APRICODD: Approximate Policy Construction
using Decision Diagrams

Robert St-Aubin Jesse Hoey Craig Boutilier
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
University of British Columbia University of British Columbia University of Toronto

Vancouver, BC V6T 174 Vancouver, BC V6T 1Z4 Toronto, ON M5S 3H5
staubin@cs.ubc.ca jhoey@cs.ubc.ca cebly@cs.toronto.edu
Abstract

We propose a method of approximate dynamic programming ok
decision processes (MDPs) using algebraic decision diagADDs).
We produce near-optimal value functions and policies witicimlower
time and space requirements than exact dynamic programniing
method reduces the sizes of the intermediate value furectienerated
during value iteration by replacing the values at the teatsiof the ADD
with ranges of values. Our method is demonstrated on a cfdssge
MDPs (with up to 34 billion states), and we compare the reswith the
optimal value functions.

1 Introduction

The last decade has seen much interest in structured ajpyeotcsolving planning prob-
lems under uncertainty formulated as Markov decision pgses (MDPs). Structured algo-
rithms allow problems to be solved without explicit stapase enumeration by aggregating
states of identical value. Structured approaches usingidedrees have been applied to
classical dynamic programming (DP) algorithms such asevétration and policy itera-
tion [7, 3]. Recently, Hoewt.al.[8] have shown that significant computational advantages
can be obtained by using @igebraic Decision DiagranfADD) representation [1, 4, 5].
Notwithstanding such advances, large MDPs must often wvedapproximately. This can
be accomplished by reducing the “level of detail” in the esmntation and aggregating
states withsimilar (rather than identical) value. Approximations of this kindve been
examined in the context of tree structured approachesh®]paper extends this research
by applying them to ADDs. Specifically, the terminal of an Al be labeled with the
range of values taken by the corresponding set of states. Awilsee, ADDs have a
number of advantages over trees.

We develop two approximation methods for ADD-structureth@gunctions, and apply
them to the value diagrams generated during dynamic pragiagn The result is a near-
optimal value function and policy. We examine the tradeeffl®een computation time and
decision quality, and consider several variable reordestrategies that facilitate approxi-
mate aggregation.

2 Solving MDPsusing Algebraic Decision Diagrams

We assume a fully-observable MDP [10] with finite sets ofest& and actionsA4, tran-
sition functionPr(s, a, t), reward functionR, and a discounted infinite-horizon optimality
criterion with discount factog. Value iterationcan be used to compute an optimal station-
ary policyr : S — A by constructing a series afstage-to-go value functions, where:

VH(s) = R(s) + max {ﬁ Z Pr(s,a,t) - V”(t)} 1)

teS

The sequence of value functiold' produced by value iteration converges linearly to the
optimal value functiori’*. For some finite:, the actions that maximize Equation 1 form
an optimal policy, and’™ approximates its value.

ADDs [1, 4, 5] are a compact, efficiently manipulable datacture for representing real-
valued functions over boolean variablB8 — R. They generalize a tree-structured rep-
resentation by allowing nodes to have multiple parentgjitepto the recombination of
isomorphic subgraphs and hence to a possible reductioe ireffresentation size. A more
precise definition of the semantics of ADDs can be found in [9]

Recently, we applied ADDs to the solution of large MDPs [8jelging significant
space/time savings over related tree-structured appesackVe assume the state of an
MDP is characterized by a set of variabks= { X1, -- -, X, }. Values of variableX; will

be denoted in lowercase (e.g;). We assume each; is boolean. Actions are described
using dynamic Bayesian networks (DBNSs) [6, 3] with ADDs regnting their conditional
probability tables. Specifically, a DBN for actianrequires two sets of variables, one set
X = {Xy,---, X, } referring to the state of the system before actidras been executed,
andX' = {X{,---, X/} denoting the state afterhas been executed. Directed arcs from
variables inX to variables inX' indicate direct causal influence. The conditional proba-
bility table (CPT) for each post-action variahl& defines a conditional distributioR%,

over X/—i.e., a’s effect onX;—for each instantiation of its parents. This can be viewed
as a functionPg, (X, ... X,,), but where the function value (distribution) depends omly o

thoseX; that are parents ak!. We represent this function using an ADD. Reward func-
tions can also be represented using ADDs. Figure 1(a) sheimsme example of a single
action represented as a DBN as well as a reward function.

We use the method of Hoet. al[8] to perform value iteration using ADDs. We refer to
that paper for full details on the algorithm, and preseny artbrief outline here. The ADD
representation of the CPTs for each acti®t}, (X), are referred to aaction diagrams

as shown in Figure 1(b), wheB& represents the set of pre-action variables,, ... X,, }.
These action diagrams can be combined intomplete action diagrartFigure 1(c)):

PUXX) = [[X P (X) + X7 (1 - Pg,(X)). (2)
i=1

The complete action diagramepresents all the effects of pre-action variables on post-
action variables for a given action. The immediate rewarttfion R(X') is also repre-
sented as an ADD, as are thestage-to-go value functios™(X). Given thecomplete
action diagramdor each action, and the immediate reward function, valeraiton can be
performed by setting® = R, and applying Eq. 1,

V™ (X) = R(X) + max {ﬂ > PUX,X) - V”(X')} , ®
=

! An extension to multi-valued variables would be straigivfard.

2
— P

O =0 HE L
< 4@ e =

5
O F = &

Matrix ADD Complete
Representation Representation Action Diagram

(a) (b) ©

Figure 1. ADD representation of an MDP: (a) action network dosingle action (top)
and the immediate reward network (bottom) (b) Matrix and AEpresentation of CPTs
(action diagrams) (c) Complete action diagram.

(5.6 (9B [52[97[5.1[9.41.1] B152][5.7,9:8] L1 [5.156] [03.938]

() (b) 0.1 (c)0.5

Figure 2: Approximation of original value diagram (a) wittras of 0.1 (b) and 0.5 (c).

followed by swapping all unprimed variables with primed snéll operations in Equa-
tion 3 are well defined in terms of ADDs [8, 12]. The value iteva loop is continued until
some stopping criterion is met. Various optimizations gmelied to make this calculation
as efficient as possible in both space and time.

3 Approximating Value Functions

While structured solution techniques offer many advardgatiee exact solution of MDPs
in this way can only work if there are “few” distinct valuesarvalue function. Even if a
DBN representation shows little dependence among vasdhben one stage to another,
the influence of variables tends to “bleed” through a DBN diree, and many variables
become relevant to predicting value. Thus, even usingtstreid methods, we must often
relax the optimality constraint and generate only apprat@walue functions, from which
near-optimal policies will hopefully arise. It is geneyalhe case that many of the values
distinguished by DP are similar. Replacing such values wittingle approximate values
leads to size reduction, while not significantly affectihg precision of the value diagrams.

3.1 Decision Diagramsand Approximation

Consider the value diagram shown in Figure 2(a), which rgtst€listinct values as shown.
The value of each stateis represented as a pdiru], where the lower], and uppery,
bounds on the values are both represented spaeof a states, is given byspan(s)=u—I.
Point values are represented by settind, and have zergpan Now suppose that the

diagram in Figure 2(a) exceeds resource limits, and a raduat size is necessary to
continue the value iteration process. If we choose to nodowigstinguish values which
are within 0.1 or 0.5 of each other, the diagrams in Figurd &fb(c) result, respec-
tively. The states which had proximal values have been ndenghere merging a set of
statessy, sa, . . ., s, With values[ly, u1], ..., [ln, uy], results in an aggregate statewith
arangedvalue[min(ly,...,[,), max(uy,...,u,)]. The midpoint of the range estimates
the true value of the states with minimal error, namebyn(¢)/2. The span o/ is the
maximum of all spans in the value diagram, and therefore temum error inV” is sim-
ply span(V)/2 [2]. Thecombined spanf a set of states is the span of the pair that would
result from merging them all. Thextentof a value diagrany” is thecombined spanf the
portion of the state space which it represents. The spareafitgram in Figure 2(c) is 0.5,
but its extent is 8.7.

ADD-structured value functions can be leveraged by appnation techniques because
approximations can always be performed directly withoetprocessing techniques such
as variable reordering. Of course, variable reorderingstifirplay an important computa-
tional role in ADD-structured methods, but are not neededi&coveringapproximations.

3.2 Valuelteration with Approximate Value Functions

Approximate value iteration simply means applying an agpnation technique to the-
stage to govalue function generated at each iteration of Eq. 3. Avéglabsources might
dictate that ADDs be kept below some fixed size. In contrastisibn quality might require
errors below some fixed value, referred to asghening strengthd. The remainder of this
paper will focus on the latter, although we have examineddhaer as well [9].

Thus, the objective of a single approximation step is a rédudn the size of a ranged
value ADD by replacing all leaves which have combined spass than the specified
error bound by a single leaf. Given a I€éfu] in V, the set of all leave§;, u;] such
that the combined span ¢, u;] with [,] is less than the specified error are merged.
Repeating this process until no more merges are possitds thie desired result. We have
also examined a quicker, but less exact, method for appatiom, which exploits the fact
that simply reducing the precision of the values at the lsaf@n ADD merges the similar
values. We defer explanations to the longer version of thpep[9].

The sequence of ranged value functidig, converges after’ iterations to an approximate
(non-ranged) value functioft], by taking the mid-points of each ranged terminal node in
V"', The pruning strengthy, then gives the percentage difference betw&eand the
optimaln’'-stage-to-go value functiori”’. The value functior’ induces a policy7, the
value of which isV;. In general, howevek/; # V [11] 2.

3.3 Variable Reordering

As previously mentioned, variable reordering can have rifsigint effect on the size of an
ADD, but finding the variable ordering which gives rise to #mallest ADD for a boolean
function is co-NP-complete [4]. We examine three reordgnrethods. The first two are
standard for reordering variables in BDDs: Rudell’s sitadgorithm and random reorder-
ing [12]. The last reordering method we consider arises éndacision tree induction
literature, and is related to theformation gain criterion Given a value diagrariy” with

extentd, each variable: is considered in turn. The value diagram is restricted fiigt w
x = true, and the extend; and the number of leaves are calculated for the restricted
ADD. Similar valuesi; andn are found for the: = false restriction. If we collapsed the
entire ADD into a single node, assuming a uniform distribatver values in the resulting

2|n fact, the equality arises if and only¥f = V*, whereV * is the optimal value function.

range gives us the entropy for the entire ADD:
E = [po)log(p(w)do = log (), @

and represents our degree of uncertainty about the valuggidiagram. Splitting the
values with the variable results in two new value diagrams, for each of which the gmytro
is calculated. The gain in information (decrease in entyasfues are used to rank the
variables, and the resulting order is applied to the diagiEms method will be referred to
as theminimum span method

4 Results
The procedures described above were implemented using diedogersion of theCUDD
package [12], a library of routines which provides support for manipulation of ADDs.

Experimental results from this section were all obtaineidgi®ne processor on a dual-
processoPentium IIPC running at 400Mhz with 0.5Gb of RAM. Our approximation hret
ods were tested on various adaptations of a process plaprobtem taken from [7, 8].

4.1 Approximation

All experiments in this section were performed on problemrméims where the variable
ordering was the one selected implicitly by the constrisctdithe domainé.

Value 4 time iter nodes leaves |V* — Vx|
Function (%) (s) (int) (%)
Optimal 0 270.91 44 22170 527 0.
1 562.35 44 17108 117 0.1
2 547.00 44 15960 77 0.14
3 112.7 15 15230 58 5.4
Approximate 4 68.53 12 14510 48 1.20
5 38.06 10 11208 38 2.44
10 6.24 6 3739 15 11.33
15 0.70 4 580 9 14.11
20 0.57 4 299 6 16.66|
30 0.05 2 50 3 25.98
40 0.07 2 10 2 30.28
50 0.04 1 0 1 31.25

Table 1: Comparing optimal with approximate value itenattm a domain with 28 boolean
variables.

In Table 1 we compare optimal value iteration using ADB®(UDDas presented in [8])
with approximate value iteration using different pruningesgthsé. In order to avoid
overly aggressive pruning in the early stage of the valuatitens, we need to take into
account the size of the value function at every iteratiorer&fore, we use a sliding pruning
strength specified a8}, B'extent(R) whereR is the initial reward diagramyj is the
discount factor introduced earlier ands the iteration number.

We illustrate running time, value function size (internatles and leaf nodes), number of
iterations, and the average sum of squared difference ket optimal value function,
V*, and the value of the approximate poli&,.

It is important to note that the pruning strength is an uppmmul on the approximation
error. That is, the optimal values are guaranteed to lieimite ranges of the approximate

3See [9] for details.
“Experiments showed that conclusions in this section arepieddent of variable order.

ranged value function. However, as noted earlier, this daloes not hold for the value of
an induced policy, as can be see#tpruning in the last column of Table 1.

The effects of approximation on the performance of the varation algorithm are three-
fold. First, the approximation itself introduces an ovexthevhich depends on the size of
the value function being approximated. This effect can lem $e Table 1 at low pruning
strengths 1 — 2%), where the running time is increased from that taken bynogltvalue
iteration. Second, the ranges in the value function redue@timber of iterations needed
to attain convergence, as can be seen in Table 1 for prunmieggihs greater tha2%.
However, for the lower pruning strengths, this effect isalagerved. This can be explained
by the fact that a small number of states with values muchtgréar much lower) than
that of the rest of the state space may never be approximahedefore, to converge, this
portion of the state space requires the same number ofitesas in the optimal case

The third effect of approximation is to reduce the size ofithleie functions, thus reducing
the per iteration computation time during value iteratidhis effect is clearly seen at prun-
ing strengths greater tha%¥, where it overtakes the cost of approximation, and gengrate
significant time and space savings. Speed ups of 2 and 4 feldlztained for pruning
strengths oB% and4% respectively. Furthermore, fewer than 60 leaf nodes reptehe
entire state space, while value errors in the policy do noeed6%. This confirms our
initial hypothesis that many values within a given domaenary similar and thus, replac-
ing such values with ranges drastically reduces the sizheofésulting diagram without
significantly affecting the quality of the resulting polidruning abové% has a larger er-
ror, and takes a very short time to converge. Pruning sthesngftmore thar0% generate
policies which are close to trivial, where a single actioaligays taken.

4.2 Variablereordering

— shuffled - no reorder
—6— intuitive (unshuffled) - no reorder
—+— shuffled - reorder minspan

o shuffled - reorder random
5| | —— shuffled - reorder sift

value diagram internal nodes

. . .
15 20 25 30 35
boolean variables

Figure 3: Sizes of final value diagrams plotted as a functidh@problem domain size.

Results in the previous section were all generated usintjrthetive” variable ordering for
the problem at hand. Itis probable that such an ordering&sedo optimal, but such order-
ings may not always be obvious, and the effects of a poor irglen the resources required
for policy generation can be extreme. Therefore, to chareet the reordering methods
discussed in Section 3.3, we start with initially randontiyffled orders and compare the
sizes of the final value diagrams with those found using thetive order.

SWe are currently looking into alleviating this effect in erdto increase convergence speed for
low pruning strengths

In Figure 3 we present results obtained from approximateevdkration with a pruning
strength of3% applied to a range of problem domain sizes.

Inthe absence of any reordering, diagrams produced wittoraty shuffled variable orders
are up to 3 times larger than those produced with the intiitiinshuffled) order. The

minimum span reordering method, starting from a randomiyffid order, finds orders

which are equivalent to the intuitive one, producing valisgtams with nearly identical

size. The sifting and random reordering methods find ordéistwreduce the sizes further
by up to a factor of 7.

Reordering attempts take time, but on the other hand, DPsterfavith smaller diagrams.
Value iteration with the sifting reordering method (stagtiwith shuffled orders) was found
to run in time similar to that of value iteration with the iittue ordering, while the other
reordering methods took slightly longer. All reorderingthrads, however, reduced running
times and diagram sizes from that using no reordering, ipfaof 3 to 5.

5 Concluding Remarks

We examined a method for approximate dynamic programmin@MoPs using ADDs.
ADDs are found to be ideally suited to this task. The resuégwesent have clearly shown
their applicability on a range of MDPs with up to 34 billiorasts. Investigations into the
use of variable reordering during value iteration have alswed fruitful, and yield large
improvements in the sizes of value diagrams. Results shawadinr policy generator is
robust to the variable order, and so this is no longer a caimstior problem specification.

References

[1] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary Dchtel, Enrico Macii, Abelardo
Pardo, and Fabio Somenzi. Algebraic decision diagramstaidapplications. Ihnternational
Conference on Computer-Aided Desigages 188-191. IEEE, 1993.

[2] Craig Boutilier and Richard Dearden. Approximatingwaltrees in structured dynamic pro-
gramming. InProceedings ICML-96Bari, Italy, 1996.

[3] Craig Boutilier, Richard Dearden, and Moisés GoldsimExploiting structure in policy con-
struction. InProceedings Fourteenth Inter. Conf on Al (IJCAI-95995.

[4] Randal E. Bryant. Graph-based algorithms for booleartfion manipulation!EEE Transac-
tions on ComputersC-35(8):677-691, 1986.

[5] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yan Spectral transforms for large
boolean functions with applications to technology mappindAC, 54—60. ACM/IEEE, 1993.

[6] Thomas Dean and Keiji Kanazawa. A model for reasoningualpersistence and causation.
Computational Intelligences(3):142—-150, 1989.

[7] Richard Dearden and Craig Boutilier. Abstraction angragimate decision theoretic planning.
Artificial Intelligence 89:219-283, 1997.

[8] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig BoutilgPUDD: Stochastic planning using
decision diagrams. IRroceedings of UAI9S5tockholm, 1999.

[9] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutil@ptimal and approximate planning
using decision diagrams. Technical Report TR-00-05, UB@e2000.

[10] Martin L. PutermanMarkov Decision Processes: Discrete Stochastic DynamigRmming.
Wiley, New York, NY., 1994.

[11] Satinder P. Singh and Richard C. Yee. An upper bound ena$s from approximate optimal-
value function.Machine Learning16:227—-233, 1994.

[12] Fabio Somenzi. CUDD: CU decision diagram package. latde from
ftp://vlsi.colorado. edu/ pub/,1998.

