
Computational Decision Support: Regret-based Models for
Optimization and Preference Elicitation

Craig Boutilier

1 Introduction

Decision making is a fundamental human, organizational, and societal activity, involving several key
(and sometimes implicit) steps: the formulation of a set of options or decisions; information gath-
ering to help assess the outcomes of these decisions and their likelihood; some assessment of the
relative utility or desirability of the possible outcomes; and an assessment of the tradeoffs involved
to determine an appropriate course of action. Advances in information and communication technol-
ogy have changed the nature of the decisions that face individuals, professionals, and organizations.
Sophisticated devices, ubiquitous sensors, and the increasing use of online mechanisms to mediate
personal, professional, and business communications and transactions has resulted in an explosion in
the data available to support decision making. Apart from data proliferation, the range and complexity
of the options facing decision makers has also increased: networked communication has drastically
reduced search costs, and sophisticated computational models have greatly expanded the capacity for
reasoning about complex decision structures (e.g., policies, configurations of decision variables, etc.).

Computer-aided decision support is vital for several reasons. First, computational methods are
critical in helping decision makers wade through of huge volumes of data to extract relevant infor-
mation. Tremendous strides in information retrieval and machine learning have offered ever-more
sophisticated algorithms for data mining and relevance detection. Second, while computers have long
been used for decision support, the new richness of data sources and complexity of decision spaces
bring with them demands for more sophisticated forms of algorithmic optimization to help decision
makers determine suitable courses of action. However, even with sophisticated algorithms at their
disposal, decision support tools require considerable information about the decision maker’s prefer-
ences to function effectively. This is especially true when we consider putting decision support in
the hands of the “masses,” that is, people who make decisions without having (or needing) a rich
understanding of the underlying domain or its dynamics. Many ingredients of a decision scenario can
be fixed—options, likelihood of outcomes, relevance of information sources, etc., may be the same
for each user of a decision support tool. What varies are the preferences of the users, each of whom
has different goals or objectives in mind. Hence, this information cannot be coded into the system in
advance. Unfortunately, no decision support system can recommend decisions without some idea of
what these preferences are, giving rise to the preference bottleneck: how do we get the preferences of
the user (or organization) “into” the decision support system?

The preference bottleneck is one of the greatest impediments to the wide-scale deployment of

1

decision support tools for “everyday decision making,” and a pain point even for sophisticated deci-
sion makers. Addressing it satisfactorily requires computational insight, but also relies on the study
of human preferences and decision making in behavioral decision theory, behavioral economics, psy-
chology, and a host of other disciplines.

In this article, I briefly overview a specific set of techniques for preference elicitation and robust
optimization especially suited to decision problems with large, complex decision spaces. These meth-
ods exploit an intuitive concept known as minimax regret (see Sec. 3) for two purposes. First, minimax
regret is used by the decision support system to recommend decisions when it has incomplete infor-
mation about the decision maker’s true preferences. Indeed, it provides a form of robust optimization
that offers guarantees on the quality of its decision—how far it can be from optimal—no matter what
the true preferences turn out to be. Second, minimax regret can drive the preference elicitation pro-
cess. The solution of the minimax optimization problem can be used to determine which unknown
preference information can most improve the quality of the decision. Critically, these techniques do
not attempt to reduce preference uncertainty for its own sake; rather they exploit the rich structure
of the decision space to focus attention on “relevant” preference information. As such, regret-based
optimization can serve as the core of truly interactive decision-support systems.

While I emphasize computational aspects of regret-based optimization and elicitation, the suc-
cessful adoption of these techniques will require insight from the social, behavioral and cognitive
sciences to shape the interaction with decision makers. I conclude the article with a brief discussion
of the types of research that are most likely to influence the design of “everyday” interactive decision
support tools.

The remainder of the article is organized as follows. Section 2 provides an overview of multiat-
tribute decision theory, the framework used throughout. I outline several domains, each with different
characteristics, for which preference assessment is complex and burdensome. Section 3 introduces
minimax regret as a means of recommending decisions when only partial information is known about
the decision maker’s preferences, and briefly discusses computation of minimax regret. In Section 4,
I describe how minimax regret can be used to determine relevant queries about decision maker pref-
erences. Finally, in Section 5, I make a few remarks regarding the potential for research in the social,
behavioral and cognitive sciences to influence next-generation computational decision support sys-
tems.

2 Basic Formulation and Some Domains

I begin with an informal overview of the framework used throughout the article, that of multiattribute
utility theory (MAUT) (Keeney and Raiffa, 1976). I outline several domains where the size and com-
plexity of the decision space not only demands software-based decision support, but requires that the
preference bottleneck be addressed.

2.1 Utility Functions

We assume a decision maker (DM) faced with a set of options or decisions D, which we take to be
finite for ease of exposition. A software-based decision support system (DSS) helps DM navigate the

2

We assume a (finite) set of decisions D; a set X of attributes X1, X2, . . . , Xn each with finite
domains; a set of outcomes X = X1 × · · · ×Xn, consisting of all combinations of attribute values.
We denote by x an arbitrary outcome (combination of attribute values), and use xi to denote the
value of attribute Xi in x. Each decision d ∈ D gives rise to a probability distribution Pd over the
outcome set: Pd(x) denotes the probability that outcome x will occur if decision d is taken.
Decision maker preferences are represented by a utility function u :X 7→R, where u(x) denotes the
utility of x. Given these ingredients, an optimal decision from D is any d∗ with maximum expected
utility:

d∗ = argmax
d∈D

∑
x

Pd(x)u(x).

If the utility function u satisfies additive independence (Keeney and Raiffa, 1976), it can be written
as a sum of single-attribute subutility functions:

uA(x) = u1(x1) + u2(x2) + . . .+ un(xn). (1)

Each subutility ui :Xi 7→R reflects the contribution of Xi to the overall utility of an outcome.
Let S1, . . . , Sm be a collection of subsets of attributes, with each attribute Xi in at least one subset.
If u satisfies generalized additive independence (GAI) with respect to this decomposition, it can be
written as a sum of real-valued functions uj over subsets Sj (Fishburn, 1967):

uGAI(x) = u1(x1) + . . .+ um(xm).

Here xj refers to the restriction of outcome x to the attributes in Sj .

Box 1: Multiattribute Decision Problems

3

Duration

 3hrs

 4hrs

 5hrs

 6hrs

 7+hrs

Class

 first

 business

 coach

Connections

 0

 1

 2

Flight Delay

 0hrs

 1-2hrs

 2-3hrs

 3-5hrs

Flight DelayConnectionsClassDuration

Class
Connections

Duration

Class
Flight DelayClass

(a)

(b)

Figure 1: A small example to illustrate a multiattribute utility model (Braziunas and Boutilier, 2008). A
graphical representation of the (a) additive and (b) GAI model from our four-attribute example.

space of options, potentially making or recommending specific decisions for DM. We take the task of
the DSS in what follows to be the recommendation of a specific option for DM.

The main ingredients of a basic decision scenario are outlined in Box 1. I illustrate the concepts
with a simple example (taken from Braziunas and Boutilier, 2008). Suppose DM must choose a flight
from Toronto to Seattle: the decision set D is the set of all flights on a specific day. The possible
outcomes of a flight choice are given by a set of attributes of interest to DM, for example, flight
Class (which takes values first,business,coach), number of Connections (0,1,2), total flight
Duration in hours (3,4,5,6,7+), and flight Delay in hours (<1,1-2,2-3,3-5). This gives us a total
of 5 ·3 ·3 ·4 = 180 outcomes or combinations of attribute values (see Fig. 1(a)). Any flight d uniquely
determines the first three attributes, while the fourth attribute is stochastic, with the probability of
each outcome determined by relevant flight statistics. Other deterministic (e.g., cost, airline, nominal
arrival time, etc.) and stochastic (e.g., lost luggage, cancellation, actual arrival time) attributes may be
included as well.

The preferences of DM over these outcomes are represented by a utility function u, which reflects
strength of preference. The best flight for DM is that which maximizes her expected utility. There are
several reasons to use quantitative utility functions rather than a simple ordinal ranking of outcomes.
First, we usually trade off the relative desirability of flights with their price: if Flight A is preferred
to B (independent of price), but B is cheaper than A, some knowledge of the degree to which A is
preferred is needed for a DSS to recommend a flight. Second, when outcomes are stochastic, tradeoffs
involving strength of preference are needed. For example, suppose A and B differ only on probability
of late arrival: A will almost certainly be on time, while B has a 25% chance of being 30 minutes late
and a 10% chance of arriving 30 minutes early. Without assessing strength of preference for arrival
time, the tradeoff between A and B cannot be made. Finally, our utility elicitation schemes below
will not pin down DM utilities with complete precision—quantitative utilities support error/quality
estimates when making decisions without precise utilities in a way that is not possible with qualitative
preferences.

4

Computer-aided decision support is vital, even in situations as simple as this one. First, the deci-
sion space is large: all flight plans, including those with connections must potentially be considered.
In domains discussed below, the decision space exhibits considerable complexity, not just size, and
it is impossible for the DSS to even enumerate the space of options explicitly. It is imperative that
software be used to explore, evaluate and compare options. Second, the “objective” data in the prob-
lem is often unknown to DM, and evaluating the expected utility of a decision again requires software
support. In our flight example, relevant data would include on-time arrival statistics.

In many applications, specifying the utility u(x) of each outcome x ∈ X is infeasible since the
outcome space grows exponentially with the number of attributes. Fortunately, preferences usually
possess significant structure. Models that exploit this structure allow one to specify and represent u
concisely. Among the most common assumptions in practical systems is that of additive independence
(Keeney and Raiffa, 1976). In our example, an additive utility function requires the specification of
separate subutility functions for each of the attributes Dur, Class, Conn, and Delay, with the utility of
any outcome given by their sum, e.g.,

uA(4hrs,coach,0,1-2hr) = uDur(4hrs) + uClass(coach) + uConn(0) + uDelay(1-2hr)

(see Fig. 1(a)). Thus rather than specifying utility values for all 180 outcomes, we specify only
subutilities for each of the five values of Dur, three for Class, three for Conn, and four for Delay, for a
total of 15 values. In other words, the additive model is specified using 15 parameters instead of the
180 required if the model has no structure.

Additive models, while popular in practice, are restrictive because of the assumption of attribute
independence. In our flight example, for many users strength of preference for Class will depend on
Dur (with preference for Class=first increasing with flight duration). This dependence cannot be
captured by an additive model. The generalized additive independence (GAI) model (Fishburn, 1967;
Bacchus and Grove, 1995; Boutilier et al., 2001; Gonzales and Perny, 2004; Boutilier et al., 2006;
Braziunas and Boutilier, 2005) is much more flexible, ranging from “flat” utility functions with no
structure to fully additive utility functions. Most realistic problems fall somewhere between these
extremes. We can capture the fact that preference for Class depends on both Dur and Conn using a
GAI model with three factors (or subsets), as illustrated in Fig. 1(b), where the utility of the outcome
(5hrs,first,1,<1hr) would decompose as:

uGAI(5hrs,first,1,<1hr) = uDur,Class(5hrs,first) + uClass,Conn(first,1) + uDelay(<1hr).

One can view these three subsets, or factors, as a grouping together preferentially dependent at-
tributes.

While DSSs can help DM navigate the space of options, and incorporate diverse sources of infor-
mation, making a decision still requires knowledge of DM’s preferences, i.e., her utility function u. Is
a flight that is $200 cheaper than another, but has an extra connection and increased odds of delay, the
appropriate recommendation? It may be for user Z, but not user Y . Since u encodes features of the
decision problem that are unique to DM, any DSS must address the preference bottleneck. We exam-
ine this issue in the next two sections. But before moving on, we describe several additional domains
where the size and complexity of the decision space demand the use of decision-support software.

5

2.2 Product Configuration

Our example of selecting flights illustrates a general class of product configuration problems. Con-
sider consumer choice of products such as travel packages, automobiles, financial instruments, real
estate, feature-laden consumer electronics, etc. The space of options facing consumers is often bewil-
dering. The richness of attributes that influences choices increases constantly as well: on-time flight
statistics to help choose flights; school ratings and crime statistics in real estate choice, etc.

Often, the modeling of uncertainty is ignored. Instead, one equates the decision space and the
outcome space (e.g., if I buy a house, the outcome is known) and preferences are articulated directly
over (multiattribute) choices. Since not all attribute combinations X are possible, we limit choices to
a feasible set Xf . For instance, the feasible set might correspond to the houses on the market in a
particular city, so Xf is represented by a real estate database. In other cases, the set Xf is represented
implicitly with a set of constraints on the combinations of attributes that are “allowed.” For instance,
in the automobile domain, a constraint might state that “Any car with engine power over 240 hp. must
have fuel economy of under 24 mpg.” Optimization can be computationally demanding: given a set
of constraints and a known utility function, determining the optimal outcome is NP-hard (Dechter,
2003), which informally means that it is widely believed that computation time grows exponentially,
in the worst case, with the size of the problem (the number of variables/attributes and the domain
sizes of each). This is problematic since we’re often interested in configuration problems with dozens
or hundreds of variables, each with large numbers of possible values. Despite this, state-of-the-art
constraint processing methods and optimization technologies (such as integer programming) make
these problems solvable in practice.

Consumer DSSs have access to the same objective data for multiple DMs, but each DM will have
different preferences. Moreover, users will have a hard time quantifying strength of preference and
the required tradeoffs explicitly. Finally, given the number of parameters required to specify a utility
function and the numerical precision required by classical elicitation methods, users will not have
the patience to fully articulate their utility functions, even if they were able to do so. This means
assessment of DM preferences must differ from the textbook approaches in decision analysis.

2.3 Corporate Sourcing

A different setting is that of expressive auctions for corporate sourcing (Sandholm, 2007). Here the
decision maker is a company that is sourcing raw materials, supplies, or services from a collection
of suppliers. For instance, Company A requires supply contracts for the coming year to run its man-
ufacturing facilities, and has requirements on the volume, quality, and delivery schedule of different
items needed to maintain production. Traditionally, Company A would run a reverse auction, allow-
ing suppliers to bid on the items it needs, and accepting the bids of the lowest cost suppliers for each
item. Such methods usually lead to economic inefficiencies. Consider a case where Supplier Z can
produce and sell item x1 to A for $5 per unit in isolation, and item x2 for $7 per unit in isolation;
but production synergies allow both items to be produced jointly and sold for $9. If Z is forced to bid
on each item separately, the joint cost to A is $12 per unit-pair if it accepts Z’s bids, even though Z
would be willing to sell the pair for less. Not only A can end up overpaying; but should two different
suppliers offer x1 and x2 for $4 and $6, respectively, A will not only pay more ($10) by selecting

6

these suppliers over Z, but Z would have gladly been willing to supply the pair of items for less per
unit ($9): economic efficiency has suffered.

Combinatorial auctions (CAs) generalize traditional market mechanisms by allowing the direct
specification of bids over bundles of items (Cramton et al., 2005). For example, by allowing Z to
explicitly offer the pair (x1, x2) for $9, both A and Z benefit, as does economic efficiency. Other
types of side information can also be incorporated in supplier bids. While offering greater economic
efficiency, the problem of winner determination, namely, determining the set of winning bids so that
A gets its required supplies for minimal cost, is computationally difficult (in fact, NP-hard, see above)
(Rothkopf et al., 1998), though these problems are now practically solvable. We refer to the set of
winning bids, or allocation of business to suppliers, as an allocation.

While CAs have great potential, buyers are interested in more than just minimizing total sourcing
cost. Often they sacrifice price to improve other attributes of the allocation (Boutilier et al., 2004); in
other words, the cost-minimizing allocation is often not the most preferred. For example, Company A
may prefer, all else being equal, an allocation in which fewer suppliers are awarded business (e.g., to
minimize logistical overhead). Generally, buyers will be concerned with a host of factors that can be
traded off against cost. The optimal allocation is the one that strikes the appropriate tradeoff between
these attributes and total cost.

Recasting the decision problem facing Company A in this light, the set of decisions D becomes
the set of feasible allocations of business to suppliers that meet the buyer’s demands. This decision
space is incredibly complex, and cannot be explicitly articulated. Simply determining the feasibility
of a single “potential” decision is computationally difficult. The potential outcomes X are defined by
the allocation attributes (of which cost is just one); and the feasible outcomes Xf are those induced by
some feasible allocation. DM’s utility function is expressed over the same attributes. While software
decision support is vital here, several unique aspects of this problem include: the sheer complexity
and size of the decision space; the computational difficulty of optimization; and the fact that DM will
often not be able to articulate some relevant attributes until outcomes are revealed that call attention
to those attributes.

2.4 Markov Decision Processes

Markov decision processes (MDPs) are used to model sequential decision problems under uncertainty
in economics, operations research, computer science, and many other areas (Puterman, 1994; Boutilier
et al., 1999). Unlike the problems above, where a single decision is made, in an MDP one determines
a sequence of decisions/actions to guide some stochastic system into certain desirable states. Specif-
ically, as various actions are taken, the system moves (stochastically) through various states, which
can be more or less desirable. A reward function R represents this desirability, where R(s) can be
viewed as the “immediate utility” for being in state s. However, the true value of being in state s is not
simply its immediate reward R(s). The sequential nature of the decision problem means that we must
also account for future opportunities made available by being in state s. For instance, the immediate
reward for making some investment (e.g., in education, capital equipment, or practicing violin) may
be negative; but that investment opens up future opportunities that may be very rewarding if the right
course of action is adopted. Navigating a system in this way requires the appropriate choice of policy
π which dictates which action to take at any system state. An optimal policy is one which maximizes

7

the expected sum of rewards accrued, and can be computed using a variety of dynamic and linear
programming methods (Puterman, 1994; Boutilier et al., 1999).

MDPs are routinely used in stochastic control, inventory control, production planning, mobile
robotics, and other applications. We illustrate the difficulties of preference assessment using an appli-
cation in the area of cognitive assistive technologies. COACH (Boger et al., 2005, 2006) is a system
designed to help older persons with moderate-to-severe dementia (e.g., Alzheimer’s disease) complete
routine activities of daily living, such as handwashing. This system monitors the behavior of the user
(patient) using computer vision technology. If he seems to be unsuccessful at some point during the
task (e.g., confused or forgetful), the system decides between various actions: waiting to see if the
user makes progress independently; prompting/reminding the user (in various ways) about the next
step; or calling a caregiver (professional or family member) to assist the user. Systems like these can
be used to relieve caregivers of the burden of constantly monitoring routine daily activities (Mihailidis
et al., 2001).

In COACH, the entire process is modeled as an MDP. While system dynamics (i.e., probabilities
of successful completion of task steps) can be learned from data, the key difficulty lies in eliciting the
reward function. Rewards in the COACH system represent the preferences of the user or caregiver
for actions and outcomes, and one must assess tradeoffs (strength of preference) for features like:
successful task completion; successful independent completion of task substeps; prompts of various
forms (negative reward, since independent task completion is desirable); calling the caregiver (also
negative, since successful completion without caregiver intervention is desirable); time to completion;
and other factors. The optimal policy can be very sensitive to the precise reward given to each of these
factors; yet caregivers have a hard time quantifying these tradeoffs.

2.5 Group Decision Making

Another area in which DSSs play an important role is in group decision support. While DSSs can play
many different roles, here we focus on the question of preference aggregation: in any group decision
scenario, individual stakeholders have preferences over alternatives (outcomes, policies, products,
etc.); and the DSS must aggregate those preferences to determine a good group decision, reflecting
some notion of consensus, compromise, or group utility. Social choice is a branch of social science
that has studied the problem of preference aggregation for decades (Arrow et al., 2002), often by con-
sidering various forms of voting rules. Increasingly, computational technologies make it viable to use
such concepts to support group decisions in routine, low-stakes decisions, leading to the burgeoning
study of computational social choice (Chevaleyre et al., 2007).

We outline a common formal framework for social choice in Box 2. We refer to our users as
“voters.” The alternatives represent any outcome space over which the voters have preferences (e.g.,
product configurations, restaurant dishes, candidates for office, public projects, etc.) and for which a
single collective choice must be made. Voter preferences, represented as a rankings over alternatives,
are aggregated by voting rules, which embody some form of consensus or compromise. Dozens of
families of voting rules have been studied, with two illustrated in Box 2. Plurality asks voters to state
only their most preferred alternative, which gives it an “elicitation advantage;” but it also means that
it fails to account for relative voter preferences for any alternative other than its top choice. Other

8

We assume a set of decision makers (or voters) N = {1, . . . , nv} and a set of alternatives A =
{a1, . . . , am}. Each voter k has preferences over the alternatives in A, represented by a ranking (or
linear ordering). Let vk(a) denote the rank of a in vk. Then k prefers ai to aj , written ai �k aj , if
vk(ai) < vk(aj). For example, if we have three restaurants, d, d′, d′′, and voter k likes d better than
d′, and d′ better than d′′, then we write: vk(d) = 1, vk(d

′) = 2, vk(d
′′) = 3; and d �k d′ �k d′′. A

collection of rankings or “votes” v = 〈v1, . . . , vn〉 is a preference profile. For example, four diners
trying to decide among the three restaurants might have the following preference profile:

v1 : d �1 d
′′ �1 d

′ v2 : d′ �2 d �2 d
′′

v3 : d′ �3 d �3 d
′′ v4 : d′′ �4 d �4 d

′

A voting rule r takes as input a profile v and outputs a winner r(v) ∈ A. Plurality is one of the most
commonly used rules: the alternative with the greatest number of “first place votes” wins. In the
example, the plurality score (number of first place votes) for each restaurant is: s(d′) = 2; s(d) =
1; s(d′′) = 1. Hence plurality would recommend d′ for this group. The Borda rule assigns m − i
points to alternative a each time it occurs in position i in some voter ranking: in our three-alternative
example, each first-place vote gives a 2 points, second-place 1 point, and third-place zero points. The
winner is the alternative with the highest total score. The Borda scores sβ of the three restaurants in
our example is sβ(d,v) = 5, sβ(d′,v) = 4, sβ(d′′,v) = 3; hence the Borda rules recommends d.

Box 2: Voting Rules

schemes produce winners that are much more sensitive to the range of relative preferences, as the
Borda rule illustrates.

One obstacle to the use of schemes that require voters to specify full rankings is the informational
and cognitive burden they impose on voters. Elicitation of sufficient, but still partial information about
voter rankings could alleviate some of these concerns. Furthermore, the use of voting rules in lower
stakes domains virtually demands decision making with partial rankings, since the effort required for
users to compare alternatives they know little about, or care little for, will not be worth the impact it
has on the final decision. We discuss decision making with partial rankings in the next section.

An important consideration in group decision making is the question of incentives and manipula-
tion: unlike in the case of a single DM, DMs in a group setting may have an incentive to misreport their
preferences. In our restaurant example, under the plurality rule, voter 4 might be better off voting for d
rather than d′′: since he prefers d to the winner d′, by voting for d he would improve the plurality score
for d to 2, tying it with d′ (and depending on the tie-breaking protocol, give d a chance to win). The
celebrated Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975) demonstrates the the-
oretical impossibility of avoiding such manipulation in general. However, when one considers more
market-oriented mechanisms for making group decisions—that is, mechanisms that allow the trans-
fer of payments between participants—strategyproof mechanisms—that is, mechanisms in which all
parties are incentivized to reveal their preferences truthfully—can be constructed for certain domains.
The well-known Vickrey-Clarke-Groves (VCG) mechanism, for instance, defines a set of payments
between individuals that ensures truthtelling and a socially optimal outcome (Vickrey, 1961; Groves,
1973; Clarke, 1971). Once again, the implementation of this mechanism requires that all agents fully

9

reveal their utilities to the system.

3 Robust Optimization using Minimax Regret

We’ve seen above how the preference bottleneck manifests itself in several different settings. There are
a number of ways of assessing, eliciting or otherwise estimating DM preferences and utility functions
(see next section). However, we take for granted that any reasonable form of preference assessment is
going to leave tremendous uncertainty in the DSS’s knowledge of the DM’s utility function. DM utility
functions have a large number of parameters, and full knowledge will require the specification of each
of these with a high degree of (numerical) precision, placing a great burden on DM. In addition, we
will see that very good, even optimal, decisions can be computed even when little utility information
is available, as long as it is relevant information. In this section, we discuss robust decision making
in the presence of utility function uncertainty using minimax regret.

3.1 Utility Function Uncertainty

Assume a class of utility functions U over some outcome set X, possibly parameterized in some
compact way (e.g., U may be the set of additive utility functions over attribute set X1, · · · , Xn). In
what follows, we abuse terminology by equating a utility function u with its parameter vector.

Suppose our DSS has partial knowledge of DM’s utility function u. We take this knowledge to
be in the form of a subset U ⊆ U , dubbed the feasible set. Intuitively, the DSS knows DM’s utility
function u lies within U , and nothing more. Generally, U will be determined by a set of constraints
acquired through some elicitation or preference assessment process.

Now suppose the DSS must recommend a decision. Maximizing expected utility relative to u is
not possible if u is unknown. A variety of techniques have been proposed for decision making in
this context. Bayesian methods quantify uncertainty about preferences probabilistically, using a prior
density over U , conditioning on the acquired knowledge, and calculating the utility of any alternative
a ∈ A by taking expectation over U (Weber, 1987; Chajewska et al., 2000; Boutilier, 2002; Holloway
and White, 2003). Other methods are inspired by similar probabilistic intuitions (e.g., by considering
the uniform distribution over the space U), but are non-Bayesian in their recommendations (Toubia
et al., 2003, 2004; Abbas, 2004; Iyengar et al., 2001). Other methods simply attempt to identify
Pareto optimal options (i.e., those that are optimal for some feasible utility function) without making
a specific recommendation (White et al., 1984; Sykes and White, 1991).

We instead use the notion of minimax regret, a concept first described by Savage (1951) in the
context of uncertainty over world states, and since advocated for robust decision making with partial
utility functions (Boutilier et al., 2001; Salo and Hämäläinen, 2001; Boutilier et al., 2006). The formal
definition of minimax regret is given in Box 3. The approach requires that the DSS recommend the
option x∗ that minimizes maximum regret, essentially minimizing the worst-case loss for DM relative
to all possible realizations of her utility function (consistent with u ∈ U).

We illustrate the concept with a small air travel example (Braziunas and Boutilier, 2008), with
three flights and two possible DM utility functions (cast in monetary terms for simplicity):1

1In general, the feasible set U will be a polytope with infinitely many possibilities, not a discrete set.

10

The pairwise max regret of choosing x instead of x′ given feasible utility set U is

R(x,x′, U) = max
u∈U

u(x′)− u(x).

This defines how much worse alternative x could be than an alternative x′. The maximum regret of
choosing outcome x is

MR(x, U) = max
x′∈X

R(x,x′, U).

This specifies how far x could be from optimal for DM. The minimax optimal decision is the outcome
that minimizes max regret:

x∗ = argmin
x∈X

MR(x, U).

Define MMR(U) = minx∈X MR(x, U) to be the minimax regret level of feasible utility set U .

Box 3: Minimax Regret

Flight A Flight B Flight C
u1 $400 $200 $340
u2 $350 $650 $600

The max regret of choosing Flight A is $300: if we recommend A, the user may in fact have utility
u2, in which case A is $300 worse than B (the optimal flight given u2). Similarly, Flight B has a
max regret of $200, and Flight C $60. Thus C is the minimax optimal choice, as it has minimum max
regret. Flight A and u1 together serve as the adversarial witness that “prove” how much we could
regret recommending C (since under u1, A is $60 better than C).

We contrast minimax regret with the oft-used maximin criterion (Wald, 1950), which recommends
an option whose worst-case utility is greatest. In our example, maximin recommends flight A, with
a guaranteed minimum utility of $350. Notice the difference with minimax regret: while flight A
ensures utility of $350 if DM’s utility function turns out to be u2, flight C (the minimax optimal
alternative) would have been a far better choice in that case.

Minimax regret has been adopted as a optimization criterion for problems in which there is data
or objective function uncertainty (Kouvelis and Yu, 1997; Averbakh, 2000; Aissi et al., 2009), but
only recently has been proposed as a means for accounting for a DSS’s uncertainty regarding DM’s
utility (Boutilier et al., 2001; Salo and Hämäläinen, 2001; Wang and Boutilier, 2003; Boutilier et al.,
2004, 2006; Braziunas and Boutilier, 2007).2 Minimax regret has several advantages over Bayesian
models from a practical perspective. First, we circumvent the need for Bayesian priors, which can be
difficult to assess. Second, since most useful priors are not closed under the types of preference queries
we consider in the next section, the required probabilistic computations are generally intensive and
approximate; by contrast, bounds on utility function parameters are usually easy to elicit and minimax
regret can be computed more effectively. Finally, minimax regret provides bounds on the degree of
suboptimality associated with any decision. This can be especially important when priors are difficult

2We should distinguish regret as used here from its use to explain human violations of the principles of expected utility
maximization (Loomes and Sugden, 1982; Bell, 1982).

11

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25

M
M

R

Time (s)

MMR v.s. Time, Car Problem

car

Figure 2: Lower bound on minimax regret on car-rental problem as a function of computation time
(Boutilier et al., 2006).

to assess, since it provides robustness guarantees that are not possible by conjecturing, say, a uniform
prior.

The computation of minimax regret is difficult in general. In many of these settings, optimization
with a known utility function u is already difficult combinatorial optimization problem (NP-hard),
e.g., in product configuration with a set of constraints, or combinatorial auctions, both of which are
typically formulated as integer (linear) programs. From a mathematical programming perspective,
adding utility function uncertainty changes the problem from a standard linear optimization to a min-
imax optimization whose objective contains quadratic terms. We do not provide details here, but
simply hint at the various classes of techniques that can be used in the following subsections.

3.2 Product Configuration and Corporate Sourcing

With utility function uncertainty, various mathematical programming decompositions (e.g., Benders’
decomposition) and iterative procedures (e.g., constraint generation) can be used to render the prob-
lem practical (Boutilier et al., 2004, 2006; Braziunas and Boutilier, 2007). Generally, the space U
of feasible utility functions is represented by a polytope, or set of linear constraints on the parame-
ters of DM’s utility function. Methods for computing minimax regret take advantage of the additive
or generalized additive structure of the utility function, allowing effective computation of minimax
regret for configuration problems involving dozens of attributes and potentially billions of feasible
alternatives. Moreover, many of these procedures have good anytime properties: approximate solu-
tions can be returned whose quality improves with the computation time available, with the greatest
gains coming earlier rather than later. For instance, Fig. 2 shows the anytime performance of minimax
regret computation on a car rental domain with 26 variables, 61 billion feasible configurations, and a
GAI utility model with 36 factors and 435 utility parameters (taken from Boutilier et al., 2006). While
computing MMR exactly takes roughly 25 seconds in this example, a tight lower bound on MMR is
found in under 5 seconds (upper bounds are also available). This has important consequences for
preference elicitation as we discuss below. Search-based techniques are more appropriate when the
space of possible options (e.g., products) is given by a database (Braziunas and Boutilier, 2007, 2010).

12

3.3 Markov Decision Processes

Reward function uncertainty in MDPs (see Sec. 2.4 for an overview of MDPs) has been addressed
recently using a formalism known as imprecise-reward MDPs (IRMDPs) (Delage and Mannor, 2007;
Regan and Boutilier, 2009; Xu and Mannor, 2009). Uncertainty over the parameters of the MDP re-
ward function is captured by a set R of feasible reward functions, again represented by a polytope
over reward space (i.e., linear constraints on the values of specific reward terms R(s)). Minimax re-
gret has been proposed as an attractive robustness criterion for IRMDPs (Regan and Boutilier, 2009,
2010; Xu and Mannor, 2009). While solving IRMDPs using this measure is NP-hard (Xu and Man-
nor, 2009), techniques have been developed that allow the effective solution of IRMDPs of moderate
size. Most of these methods exploit the linear programming formulations of standard MDPs with
fully known rewards, and extend them to the uncertain case. Techniques include constraint gener-
ation to incrementally enumerate “adversarial policies” (Regan and Boutilier, 2009), methods that
exploit so-called non-dominated policies (Regan and Boutilier, 2010; Xu and Mannor, 2009; Regan
and Boutilier, 2011b), as well as techniques that take advantage of properties of the elicitation process
(see the next section) to make computation even more tractable (Regan and Boutilier, 2011b).

3.4 Social Choice and Voting

In group decision making, we’d like to reduce the burden on voters by asking for only partial informa-
tion about their preferences rather than asking them to rank all alternatives. Such a partial ranking is
represented by a collection of pairwise comparisons, where each comparison takes the form ai �k aj
(i.e., voter k prefers ai to aj). The responses to most natural queries (e.g., pairwise comparison, posi-
tional, top-t, and other queries) can be represented this way. A partial profile is set of partial rankings,
one per voter. Of course, each voter has an (unknown) true preference ranking that consistently ex-
tends or completes the (known) partial ranking.

Somewhat surprisingly, little study of robust decision making with partial vote profiles exists.
Concepts like necessary and possible winners (Konczak and Lang, 2005) have been proposed: the
former considers whether an alternative a wins no matter how we complete the voters’ partial pref-
erences; the latter whether a wins under some such completion. Unfortunately, necessary winners
don’t generally exist, and the concept of possible winners provides no guidance for actual selecting an
alternative. Minimax regret has been proposed as a robustness criterion for just such a scenario (Lu
and Boutilier, 2011).3 It is based on the observation that most voting rules are defined using a natural
scoring function s(a,v) that measures the quality of each alternative a given a preference profile v,
with a winning if it has the highest score (see Box 2). Given a partial profile, a can have a range of
different scores depending on how the partial profile is completed. As above, we define the maximum
regret of a by allowing the “adversarial” selection of a (complete) profile v to maximize the loss (dif-
ference in score) between our chosen alternative a and the true winner under v. We then chose an
alternative a∗ that minimizes this regret.

Notice that this use of minimax regret—by measuring the potential loss in the selection of an
alternative by its score difference with the optimal candidate—implicitly treats the scoring function

3Minimax regret has been used in voting contexts in different ways than discussed here, most notably to explain behavior
of individual voters to account for voter participation in the face of Downs paradox (Ferejohn and Fiorina, 1974).

13

s as a surrogate for “societal utility” or social welfare. This is not uncontroversial, and may not
be suitable in all settings (e.g., selecting winners in political elections). But in many, if not most,
preference aggregation problems, specific voting rules are often viewed in this way.

Minimax regret can be computed for some voting rules relatively effectively (in polynomial time)
(Lu and Boutilier, 2011), though for other rules the problem can be computationally difficult. Unlike
configuration problems, where the underlying problem even in the presence of complete utility in-
formation is hard, most voting rules can be computed efficiently with complete ranking information.
An interesting distinction between voting and product configuration lies in the fact that configuration
problems tend to have very large numbers of alternatives (feasible combinations of attributes) and
relative few utility parameters (e.g., the weights in an additive utility model); by contrast, typical vot-
ing situations involve relatively few alternatives, but a large number of “utility” parameters (i.e., the
preferences of many different voters).

In market-based mechanisms like VCG, group members are required to reveal utility functions
(not just rankings) over alternatives. One can use minimax regret to compute the minimax optimal
group choice (specifically, the alternative that has minimax regret with respect to social welfare). Un-
fortunately, an important component of the VCG scheme is the use of group member preferences
to determine payments that incentivize truthful reporting. The incentive properties of VCG are de-
stroyed by approximation of the outcome using minimax regret (Nisan and Ronen, 2000); however,
approximate variants of these payments can be devised that bound the incentive (limit the gain) for
members to misreport their preferences in a way that is tightly tied to the minimax regret level (Hyafil
and Boutilier, 2006, 2007).

4 Preference Elicitation using Minimax Regret

Minimax regret allows a DSS to make robust decisions in the face of uncertainty about DM’s utility
function. However, if the minimax regret level MMR(U), given knowledgeU of DM’s utility function,
is too great, the recommended alternative will have unacceptably high (potential) loss. This can only
be reduced if more information is obtained about DM’s true utility u, thus reducing the uncertainty
in U . Therefore, we must couple decision making with techniques for eliciting additional preference
information.

Many techniques have been developed in decision analysis, econometrics, artificial intelligence,
and other disciplines for assessing preferences. We consider here methods for active preference elici-
tation, in which a DSS explicitly asks DM specific queries about her preferences: the aim is to discover
“just enough” about her utility function to recommend a good or optimal decision, measuring deci-
sion quality using minimax regret. We outline a broad class of techniques for elicitation within the
minimax regret framework known as current solution (CS) methods. These reflect a general heuristic
principle that has proven to be very effective in many domains, as we outline below.

4.1 The Current Solution Heuristic

Our general elicitation framework assumes some class of queries Q used to elicit information about
DM’s utility function. We discuss different types of queries below, but generally, the queries are

14

categorized into different “types.” For example, a global comparison query may ask DM to compare
two alternatives and select the one she most prefers. Thus all unordered pairs of alternatives comprise
the setQ of comparison queries. Some query types admit a continuous parameterization; e.g., a global
bound query asks DM whether she would be willing to pay at least price p for some alternative. Thus
both an alternative and a price p must be selected. Each query q ∈ Q has a set of possible responses
R(q), each revealing information about DM’s utility function. Comparison and bound queries have
binary responses, and are generally easy to answer; but some queries, such as value queries (“what
price pwould you be willing to pay for alternative x?”) have continuous responses (and are cognitively
demanding for DM). All query types discussed below have (small) finite response spaces, and the
response to any query can be represented by a linear constraint on DM’s utility parameters; thus the
feasible utility set U at any stage is a polytope.

The DSS interacts with DM, each interaction eliciting input from DM that imposes additional
constraints on U . Thus we shrink U iteratively until minimax regret is reduced to a level acceptable
to DM. In rough sketch, elicitation proceeds as follows:

1. Compute minimax regret MMR for U .

2. Repeat until MMR < τ (for some threshold τ):

(a) Request input from DM (e.g., ask query q).

(b) Update the constraints over utility function parameters to reflect user input (e.g., response
to q), giving new feasible utility set U ′.

(c) Recompute MMR with respect to U ′.

In quasi-linear settings, minimax regret (and the quality threshold τ) may be expressed in dollar
terms. If minimax regret is reduced to zero, then the true optimal decision is found (even if DM’s
utility function has not been completely specified).

The efficacy of the general elicitation strategy described above depends crucially on the ability
to select good queries. A number of methods have been developed for assessing DM preferences in
areas ranging from decision analysis (Keeney and Raiffa, 1976; French, 1986) to (aggregate) consumer
choice modeling (Louviere et al., 2000; Toubia et al., 2004), but most rely on explicitly attempting to
elicit or discover a good model of DM preferences. Since our goal is simply to recommend a good
alternative from the set X, we do not reduce utility uncertainty for its own sake, but rather reduce
minimax regret as quickly as possible.

The current solution (CS) heuristic chooses queries that do just this, based on the following intu-
ition. Given polytope U , recall that minimax regret is defined as (see Box 3):

MMR(U) = min
x∈X

max
x′∈X

max
u∈U

u(x′)− u(x).

Specifically, MMR(U) is the pairwise max regret R(x,x′, U) between the minimax optimal recom-
mendation x and an adversarially chosen configuration x′. If we ask a query of DM whose response
fails to further constrain the utility of either x or x′, pairwise max regret between the two will not

15

change; so unless the response changes the minimax optimal decision x, minimax regret is not re-
duced. The CS heuristic requires that the only queries that can be asked must provide information
about utility function parameters that determine the utility of either x or x′ (or both). For example, if
our queries are global comparison queries, a natural application of this heuristic would be to ask DM:
“Do you prefer x or x′?”

The CS method serves as an effective filter, restricting attention to a much smaller set of queries
than the full set Q, queries that have direct potential to reduce minimax regret. Since the computation
of even myopically optimal queries is difficult (see below), this heuristic has computational benefits
as well: query selection is based on information made available by the computation of the minimax
optimal recommendation. We now consider its instantiation in several different domains.

4.2 Product Configuration

In a product configuration problem with attributes X1, · · · , Xn, there are a variety of query types. We
describe several of these and discuss how the CS heuristic can be used to choose suitable queries of
each type:

• Global comparison queries ask DM to compare two complete configurations x and x′. In
quasi-linear environments, the price can (optionally) be included: Fig. 3(a) illustrates such a
comparison (with prices). CS requires that the comparison be made between the minimax
optimal configuration x and the adversarial witness x′.

• Local comparison queries take advantage of an additive decomposition of u, asking DM to
compare two values xi and x′i of a single attribute Xi.4 For each attribute Xi, CS considers
only the comparison between the two attribute values xi and x′i that occur in x and x′. The
selection of the attribute Xi to be queried uses an estimate of the degree to which MMR will be
reduced (Braziunas and Boutilier, 2007).

Local sorting interfaces are quite natural, and obviate the need for local comparisons: DM can
often specify a natural preference ordering on attributes values a priori. A sorting interface
(shown for a GAI model) is illustrated in Fig. 3(b).

• Global bound queries ask DM to specify bounds on the utility of a complete configuration
x. This can be viewed as variant of the classic standard gamble, but in which the tradeoff
probability is fixed, giving rise to a simple binary choice. In quasi-linear environments, the
utility of x can be measured in terms of price or willingness to pay, so a bound on price can be
elicited: see Fig. 3(c). With additive (and GAI) models, global queries can largely be avoided
(Keeney and Raiffa, 1976; Fishburn, 1967; Braziunas and Boutilier, 2005), and are only needed
for global calibration.

• Local bound queries ask DM to specify bounds on the local utility of some attribute value.
A natural means of eliciting such bounds is to ask DM whether value xi of attribute Xi rates

4With generalized additive models, one must provide a conditioning context, asking DM to compare two attribute values
assuming a (usually small) subset of other attributes are fixed at their reference values (Braziunas and Boutilier, 2005, 2007).

16

(a) Global comparison (with prices) (b) Local sorting (local comparison)

(c) Global bound (d) Local bound

Figure 3: Four different query types (Braziunas and Boutilier, 2010).

17

0 50 100 150 200
0

50

100

150

200

250

300

350

399

Number of queries

M
in

im
a
x
 r

e
g
re

t

Car Rental Problem −− Uniform Prior

 0%

 2%

 4%

 7%

 9%

11%

13%

16%

18%

M
in

im
a
x
 r

e
g
re

t
/
m

a
x
 u

ti
lit

y

CS−5

CS
HLG

MUS

SB

OP

Figure 4: Average minimax regret on car-rental problem (45 instances) as a function of number of
queries (Boutilier et al., 2006).

higher or lower than some point (e.g., 50) on a predefined scale (e.g., 0–100), where the best
attribute value x>i is at the top of the scale and the worst value x⊥i is at the bottom. This is
illustrated (using a GAI model) in Fig. 3(d); in this interface, DM can actually tighten or loosen
the bound depending on her comfort level with the response.

The response to a query of any of these types imposes linear constraints on the parameters of an
additive (or GAI) utility function. The effectiveness of the CS heuristic has been demonstrated in
several domains, both in simulation and with live users. It provides excellent simulated results over
randomly drawn GAI and additive utility functions in product configuration domains involving dozens
of attributes and billions of feasible configurations (Boutilier et al., 2006; Braziunas and Boutilier,
2007). For instance, Fig. 4 shows the performance of CS elicitation (denoted CS) compared to several
other strategies in a car rental domain with 26 variables, 61 billion feasible configurations, and a GAI
utility model with 36 factors and 435 parameters (Boutilier et al., 2006).

Interestingly, in experiments where (myopically) optimal queries are computed by exhaustive enu-
meration, CS reduces regret just as effectively as myopically optimal queries without the computa-
tional overhead. Furthermore, Boutilier et al. (2006) show that approximation of the minimax optimal
solution provides almost no sacrifice in elicitation quality. For example, Fig. 4 shows that the method
CS-5—identical to CS except that minimax regret computation is limited to 5 seconds, at which point
the approximate answer is used to select a query (rather than the minimax optimal solution)—performs
nearly indistinguishably from CS. Note that exact MMR computation takes 83 seconds on average in
this domain, while the time bound of 5 seconds between queries is sufficient to support real-time in-
teractive response. Several strategies designed explicitly to reduce utility uncertainty perform rather
poorly by comparison (see, e.g., MUS and HLG in Fig. 4, the latter of which is similar to polyhedral
methods proposed in conjoint analysis (Toubia et al., 2004).)

A study with users searching for rental accommodation (from an apartment database) have con-
firmed the effectiveness of minimax regret-based elicitation in practice (Braziunas and Boutilier,
2010). This study showed that users were generally quite comfortable with the notion of minimax

18

regret and found regret-based elicitation using the queries discussed above (and shown in Fig. 3) to
be intuitive. Furthermore, even in a small database of only 100 apartments, regret-based elicitation
allowed users to find high quality apartments in significantly less time than was required by a manual
search (even when this search was supported by sorting and categorization tools). Finally, though
access to true user utility generally requires full elicitation, the study showed that the apartments
recommended by the minimax regret method were, for almost all users, optimal or near-optimal.

Notice that comparison queries can be generalized to more than two options; we can ask DM
“Which of these k options do you like most?” for some k > 2, a common form of query in survey
data (Louviere et al., 2000; Toubia et al., 2004). One can also generalize the form of recommenda-
tions: suppose that rather than recommending a single configuration, we propose a set of k choices
to DM, from which she selects her most preferred option (e.g., we present four different, potentially
“desirable” apartments). Presenting multiple alternatives can be valuable, especially if they reflect
some “diversity” in DM preferences. One can generalize the notion of maximum regret to such rec-
ommendation sets.5 Somewhat surprisingly, the optimal recommendation set of size k is also a my-
opically optimal choice query (Viappiani and Boutilier, 2009, 2010). This has important implications
in “conversational” recommendation, where the interaction involves making a series of recommenda-
tions which DM can either accept, thus terminating the process, or “critique,” which provides further
preference constraints and leads to another round of recommendation.

Many other forms of queries and interactions can be considered in product recommendation. For
example, in “high frequency” consumer domains, where users purchase multiple variants of the same
product type over time (e.g., books, music, movies), one can learn much about a user’s preferences
based on passive observations of purchase history using collaborative filtering techniques (Konstan
et al., 1997; Hofmann and Puzicha, 1999; Marlin and Zemel, 2007).

4.3 Corporate Sourcing

The assessment of tradeoffs in corporate sourcing applications can proceed much as it does in product
configuration. Often pairwise comparisons are presented to the sourcing team (the buyer): which of
two allocations (x, c) and (x′, c′) is preferred, where x and x′ are feature vectors associated with the
allocations (e.g., number of suppliers awarded business, percentage of business awarded to specific
suppliers, etc.) and c and c′ are the total allocation costs. Using the CS strategy to determine appropri-
ate sequences of comparisons, one can quickly determine the optimal allocation of business without
assessing the precise value of the utility parameters (Boutilier et al., 2004).

Interestingly, when intelligent elicitation of this form is not available, sourcing teams routinely
use winner determination software to assess these preferences anyway. For instance, the buyer might
limit the number of suppliers to five and see how allocation cost changes (increases) relative to the
unconstrained problem. If the increase is too great, the buyer may relax the constraint (limiting the
number of suppliers to six) and see how this reduces cost. This process is repeated for many com-
binations of constraints; when it ends, the buyer chooses a generated allocation as making the right
tradeoff between cost and relevant non-price attributes. Intelligent preference elicitation makes this
exploration of different scenarios much more efficient, and provides quality guarantees on the final

5Naturally, allowing more options to be recommended can only reduce max regret.

19

results.

4.4 Markov Decision Processes

The space of queries available to elicit reward information in an MDP tends to be much richer than
in the situations above because of the sequential nature of the decision process. One can distinguish
MDPs with unstructured states from those with “factored” state spaces (Boutilier et al., 1999) in which
each state is defined as an instantiation of certain variables. In the former case, one can ask queries
about the specific reward of a state, e.g., bound queries (Regan and Boutilier, 2009) or precise reward
queries (Delage and Mannor, 2007); or one can ask for a comparison of two states (e.g., comparison
queries). In the factored case, one can assume an additive or generalized additive reward function over
the state variables, and elicit the reward function exactly as in the case of multi-attribute, single-shot
decision problems like product configuration (Regan and Boutilier, 2011a).

It is also natural in an MDP to ask queries about state trajectories (sequences of states) or distribu-
tions over trajectories. One can ask DM which of two trajectories represents more desirable behavior.
One can also summarize a trajectory (or distribution) using events counts if the states themselves have
specific reward-bearing attributes. In the COACH system (see Sec.2.4), a trajectory can be summa-
rized by presenting the relative number of occurrences of specific events of interest (e.g., number of
prompts, task completion time, caregiver interruption, etc.). This provides a convenient means of
comparing (the effects of) two policies (Regan and Boutilier, 2011a).

For query selection, the CS strategy is readily adapted to the MDP setting. We refer to Regan and
Boutilier (2009) for a discussion of CS in the case of MDPs with unstructured states, and to Regan
and Boutilier (2011a) for a discussion of CS for factored MDPs with additive reward models.

4.5 Social Choice and Voting

The question of effective partial vote elicitation has received surprisingly little attention. Work in sta-
tistical and behavioral social choice has considered the question of estimating properties of elections
(e.g., majority-consistent preferences) from random samples of the electorate, as well as determining
appropriate sample sizes (see, e.g., Regenwetter et al., 2006). Unfortunately, winners can’t be deter-
mined in many voting schemes without a large amount of information in the worst case (Conitzer and
Sandholm, 2002, 2005). Nonetheless, the development of elicitation schemes that work well in prac-
tice has been addressed recently. For instance, Kalech et al. (2011) develop several heuristic strategies
for vote elicitation, using the concept of possible and necessary winners to determine termination of
the elicitation process.

Lu and Boutilier (2011) use minimax regret for vote elicitation, adapting the CS heuristic to the
group setting. They consider two types of queries, pairwise comparisons (i.e., asking a voter if she
prefers alternative a to b), or top-t queries (i.e., asking a voter for their first-ranked alternative, asking
for their second-ranked alternative only if the first has already been specified, asking for the third only
if the first two have been specified, etc.). CS is applied by selecting a voter-query pair that has the
greatest potential to reduce minimax regret. Intuitively, this can be accomplished by considering the
minimax optimal alternative a∗ and the adversarial witness a′, and finding the voter whose incomplete
ranking offers the greatest potential to decrease the adversarial advantage of a′ over a∗ (i.e., decrease

20

the difference of their scores) in the minimax optimal solution. On both randomly generated data sets,
and real ranking data sets (including electoral data and product preference data), CS has been shown
to dramatically reduce the amount of preference information required to determine true winners rela-
tive to full elicitation; furthermore, near-optimal alternatives can be found with very little preference
information.

We refer to Hyafil and Boutilier (2006, 2007) for a discussion of regret-based approaches to mech-
anism design, specifically, the use of minimax regret to guide the elicitation of partial utility functions
in an approximate version of the VCG mechanism.

5 Interdisciplinary Opportunities

The models and results presented above are largely motivated by a fairly precise, mathematical for-
mulation of decision problems as commonly adopted in decision analysis and operations research.
The computational perspective is, of course, greatly facilitated by such precise, formal specifications;
and the stylized nature of the interactions and queries used to elicit preferences reflects this. In many
applications, such as those involving corporate sourcing (Boutilier et al., 2004), or many others, it is
generally safe to assume that decision makers can answer such precise queries without difficulty. In-
deed, in some applications, the “preferences” are monetary or involve some other objective measure,
and computer simulations and optimization are used to answer these queries without the intervention
of a human DM at all (Boutilier et al., 2003; Patrascu et al., 2005).

However, preference elicitation often involves interaction with non-expert human DMs, who are
subject to the many foibles, biases in judgement, heuristic decision rules, and time pressures that
motivate the use of computational DSSs in the first place. As such, the broader reach of computational
decision support is predicated on methods that are sensitive to such factors. Research in many of the
social and behavioral sciences should inform many of the next steps in the evolution of DSSs. We
outline a few (of many) such possibilities for interaction in this section.

5.1 Models of Human Choice Behavior

Work in econometrics, psychometrics, statistics and other disciplines has proposed models of human
choice behavior. Marden (1995), for example, provides an overview of various statistical models
of preference and ranking data, many of which are inspired by psychometric accounts of choice.
Such models of preferences can be exploited in many ways. If regularities exist in individual choice
behavior, these should manifest themselves in statistical regularities in population preferences, which
can in turn be exploited to make preference elicitation more effective.

The regret-based methods discussed above do not exploit distributional information (though we
briefly mentioned alternative probabilistic approaches to elicitation, some Bayesian and some non-
Bayesian in their approach to recommendation). It is, however, possible to combine the probabilistic
viewpoint for elicitation with the minimax regret approach to decision making (Wang and Boutilier,
2003). Furthermore, much research in machine learning has tackled the effective learning of rankings
from partially observed ranking data, especially in web search and online ratings systems (Cohen
et al., 1999; Hüllermeier et al., 2008).

21

5.2 Cognitive Biases, Heuristics and Costs

One of the most important factors in human decision making, ignored in the techniques discussed
above, are human biases and heuristics used in the assessment or comparison of alternatives. Re-
search in psychology, cognitive science, behavioral decision theory and behavioral economics have
identified a number of common biases involving framing, anchoring, endowment effects, risk and
ambiguity aversion, discounting behavior, altruism and reciprocity, and numerous other phenomena
that must ultimately influence the design of interactive decision support systems.6 These phenomena
must ultimately influence the way in which queries are framed and presented. However, it may be
possible to account for systematic biases (possibly induced by the DSS itself) and “correct” for these
by developing suitable “noise models.”

Another important consideration in the design of DSSs is the cognitive cost associated with an-
swering specific types of queries: this should be explicitly modeled and factored into the development
of suitable elicitation strategies. This is another rich area in which the interaction of computer science,
cognitive science and psychology can play a valuable role.

5.3 Group Choice

Research in social choice and economics has had a strong influence on computational models and tools
for group decision support (see, e.g., Nisan et al., 2007, for an overview of research in computational
game theory). Both topics have been discussed briefly above. But a topic that deserves more attention
is the design of preference elicitation techniques that work more directly within more collaborative,
discussion-oriented, argumentation-based, consensus-based or other more-involved group decision
support processes. Research in both formal and informal group and organizational decision making
(e.g., Raiffa, 2002), as well as computational systems designed to support such processes (e.g., Kraus,
2001) is of vital importance here, and the design of coherent elicitation schemes that can be blended
into such processes would be of tremendous value.

References

Abbas, A. (2004). Entropy methods for adaptive utility elicitation. IEEE Transactions on Systems,
Science and Cybernetics, 34(2):169–178.

Aissi, H., Bazgan, C., and Vanderpooten, D. (2009). Min-max and min-max regret versions of combi-
natorial optimization problems: A survey. European Journal of Operational Research, 197(2):427–
438.

Arrow, K. J., Sen, A. K., and Suzumura, K., editors (2002). Handbook of Social Choice and Welfare,
volume 1. North Holland, Amsterdam.

Averbakh, I. (2000). Minmax regret solutions for minimax optimization problems with uncertainty.
Operations Research Letters, 27:57–65.
6See, for example, the excellent collections by Camerer et al. (2003), Kahneman and Tversky (2000), and Bell et al.

(1988).

22

Bacchus, F. and Grove, A. (1995). Graphical models for preference and utility. In Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intelligence (UAI-95), pages 3–10, Montreal.

Bell, D. E. (1982). Regret in decision making under uncertainty. Operations Research, 30:961–981.

Bell, D. E., Raiffa, H., and Tversky, A., editors (1988). Decision Making: Descriptive, Normative
and Prescriptive Interactions. Cambridge University Press, Cambridge.

Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., and Mihailidis, A. (2005). A decision-
theoretic approach to task assistance for persons with dementia. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI-05), pages 1293–1299, Edinburgh.

Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., and Mihailidis, A. (2006). A planning
system based on Markov decision processes to guide people with dementia through activities of
daily living. IEEE Transactions on Information Technology in Biomedicine, 10(2):323–333.

Boutilier, C. (2002). A POMDP formulation of preference elicitation problems. In Proceedings of the
Eighteenth National Conference on Artificial Intelligence (AAAI-02), pages 239–246, Edmonton.

Boutilier, C., Bacchus, F., and Brafman, R. I. (2001). UCP-Networks: A directed graphical repre-
sentation of conditional utilities. In Proceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence (UAI-01), pages 56–64, Seattle.

Boutilier, C., Das, R., Kephart, J. O., Tesauro, G., and Walsh, W. E. (2003). Cooperative negotia-
tion in autonomic systems using incremental utility elicitation. In Proceedings of the Nineteenth
Conference on Uncertainty in Artificial Intelligence (UAI-03), pages 89–97, Acapulco.

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research, 11:1–94.

Boutilier, C., Patrascu, R., Poupart, P., and Schuurmans, D. (2006). Constraint-based optimization and
utility elicitation using the minimax decision criterion. Artifical Intelligence, 170(8–9):686–713.

Boutilier, C., Sandholm, T., and Shields, R. (2004). Eliciting bid taker non-price preferences in (com-
binatorial) auctions. In Proceedings of the Nineteenth National Conference on Artificial Intelligence
(AAAI-04), pages 204–211, San Jose.

Braziunas, D. and Boutilier, C. (2005). Local utility elicitation in GAI models. In Proceedings of the
Twenty-first Conference on Uncertainty in Artificial Intelligence (UAI-05), pages 42–49, Edinburgh.

Braziunas, D. and Boutilier, C. (2007). Minimax regret-based elicitation of generalized additive utili-
ties. In Proceedings of the Twenty-third Conference on Uncertainty in Artificial Intelligence (UAI-
07), pages 25–32, Vancouver.

Braziunas, D. and Boutilier, C. (2008). Elicitation of factored utilities. AI Magazine, 29(4):79–92.

23

Braziunas, D. and Boutilier, C. (2010). Assessing regret-based preference elicitation with the UT-
PREF recommendation system. In Proceedings of the Eleventh ACM Conference on Electronic
Commerce (EC’10), pages 219–228, Cambridge.

Camerer, C. F., Loewenstein, G., and Rabin, M., editors (2003). Advances in Behavioral Economics.
Princeton University Press, Princeton.

Chajewska, U., Koller, D., and Parr, R. (2000). Making rational decisions using adaptive utility
elicitation. In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-
00), pages 363–369, Austin.

Chevaleyre, Y., Endriss, U., Lang, J., and Maudet, N. (2007). A short introduction to computational
social choice. In Proceedings of the 33rd Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM-07), pages 51–69, Harrachov.

Clarke, E. H. (1971). Multipart pricing of public goods. Public Choice, 11(1):17–33.

Cohen, W. W., Schapire, R. E., and Singer, Y. (1999). Learning to order things. Journal of Artificial
Intelligence Research, 10:243–270.

Conitzer, V. and Sandholm, T. (2002). Vote elicitation: Complexity and strategy-proofness. In Pro-
ceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-02), pages 392–
397, Edmonton.

Conitzer, V. and Sandholm, T. (2005). Communication complexity of common voting rules. In Pro-
ceedings of the Sixth ACM Conference on Electronic Commerce (EC’05), pages 78–87, Vancouver.

Cramton, P., Shoham, Y., and Steinberg, R., editors (2005). Combinatorial Auctions. MIT Press,
Cambridge.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann, San Francisco.

Delage, E. and Mannor, S. (2007). Percentile optimization in uncertain Markov decision processes
with application to efficient exploration. In Proceedings of the Twenty-fourth International Confer-
ence on Machine Learning (ICML-07), pages 225–232, Corvallis.

Ferejohn, J. A. and Fiorina, M. P. (1974). The paradox of not voting: A decision theoretic analysis.
The American Political Science Review, 68(2):525–536.

Fishburn, P. C. (1967). Interdependence and additivity in multivariate, unidimensional expected utility
theory. International Economic Review, 8:335–342.

French, S. (1986). Decision Theory. Halsted Press, New York.

Gibbard, A. (1973). Manipulation of voting schemes: A general result. Econometrica, 41(4):587–601.

Gonzales, C. and Perny, P. (2004). GAI networks for utility elicitation. In Proceedings of the Ninth
International Conference on Principles of Knowledge Representation and Reasoning (KR2004),
pages 224–234, Whistler, BC.

24

Groves, T. (1973). Incentives in teams. Econometrica, 41:617–631.

Hofmann, T. and Puzicha, J. (1999). Latent class models for collaborative filtering. In Proceedings of
the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99), pages 688–693,
Stockholm.

Holloway, H. A. and White, III, C. C. (2003). Question selection for multiattribute decision-aiding.
European Journal of Operational Research, 148:525–543.

Hüllermeier, E., Fürnkranz, J., Cheng, W., and Brinker, K. (2008). Label ranking by learning pairwise
preferences. Artificial Intelligence, 172(16-17):1897–1916.

Hyafil, N. and Boutilier, C. (2006). Regret-based incremental partial revelation mechanisms. In
Proceedings of the Twenty-first National Conference on Artificial Intelligence (AAAI-06), pages
672–678, Boston.

Hyafil, N. and Boutilier, C. (2007). Mechanism design with partial revelation. In Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), pages 1333–1340,
Hyderabad.

Iyengar, V. S., Lee, J., and Campbell, M. (2001). Q-Eval: Evaluating multiple attribute items using
queries. In Proceedings of the Third ACM Conference on Electronic Commerce, pages 144–153,
Tampa.

Kahneman, D. and Tversky, A., editors (2000). Choices, Values, and Frames. Cambridge University
Press, Cambridge.

Kalech, M., Kraus, S., Kaminka, G. A., and Goldman, C. V. (2011). Practical voting rules with partial
information. Journal of Autonomous Agents and Multi-Agent Systems, 22(1):151–182.

Keeney, R. L. and Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences and Value
Trade-offs. Wiley, New York.

Konczak, K. and Lang, J. (2005). Voting procedures with incomplete preferences. In IJCAI-05
Workshop on Advances in Preference Handling, pages 124–129, Edinburgh.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., and Riedl, J. (1997). Grou-
plens: Applying collaborative filtering to usenet news. Communications of the ACM, 40(3):77–87.

Kouvelis, P. and Yu, G. (1997). Robust Discrete Optimization and Its Applications. Kluwer, Dor-
drecht.

Kraus, S. (2001). Strategic Negotiation in Multiagent Environments. MIT Press, Cambridge.

Loomes, G. and Sugden, R. (1982). Regret theory: An alternative theory of rational choice under
uncertainty. Economic Journal, 92:805–824.

25

Louviere, J. J., Hensher, D. A., and Swait, J. D. (2000). Stated Choice Methods: Analysis and
Application. Cambridge University Press, Cambridge.

Lu, T. and Boutilier, C. (2011). Robust approximation and incremental elicitation in voting proto-
cols. In Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence
(IJCAI-11), pages 287–293, Barcelona.

Marden, J. I. (1995). Analyzing and modeling rank data. Chapman and Hall, London.

Marlin, B. M. and Zemel, R. S. (2007). Collaborative filtering and the missing at random assumption.
In Proceedings of the Twenty-third Conference on Uncertainty in Artificial Intelligence (UAI-07),
pages 50–54, Vancouver.

Mihailidis, A., Fernie, G. R., and Barbanel, J. C. (2001). The use of artificial intelligence in the design
of an intelligent cognitive orthosis for people with dementia. Assistive Technology, 13:23–39.

Nisan, N. and Ronen, A. (2000). Computationally feasible VCG mechanisms. In Proceedings of the
Second ACM Conference on Electronic Commerce (EC’00), pages 242–252, Minneapolis.

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V., editors (2007). Algorithmic Game Theory.
Cambridge University Press, Cambridge.

Patrascu, R., Boutilier, C., Das, R., Kephart, J. O., Tesauro, G., and Walsh, W. E. (2005). New
approaches to optimization and utility elicitation in autonomic computing. In Proceedings of the
Twentieth National Conference on Artificial Intelligence (AAAI-05), pages 140–145, Pittsburgh.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, New York.

Raiffa, H. (2002). Negotiation Analysis: The Science and Art of Collaborative Decision Making.
Harvard University Press, Cambridge.

Regan, K. and Boutilier, C. (2009). Regret-based reward elicitation for Markov decision processes.
In Proceedings of the Twenty-fifth Conference on Uncertainty in Artificial Intelligence (UAI-09),
pages 454–451, Montreal.

Regan, K. and Boutilier, C. (2010). Robust policy computation in reward-uncertain MDPs using non-
dominated policies. In Proceedings of the Twenty-fourth AAAI Conference on Artificial Intelligence
(AAAI-10), pages 1127–1133, Atlanta.

Regan, K. and Boutilier, C. (2011a). Eliciting additive reward functions for markov decision pro-
cesses. In Proceedings of the Twenty-second International Joint Conference on Artificial Intelli-
gence (IJCAI-11), pages 2159–2164, Barcelona.

Regan, K. and Boutilier, C. (2011b). Robust online optimization of reward-uncertain MDPs. In
Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence (IJCAI-
11), pages 2165–2171, Barcelona.

26

Regenwetter, M., Grofman, B., Marley, A. A. J., and Tsetlin, I. (2006). Behavioral Social Choice:
Probabilistic Models, Statistical Inference, and Applications. Cambridge University Press, Cam-
bridge.

Rothkopf, M., Pekeč, A., and Harstad, R. (1998). Computationally manageable combinatorial auc-
tions. Management Science, 44(8):1131–1147.

Salo, A. and Hämäläinen, R. P. (2001). Preference ratios in multiattribute evaluation (PRIME)–
elicitation and decision procedures under incomplete information. IEEE Trans. on Systems, Man
and Cybernetics, 31(6):533–545.

Sandholm, T. (2007). Expressive commerce and its application to sourcing: How we conducted $35
billion of generalized combinatorial auctions. AI Magazine, 28(3):45–58.

Satterthwaite, M. A. (1975). Strategy-proofness and arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. Journal of Economic Theory,
10:187–217.

Savage, L. J. (1951). The theory of statistical decision. Journal of the American Statistical Associa-
tion, 46(253):55–67.

Sykes, E. A. and White, III, C. C. (1991). Multiobjective intelligent computer-aided design. IEEE
Transactions on Systems, Man and Cybernetics, 21(6):1498–1511.

Toubia, O., Hauser, J. R., and Simester, D. I. (2004). Polyhedral methods for adaptive choice-based
conjoint analysis. Journal of Marketing Research, 41(1):116–131.

Toubia, O., Simester, D. I., Hauser, J. R., and Dahan, E. (2003). Fast polyhedral adaptive conjoint
estimation. Marketing Science, 22(3):273–303.

Viappiani, P. and Boutilier, C. (2009). Regret-based optimal recommendation sets in conversational
recommender systems. In Proceedings of the 3rd ACM Conference on Recommender Systems
(RecSys09), pages 101–108, New York.

Viappiani, P. and Boutilier, C. (2010). Optimal bayesian recommendation sets and myopically optimal
choice query sets. In Advances in Neural Information Processing Systems 23 (NIPS), Vancouver.

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance,
16(1):8–37.

Wald, A. (1950). Statistical Decision Functions. Wiley, New York.

Wang, T. and Boutilier, C. (2003). Incremental utility elicitation with the minimax regret decision
criterion. In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-03), pages 309–316, Acapulco.

Weber, M. (1987). Decision making with incomplete information. European Journal of Operational
Research, 28:44–57.

27

White, III, C. C., Sage, A. P., and Dozono, S. (1984). A model of multiattribute decision-making
and trade-off weight determination under uncertainty. IEEE Transactions on Systems, Man and
Cybernetics, 14(2):223–229.

Xu, H. and Mannor, S. (2009). Parametric regret in uncertain Markov decision processes. In 48th
IEEE Conference on Decision and Control, pages 3606–3613, Shanghai.

28

