ĝ(n;πw), we run the policy πw on m sampled problem instances from P . We denote the
j-th sampled instance by P j , its realized rewards by Y j ∈ [0, 1]K×n, and the corresponding pulled
arms by Ij ∈ [K]n.

The per-iteration time complexity of GradBand is O(Kmn), because in each iteration we sample m
problem instances from P with horizon n and K arms, and run a policy in each of them. Technically
speaking, ĝ(n;πw) depends only on Y j and Ij , and Ij depends on Pj only through Y j . Therefore,
GradBand does not need to know the instances Pj or their distribution P to compute the gradient.

GradBand is general, data-dependent, and directly optimizes the Bayes reward r(n;π). However,
since r(n;π) is a complex function of the adaptive bandit policy π and environment, it is difficult
to provide meaningful guarantees on optimizing it. This is one reason why existing bandit papers
analyze theoretically manageable regret upper bounds and not the regret. We provide the first such
guarantee below.
Theorem 1. Consider a 2-armed Gaussian bandit where the reward of arm i in round t is Yi,t ∼
N (µi, 1). Consider an explore-then-commit policy πh with parameter h ∈ W = [1, bn/2c] that
explores each arm h̄ = bhc+Z times for Z ∼ Ber(h−bhc). Then for any prior distribution P over
arm means µ ∈ R2, we have that r(n;πh) is concave in h.

The claim is proved in Appendix A. The key insight is that r(n;πh) of the explore-then-commit policy
in a 2-armed Gaussian bandit has a closed form, differentiable with respect to h. The randomization
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in Theorem 1 is only needed to extend the policy to continuous exploration horizons h. In this case,
GradBand enjoys the same convergence guarantees as gradient descent for convex functions.

GradBand is a meta-algorithm. To fully exploit its power, we must specify the policy π and be able to
compute its empirical gradient ĝ(n;π). In Section 4, we derive the gradient and show how to reduce
its variance. In Section 5, we study several differentiable bandit policies. Before we proceed, we
relate our objective and algorithm design to prior work.

Stochastic multi-armed bandits: Our objective, the maximization of E [
∑n
t=1 YIt,t], differs from

maximizing E [
∑n
t=1 YIt,t |P ] in any problem instance P , which is standard in bandits [36, 9, 38].

The latter objective is more demanding, since it requires optimizing equally for likely and unlikely
instances P ∼ P . Our objective is more appropriate when P can be estimated from data and the
average reward is preferred to guarding against worst-case failures.

Bayesian bandits: Early works on Bayesian bandits [27, 16, 28] derived Bayes optimal policies that
required specific conjugate priors P . We do not make any such assumptions on P . However, we
do lose Bayes optimality guarantees, as the optimal policy may not have the same form as π. Since
GradBand differentiates policies, it can be computationally costly. Nevertheless, it is less costly and
easier to parallelize than the computation of typical Bayes optimal policies (Section 6.2).

Reinforcement learning: Learning of policy π is also an instance of reinforcement learning (RL)
[51], where the state in round t is history Ht, the action is the pulled arm It, and the reward is the
reward of the pulled arm YIt,t. The main challenge is that the number of dimensions in Ht increases
linearly with round t. So any RL method that solves this problem must introduce some structure to
deal with the curse of dimensionality. Since it is not clear what the shape of the value function might
be, we opt for optimizing parametric bandit policies (Section 5) by policy gradients [60]. The main
novelty in our application of policy gradients are baseline subtraction techniques that are tailored to
the bandit structure of our problem.

4 Reward Gradient

Using relatively standard techniques, we show that the reward gradient has the following form.
Theorem 2. Let bt : [K]t−1 × [0, 1]K×n → R be any function of previous t− 1 pulled arms and all
realized rewards, for any round t ∈ [n]. Then

∇wr(n;πw) =

n∑

t=1

E

[
∇w log πw(It | Ht)

(
n∑

s=t

YIs,s − bt(I1:t−1, Y )

)]
.

The claim is proved in Appendix B. The collection of functions b = (bt)
n
t=1 in Theorem 2 is known

as a baseline [60, 53] and its purpose is to reduce the variance of empirical gradient estimates. The
baseline does not change the gradient, as long as it does not depend on future actions taken by policy
π. In our case, this means that bt can be any function of all past pulls I1:t−1, all realized rewards Y ,
problem instance P , and policy parameters w; although we do not make the last two explicit. The
empirical gradient, for m sampled instances in GradBand, is

ĝ(n;πw) =
1

m

m∑

j=1

n∑

t=1

∇w log πw(Ijt | Hj
t )

(
n∑

s=t

Y j
Ijs ,s
− bt(Ij1:t−1, Y

j)

)
, (3)

where j indexes the j-th random experiment in GradBand.

Existing variance minimizing techniques (Section 7) are hard to apply to our problem because our
state space Ht is at least exponential in n; and the shape of the value function, the future regret as a
function Ht, is unknown and likely hard to approximate. Therefore, we propose our own baselines.

Our first baseline is no baseline bNONE
t (I1:t−1, Y ) = 0. Not surprisingly, bNONE performs poorly, even

when learning bandit policies at short horizons (Section 6.2).

Our second baseline is bOPT
t (I1:t−1, Y ) =

∑n
s=t Yi∗(P ),s, where i∗(P ) is the best arm in instance P ,

as defined in (2). This baseline is suitable for analyzable bandit policies. Specifically, if the policy
has a sublinear regret with a high probability for any P , we have

∑n
t=1 Yi∗(P ),t − YIt,t = o(n) and

hence bt(I1:t−1, Y )−∑n
s=t YIs,s = o(n) (Theorem 2) for any s ∈ [n], both with a high probability

for any P .
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One limitation of bOPT is that the best arm may be unknown, for instance if GradBand was only given
sampled realized rewards Y j but not sampled instances P j . This motivates our third baseline, which
is the reward of an independent run of policy π. Let (Jt)

n
t=1 be the pulled arms in an independent

run of π. Then bSELF
t (I1:t−1, Y ) =

∑n
s=t YJs,s. Similarly to bOPT, bSELF is suitable for any policy that

concentrates on a single arm over time. Unlike bOPT, it does not rely on knowing the best arm.

5 Differentiable Bandit Algorithms

We assume that∇w log πw(It | Ht) in Theorem 2 exists, so that the bandit policy is differentiable.
Unfortunately, it seems that only a few bandit policies satisfy this assumption. For instance, UCB
algorithms [9, 20, 1] are not differentiable because πw(i | Ht) ∈ {0, 1} is a step function. While
Thompson sampling [54, 3, 4] is randomized, πw(i | Ht) is induced by a hard maximization over
randomized posterior mean rewards. Therefore, a unique gradient may not exist. Even if it does,
πw(i | Ht) does not have a closed form and thus is hard to differentiate computationally efficiently.

In the rest of this section, we introduce three softmax designs that can be differentiated analytically
and derive a gradient for each of them. To simplify notation, we use πi,t = πw(i | Ht). We note that
the ε-greedy policy [52] and Boltzmann exploration [52, 18] are also differentiable, although we do
not study them here.

5.1 Algorithm Exp3

Exp3 [8] is a non-stochastic bandit algorithm that pulls arm i in round t with probability

πi,t = (1− w) exp[ηSi,t]
/∑K

j=1 exp[ηSj,t] + w/K , (4)

where Si,t =
∑t−1
`=1 1{I` = i}π−1

i,` Yi,` is the inverse propensity score estimate of the cumulative
reward of arm i in the first t− 1 rounds, η is a learning rate, and w is a parameter that guarantees
sufficient exploration. When rewards are [0, 1], Exp3 attains O(

√
Kn) regret when η = w/K and

w = min
{

1,
√
K logK/

√
(e− 1)n

}
. In this work, we optimize w by GradBand. When η is set as

above, we get the following gradient.

Lemma 3. Define πi,t as in (4). Let η = w/K, Vi,t = exp[wSi,t/K], and Vt =
∑K
j=1 Vj,t. Then

∇w log πi,t =
1

πi,t


Vi,t
Vt


(1− w)


Si,t
K
−

K∑

j=1

Vj,t
Vt

Sj,t
K


− 1


+

1

K


 .

The lemma is proved in Appendix B. Although Exp3 is differentiable, it is conservative in stochastic
problems, even after we optimize w (Section 6). Thus we propose a new algorithm SoftElim.

5.2 Algorithm SoftElim

Our bandit algorithm works as follows. Let µ̂i,t be the empirical mean of arm i after t rounds and
Ti,t be the number of pulls of arm i after t rounds. Each arm is initially pulled once. Then, in round
t > K, arm i is pulled with probability

πi,t = exp[−Si,t/w2]
/∑K

j=1 exp[−Sj,t/w2] , (5)

where Si,t = 2 (maxj∈[K] µ̂j,t−1 − µ̂i,t−1)2Ti,t−1 is the score of arm i in round t and w > 0 is a
tunable exploration parameter. Since Si,t ≥ 0 and πi,t ∝ exp[−Si,t/w2], higher values of w lead to
more exploration. Also note that exp[−Si,t/w2] ∈ [0, 1]. Therefore, our algorithm can be viewed as
“soft” elimination [7] of arms with high scores and we call it SoftElim.

The key idea in the design of SoftElim is that an arm is unlikely to be pulled if it has been pulled
“often” and its empirical mean is low relatively to the highest empirical mean. This follows from the
definition of score Si,t. More interestingly, when a suboptimal arm has been pulled “often” and has
the highest empirical mean, the optimal arm is pulled proportionally to how much its empirical mean
deviates from the actual mean. This latter property implies sufficient optimism and leads to a regret
analysis (Appendix C).
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Figure 1: The Bayes regret of Exp3 and SoftElim, and the corresponding reward gradients. In the
last two plots, the solid lines are estimated reward gradients for m = 10 000 in (3) and the dotted
lines mark high-probability regions for m = 1.

Since log πi,t = −w−2Si,t − log
∑K
j=1 exp[−Sj,t/w2], we have

∇w log πi,t = 2w−3
(
Si,t −

∑K
j=1 Sj,t exp[−Sj,t/w2]

/∑K
j=1 exp[−Sj,t/w2]

)
.

Therefore, SoftElim can be easily differentiated and optimized by GradBand. SoftElim also has a
sublinear regret in any problem instance, as we show below.
Theorem 4. Let P be any K-armed bandit problem where arm 1 is optimal, that is µ1 > maxi>1 µi.
Let ∆i = µ1 − µi and w =

√
8. Then R(n, P ;πw) ≤∑K

i=2(2e+ 1)
(
16∆−1

i log n+ ∆i

)
+ 5∆i.

The proof of Theorem 4 is sketched in Appendix C.1 and presented in Appendix C.2. The value of
w =

√
8 is obtained by tuning. An analogous bound, with worse constants, can be derived for any

w ∈ (1,
√

8]. This can be seen from the proof, which only requires that γ = w−2 ∈ [1/8, 1). Finally,
note that our bound depends on gaps ∆i and log n as UCB1 [9]. Thus it is near optimal.

5.3 Recurrent Neural Network

Now we take designs (4) and (5) a step further. In particular, as both are softmaxes on hand-crafted
features, which allow theoretical analysis, we attempt to learn the features using a recurrent neural
network (RNN). The RNN works as follows. In round t, it takes arm It and reward YIt,t as inputs,
updates its state st, and outputs the probability πi,t+1 of pulling each arm i for round t+ 1. That is,

st = RNNΦ(st−1, (It, YIt,t)) , πi,t+1 = exp[v>i st]
/∑K

j=1 exp[v>j st] .

The optimized parameters w = (Φ, {vi}Ki=1) are the RNN parameters Φ and per-arm parameters
vi. The aim for the RNN is to learn to track suitable sufficient statistics through its internal state st.
That state is initialized at s0 = 0. Our RNN is an LSTM [30] with a d-dimensional latent state. We
assume that the rewards are Bernoulli. The details of our implementation are in Appendix E.

6 Experiments

To demonstrate the generality and efficacy of our approach to learning bandit policies, we conduct
four experiments. In Section 6.1, we study the reward gradient and its variance in a simple problem.
In Section 6.2, we optimize Exp3 and SoftElim policies. In Section 6.3, we study the sensitivity of
our approach to model and algorithm parameters. In Section 6.4, we optimize RNN policies.

The performance of policies is measured by the Bayes regret instead of the Bayes reward, since it
directly indicates how near-optimal a policy is. Note that optimizing either optimizes the other. The
regret is estimated from 1 000 i.i.d. sampled problem instances from P , which are independent of
those used by GradBand. The shaded areas in plots represent standard errors of our estimates. Our
experiments are implemented in TensorFlow and PyTorch, on 112 cores and with 392 GB RAM.

6.1 Reward Gradient

Our first experiment is on a Bayesian bandit with K = 2 arms, Bernoulli reward distributions, and a
horizon of n = 200 rounds. The prior distribution P is over two problem instances, µ = (0.6, 0.4)
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(c) Comparison to baselines
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Figure 2: The Bayes regret of Exp3 and SoftElim policies, as a function of GradBand iterations.
All experiments are on a Bernoulli bandit with K = 2 arms (Section 6.2). We report the average
regret over 20 runs.

and µ = (0.4, 0.6), both with probability 0.5. The bandit policy πw tries to identify the optimal arm,
and thus to distinguish the instances, without knowing the instance that it interacts with. In this case,
maximizing (1) with respect to w is akin to achieving this as fast as statistically possible, without
incurring high regret on average. The symmetry of the problem instances is unimportant.

The Bayes regret of Exp3 and SoftElim, as a function of their parameter w, is shown in Figure 1a.
Both are unimodal in w and suitable for optimization by GradBand. SoftElim has a lower regret
than Exp3 for all w. In fact, the minimum regret of Exp3 is higher than that of SoftElim without
tuning (w = 1). The reward gradients of Exp3 and SoftElim are reported in Figures 1b and 1c,
respectively. We observe that baselines bOPT and bSELF lead to orders of magnitude lower variance
than no baseline bNONE. The variance of SoftElim gradients with bOPT and bSELF is comparable, while
the variance of Exp3 gradients with bSELF is two orders of magnitude lower for higher values of w.

6.2 Policy Optimization

In the second experiment, we apply Exp3 and SoftElim to the problem in Section 6.1. The policies
are optimized by GradBand with w0 = 1, L = 100 iterations, learning rate α = c−1L−

1
2 , and batch

size m = 1 000. The constant c is chosen automatically so that ‖ĝ(n;πw0
)‖ ≤ c holds with a high

probability, to avoid manual tuning of the learning rate in our experiments.

In Figure 2a, we optimize Exp3 with all baselines. With bSELF, GradBand learns a near-optimal policy
in fewer than 20 iterations. This is consistent with Figure 1b, where bSELF has the lowest variance.
In Figure 2b, we optimize SoftElim; and the performance with bOPT and bSELF is comparable. This
consistent with Figure 1c, where the variances of bOPT and bSELF are comparable. We conclude that
bSELF is the best baseline overall and use it in all remaining experiments.

To evaluate the quality of our policies, we compare them to four well-known bandit policies: UCB1
[9], Bernoulli TS [3] with Beta(1, 1) prior, UCB-V [6], and the Gittins index [27]. These benchmarks
are ideal points of comparison: (i) UCB1 is arguably the most popular multi-armed bandit algorithm
for [0, 1] rewards. (ii) Bernoulli TS is near-optimal in Bernoulli bandits, which we use often in our
experiments. We use randomized Bernoulli rounding [3] to apply TS to [0, 1] rewards. (iii) UCB-V
adapts the sub-Gaussian parameter of reward distributions based on observed rewards. This is similar
to optimizing w in SoftElim. (iv) The Gittins index is the optimal solution to our problem, under the
assumption that the mean arm rewards are drawn i.i.d. from Beta(1, 1). Finally, we also compare to
the Dopamine [14] implementation of DQN [45] where the state is a concatenation of the following
statistics for each arm: the number of observed ones, the number of observed zeros, the logarithm of
both counts incremented by 1, the empirical mean, and a constant bias term.

The Bayes regret of our benchmarks is 9.95± 0.03 (UCB1), 5.47± 0.05 (TS), 15.79± 0.03 (UCB-V),
3.89± 0.07 (Gittins index), and 16.81± 1.05 (DQN). The regret of SoftElim is 4.74± 0.03, and
falls between those of TS and the Gittins index. The regret of Exp3 is 10.96 ± 0.16, which is not
competitive. The regret of our policies and most competitive baselines is shown in Figure 2c. We
conclude that tuned SoftElim outperforms a strong baseline, TS; and performs almost as well as
the Gittins index. We note that the Gittins index provides the optimal solution in limited settings,
like Bernoulli bandits, but even there it is computationally costly. For instance, our computation of
the Gittins index for horizon n = 200 took almost two days. In comparison, tuning of SoftElim by
GradBand takes about 20 seconds.
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(b) 2 arms with Beta(1, 1) prior
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Figure 3: The Bayes regret of RNN policies, as a function of GradBand iterations. We report the
average over 10 runs in the first two plots and the median in the last. The median excludes a few
failed runs, which would skew the average.

Now we discuss failures of some benchmarks. UCB-V fails because its variance optimism induces too
much initial exploration. This is harmful for somewhat short learning horizons in our experiments.
DQN policies are unstable and require significant tuning to learn policies that outperform random
actions; and still perform poorly. This is in a stark contrast with the simplicity of GradBand, which
learns near-optimal policies using gradient ascent. In the remaining experiments, we only discuss
the most competitive benchmarks, the Gittins index and TS. We report the results for all benchmark
bandit algorithms in Table 1 (Appendix D).

6.3 Supplementary Experiments

In Appendix D, we conduct additional experiments to validate our policies. We focus on two areas.
In Appendix D.1, we study more challenging bandit problems. In particular, we increase horizons to
n = 1 000 rounds, increase the number of arms to K = 10, vary P , and also experiment with beta
noise. We confirm all findings from Figure 2c. We also find that tuned SoftElim can outperform the
Gittins index by a large margin, in the instances where the Gittins index needs to be approximated.
In Appendix D.2, we study the robustness of tuned SoftElim policies. We focus on two aspects of
this problem. First, we show that the quality of the policies does not deteriorate significantly as we
increase the horizon n and decrease the batch size m in GradBand. Second, we study the robustness
of the policies to prior misspecification.

6.4 RNN Policies

Our preliminary experiments showed that learning of RNN policies (Section 5.3) over long horizons
(n = 200) is challenging if we use our variance reduction baselines (Section 6.1) alone. To mitigate
this, we propose the use of curriculum learning [15] to further reduce variance. The key idea is to
apply GradBand successively to problems with increasing horizons. In this experiment, we consider
a simple instance of this idea with two horizons: n′ = 20 and n = 200. First, we optimize the RNN
policy using GradBand at horizon n′. Then we take the learned policy and use it as the initial policy
for GradBand optimization at horizon n. The number of GradBand iterations is L = 1 000. We did
not make any attempt to optimize this scheme.

Results from the second optimization phase are reported in Figure 3. Figure 3a shows learning of an
RNN policy for the problem in Section 6.2. The RNN policy outperforms both TS and the Gittins
index. This does not contradict theory, as the Gittins index is not Bayes optimal in this problem. In
Figure 3b, we consider a variant of this problem where arm means are drawn i.i.d. from Beta(1, 1).
The Gittins index is Bayes optimal in this problem, and so our learned RNN policy naturally does not
outperform it. Nevertheless, it has a lower regret than TS.

In the final experiment, we have a K-armed Bayesian bandit with Bernoulli rewards. The prior P
is over two problem instances, µ = (0.6, 0.9, 0.7, 0.7, . . . , 0.7) and µ = (0.2, 0.7, 0.9, 0.7, . . . , 0.7),
which are equally likely. This problem has an interesting structure. The problem instance, and thus
the optimal arm, can be easily identified by pulling arm 1. Arms 4 and beyond are distractors. Our
RNN policies do not learn this structure; but they learn another strategy specialized to this problem.
The strategy pulls only arms 2 or 3, since these are the only arms that can be optimal. Thus, the RNN
successfully learns to ignore the distractors. As a result, the Bayes regret of our policies (Figure 3c)
does not increase with K. This would not happen with classic bandit algorithms.
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7 Related Work

The regret of bandit algorithms can be reduced by tuning [58, 40, 32, 31]. None of these works used
policy gradients, neural network policies, or even the sequential structure of n-round rewards. Duan
et al. [24] optimized a similar policy to Section 5.3 using an existing optimizer. This work does not
formalize the objective clearly, relates it to Bayesian bandits, or studies policies that are provably
sound (Theorem 1 and Section 5.2). Silver et al. [50] applied policy gradients to a continuous bandit
problem with a quadratic cost function. Since their cost is convex in arms, this exploration problem
is easier than with discrete arms.

Policy gradients in RL were proposed by Williams [60], including the idea of baseline subtraction.
Other early works on this topic are Sutton et al. [53] and Baxter and Bartlett [13]. Policy gradients
tend to have a high variance and reducing it is an important research area [29, 46, 64, 23, 39]. Our
baselines differ from those in RL, in particular because our number of states Ht is not small. The
baseline bOPT uses the fact that we have a bandit problem, and thus the best arm in hindsight. Both
bOPT and bSELF use the fact that we have access to all rewards, even of arms not pulled by policy π.

Our approach is an instance of meta-learning [55, 56], where we learn from a sample of tasks to
perform well on tasks drawn from the same distribution [11, 12]. Meta-learning has been applied
successfully in deep reinforcement learning (RL) [25, 26, 44]. Sequential multitask learning [17] was
studied in multi-armed bandits by Azar et al. [10] and in contextual bandits by Deshmukh et al. [22].
In comparison, our setting is offline. A general template for sequential meta-learning was presented
in Ortega et al. [47]. This work is conceptual and does not study policy gradients.

Maillard [41] proposed SoftElim with w = 1 and bounded the number of pulls of a suboptimal arm
in Theorem 1.10. The bound has a large O(K∆−4) constant, which does not seem easy to eliminate.
We introduce w and have a tighter analysis (Theorem 4) with a O(1) constant, for w = 8. Also note
that SoftElim is not very competitive with TS without tuning. Therefore, this approach have not
received much attention in the past, and this is the first work that makes it practical. The design of
SoftElim resembles Boltzmann exploration [52, 18] and Exp3 (Section 5.1). The key difference is
in how Si,t is chosen. In Exp3 and Boltzmann exploration, Si,t only depends on the history of arm i.
In SoftElim, Si,t depends on all arms and makes SoftElim sufficiently optimistic.

8 Conclusions

We take first steps towards understanding policy-gradient optimization of bandit policies. Our work
addresses two main challenges of this problem. First, we derive the reward gradient of optimized
policies and show how to estimate it efficiently from a sample. Second, we propose differentiable
bandit policies that can outperform state-of-the-art baselines after optimization. Our experiments
highlight the simplicity and generality of our approach. We also show that neural network policies
can learn interesting biases.

Our goal was to clearly show the benefits of learning to explore over the state of the art. Therefore,
we focus on non-contextual problems, where the optimal policy can sometimes be computed and
Thompson sampling is the state of the art. Our results can be extended to structured problems. An
insight that permits the generalization of SoftElim is that Si,t in (5) is a ratio of two quantities, the
squared empirical suboptimality gap of arm i and the variance of the mean reward estimate of arm i,
1/Ti,t−1. Such quantities can be computed in linear bandits, for instance; and we hope to extend our
work to even more general structures [34, 33, 19, 21, 57, 62]. Recently, Kveton et al. [35] and Yang
and Toni [61] extended this work to contextual bandits, and Kveton et al. [35] and Min et al. [43]
proposed differentiable Thompson sampling; thus resolving the open question in Section 5.

We leave open several questions of interest. First, we observe that the variance of empirical reward
gradients can be high, especially in RNN policies. So any progress in variance reduction would be of
a great importance. Second, except for Theorem 1, we are unaware of other bandit policy-instance
pairs where the Bayes reward is concave in optimized parameters; and thus gradient ascent leads to
optimal solutions. Our empirical results (Figure 1a) suggest that this phenomenon may be common.
Finally, we believe that convergence guarantees for softmax exploration policies will be established
in the future, based on recent advances in analyzing policy gradients in RL [2, 42].
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Broader Impact

We develop bandit-style exploration algorithms that can be easily trained on historical data. This
fundamentally alters the current prevalent approach to bandit algorithm design, which is by theory.
Bandit algorithms are often deployed in user-facing domains. However, we do not propose any new
domain. So our impact on users should be limited to those that already exist. Beyond this, we are not
aware of any societal consequences of our work, such as on welfare, fairness, or privacy.
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