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Introduction

Single-good ascending auctions, including the English Auc-
tion and its close variants (e.g. eBay), are the most widely
used type of auction. Hence, effective strategies for such
auctions can have an enormous economic impact. To
maximize profit, a seller should try to set a reserve price
high enough to extract the highest bidder’s full value with-
out blocking the bidder out altogether. In isolated auc-
tions where bidders have static, independent, identicallydis-
tributed, private values from a known distribution, it is well-
understood how to compute the optimal reserve price. How-
ever, these assumptions rarely hold in practice. First, the
value distributions are not knownex ante. Second, auctions
rarely run in isolation [2, 7]. Third, value distributions are
typically non-stationary.

Estimating the value distribution from bids is non-obvious
and non-trivial because the distribution of bids is not the
same as the distribution of values [4, 6]. Jiang and Leyton-
Brown [6] addressed how “hidden bids” in online auctions
can skew the bidding distribution away from the underlying
value distribution. They were able to effectively infer the
value distribution when given the parametrized form. Haile
and Tamer’s [4] method infers bounds on the distribution,
making noa priori assumptions about the bidder valuations
and very minimal assumptions about bidder behavior. How-
ever, their approach was not complete, as it did not pro-
vide a way to choose the reserve price within the bounds.
Additionally, neither of the aforementioned approaches ad-
dressed the issue of non-isolated auctions or non-stationary
distributions. Although Juda and Parkes [7] generalize Haile
and Tamer’s work somewhat to allow for bidders that partic-
ipate in multiple auctions, and Gerding et al. [2] analyzed
reserve pricing in the presence of multiple competing auc-
tions, those models are simplifications. Indeed, performing
a full game-theoretic analysis of setting reserve prices ina
dynamic real-world context is prohibitively complex.

We present an automated methodology and system for
computing reserve prices for real-world ascending auctions.
Our initial system is based on the approach of Haile and
Tamer [4], but with the addition of our own technique for
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computing a specific distribution within their bounds. We
adjust the distribution to account for competing sales chan-
nels and non-stationarities. We fielded our system in a live
two-month trial on real auctions, which demonstrated the
effectiveness of our approach, but also revealed its inability
to adapt to a drop in bidding coinciding with the appear-
ance of a competing seller. In response, we developed a
new Bayesian technique for adjusting to sudden shocks in
the market without explicitly having to model their cause.
Throughout, we make minimal modeling assumptions and
use only that information which is readily available from
past auctions.

The Core Method
Consider a standard isolated English auction in which bid-
ders have independent private values for a single good,
drawn from the CDFF (v). The seller places valuev0 on
the good and specifies a public reserve price ofr.

Haile and Tamer [4] showed how to compute upper and
lower boundsFU andFL, such that,∀v, FL(v) ≤ F (v) ≤
FU (v). They make no assumptions about the form of the
distribution and make only minimal assumptions about bid-
ding behavior, namely 1) bidders do not bid more then they
are willing to pay, and 2) bidders do not allow an opponent
to win at a price they are willing to beat. Unlike previous
nonparametric approaches (e.g., [1, 3, 8]), equilibrium be-
havior isnot assumed.

The method for computing bounds considers only the
highest bids (or only the publicly availablerevealed high
bids in eBay-style auctions), and uses information only from
auctions with at least two bids. The latter aspect will be of
importance when we must estimate the distributions when
the past reserve prices were too high.

Under certain regularity conditions [4], the optimal re-
serve for both English and eBay-style auctions with proxy
bidding is given by

arg max
p

(p − v0)[1 − F (p)]. (1)

Although Haile and Tamer described how to compute
bounds on the value distribution, they did not describe how
to select a particular distribution within the bounds. Our first
contribution is a method for estimating a particular distribu-
tion F̂ (v) within the bounds. Our system then usesF̂ (v) in
place ofF (v) in Eq. 1 to compute a reserve price.



We first computeFL(v) andFU (v) for a fine mesh of dis-
crete values ofv, according to Haile and Tamer’s method.
We then pick a particular distribution̂F (v) = FL(v) +
α(FU (v) − FL(v)), α ∈ [0, 1] by simulating the revenue
and finding a best fit to the actual revenueR.

To estimate the revenuêRα for a candidateα, we first
compute the empirical distributioñN of the number of bid-
ders in an auction, according to the numbers of bidders ac-
tually observed. Then we perform a number of simulations,
and computeR̂α as the average revenue from the simula-
tions. For a given simulation, we sample a numbern from
Ñ , and then samplen valuesvi from F̂ (v). We evaluate
the revenue for the simulation as the second highest of the
valuesvi. In order to avoid the possible distortion of reserve
prices, we use data only from auctions with two or more
bidders in computingÑ andR. To determine the correct
α, we exploit the fact that̂Rα must be non-decreasing inα,
and perform a binary search within[0, 1] until |R̂α − R| is
sufficiently small.

In the full paper we demonstrate that our extension to
Haile and Tamer’s method can compute good approxima-
tions of bothF (v) and the optimal reserve price, using data
from as few as 25 auctions. The approximations are very
close using data from 100 auctions.

A Live Test of Reserve Pricing
We developed an automated reserve pricing system that uses
the method described above and tested it in a two-month live
trial. During the trial, the system was used by a company
that auctions returned goods in bulk to resellers on the Inter-
net. Each auctioned good was a bundle of a variety of elec-
tronics in various conditions. 176 auctions were conducted
in the trial, producing over $270,000 in revenue.

Modeling the Value Distributions A significant chal-
lenge to computing reserve prices was that no two auctions
sold the exact same bundle of items. We addressed this with
two methods. First, we performed all computations in terms
of recovery, that is the dollar value of a bid normalized by
the bundle’s wholesale cost. Historically, all bundles sold
for a recovery of less than 1, allowing us to bound the search
for F̂ (v) and the reserve price. Second, following Haile and
Tamer [4], we identified various attributes that affected price
and weighted past data according to a product of Gaussian
kernels [5] on the attributes.

A nonlinear regression showed a strong seasonality effect
on auction prices, with higher prices in the months before
Christmas (when people buy for the holidays) and lower
prices in January and February (when people return goods
after the holidays). Thus we used day of the year as the at-
tribute in one of the Gaussian kernels.

Since we did not have useful detailed data on the compo-
sition of each bundle, we identified easy-to-compute proxies
that signaled the relative value of different bundles. Non-
linear regressions showed that the final prices tended to in-
crease with the the total wholesale cost of the bundle and
also with the average wholesale cost of individual items in
the bundle. We used both of these measures as attributes in

the product of Gaussian kernels.
Another issue was that the company ran multiple auc-

tions simultaneously, and the goods in simultaneous auc-
tions could be considered (partial) substitutes to some of
the bidders. Since a complete model of valuations and the
optimal reserve price would be prohibitively complex, we
worked with the isolated auction model, but with the addi-
tional narrow assumption that the number of simultaneous
auctions would tend to affect the revenue in the auction. In
fact, a regression showed that revenue tended to decrease
with the number of simultaneous auctions. Thus we used the
number of simultaneous auctions as the attribute in a Gaus-
sian kernel.1

Note that we did not encode the actual trend of valua-
tions with respect to the attributes. That is, the system did
not know the actual effects on value due to seasonality, cost,
average cost, or number of simultaneous auctionsa priori.
Rather, when computing the reserve price for a good with
particular attributes, the system simply weighted the data
from a past auction more or less heavily based on the sim-
ilarity of the past auction attributes to the current one (ac-
cording to a product of Gaussian kernels). The actual effect
of the attributes on the value distribution was automatically
inferred by the system.

The Auction Setup The auctions were eBay-style
auctions—that is English auctions with fixed end dates and
proxy bidding. On average, 6.5 auctions were run at the
same time. Before our trial, the company always set the re-
serve price to a recovery of0.1 (i.e., 10% of the wholesale
price), which was clearly suboptimal since they were able
to sell the goods for an average of0.18 through a separate,
fixed-price channel. Because the company had historically
set the reserve price so low, the auctions had always received
bids above the reserve. Since our system would compute
significantly higher reserve prices we had to contend with
unsold goods. We decided with the company that, if a good
didn’t sell at auction, it would be reposted one more time
to auction at the same reserve price. If it did not sell in
that second auction either, it would be combined with less
desirable items into a much larger bundle and sold through
a fixed-price channel to one of a small set of select buyers
(in order to minimize the effect that a bidder in the auction
would feel that he could buy the same bundle through a sec-
ondary channel if the item did not sell in the auction). Since
goods could be sold through the fixed-price channel for an
average recovery of0.18, we took that to be ourv0.

Since we allowed unsold goods to be reposted, a higher
reserve price than specified by Eq. 1 would be optimal. We
first computed an initial value using Eq. 1, then searched for

1The existence of simultaneous auctions for substitute goods
does not actually decrease a bidders’ underlyingvalue for the
goods. Rather, it will tend to decrease the resultingbids for the
goods because there are multiple options. However, rather than
modeling the substitutabilities and the resulting effect on bidding,
we instead pretend as if the presence of simultaneous auctions actu-
ally changes the underlying values for an individual good, and that
bidding proceeds as if the auction is run in isolation. Although this
is admittedly an approximation, the success of our live trial bears
out its effectiveness.



the optimum at higher prices. To estimate the revenue that
would be obtained at a candidate reserver, we performed
simulations in the same manner as we did to computeF̂ (v),
but with the reserve set tor and with the auction rerun one
more time, with a new set of bidders, if the reserve was not
met. We used one year of past auction data as the histori-
cal data, and we did not update that data set during the trial.
We performed 2000 simulations each in the computation of
F̂ (v) and the repost-adjusted reserve price. For each Gaus-
sian kernel, we used a bandwidth of 0.3 times the standard
deviation of the attribute. In evaluating the effectiveness of
our system, we compared the recovery obtained using re-
serve prices from our system with the recovery obtained dur-
ing the same time period the previous year.2

Results from the Trial Our system was quite effective
during the first month of the trial. The recovery increased by
5.6%, from 0.303 to 0.32 (statistically significant at a 99.5%
confidence level), as compared to the same period during
the previous year.3 This improvement includes the price of
goods sold at auction as well as unsold goods later sold at
a fixed price averaging 0.18. The reserve price varied, with
different attributes of the goods, in the range[0.26, 0.33].
The recovery of goods successfully sold at auction was in
the range[0.285, 0.433] and 10% of the auctions did not re-
ceive bids exceeding the reserve. The experimental results
also agreed well with our simulation, which suggested a re-
covery improvement of 4.8% and that 9.2% would not re-
ceive bids above the reserve.

But an unpleasant surprise occurred during the second
month of the trial: the performance of our system dropped
dramatically, resulting in a decrease in recovery of 19%, as
compared to the previous year. During this period, 76%
of the auctions did not receive bids exceeding the reserve
price. Investigations by the company revealed that a com-
peting seller entered the market during the second month,
and we believe that the increased competition resulted in the
drop in bid prices. To test this, we turned off the reserve
pricing system after the second month and gathered data for
another month. The recovery during the third month de-
creased by 13% as compared to the same period during the
previous year. We conclude that the 19% decrease in the sec-
ond month was due largely to entry of the competitor, with
some portion of the decrease due to a reserve price that was
too high in light of the new market environment.

Adapting to Market Disruptions
Our deployed system failed to adapt to the changing market
conditions in the live trial because it did not incorporate the
data from auctions run during the trial (as explained above,
it only used the historical data set as the basis for setting re-
serve prices). A straightforward solution would have been

2We compared recovery, rather than actual dollar revenue, be-
cause the wholesale cost of the goods was not the same during both
periods.

3This amount of improvement was good considering that the re-
turned electronics auctions had historically been quite competitive.
We would expect an even greater improvement for other types of
goods that tend to get fewer bidders.

to simply include auction results generated during the trial,
perhaps with a heavier weighting on more recent data. Al-
though this would allow our system to adapt if bids had in-
creased, it could not not have been effective for decreasing
bids. The problem is that the core system makes use of data
only from auctions with at least two bids. When the reserve
price is too high, as was most surely the case in the sec-
ond month, the only data available is from the highest value
bidders—when auctions receive any bids at all. As a result,
when bids decrease, the estimate ofF̂ (v), and hence the re-
serve price, is increasingly skewed upward. If our system
had incorporated the new auction data in a straightforward
fashion, it would likely have performed worse.

We needed a method for inferring something about the
part of the distribution that is hidden by the reserve price.4

Modeling Market Changes Changes in observed bidding
behavior can potentially arise from a variety of underlying
causes. Because of the complexity of modeling multiple
effects in the world market, we chose a simplified, unified
model whereby we assume changes in bidding reflect fun-
damental changes in the value distribution. Our approach
is to model changes in bidding as ashift in the underlying
value distribution. That is, a drop in bidding is indicativeof
a leftward shift of the value distribution while an increase
in bidding is indicative of a rightward shift. To estimate the
amount of shift, we look at a window ofw previous auc-
tions, and assume that a shift may have occurred immedi-
ately before those auctions were conducted. Using the pre-
dicted probability of an auction receiving no bids above the
reserve, and the actual history of auctions receiving no bids,
we compute the posterior distribution of the amount of shift
in the value distribution. We then shift the value distribution
by the estimated amount and compute the reserve price from
the shifted distribution.

Computing the Distribution of Shift Assume for now
that all auctions have the same attributes. LetF̂ (v) be our
current estimate of the cumulative density function of val-
ues, as determined with our initial method (i.e., not taking
into account any shifting). We assume that the true distri-
butionF (v) is equal toF̂s(v), the distributionF̂ (v) shifted
by s ∈ ℜ. We uses > 0 to indicate a rightward shift, and
s < 0 to indicate a leftward shift. Letδ(s) be the event
that the shift iss and letg(s) be the prior probability density
function ofδ(s). Let ri be the reserve price for past auction
i ∈ w, and letπi,s be the probability thati would receive
no bids aboveri, given s. For a givens, it is straightfor-
ward to determinêFs(v), and, as indicated earlier, we can
computeπi,s via simulation usingF̂i,s(v) and the observed
distribution of the number of bidders. Letγi,s indicate the
probability of the actual outcome of auctioni, givenri and
s. That is, ifi received at least one bid, thenγi,s = 1− πi,s,

4Jiang and Leyton-Brown [6] addressed the problem of how
to infer the distribution when low-value bidders do not bid be-
cause the auction price has already exceeded their value (because
high-value bidders bid first). However, their method, like our
first method, ignores the potentially valuable informationavailable
from auctions that receive no bids at all.
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Figure 1:Distributionh(s) of shift s in the trial as collected: (a) at the end of the first month, (b)in the middle of the second month, (c) at
the end of the second month.

otherwiseγi,s = πi,s. To compute the posterior distribution
h(s) of s, we use Bayes’ rule:

h(s) =
Πi∈wγi,sg(s)

∫
∞

−∞
Πi∈wγi,sg(s)ds

. (2)

It is not immediately clear how to estimateg(s), given
that it is a prior on the error of our estimate. One possibility
would be to substitute the prior distribution over the amount
of shift that occurs in the actual market during any given
short period of time. For the present work, we simply as-
sume an uninformative prior and let the data fully determine
h(s). To computeh(s), we first compute eachγi,s for dis-
crete values ofs within a reasonable range. In our real-world
trial, we normalized values into[0, 1], so we can safely as-
sume thats ∈ [−1, 1]. Then, for any desired value of
s ∈ [−1, 1], we computeh(s) numerically using Romberg
integration and polynomial interpolation onγi,s [9].

Our goal is to estimate the optimal reserve price for a new
auction. We can computêF (v) using the initial method and
h(s) given the Bayesian method above. Ideally, we would
compute the reserver∗ that maximizes the expected rev-
enue. A less expensive approach would be to compute from
h(s) the expected shift̄s, shift F̂ (v) by s̄, and then compute
the optimal reserve price from the shifted distribution. This
would give a particularly good approximation whenh(s) is
unimodal with small variance. If auctions have different at-
tributes, then we assume that the goods are similar enough
that the amount of the shift is the same for all goods. For
each past auctioni we compute a separatêFi,s(v) based on
its attributes, and use that to determineγi,s. Then we com-
puteF̂ (v) for the good we are auctioning presently, shift it
by s̄, and compute the reserve price.

Adaptation Experiment To demonstrate our adaptation
method, we applied it to the data obtained in our live test.
At three points in time during the trial, we computed the un-
shifted value distribution̂F (v) (using attributes from a rep-
resentative auction run at that time) and the optimal reserve,
r, givenF̂ (v). Using a window of 30 auctions we computed
h(s), s̄, F̂s̄(v) (the distributionF̂ (v) shifted bys̄), and the
optimal reserve pricers̄ for F̂s̄(v). We compute a product of
Gaussian kernels using attributes as in the live test. Unlike
in our live test, we now use all data obtained up to a given
date. Figs. 1 (a)–(c) show thath(s) does indicate a shift in

the distribution during the second month of the trial. Fur-
thermorers̄ decreases fromr in response to the shift. At
the end of the first month,r = 0.300, s̄ = −0.005, and
rs̄ = 0.305. In the middle of the second month,r = 0.250,
s̄ = −0.04, andrs̄ = 0.235. Finally, at the end of the sec-
ond month,r = 0.285, s̄ = −0.061, andrs̄ = 0.225. (Note
thatr is different at each point because the auction attributes
are different.)

We cannot evaluate how accuraters̄ is from the live data
because we do not know the true value distribution. In the
full paper, we investigate the interaction of the augmented
system with simulated auctions and market changes. The re-
sults show that our approach can effectively adapt and com-
pute an accurate reserve price after a market shift.

Conclusions
Automated reserve pricing can be an effective approach to
increasing revenue in auctions for a variety of industries.
Our methodology provides a scalable way to compute appro-
priate reserve prices in complex, real-world settings, while
using only inputs that are readily available in practice.
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