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Abstract

Social and economic networks play a fundamental role in facilitating interactions
and behaviors between individuals, businesses, and organizations. It is widely recog-
nized that such networks can correlate behaviors (and arguably preferences) among
connected agents. We introduce a model for social choice—specifically, consensus
decision making—on such networks that reflects certain interdependencies among
agent utilities. Specifically, we define an empathetic social choice framework in which
agents derive utility based on both their own intrinsic preferences and the satisfac-
tion of their neighbors. We show how this problem translates into a weighted form
of classical preference aggregation (e.g., social welfare maximization or certain forms
of voting), and develop effective algorithms for consensus decision making that we
believe should scale to large-scale (online) social or economic networks. Preliminary
experiments validate the effectiveness of our proposed algorithms.

1 Introduction

Social networks play a central role in individual interactions and decision making. Indeed,
it is widely acknowledged that the behaviors [7], and to a lesser extent the preferences, of
individuals connected in a social network are correlated in ways that can be explained, in
part, by network structure [10, 13]. Because of this, and the increasing availability of data
that allows one to infer such relationships, the study of social choice problems on social
networks is one of tremendous practical import. In fact, arguably most group decision
problems, whether social, corporate, or policy-oriented, involve people at least some of
whom are linked via myriad social ties. However, social choice in the context of social
networks is something that has received, until recently, relatively little attention. Recent
work has examined, for example, the formation of (hedonic) coalitions on social networks
[6, 5], and stable matching on social networks [3, 16], in which the network captures one’s
affinity for potential partners. The influence of social networks on voting behavior has
received considerable attention in the social sciences (e.g., [1, 14, 15]), and the emergence
of online social network has even spawned computational research on the mechanisms to
support delegation of votes in an online network [4].

In this paper, we consider the problem of consensus decision making on social networks,
for example, in the form of voting over some option space. Specifically, we consider the
problem of selecting a single option from a set of alternatives, for some group connected by
a social network—e.g., a local constituency electing a political representative, or colleagues
selecting a venue for a corporate retreat. While individuals have, as usual, personal intrinsic
utility over the option space, we also incorporate a novel form of empathetic utility on
social networks: in our model, the utility (or satisfaction) of an individual with a winning
alternative a is a function of both her intrinsic utility for a and her empathetic utility for
the “happiness” of her neighbors in the network. This use of empathetic utility can be seen
as reflecting recent findings that suggest a person’s happiness is influenced by the happiness
of others with whom they are connected [11].

We consider two varieties of empathetic preference. In the first, the local empathetic
model, the utility of individual i for alternative a combines her intrinsic preference for a
with the intrinsic preference of i’s neighbors for a, where the weight given to the preference
of any neighbor j depends on the strength of the relationship between i and j. For instance,



in selecting a restaurant, i may be willing to sacrifice some of her own intrinsic preference
for the chosen restaurant if her colleagues are happier with the cuisine, and she defers more
strongly to her closest friends. In the second, global empathetic model, i’s utility for a
depends on her intrinsic preference and the total utility that her neighbors have for a (not
just their intrinsic preference). In other words, she doesn’t just want her neighbors to be
satisfied with a, she wants them to have high utility, which depends on the utility of their
neighbors, and so on. For example, in voting for a political candidate, i may have a mild
preference for a over b, but if b is strongly preferred by not only her closest neighbors, but
also by their neighbors and many others in the community, she might prefer to see b elected
so she won’t have to interact with grumpy neighbors for the next five years.

Our main contributions in this paper are to develop a model for preference aggregation
(e.g., certain forms of voting) that select consensus alternatives in a way that is sensitive
to both intrinsic and empathetic preferences. Of course, we don’t expect voters to actually
compute such combined preferences; indeed, they may not have direct knowledge of the
preferences of their neighbors. Instead voters specify their preferences for options and for
the satisfaction of their neighbors (the latter could be inferred or estimated directly from
the social network in some settings). We then propose methods for computing optimal
alternatives under both the local and the global models. The former, unsurprisingly, cor-
responds to a simple form of weighted preference aggregation or weighted voting in which
each voter implicitly “delegates” a portion of her vote to her neighbors. The latter, because
individual utilities are co-dependent—indeed, utility spreads throughout the network much
like PageRank values—requires the solution of a linear system to determine the optimal
(fixed-point) option for the group. We describe (mild) conditions under which a fixed point
is guaranteed to exist, and show that it too results in a form of weighted voting, where the
weights assigned to each voter’s intrinsic preference is readily derived from the solution to
this linear system. Experiments explore various properties of our model and algorithms.

2 Social Empathetic Model

We begin by outlining our basic social choice model, motivating two notions of empathetic
preference on social networks, and then defining socially optimal outcomes within this model.
We also briefly discuss related work.

2.1 The Social Choice Setting

Apart from empathetic preferences on a social network, which we specify below, the choice
framework we adopt is standard. We assume a set of alternatives A = {a1, . . . , am} and a
set of agents N = {1, . . . , n}. Each agent j has intrinsic preferences over A in the form
of either a (strict) preference ranking �I

j or a utility function uIj . For ease of presentation,
we describe preferences in terms of utility functions, but discuss below on how to interpret
voting procedures within our model. For example, in our experiments we use simple utility
functions based on rankings of alternatives and score-based voting rules (specifically, Borda
and plurality) to define “utility” for alternatives.

Our goal is to select a single consensus alternative a∗ ∈ A that implements some social
choice function f relative to the preferences of N . For example, if agents’ utilities were
dictated solely by intrinsic preference and f were (utilitarian) social welfare, we would
select a∗ = arg max

∑
j u

I
j (a). If preferences were given by intrinsic preference rankings, f

would typically be represented by some voting rule (e.g., plurality or Borda).1

1Our model below applies directly to more general social choice problems, such as assign-
ment/segmentation problems with network externalities (where individuals may be assigned different al-



2.2 Empathetic Preference on Social Networks

We depart now from the typical social choice framework by considering empathetic prefer-
ences, in which the preferences of one agent are dependent on those of others. We consider
the specific case in which these influences are induced by connections in a social network
(though the notion of empathetic preference need not be confined to networks). We focus on
agent utility functions rather than preference rankings, since these allow the straightforward
expression of quantitative tradeoffs between intrinsic and empathetic preference.2

Before discussing additional motivation, we introduce our model and notation. We
assume a directed weighted graph G = (N , E) over agents, with an edge jk indicating that
j’s utility is dependent (in a way to be specified below) on its neighbor k’s preference, the
strength of this dependence given by edge weight wjk. Naturally j’s utility will usually
depend on its own intrinsic preferences, so loops jj will usually be present. We assume
that wjk ≥ 0 for any edge jk, and that

∑
k wjk = 1 for any j (though allowing variable

weightings to reflect, say, weighted voting schemes is also possible). For convenience, we
treat missing edges as if they had weight zero (and vice versa). Thus, we represent the graph
with a weight matrix W = [wij ]. We generally think of these edges as corresponding directly
to some relationship in a social network, or possibly induced from such relationships. See
Fig. 1(a) for an illustration.

We take j’s utility for a to be a linear combination of it’s own intrinsic preference for a
and the empathetic preference derived from each of its neighbors—recall that we consider
pure consensus/single-winner voting scenarios in which a single option a is selected for all
j ∈ N—where network weights determine the relative importance of each.3 Letting ejk(a)
denote the empathetic utility derived by j from k, we define j’s utility uj(a) to be

uj(a) = wjju
I
j (a) +

∑
k 6=j

wjkejk(a).

The ratio of wjj to
∑

k 6=j wjk captures the relative importance of intrinsic and empathetic
utility to j.

We consider two ways in which to define empathetic preferences ejk. In the local empa-
thetic model, we simply define ejk(a) = uIk(a); in other words, j’s utility for a is simply a
linear combination of intrinsic utilities of j’s neighbor (including it’s own):

uj(a) =
∑
k

wjku
I
k(a). (1)

This model captures the fact that an agent j is concerned about the “direct” preference of a
neighbor k for alternative a; but the fact that k’s utility may depend on k’s own neighbors
does not impact j. For instance, consider a family or a group of friends deciding on a movie
(or restaurant or outing): the preferences of certain family members (e.g., parents) for a
specific film may depend on the preferences of others (e.g., children, whom they want to be
entertained by the choice of film).

In the global empathetic model, we define ejk(a) = uk(a), so that k’s complete utility for
a—which may depend on k’s own neighbors—influences j’s utility for a, giving rise to

uj(a) = wjju
I
j (a) +

∑
k 6=j

wjkuk(a). (2)

ternatives), matching problems, and so on, without difficulty. Our algorithms are, however, specific to the
“single-choice” assumption.

2Suitable qualititative expression of such tradeoffs is an important ongoing research direction.
3More general non-linear models are possible as well.
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Figure 1: Social network and ranked preferences, with weights under the local and global em-
pathetic model. Using Borda or plurality-based utility, the consensus winner is different in each
model: a under intrinsic; b under local empathetic; c under global empathetic.

In this model, j’s utility for a depends on the utility (not just intrinsic preference) of its
neighbors for a. For example, a voter may care about the overall level of satisfaction of
her neighbors when voting for a political representative, but recognize that there is a larger
societal effect at work, where their satisfaction also depends on their neighbors, etc. More
concretely, companies linked in complex supply chain may well care about the overall success
of their suppliers and customers, and consider adopting industry-specific or economic policies
in that light. In the global model, the circular dependence of utilities requires a fixed point
solution to the linear system defined by Eq. 2 (see below).

Correlations of behavior and/or preferences among agents connected in social network
is widely accepted, and can be explained by a variety of mechanisms [10, 13]. Among these
are: technology/information diffusion, in which agents become aware of opportunities or
innovations from connections to their neighbors; network externalities, in which the bene-
fits of adopting some behavior increase with the number of neighbors doing the same; or
homophily, in which people with similar characteristics (say, preferences) more readily form
social ties. Our empathetic model is somewhat different in that a person’s intrinsic pref-
erences over options A are not presumed to be correlated with their neighbors, but their
revealed preferences for A might be: their choices (or stated utilities) will generally reflect
some consideration, however estimated, of their neighbors’ preferences as well.

2.3 Social Welfare as Weighted Intrinsic Utilities

In realistic social choice situations, agents with empathetic preferences must often perform
sophisticated reasoning not only about their intrinsic preferences for alternatives, but also
about those of their neighbors. Thus, even in the local empathetic setting, expressing
preferences (e.g., voting) is difficult since agents usually have incomplete (and in some
cases, no) information about the preferences of their friends, neighbors, or colleagues. The
global empathetic setting is even more complex, since an agent is further required to reason
about her neighbors’ network connections as well as their intrinsic/empathetic tradeoffs.

In our models, preference aggregation and optimization can be performed by simply
having agents specify their intrinsic preferences, as is standard in social choice, and the
weights they assign to neighbors in their local network. In social scenarios, this can remove
a considerable informational and cognitive burden from agents who might otherwise be re-
quired to determine their total utility for alternatives. In other situations, agents might
not wish to reveal their preferences to their neighbors, but might still want their neighbors
to obtain a favorable result (consider, for example, a collection of companies, voting over
some economic policy alternatives, that are linked together in complex supply chain rela-
tionships which correlates their stability or profitability). It turns out that, given a known



network G, the problem of consensus decision making with empathetic preferences can be
recast as a weighted preference aggregation problem over intrinsic preferences alone. Not
only does this ease the burden on agents, it also allows one to recast the problem as one
of simple weighted voting, or of weighted (utilitarian) social welfare maximization, render-
ing the decision making process itself fully transparent. Here we focus on social welfare
maximization.

For the local model, determining the weights associated with each agents’ intrinsic pref-
erence is straightforward. Assume network weights W. Let u(a) be the n-vector of agent
utilities to be computed as a function of the corresponding vector uI(a) of intrinsic utilities
for some fixed alternative a. By Eq. 1, we have u(a) = WuI(a). Then letting ω = e>W
(where e is a vector of ones), the social welfare of any alternative a under the local empa-
thetic model is given by

sw l(a,u
I) = ω>uI(a). (3)

Thus social welfare maximization under local empathetic utility is simply weighted maxi-
mization of intrinsic preference, where the weight of j’s intrinsic utility ωj is simply the sum
of the weights of its incoming edges.

Fig. 1(b) illustrates the local model in action. The derived weights for each agent are
shown. We assume preference rankings, and suppose utilities are dervied from these using
either Borda or plurality scores. We see that the decision can be different under the local
model than using voting based on intrinsic preferences along (a wins in the intrinsic model,
while b wins in the local model). Indeed, using score-based voting rules, we can readily
interpret this model as a form of empathetic voting, where the weight one assigns to a
neighbor can be interpreted as the extent to which one would sacrifice one’s own preferences
to improve a neighbor’s intrinsic satisfaction with the winning alternative.

Things are slightly more subtle in the global empathetic model. Computing the utility
vector u(a) for alternative a requires solving a linear system to compute the fixed point of
Eq. 2. Unfortunately, a unique solution is not guaranteed to exist.4 However, in addition to
our assumptions above of non-negativity (i.e., W ≥ 0) and normalization (i.e.,

∑
k wjk = 1

for all j), a third mild condition on the social network (weight matrix W) is sufficient to
ensure a unique fixed point solution, namely, positive self-loop: wjj > 0 for all j. Let D be
the n× n diagonal matrix with djj = wjj . We can write Eq. 2 as

u(a) = (W −D)u(a) + DuI(a). (4)

As a consequence,

Theorem 2.1 (Fixed-point Utility) Assuming nonnegativity, normalizaton, and posi-
tive self-loop, Eq. 4 has a unique fixed-point solution u(a) = (I−W + D)−1DuI(a).

(Proofs of all results are included in the longer version of this paper.) As in the local model,
social welfare maximization in the global model can be interpreted as weighted maximization
of intrinsic preference (though with a less straightforward interpretation):

Corollary 2.1 In the global empathetic model, social welfare of alternative a is given by
sw(a,uI) = ω>uI where ω> = e>(I−W + D)−1D.

Once again, in (score-rule based) voting contexts, one can interpret the global empathetic
model as trading off one’s own satisfaction with a winning alternative with the “overall” (not
just intrinsic) satisfaction of one’s neighbors: see Fig. 1(c) for an illustration. We discuss
weight computation in Sec. 3.

4Consider two individuals j and k, with wjj = wkk = 0, wjk = wkj = 1, uIj (a) = 0.1, and uIk(a) = 1.
The induced system does not have a unique fixed-point solution.



2.4 Related Work

We are unaware of other formal models which consider the dependency between agent
utilities in a social network using the type of empathetic utility we introduce above. However,
empathetic utilities might be viewed as a form of network externality in an agent’s utility
function, though unlike typical models of externalities, an agent’s utility depends on the
(latent) utility of its neighbors for the chosen alternative rather than the behavior of, or
allocation made to (at least directly), her neighbors (or others).

Decision making in the presence of network externalities has recently attracted attention.
Bodine-Baron et al. [3] study stable matchings (e.g., of students to residences) with peer
effects: these local network externalities reflect the fact that students prefer to be assigned
to the same residence as their friends in a social network. Brânzei and Larson address coali-
tion formation on social networks in two different settings: (a) agent utility for a coalition
depends on its affinity weights with others in the coalition [5]; and (b) agent utility depends
on her distance to others on the induced social network [6]. The problem of auction design
in social networks with positive network externalities is studied in [12].

Boldi et al. [4] consider voting on social networks, describing a form of delegative democ-
racy in which an individual can either express her preferences directly, or to delegate her vote
to a proxy from among her neighbors. In our model, individuals are not asked to delegate
their votes or preferences: we simply consider the dependency of their preferences on those
of others, though this can be viewed loosely as implicit, partial delegation of preferences.

3 Computing Winners in the Empathetic Models

We now consider the question of computing the social welfare maximizing alternative in both
the local and global empathetic models. In Sec. 2.3, we observed that—for both the local and
global empathetic models—social welfare can be expressed as sw(a,uI) = ω>uI(a) for an
appropriate weight vector ω. Given the vectors uI(a) for any a ∈ A, we can readily compute
the optimal alternative a∗ = arg maxa∈A ω>uI(a), requiring O(nm) time. Of course, this
presupposes access to ω, which has different meanings in each model, and hence requires
different approaches for its computation. In the global model, this suggests a different
method for computing a∗ as well, without (necessarily) requiring the full computation of ω.

We first consider the local model, where ω> can be calculated easily with a single vector-
matrix multiplication, ω> = e>W, in time O(n2). However, social networks are generally
extremely sparse, with the number of outgoing edges associated with any node j in the graph
bounded by some small constant c which is independent of the network size (generally, social
networks, while potentially locally dense, are sparse in a global sense). In sparse networks, ω
can be computed much more efficiently: ωj is simply the sum of j’s outgoing edges weights.
If the outgoing neighbors of any node are bounded by a constant, ω can be computed in O(n)
time and a∗ can be determined in the straightforward fashion mentioned above in O(nm)
time. Thus the complexity of computing optimal alternatives in the local empathetic model
is no different than that of straightforward social welfare maximization of straightforward
(e.g., scoring rule-based) voting.

In the global model, ω> has a more complicated expression, ω> = e>A−1D where
A = I −W + D (see Cor. 2.1). The difficulty lies largely in matrix inversion: A−1 can
be computed via Gauss-Jordan elimination, which has complexity O(n3). This implies that
straightforward computation of a∗ requires O(n3 + nm) time. In general, matrix inversion
is no harder than matrix multiplication (see, e.g., [9, Thm. 28.2]). Although efficient matrix
multiplication is the topic of ongoing research (e.g., [8]), its complexity cannot be less than
O(n2) since all n2 entries must be computed. Therefore, straightforward computation of a∗

in the global model cannot have complexity less than O(n2 + nm).



We expect n to be extremely large in at least some social choice problems on social
networks, e.g., in the tens of thousands (number of people in a small town), the millions
(large big cities), or hundreds of millions (large country, number of Facebook or Twitter
users). This makes algorithms that scale more than linearly in n problematic, both from
the perspective of time and memory. Of course, many iterative methods have been proposed
for matrix inversion and solving linear systems (e.g., Jacobi, Gauss-Siedel) which have O(n)
complexity (in non-sparse systems) per iteration and tend to converge very quickly in prac-
tice. We now briefly describe the use of a standard Jacobi method for computing a∗ in
the global model. We first show how to compute the utility vector u(a) for each alterna-
tive a, and then propose an algorithm called iterated candidate elimination (ICE) that will
compute the optimal a∗ without (necessarily) computing each u(a) fully.

Consider first a simple iterative method for computing u(a). Let u(t)(a) be the estimated
utilities for alternative a after t iterations.

Theorem 3.1 Consider the following iteration:

u(t+1)(a) = (W −D)u(t)(a) + DuI(a).

Assuming nonnegativity, normalizaton, and positive self-loop, this method converges to u(a),
the solution to Eq. 4.

For each j ∈ N , the method computes:

u
(t+1)
j (a) = wjju

I(a) +
∑
k 6=j

wjku
(t)
k (a). (5)

We can interpret u
(t)
j (a) as agent j’s estimated utility for alternative a after t iterations.

This updating scheme has a natural interpretation in terms of agent behavior: suppose that
each individual is able to repeatedly observe her friends’ revealed utilities, and updates her
own utility for various alternatives in response. This process will eventually converge (this
is true even if the updates are “asynchronous”). One can readily bound the error in the
estimated utilities at the tth iteration:

Theorem 3.2 In the iterative scheme above,∥∥∥u(a)− u(t)(a)
∥∥∥
∞
≤ (1− w̃)

t
∥∥∥u(a)− u(0)(a)

∥∥∥
∞
,

where w̃ = min1≤i≤n wii.

Hence, societies in which individuals have self-loops with relatively larger weight (i.e., less
empathy) converge to fixed-point utilities faster societies with greater empathy (our empir-
ical results below support this).

This error bound allows one to bound the error in estimated social welfare if the utilities
of all alternatives are estimated in this fashion. Let sw (t)(a) =

∑
j u

(t)
j (a).

Theorem 3.3 Assume uIj (a) ∈ [c, d] and u
(0)
j (a) ∈ [c, d], for all j ∈ N . Under the con-

ditions above, for any t:
∣∣sw(a)− sw (t)(a)

∣∣ ≤ n(d − c) (1− w̃)
t
, where w̃ = min1≤i≤n wii.

As a result, we know that (under the same assumptions):

Proposition 3.4 If sw (t)(b)− sw (t)(a) ≥ 2n(d− c) (1− w̃)
t

then sw(b) > sw(a).



We can exploit Prop. 3.4 in a simple iterative algorithm for computing a∗ we call iterated
candidate elimination (ICE). The intuition behind ICE is to iteratively update the estimated
utilities of the subset C ⊂ A of candidates that are non-dominated, and gradually prune
away any candidate that is dominated by another until only one, a∗, remains. Roughly, ICE

first initializes C = A and u
(0)
j (a) = c for all j ∈ N , a ∈ A. An iteration of ICE consists of:

(1) updating estimated utilities using Eq. 5 for all j and a ∈ C; (2) computing estimated

social welfare of each a ∈ C; (3) determining the maximum estimated social welfare ŝw (t);

(4) testing each a ∈ C for domination, i.e., ŝw (t) − sw (t)(a) ≥ 2n(d − c) (1− w̃)
t
; and

(5) eliminating all dominated candidates from C. The algorithm terminates when only one
candidate (i.e., a∗) remains in C (the pseudo-code for the algorithm is provided in the longer
version of this paper). The running time of ICE is at most O(tmn2) where t is the number
of iterations required. More precisely, ICE runs in O(tm|E|) time; and if the number of
outgoing edges is bounded, O(tmn). Our hope is that in practice, the methods converges
in relatively few iterations, a fact indeed borne out in our preliminary experiments below.
ICE also provides a natural means of approximation in large problems.

4 Empirical Results

We now describe some preliminary experiments on randomly generated networks and intrin-
sic preferences designed to test the differences in the decisions that result under standard
non-empathetic, local empathetic and global empathetic models, the impact of these deci-
sions on different agents, and the performance of the ICE algorithm.
Experimental Setup. Our test scenarios require generation of intrinsic preferences and
a social network. We assume that individual intrinsic utilities arise from an underlying
preference ordering overA. In all experiments, we assume m = 5 or m = 10 alternatives, and
draw a random preference ordering for each agent j under the impartial culture assumption
(all permutations are equally likely). For simplicity, and to draw connections to voting
on social networks, we assume j’s utility is given by the Borda or plurality score of the
alternative in its ranking. If treating these strictly as utility, they embody very different,
extreme assumptions: Borda treats utility differences as smooth and linear, whereas plurality
views utility in a more “all or nothing fashion.”

We generate random social networks using a preferential attachment model for scale-free
networks [2] (this is only one of many models that can be adopted). The model works in
the following iterative fashion: start with n0 initial nodes; we repeatedly add nodes (until
we have a graph with n nodes), where each new node added is connected to k ≤ n0 existing

nodes, and an existing node i is selected as a neighbor with probability Pi = deg(i)∑
j deg(j) . We set

n0 = 2 and k = 1 or k = 2 in all our experiments. We then convert the resulting undirected
graph to an directed graph by replacing each undirected edge with the two corresponding
directed edges; add a self-loop to each node with weight α; then add normalized weights to
all other edges (all outgoing edges from j excluding the self loop have equal weights that
sum to 1−α). The parameter α ∈ (0, 1] represents the degree of self-interest, and 1−α the
degree of empathy in the society.
Performance Metrics. To measure whether the different models result in difference deci-
sions, we assume the agents actual utility model is one of intrinsic (non-empathetic), local or
global. We then consider making decisions using any of these models as an assumed utility
model, and measure the effect on actual utility (e.g., global empathetic utility) of making
a decision using the assumed model (e.g., intrinsic). Since decisions might be different in
each case, we measure the loss in social welfare due to making a decision using the incorrect
model. Let swac(·) and swas(·) be social welfare under the actual and assumed models,
respectively, and aw and as be the corresponding optimal alternatives (or winners). We



Actual Utility
Assumed Utility

intrinsic local global WSWL

intrinsic 0%(0%) 1.45%(9.95%) 1.10%(8.00%) 5.59%(14.63%)
local 2.95%(19.28%) 0%(0%) 0.09%(3.21%) 11.22%(25.10%)
global 1.78%(12.73%) 0.07%(2.73%) 0%(0%) 9.01%(20.97%)

Table 1: Average (maximum) RSWL and WSWL: 2500 runs, Borda scoring, m = 5, n =
1000, k = 1, α = 0.25.

Actual Utility
Assumed Utility

intrinsic local global

intrinsic 0.0%(0.0%) 28.4%(100.0%) 22.6%(100.0%)
local 28.5%(100.0%) 0.0%(0.0%) 1.2%(86.9%)
global 22.3%(100.0%) 1.1%(97.0%) 0.0%(0.0%)

Table 2: Average (maximum) NSWL: 2500 runs, Borda, m = 5, n = 1000, k = 1, α = 0.25.

define relative social welfare loss (RSWL) to be L(as, ac) = [swac(aw)−swac(as)]/swac(aw)
(we sometimes report it as a percentage). RSWL has a lower bound that is independent
of the assumed model: let the alternative a− have minimum social welfare under the ac-
tual model (so it is no better than the decision under the assumed model). Worst-case
social welfare loss (WSWL) is defined as W (ac) = [swac(aw) − swac(a−)]/swac(aw). Fi-
nally, it usually makes sense to normalize RSWL by considering the range of possible so-
cial welfare values actually attainable: normalized social welfare loss (NSWL) is simply
N(as, ac) = [swac(aw)− swac(as)]/[swac(aw)− swac(a−)]. This offers a more realistic pic-
ture of loss due to using an incorrect assumed utility model (by comparing it to the loss
associated with making the worst possible decision under the actual model).

Social Welfare Loss. We first consider RSWL, WSWL and NSWL for all nine com-
binations of assumed and actual utility models. We fix α = 0.25, n = 1000, m = 5, k = 1,
and the scoring rule to Borda. We generate 50 random networks, and for each generate 50
intrinsic utility profiles (2500 problem instances), and compute RSWL and WSWL. Aver-
age (with maximum in parentheses) RSWL for various combinations of actual and assumed
models is reported in Table 1 as are average (maximum) WSWL. Maximum RSWL is more
than 19% and 12% when intrinsic utility is assumed but actual utility is local or global,
respectively. Moreover, we can see that global vs. local and local vs. global are quite close.
Notice that average differences are quite slight: this is because the impartial culture model,
in essence, renders are alternatives quite close in terms of Borda or plurality score. By
normalizing for the fact that most decisions are reasonably good, we get a more accurate
picture of the loss incurred by using non-empathetic voting. NSWL is reported in Table 2,
which shows that making the wrong assumptions can be quite damaging; e.g., the intrinsic
model loses 22.3–28.5% of empathetic social welfare on average.

Since impartial culture is generally viewed as an unrealistic model of real-world prefer-
ences, we also tested our methods using preferences drawn from 2002 Irish electoral data
from the Dublin West constituency, with 9 candidates and 29, 989 ballots of top-t form, of
which 3800 are complete rankings.5 Generating 1000-node networks as above, we randomly
assign full rankings to nodes from this set of 3800 complete rankings. Results on RSWL
and WSWL for plurality scoring are shown in Table 3. As above, average RWSL is slight;
but the maximum values show significant social welfare loss in certain instances, especially
when using the intrinsic model to make decisions for empathetic preferences.
Utility and Societal Weights. We now examine how individual utility—and its intrinsic
and empathetic components—and computed weights depend on their degree of nodes in
the social networks in global empathetic model. Using data from the previous experiment,

5See www.dublincountyreturningofficer.com.



Actual Utility
Assumed Utility

intrinsic local global WSWL

intrinsic 0%(0%) 1.82%(33.62%) 1.30%(19.55%) 97.22%(99.62%)
local 2.64%(39.25%) 0%(0%) 0.01%(6.80%) 97.28%(99.85%)
global 1.53%(31.26%) 0.10%(8.4%) 0%(0%) 97.24%(99.77%)

Table 3: Average (maximum) RSWL and WSWL for West Dublin data set: 2500 runs,
plurality scoring, m = 9, n = 1000, k = 1, α = 0.25.
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Figure 2: Average (a) instrinsic and empathetic utilities and (b) individual weights as function of
node degree (global model, 2500 runs, n = 1000, m = 5, α = 0.25, Borda scoring).

we show average utility and average weight in Fig. 2. From Fig. 2(a) we see that as node
degree increases (each node has identical in/out-degree), overall utility tends to increase;
moreover most of this increase is due to in large part to an increase in intrinsic utility.
Fig. 2(b) also illustrates a strong correlation between degree and agent weight. Nodes with
higher degree are more powerful and “influential” in the choice of the consensus alternative.
This correlation might be an artifact of the specific social networks we generate. However,
the relationship between Figs. 2(a) and (b)—which is independent of the specifics of our
experiments—shows that individuals with higher weight tend to prefer the consensus winner
more than individuals with lower weight.
The effect of m, k, and scoring rule. We now explore the impact on RSWL of changing
the numbers of agents m, the number of initial nodes k when generated the network, and
difference between Borda and plurality scoring. We set α = 0.25, n = 1000, and run 2500
instances for each parameter setting (as above).

Fig. 4 shows average (and maximum, minimum) RSWL for three actual, assumed
model combinations for various combinations of rule, m and k, denoted by rule(m, k) (e.g.,
Plura(5, 1) represents m = 5, k = 1, and plurality). Comparing Borda(5, 1) and Plura(5, 1),
and Borda(10, 1) and Plura(10, 1), we see plurality is more susceptible to social welfare loss
than Borda. Increasing m has negligible effect on RSWL when Borda is used, but this is not
true of plurality. Surprisingly, increasing k from 1 to 2 decreases RSWL (see Borda(5, ·)):
this occurs because, when k = 2, the resulting network is denser since each node has at
least two neighbors. This connectivity, causes the number of “very influential” agents to
increase; but since weights are normalized (the sum of all weights sums to n), their overall
influence decreases as they “share their influence,” and weight variance over N decreases.
Self-loop weight α. When we vary the self-loop weight α, it has a significant effect on
RSWL when the actual utility model is global but the intrinsic utility model is assumed.
We fix n = 1000, m = 5, k = 1 and vary α over {0.05, 0.1, 0.25, 0.5, 0.75} (2500 instances for
each setting). Table 4 shows that, for both Borda and plurality, increasing α (i.e., decreasing
overall degree of empathy) decreases RSWL.
Number of Iterations of ICE. Finally we examine how the self-loop weight α and
Borda/plurality utilities affect the expected number of iterations by the iterated candidate



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

Borda(5,1)

Plura(5,1)

Borda(10,1)

Borda(5,2)

Plura(10,1)

R
el

at
iv

e 
S

oc
ia

l W
el

fa
re

 L
os

s 
(R

S
W

L) global vs. intrinsic
global vs. local   
local vs. intrinsic 

Figure 3: The average (maximum, minimum) RSWL (2500 runs).

α = 0.05 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 1

Borda 15.84% 14.82% 12.73% 9.79% 5.42% 0%
Plurality 39.12% 36.29% 31.02% 22.46% 13.09% 0%

Table 4: Maximum values of RSWL, global vs. intrinsic models.

elimination algorithm. We fix n = 1000 andm = 5, and vary α over {0.05, 0.1, 0.25, 0.5, 0.75}
(2500 instances). Fig. 4(a) illustrates estimated social welfare for each alternative in one
representative instance, with α = 0.25 and Borda scoring (this instance of ICE converges
in under 2 milliseconds). It converges completely in 24 iterations (n.b. n = 1000). Alterna-
tives a4 and a5 are eliminated at iterations 16 and 17, respectively; a1 after 20 iterations;
and a2 after 24 iterations; hence a3 is optimal. We note that the relative ordering of the
alternatives is fixed after 6 iterations (in this instance), which might suggest new methods
for early termination.

Fig. 4(b) shows the average (and max, min) number of iterations of ICE for various α,
for both Borda and plurality. In all cases, the number of iterations is small compared to
the size of the network. ICE is relatively insensitive to the scoring rule, and convergence
time decreases dramatically with increasing α, as is typical for iterative algorithms (e.g., for
Markov chains). (i.e., for a specific α, the average required iterations is almost the same for
Borda and plurality).

5 Concluding Remarks and Future Work

We have presented a new model for social choice situations in which an individual’s intrinsic
preference for alternatives is combined with their empathetic preferences, reflecting their
desire to see others satisfied with the selected alternative. Treating a social network as one
possible measure of strength of empathetic preference, we developed models and algorithms,
for both local and global empathetic settings, that allow one to compute social welfare
maximizing outcomes efficiently by weighting the contribution of each agent. Our models
have a natural interpretation as empathetic voting models when scoring rules are used.
Critically, we require only that individuals specify their intrinsic preferences (and network
weights): they need not reason about their neighbor’s preferences.

This model, while novel, is merely a starting point for a broader investigation into the
role of empathetic preferences in social choice. We are currently exploring more realistic pro-
cesses for simultaneous generation of networks and preferences that are even better suited
to empathetic voting than preferential attachment networks. While our focus has been the
choice of a single alternative/winner, our model can also be applied to matching, assignment,
and other group decision problems; each will require its own analysis and algorithmic de-
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Figure 4: (a) Estimated social welfare over iterations of ICE for 1 run and (b) average (with
maximum and minimum) number of iterations of ICE.

velopments. More importantly is the question of the prevalence and strength of empathetic
preferences, the extent to which social network structure is indicative of such preferences,
and how one can best discover these preferences in practical settings without an excessive
burden on users. Two other important directions are: voting schemes in which agents can
specify their tradeoffs between intrinsic and empathetic preference in a more qualitative
fashion; and considering the possibility that agents are not truthful and fully aware of their
utility functions. These questions require both social scientific and computational insight.
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