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Abstract

Reinforcement learning can provide a robust and natural
means for agents to learn how to coordinate their action
choices in multiagent systems. We examine some of the fac-
tors that can influence the dynamics of the learning process in
such a setting. We first distinguish reinforcement learners that
are unaware of (or ignore) the presence of other agents from
those that explicitly attempt to learn the value of joint actions
and the strategies of their counterparts. We study Q-learning
in cooperative multiagent systems under these two perspec-
tives, focusing on the influence of partial action observability,
game structure, and exploration strategies on convergence to
(optimal and suboptimal) Nash equilibria and on learned Q-
values.

1 Introduction
The application of learning to the problem of coordination in
multiagent systems (MASs) has become increasingly popu-
lar in AI and game theory. The use of reinforcement learn-
ing (RL), in particular, has attracted recent attention [22, 17,
16, 13, 23, 8, 15]. As noted in [17], using RL as a means
of achieving coordinated behavior is attractive because of its
generality and robustness.

Standard techniques for RL, for example, Q-learning [21],
have been applied directly to MASs with some success.
However, a general understanding of the conditions under
which RL can be usefully applied, and exactly what form
RL might take in MASs, are problems that have not yet been
tackled in depth. We might ask the following questions:� Are there differences between agents that learn as if there

are no other agents (i.e., use single agent RL algorithms)
and agents that attempt to learn both the values of specific
joint actions and the strategies employed by other agents?� Are RL algorithms guaranteed to converge in multiagent
settings? If so, do they converge to (optimal) equilibria?� How are rates of convergence and limit points influenced
by the system structure and learning dynamics?

In this paper, we begin to address some of these questions
in a very specific context, namely, repeated games in which
agents have common interests (i.e., cooperative MASs). We
focus our attention on Q-learning, due to its relative simplic-
ity (certainly not for its general efficacy), and consider some

of the factors that may influence the dynamics of multiagent
Q-learning, and provide partial answers to these questions.

We first distinguish and compare two forms of multiagent
RL (MARL). Independent learners (ILs) apply Q-learning in
the classic sense, ignoring the existence of other agents. Joint
action learners (JALs), in contrast, learn the value of their
own actions in conjunction with those of other agents via in-
tegration of RL with equilibrium (or coordination) learning
methods [24, 6, 5, 10]. We also examine the influence of
partial observability on JALs, and how game structure and
exploration strategies influence the dynamics of the learning
process and the convergence to equilibrium. We conclude by
mentioning several problems that promise to make the inte-
gration of RL with coordination learning an exciting area of
research for the foreseeable future.

2 Preliminary Concepts and Notation
2.1 Single Stage Games
Our interest is in n-player cooperative repeated games.1 We
assume a collection � of n (heterogeneous) agents, each
agent i 2 � having available to it a finite set of individual
actions Ai. Agents repeatedly play a stage game in which
they each independently select an individual action to per-
form. The chosen actions at any point constitute a joint ac-
tion, the set of which is denoted A = �i2�Ai. With eacha 2 A is associated a (possibly stochastic) reward R(a); the
decision problem is cooperative since there is a single reward
functionR reflecting the utility assessment of all agents. The
agents wish to choose actions that maximize reward.

A randomized strategy for agent i is a distribution � 2�(Ai) (where �(Ai) is the set of distributions over the
agent’s action set Ai). Intuitively, �(ai) denotes the proba-
bility of agent i selecting the individual action ai. A strategy� is deterministic if �(ai) = 1 for some ai 2 Ai. A strat-
egy profile is a collection � = f�i : i 2 �g of strategies
for each agent i. The expected value of acting according to
a fixed profile can easily be determined. If each �i 2 � is
deterministic, we can think of � as a joint action. A reduced
profile for agent i is a strategy profile for all agents but i (de-
noted ��i). Given a profile ��i, a strategy �i is a best re-
sponse for agent i if the expected value of the strategy profile1Most of our conclusions hold mutatis mutandis for sequential,
multiagent Markov decision processes [3] with multiple states.



��i [ f�ig is maximal for agent i; that is, agent i could not
do better using any other strategy �0i. Finally, we say that the
strategy profile � is a Nash equilibrium iff �[i] (i’s compo-
nent of �) is a best response to ��i, for every agent i. Note
that in cooperative games, deterministic equilibria are easy
to find. An equilibrium (or joint action) is optimal if no other
has greater value.

As an example, consider the simple two-agent stage game:a0 a1b0 x 0b1 0 y
Agents A and B each have two actions at their disposal,a0; a1 and b0; b1, respectively. If x > y > 0, ha0; b0i andha1; b1i are both equilibria; but only the first is optimal.

2.2 Learning in Coordination Games
Action selection is more difficult if there are multiple opti-
mal joint actions. If, for instance, x = y > 0, neither agent
has a reason to prefer one or the other of its actions. If they
choose them randomly, or in some way reflecting personal
biases, then they risk choosing a suboptimal, or uncoordi-
nated joint action. The general problem of equilibrium selec-
tion [14, 7] can be addressed in several ways. For instance,
communication between agents might be admitted [22, 23]
or one could impose conventions or rules that restrict be-
havior so as to ensure coordination [12, 19]. Here we en-
tertain the suggestion that coordinated action choice might
be learned through repeated play of the game with the same
agents [5, 6, 10, 13]. (Repeated play with a random selection
of similar agents from a large population has also been the
object of considerable study [1, 18, 11, 24].)

One especially simple, yet often effective, learning model
for achieving coordination is fictitiousplay [4, 5]. Each agenti keeps a countCjaj , for each j 2 � and aj 2 Aj , of the num-
ber of times agent j has used action aj in the past. When
the game is encountered, i treats the relative frequencies of
each of j’s moves as indicative of j’s current (randomized)
strategy. That is, for each agent j, i assumes j plays actionaj 2 Aj with probability Priaj = Cjaj=(Pbj2Aj Cjbj ). This
set of strategies forms a reduced profile��i, for which agenti adopts a best response. After the play, i updates its counts
appropriately, given the actions used by the other agents. We
think of these counts as reflecting the beliefs an agent has re-
garding the play of the other agents (initial counts can also be
weighted to reflect priors).

This very simple adaptive strategy will converge to an
equilibrium in our simple cooperative games, and can be
made to converge to an optimal equilibrium if appropriate
mechanisms are adopted [24, 2]; that is, the probabilityof co-
ordinated equilibrium after k interactions can be made arbi-
trarily high by increasing k sufficiently. It is also not hard to
see that once the agents reach an equilibrium, they will re-
main there—each best response simply reinforces the beliefs
of the other agents that the coordinated equilibrium remains
in force.

We note that most game theoretic models assume that each
agent can observe the actions executed by its counterparts
with certainty. As pointed out and addressed in [2, 8], this

assumption is often unrealistic. We will be interested below
in the more general case where each agent obtains an obser-
vation which is related stochastically to the actual joint ac-
tion selected. Formally, we assume an observation set O, and
an observation model � : A ! �(O). Intuitively, �(a)(o),
which we write in the less cumbersome fashion Pra(o), de-
notes the probability of observation o being obtained by all
agents when joint action a is performed. Each agent is aware
of this function, and the usual fully observable model is eas-
ily accommodated as a special case.2
2.3 Reinforcement Learning

Action selection is more difficult still if agents are unaware
of the rewards associated with various joint actions. In such
a case, reinforcement learning can be used by the agents to
estimate, based on past experience, the expected reward as-
sociated with individual or joint actions. We refer to [9] for
a survey of RL techniques.

A simple, well-understood algorithm for single agent
learning is Q-learning [21]. The formulation of Q-learning
for general sequential decision processes is more sophisti-
cated than we need here. In our stateless setting, we assume a
Q-value, Q(a), that provides an estimate of the value of per-
forming (individual or joint) action a. An agent updates its
estimate Q(a) based on sample ha; ri as follows:Q(a) Q(a) + �(r � Q(a)) (1)

The sample ha; ri is the “experience” obtained by the agent:
action a was performed resulting in reward r. Here � is
the learning rate (0 � � � 1), governing to what extent
the new sample replaces the current estimate. If � is de-
creased “slowly” during learning and all actions are sampled
infinitely, Q-learning will converge to true Q-values for all
actions in the single agent setting [21, 20].

Convergence of Q-learning does not depend on the ex-
ploration strategy used. An agent can try its actions at any
time—there is no requirement to perform actions that are cur-
rently estimated to be best. Of course, if we hope to enhance
overall performance during learning, it makes sense (at least
intuitively) to bias selection toward better actions. We can
distinguish two forms of exploration. In nonexploitive explo-
ration, an agent randomly chooses its actions with uniform
probability. There is no attempt to use what was learned to
improve performance—the aim is simply to learn Q-values.
In exploitive exploration an agent chooses its best estimated
action with probability px, and chooses some other action
with probability 1 � px. Often the exploitation probabilitypx is increased slowly over time. We call a nonoptimal action
choice an exploration step and 1� px the exploration prob-
ability. Nonoptimal action selection can be uniform during
exploration, or can be biased by the magnitudes of Q-values.
A popular biased strategy is Boltzmann exploration: action a2One can easily generalize this so that different agents have dif-
ferent observational abilities, or factor the observation space into
componentspertaining to different agent’s actions, and so on. These
have no impact on what follows.



is chosen with probabilityeQ(a)=TPa0 eQ(a0)=T (2)

The temperature parameter T can be decreased over time so
that the exploitation probability increases.

The existence of multiple agents, each simultaneously
learning, is a potential impediment to the successful employ-
ment of Q-learning (or RL generally) in multiagent settings.
When agent i is learning the value of its actions in the pres-
ence of other agents, it is learning in a nonstationary envi-
ronment. Thus, the convergence of Q-values is not guaran-
teed. Naive application of Q-learning to MASs can be suc-
cessful if we can ensure that each agent’s strategy will even-
tually “settle.” This is one of the questions we explore below.
We note that application of Q-learning and other RL methods
(or RL-like methods) have met with some success in the past
[22, 17, 16, 18, 15].

There are two distinct ways in which Q-learning could be
applied to a multiagent system. We say a MARL algorithm
is an independent learner (IL) algorithm if the agents learn
Q-values for their individual actions based on Equation (1).
In other words, they perform their actions, obtain a reward
and update their Q-values without regard to the actions per-
formed by other agents. Experiences for agent i take the formhai; ri where ai is the action performed by i and r is a re-
ward. If an agent is unaware of the existence of other agents,
cannot identify their actions, or has no reason to believe that
other agents are acting strategically, then this is an appropri-
ate method of learning. Of course, even if these conditions
do not hold, an agent may choose to ignore informationabout
the other agents’ actions.

A joint action learner (JAL) is an agent that learns Q-
values for joint actions as opposed to individual actions. The
experiences for such an agent are of the form ha; ri where a
is a joint action. This implies that each agent can observe the
actions of other agents. We can generalize the picture slightly
by allowing experiences of the form hai; o; riwhere ai is the
action performed by i, and o is its (joint action) observation.
The contrast between ILs and JALs can be illustrated in our
example above: if A is an IL, then it will learn Q-values for
actions a0 and a1; if A is a JAL, it will learn Q-values for all
four joint actions, ha0; boi, etc.

For JALs, exploration strategies require some care. In the
example above, if A currently has Q-values for all four joint
actions, the expected value of performing a0 or a1 depends
crucially on the strategy adopted by B. To determine the
relative values of their individual actions, each agent in a
JAL algorithm maintains beliefs about the strategies of other
agents. Here we will use simple empirical distributions, pos-
sibly with biased initial weights as in fictitious play. AgentA, for instance, assumes that each other agent B will choose
actions in accordance with A’s current beliefs about B (i.e.,A’s empirical distribution over B’s action choices). In gen-
eral, agent i assesses the expected value of its individual ac-
tion ai to be

EV(ai) = Xa�i2A�i Q(a�i [ faig)Yj 6=ifPria�i [j]g

Agent i can use these values just as it would Q-values in im-
plementing an exploration strategy.3

Maintaining a belief distribution by means of fictitious
play is problematic if agents have imprecise observational ca-
pabilities. Following [2], we use a simple Bayesian updating
rule for beliefs:

Pr(a[j] = ajja[i] = ai; o) =
Pr(oja[j] = aj ; a[i] = ai)Pr(a[j] = aj)

Pr(oja[i] = ai)
Agent i then updates its distributionover j’s probabilities us-
ing this “stochastic observation;” in particular, Cjak is incre-
mented by Pr(ajkjo) (intuitively, by a “fractional” outcome).4
3 Comparing Independent and Joint-Action

Learners
We first compare the relative performance of independent
and joint-action learners on a simple coordination game of
the form described above: a0 a1b0 10 0b1 0 10
The first thing to note is that ILs using nonexploitive explo-
ration will not deem either of their choices (on average) to
be better than the other. For instance, A’s Q-values for both
action a0 and a1 will converge to 5, since whenever, say, a0
is executed, there is a 0:5 probability of b0 and b1 being ex-
ecuted. Of course, at any point, due to the stochastic nature
of the strategies and the decay in learning rate, we would ex-
pect that the learned Q-values will not be identical; thus the
agents, once they converge, might each have a reason to pre-
fer one action to the other. Unfortunately, these biases need
not be coordinated.

Rather than pursuing this direction, we consider the case
where both the ILs and JALs use Boltzmann exploration. Ex-
ploitation of the known values allows the agents to “coordi-
nate” in their choices for the same reasons that equilibrium
learning methods work when agents know the reward struc-
ture. Figure 1 shows the probability of two ILs and JALs
selecting an optimal joint action as a function of the number
of interactions they have. The temperature parameter is T =16 initially and decayed by a factor of 0:9t at the t+1st inter-
action. We see that ILs coordinate quite quickly. There is no
preference for either equilibrium point: each of the two equi-
libria was attained in about half of the trials. We do not show
convergence of Q-values, but note that the Q-values for the
actions of the equilibria attained (e.g., ha0; b0i) tended to 10
while the other actions tended to 0. We note that probability3The expression for EV(ai) makes the justifiable assumption
that the other agents are selecting their actions independently. Less
reasonable is the assumption that these choices are uncorrelated, or
even correlated with i’s choices. Such correlations can often emerge
due to the dynamics of belief updating without agents being aware
of this correlation, especially if frequencies of particular joint ac-
tions are ignored.4This essentially corresponds to using the empirical counts as
Dirichlet parameters, and treating the i’s beliefs as a Dirichlet dis-
tribution over j’s set of mixed strategies.
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Figure 1: Convergence of coordination for ILs and JALs (av-
eraged over 100 trials).

of optimal action selection does not increase smoothly within
individual trials; the averaged probabilities reflect the likeli-
hood of having reached an equilibrium by time t, as well as
exploration probabilities. We also point out that much faster
convergence can be had for different parameter settings (e.g.,
decaying temperature T more rapidly). We defer general re-
marks on convergence to Section 5.

The figure also shows convergence for JALs under the
same circumstances (full observability is assumed). JALs
do perform somewhat better after a fixed number of inter-
actions, as shown in the graph. While the JALs have more
information at their disposal, convergence is not enhanced
dramatically. In retrospect, this should not be too surpris-
ing. While JALs are able to distinguish Q-values of different
joint actions, their ability to use this information is circum-
scribed by the strictures of the action selection mechanism.
An agent maintains beliefs about the strategy being played
by the other agents and “exploits” actions according to ex-
pected value based on these beliefs. In other words, the value
of individual actions “plugged in” to the exploration strategy
is more or less the same as the Q-values learned by ILs—the
only distinction is that JALs compute them using explicit be-
lief distributions and joint Q-values instead of updating them
directly. Thus, even though the agents may be fairly sure of
the relative Q-values of joint actions, Boltzmann exploration
does not let them exploit this.5
4 The Effects of Partial Action Observability
When JALs are in a situation where partial observability
holds sway, the updating of Q-values should be undertaken
with more care. Given an experience hai; o; ri, where ai is
agent i’s action and o is the resultant observation, there can be
a number of joint actions a consistent with ai and o, accord-
ing to the observation model, that give rise to this experience.
Intuitively, i should update the Q-values for each of such a,
something that conflicts with the usual Q-learning model. To
deal with this, we propose the use of “fractional” updates of5The key reason for the difference in ILs and JALs is the larger
difference in Q-values for JALs, which bias Boltzmann exploration
slightly more toward the estimated optimal action.
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Figure 2: Time to convergence (opt. joint action with prob.
0.99) as a function of observation prob. (averaged over 1000
trials; � = 0:2, T = 16, T decayed at rate 0:9).

Q-values: the Q-value for joint action awill be updated by re-
ward r; but the magnitude of this update will be “tempered”
by the probability Pr(ajo; ai) that a was taken given o; ai.6
Specifically, agent i updates joint Q-values for all actions a
where a[i] = ai using:Q(a) Q(a) + �Pr(ajo; ai)(r � Q(a)) (3)

where Pr(ajo; ai) is computed in the obvious way by i using
its beliefs and Bayes rule.

We first note that if agent i is learning in a stationary en-
vironment (i.e., all other agents play fixed, mixed strategies),
then this update rule will converge; that is, the limiting Q-
values are well-defined, under the same conditions required
of Q-learning. Informally:

Proposition 1 Convergence of Q-values using update
rule (3) is assured in stationary environments.

We note that convergence of Q-values is enhanced when the
“fractional” nature of the updates is accounted for when de-
caying the learning parameter �—we typically maintain a
separate �a for each joint action a and decay �a using the
total experience with a (i.e., weighting the decay rate usingPr(ajo; ai)). We also note that convergence cannot generally
be to the true Q-values of joint actions unless the observation
model is perfect. In our running example, for instance, if ob-
servations do not permit agent A to distinguish b0 from b1
perfectly, then the Q-value for, say, ha0; b0i must lie some-
where between 0 and 10.

Figure 2 shows how convergence to equilibrium is influ-
enced by the accuracy of the observation model in the game
above. The model associates a unique observation oa with
each of the four joint actions a. The observation probabil-
ity refers to Pr(oaja), and ranges from 0:25 (fully unobserv-
able) to 1 (fully observable). If o 6= oa then Pr(oja) =(1�Pr(oaja))=3. Rate of convergence refers to the expected
number of interactions until convergence (i.e., the probability6An alternative way of viewing this: a single Q(a) is chosen by
the agent, with probability Pr(ajo; ai), for update with reward r.
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of selecting an optimal joint action reaches 0:99). The more
accurate the observation model, the more quickly the agents
converge. Figure 3 shows the convergence of joint Q-values
for observation probability 0:5.

5 Convergence and Game Structure
We will argue below that Q-learning, in both the IL and JAL
cases, will converge to an equilibrium under appropriate con-
ditions. Of course, in general, convergence to an optimal
equilibrium cannot be assured. Before making this case, we
consider the ways in which the game structure can influence
the dynamics of the learning process.a0 a1 a2b0 10 0 kb1 0 2 0b2 k 0 10

When k < 0, this game has three deterministic equilibria,
of which two are preferred. If k = �100, agent A, during
initial exploration, will find its first and third actions to be
unattractive because of B’s random exploration. If A is an
IL, the average rewards (and hence Q-values) for a0; a2 will
be quite low; and if A is a JAL, its beliefs about B’s strategy
will afford these actions low expected value. Similar remarks
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apply to B, and the self-confirming nature of equilibria vir-
tually assure convergence to ha1; b1i. However, the closerk is to 0, the lower the likelihood the agents will find their
first and third actions unattractive—the stochastic nature of
exploration means that, occasionally, these actions will have
high estimated utility and convergence to one of the optimal
equilibria will occur. Figure 4 shows how the probability of
convergence to one of the optimal equilibria is influenced by
the magnitude of the “penalty” k. Not surprisingly, different
equilibria can be attained with different likelihoods.7

Thus far, our examples show agents proceeding on a direct
route to equilibria (albeit at various rates, and with destina-
tions “chosen” stochastically). Unfortunately, convergence
is not so straightforward in general. Consider the following
game: a0 a1 a2b0 11 �30 0b1 �30 7 6b2 0 0 5
Initially, the two learners are almost certainly going to begin
to play the nonequilibrium strategy profile ha2; b2i. This is
seen clearly in Figures 5 and 6. However, once they “settle”
at this point, as long as exploration continues (here Boltz-
mann exploration is used), agent B will soon find b1 to be
more attractive—so long as A continues to primarily choosea2. Once the nonequilibrium point ha2; b1i is attained, agentA tracks B’s move and begins to perform action a1. Once
this equilibrium is reached, the agents remain there. Fig-
ures 5 and 6 clearly show the agents settling into nonequi-
libria at various points and “climbing” toward an equilibrium
over time along a best reply path. The convergence (and rest-
ing points) for the joint Q-values are shown in Figure 7.8

This phenomenon will obtain in general, allowing one to
conclude that the multiagent Q-learning schemes we have
proposed will converge to equilibria almost surely—but only7These results are shown for JALs; but the general pattern holds
true for ILs as well.8These results are based on Boltzmann exploration with a tem-
perature setting of 1 and no decay—this is to induce considerable
exploration, otherwise convergence is quite slow (see below). This
explains why agentA converges to Pr(a1) = 0:7. A does converge
to Pr(a1) = 1:0 when the temperature is decayed slowly.
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if certain conditions are met in the case of ILs. First, explo-
ration must continue at any point with nonnegative probabil-
ity. This is required by Q-learning in any case, but is nec-
essary to ensure that a nonequilibrium is not prematurely ac-
cepted. Second, when agents are exploring, if the probability
of both moving away from a nonequilibriumpoint simultane-
ously is sufficiently high, then we cannot expect agent A to
notice that it has a new best reply. So, for instance, if we use
uniform exploration over time, we cannot induce B to learn
a good enough Q-value for its “break out move” to actually
move away (e.g., every time b1 is tried, there is a high enough
probability that A does a0 that b1 never looks better than b2).

We note that Boltzmann exploration with a decaying tem-
perature parameter ensures infinite exploration. Further-
more, as the temperature decreases over time, so too does the
probability of simultaneous exploration. Thus, at some finite
time t (assuming bounded rewards), the probability of B ex-
ecuting b1 while A performs a2 will become high enough to
render b1 more attractive after some finite number of experi-
ences with b1. At this point, (with high probability) B will
perform b1, allowing A to respond in a similar fashion.

These arguments can be put together to show that, with
proper exploration and proper use of best responses (i.e., that
are at least asymptotically myopic [5], which our suggested
methods are), we will eventually converge to an equilibrium.
Informally:

Proposition 2 IL and JAL algorithms will converge to an
equilibrium if sufficient, but decreasing, exploration is
undertaken.9

We remark that this theoretical guarantee of convergence
may not be of much practical value for sufficiently compli-
cated games. The key difficulty is that convergence relies on
the use of decaying exploration: this is necessary to ensure
that the agents’ estimated values are based (ultimately) on a
stationary environment. This gradual decay, however, makes
the time required to shift from the current entrenched strategy
profile to a better profile rather long. If the agents initially
settle on a profile that is a large distance (in terms of a best
reply path) from an equilibrium, each shift required can take
longer to occur because of the decay in exploration. Further-
more, as pointed out above, the probability of concurrent ex-
ploration may have to be sufficiently small to ensure that the
expected value of a shift along the best reply path is greater
than no such shift, which can introduce further delays in the
process. We note that the longer these delays are, the lower
the learning rate � becomes, requiring even more experience
to overcome the initially biased estimated Q-values. Finally,
the largest drawback lies in the fact that—even when JALs
have perfect joint Q-values—beliefs based on a lot of experi-
ence require a considerable amount of contrary experience to
be overcome. For example, once B has made the shift fromb2 to b1 above, a significant amount of time is needed for A
to switch from a2 to a1: it has to observe B performing b1
enough to overcome the rather large degree of belief it had
that B would continue doing b2.9We have not yet constructed a formal proof, but see no impedi-
ments to this conjecture. The convergence conjecture also relies on
the fact that cooperative games have no best reply cycles.



6 Concluding Remarks
We have seen described two basic ways in which Q-learning
can be applied in multiagent cooperative settings, and exam-
ined the impact of various features on the success of the in-
teraction between equilibrium selection learning techniques
with RL techniques. We have demonstrated that the integra-
tion requires some care, and that Q-learning is not nearly as
robust as in single-agent settings.

These considerations point toward a number of interest-
ing avenues of research directed toward improving the per-
formance of MARL. We remark on some of the directions
we are currently pursuing. The first is the enhancement of
practical convergence by the use of “windowing” methods
for estimating beliefs in JALs. By using only the last k expe-
riences to determine empirical belief distributions, the abate-
ment of convergence caused by strongly held prior beliefs
can be alleviated. We note that a memory-based technique
of this sort might be applied to ILs if reward experiences
are stored and old experiences discounted in determining Q-
values. The second avenue we are investigating are possi-
ble techniques for encouraging agents to converge to optimal
equilibria. This is one area where JALs have a distinct advan-
tage over ILs: even if they have converged to an equilibrium,
they can tell—since they have access to joint Q-values—if a
better equilibrium exists. Coordination learning techniques
(see, e.g., [2]) might then be applied, as could other explo-
ration techniques that attempt to induce a shift from one equi-
librium to another. Finally, we hope to explore the details
associated with general, multistate sequential decision prob-
lems and investigate the application of generalization tech-
niques in domains with large state spaces.

Acknowledgements: Thanks to Leslie Kaelbling and
Michael Littman for their helpful discussions in the early
stages of this work.
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