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ABSTRACT
This paper considers the calibration of travel demand inputs, de-
fined as a set of origin-destination matrices (ODs), for stochastic
microscopic urban traffic simulators. The goal of calibration is to
find a (set of) travel demand input(s) that replicate sparse field count
data statistics. While traditional approaches use only first-order mo-
ment information from the field data, it is well known that the OD
calibration problem is underdetermined in realistic networks. We
study the value of using higher-order statistics from spatially sparse
field data to mitigate underdetermination, proposing a variational
inference technique that identifies an OD distribution. We apply
our approach to a high-dimensional setting in Salt Lake City, Utah.
Our approach is flexible—it can be readily extended to account for
arbitrary types of field data (e.g., road, path or trip data).

CCS CONCEPTS
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1 INTRODUCTION
Differentiable neural network-based traffic simulators have attracted
considerable attention in recent years due to their modeling power
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and ease of calibration. However, their yet unproven counterfac-
tual robustness—the ability to accurately simulate a traffic scenario
under interventions not present in the training data—limits their
applicability to predicting the outcomes of counterfactual traffic
policies and, hence, to traffic policy optimization. In this light, re-
search on the calibration of mechanistic microscopic traffic simula-
tors with their relatively well-established causal models remains an
important avenue for research. In this work, we apply techniques
introduced in the neural network community to the calibration of
mechanistic traffic simulators, developing a general framework for
using rich data sources to calibrate various types of input parame-
ters.

We consider microscopic urban traffic simulators that provide
a high-resolution representation of travel demand and of network
supply. We apply our framework to the well-established problem
of origin-destination matrix (OD) calibration, reflecting arguably,
the most important and challenging simulation input, that of travel
demand. A solution to the OD calibration problem is represented
by an OD, a matrix reflecting traffic demand in which each entry
denotes the expected travel demand that starts in a specific origin
zone and ends in a specific destination zone. Its inputs include a
set of field traffic data (e.g., segment speeds, segment counts), data
statistics (e.g., first- or second-order moments), and an historical,
possibly noisy OD (e.g., an outdated OD derived from travel survey
or census data). The goal is to find an OD that minimizes some mea-
sure of divergence between field data statistics and their simulated
counterparts, i.e., to identify an OD that allows the simulator to
replicate observed traffic patterns.

When a simulation-based trafficmodel is used, theOD calibration
is formulated as a high-dimensional continuous simulation-based
optimization (SO) problem. For a metropolitan area the problem
dimension (i.e., the number of non-zero OD entries) may be in the
tens of thousands, inducing a difficult SO problem due to its dimen-
sionality and its stochastic, simulation-based, non-differentiable
objective function. Moreover, each estimation of the objective func-
tion requires one or more simulation calls, each with non-negligible
compute times and costs.

In this paper, we consider the static OD calibration problem. We
pay particular attention to the issues of observability and identifia-
bility, and the inherent underdetermined (or underspecified) nature
of this problem. This arises from the large number (typically, a
continuum) of OD solutions that fit the field data equally well. In
the classical setting studied here, field count data is spatially sparse,
covering few network segments, and aggregated over coarse time
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periods (e.g., hourly vehicular counts). Moreover, not much informa-
tion is extracted from field data, typically only first-order moment
information. Hence, the problem is highly underdetermined.

Underdetermination has been a key concern since the early days
of OD estimation, and various regularization approaches have been
proposed [8]. Underdetermination is problematic in practice, since
typically a single solution is found and used to carry out counter-
factual analysis of a given transportation project (e.g., introduction
of congestion pricing). Once an OD is chosen, little or no analysis is
performed to evaluate the impact of changes to the OD on project
performance. We focus on mitigating the impact of underdetermi-
nation by adopting a probabilistic approach, where the output is
a probability distribution over possible OD solutions. This allows
for robust counterfactual analysis that accounts for the existence
of multiple solutions to the problem. .

While the degree of underdetermination can be reduced by in-
creasing system observability (e.g.,by installing new types of sen-
sors to collecting new forms of data, or sensors of the same type on
additional segments), this is costly for city agencies that manage
road networks. We instead study the added value of increasing the
amount of information that is extracted from existing sensors.

We develop a novel, adversarial, variational-inference technique
for this OD calibration problem.We exploit higher-order information
from the field data to mitigate the impact of underdetermination.
We formulate calibration as a distribution-matching problem whose
aim is to reproduce both low and high-order moments of the field
data. This contrasts with past work that matches only first-order
moments. Our method is directly applicable to time-dependent
settings with arbitrary types and amounts of field data. We test our
framework on a Salt Lake City (Utah, USA) road network and show
its ability to reduce the degree of underdetermination.

We propose a generative adversarial network (GAN) formulation
of the calibration problem. To the best of our knowledge, GANs
have so far been used to tackle traffic estimation and forecasting
problems [7], their use for the calibration of simulators has not
yet been explored. There is limited deep learning work for OD
calibration [15, 16]. This paper explores the ability of GAN-based
formulations to provide flexible calibration frameworks capable
of accounting for various types of both field data and calibration
parameters.

2 METHODOLOGY
2.1 General calibration framework
We integrate the RecSim NG simulation platform [10] with the
SUMO (Simulation of Urban Mobility) road traffic simulator [9].
RecSim NG is an open source probabilistic programming platform,
based on dynamic Bayesian networks, for specifying multi-agent
behavioral models.1 Its extensive modular library enables high-
resolution general-purpose simulation for Bayesian learning and
prediction, using automatic differentiation, program transforma-
tion, deep probabilistic programming, deep neural networks, and
hardware accelerators via a TensorFlow [1] runtime. RecSim NG
supports the learning of latent variables of generative models from
data (e.g., an OD for a traffic simulator, recommender system simu-
lations [10]). In this paper, we combine RecSim NG with GANs to
1See https://github.com/google-research/recsim_ng.

formulate the OD calibration problem as a GAN problem. GANs
have been used to generate synthetic traffic data [5] and predict traf-
fic flow [18] without learning the distribution of real data, instead
using a discriminator to distinguish real from generated data.

SUMO is an open-source stochastic microscopic road-traffic sim-
ulator. Our past work has used SUMO for calibration [4] and CO2
emissions estimation [3]. Like most microscopic traffic simula-
tors, SUMO uses non-differentiable demand and/or supply models.
Though many of its disaggregate demand models (e.g., route choice,
lane-changing, car-following) can be probabilistic, SUMO does not
derive likelihood estimates. Hence, one cannot estimate how likely
a given set of simulation inputs are to be consistent with field
data. The integration of GANs and RecSim NG allows us to use
differentiable optimization techniques to tackle high-dimensional
OD calibration problems and provide a Bayesian analysis of the
solutions. This is especially important in underdetermined prob-
lems: our approach yields a set of OD solutions that are consistent
with the underlying field data, and defines a distribution (i.e., likeli-
hood) over these solutions. Importantly, this integrated RecSim NG
-SUMO framework can be extended readily to arbitrary: (i) simu-
lation inputs (e.g., other demand and/or supply inputs), (ii) types
of field data (e.g., static sensor data, probe data), and (iii) types of
field data statistics (e.g., high-order moments).

2.2 Problem formulation
The dynamics of the simulated traffic network emerge from the
behavior of a large number of individual agents (i.e., each actor or
dynamic entity, such as vehicles and traffic lights). We assume that
the behavior of this network can be described as a Markov chain
with joint distribution 𝑃 over a state space S, defining the state and
dynamics of the simulated traffic network A trajectory 𝜏 ∈ 𝑇 of
this stochastic process reflects a possible evolution of the network
state over time. We assume a function 𝜙 : 𝑇 → R𝑛 defining the set
of observable features for a trajectory 𝜏 .

A traffic simulator𝑄𝜃 with parameters 𝜃 is a model of 𝑃 over the
same state space S. The calibration problem can be thus formulated
as follows. Given a real-world distribution 𝑃 , a parametric simulator
𝑄𝜃 , and an observation function 𝜙 , find simulator parameters 𝜃∗
that maximize the similarity of the real-world observation distri-
bution 𝑃𝜙 to the the simulated observation distribution 𝑄

𝜙

𝜃
. This

instantiates the following optimization problem:

𝜃∗ = argmin𝜃 𝐷 (𝑄𝜙

𝜃
, 𝑃𝜙 ) , (1)

with:
𝜃 : parameters to calibrate (OD demands) [veh/hour]
𝐷 : Divergence measure between distributions
𝑄
𝜙

𝜃
: 𝜃 -parametrized distribution of simulated segment counts

𝑃𝜙 : field data distribution of segment counts.
We focus on calibration of OD parameters, hence 𝜃 is a vector rep-
resentation of an OD. However, our formulation applies to the
calibration of arbitrary simulation inputs.

Adversarial calibration. The nature of the optimization problem
in Eq. (1) poses several challenges for microscopic traffic simulation.
First, most traffic simulators (and SUMO in particular) are imple-
mented as black-box Monte Carlo samplers from𝑄𝜃 , exposing only
sample-level access to the underlying distribution. This precludes



the computation of various important quantities used in inference
algorithms, such as log probabilities and their derivatives. Moreover,
not all random choices are logged in the simulator output, resulting
in an unknown number of latent variables (e.g., SUMO simulates a
driver’s lapse in judgement due to exhaustion as a random process).
Second, the target distribution 𝑄

𝜙

𝜃
is non-differentiable w.r.t. its

parameters (i.e., differentiation may be theoretically impossible or
simply computationally intractable). While approaches to overcom-
ing these issues generally involve rewriting the simulator code, we
instead develop a method that operates within these restrictions at
the expense of some statistical efficiency. Hence, our approach can
be used with black-box commercial simulators, where one does not
have access to the source code.

We define the adversarial simulation calibration problem as:

𝜃∗ = argmin𝜃 sup
𝑔∈Γ

𝐸𝑋∼𝑃𝜙 [𝑔(𝑋 )] − 𝐸
𝑋∼𝑄𝜙

𝜃

[
𝑓 ∗ (𝑔(𝑋 ))

]
, (2)

where 𝑓 ∗ is a convex function,𝑄𝜙

𝜃
is a generator, 𝑔 is a discriminator,

and Γ is a subset of function space {𝑔 : 𝑋 → R}. Intuitively, the
discriminator’s goal is to produce high values (in expectation) on
real data and low values on the synthetic data; that is, it tries to dis-
criminate the real and synthetic distributions (which is impossible if
the two are identical). Setting Γ = {𝑔 : 𝑋 → R}, this objective mini-
mizes a dual form of the 𝑓 -divergence 𝐷 (𝑃,𝑄) = 𝐸𝑄 [𝑓 (𝑃/𝑄)] [11],
with 𝑓 ∗ being the Fenchel conjugate of 𝑓 . If Γ is a Lipschitz function
and 𝑓 ∗ is the identity, it minimizes a dual form of the Wasserstein
distance [2]. Since optimization over {𝑔 : 𝑋 → R} is intractable,
we restrict this maximization over 𝑔 to some parametric family. Fur-
thermore, a smoothing regularizer might be added to prevent mode
collapse on the discriminator side [14], resulting in the objective:

𝜃∗=argmin𝜃 sup
𝜈∈𝑁

𝐸𝑋∼𝑃𝜙 [𝑔𝜈 (𝑋 )]−𝐸
𝑋∼𝑄𝜙

𝜃

[
𝑓 ∗ (𝑔𝜈 (𝑋 ))

]
+𝑅(𝜈) (3)

where 𝑔𝜈 , 𝜈 ∈ 𝑁 is a function with parameter vector 𝜈 . Eq. (3) lies
between the f-GAN and the w-GAN formulations depending on
the choices of discriminator and regularizer 𝑅(·). The design of
convergent solvers for Eq. (3) is not straightforward. Several classes
of convergent algorithms are known, we use the two-time-scale
descent algorithm [6] due to its simplicity.

3 CASE STUDY
We use SUMO model of a network within Salt Lake City, Utah,
USA. The road network and segment supply data (e.g. network
topology, segment geometry) is derived from Google Maps.2 To
assess underdetermination and the distance of the true OD from
the ODs produced by the algorithms, we use a synthetic OD as the
ground truth (GT). We run 90 independent simulations using the
GT OD to produce segment counts, which we treat as field data.

We use two OD calibration baselines: Simultaneous Perturbation
Stochastic Approximation (SPSA) [17] and the metamodel approach
of [4] (itself a simplification of [12, 13]). These baselines solve
the classical OD calibration formulation, as defined in Eq. (1) of
[13]. This formulation aims to match first-order moments of sensor
counts, and does not use higher-order moment information. We
use these methods as baselines to assess the added value of using
2https://developers.google.com/maps/documentation/roads/overview

Method Count nRMSE (%) OD nRMSE (%)
Mean Median Minimum

Initial Points 33.7 ± 6.1 119.0 118.8 101.9
Adversarial 7.7 ± 1.5 72.4 72.1 62.1

Metamodel (regularization) 5.7 ± 0.5 111 46.7 46.7
Metamodel (no regularization) 7.3 ± 1.5 205.8 109.1 86.2

SPSA (regularization) 25.7 ± 6.1 117.6 118.1 96.1
SPSA (no regularization) 25.4 ± 6.3 118.6 119.5 100

Table 1: nRMSE summary of the best OD solutions for each
method.

higher-order, as we do in our adversarial optimization technique,
in reducing the level of underdetermination.

We consider a 62-dimensional instance. Each of the 62 ODs has
three possible routes. Twelve segments are assumed to have field
data. This problem instance embodies significant underdetermi-
nation: segments have various routes contributing to their traffic,
hence the count data in the twelve segments with field data contains
limited information about the underlying OD.

We allow each baseline to run multiple parallel simulations and
optimization until convergence, with a maximum of 100 iterations.
We run each of the baseline methods 100 times with a uniformly ran-
dom initial point, and study the distribution of the performance of
these 100 OD solutions. Additionally, we run the baseline methods
with and without regularization based on a prior OD.

To quantify the fit of an OD, we use the nRMSE as defined in [4].
We allow a maximum of 100 iterations of simulation and optimiza-
tion to all methods. The metamodel approaches converge within
15, the adversarial method converges in 50 and SPSA does not con-
verge even after 100 iterations. Since our adversarial techniques
yield an OD probability distribution, rather than a point OD, it is
only run once, rather than 100 times. We use the prior OD as the
initial point, but do not implement any form of regularization. For
each initial point and each method, the point that has the least loss
across all iterations is chosen as the best point.

Table 1 quantifies the nRMSE for each method. For each baseline
method, nRMSE is the average across all 100 best solutions. For the
adversarial method, we generate a sample of 250 ODs from the best
OD solution (which is an OD distribution) and compute average
nRMSE across the sample. Column 1 shows percentage nRMSE for
the counts, i.e., it measures the distance between the ground truth
counts and the simulated counts of the best OD solutions. Similarly,
column 2 shows percentage nRMSE for the ODs themselves.

The SPSA methods, both with and without regularization, have
similar performance. Their solutions offer only a slight improve-
ment over the initial points. The metamodel method without regu-
larization has substantially better fit to counts than SPSA, however
its fit to ODs is much worse than that of the initial point. This is
indicative of a highly underdetermined problem, where many differ-
ent ODs with a good fit to counts can be found. The baseline with
the best performance is the metamodel with regularization. Both
its fit to counts and to ODs is substantially better than SPSA and to
the unregularized metamodel approach. For 82% of the 100 runs,
the average nRMSE for its ODs is 46.7%; however for the remaining
18% the average OD nRMSE is 400%. In other words, frequently
the solutions proposed by the regularized metamodel method ex-
hibit strong performance both in terms of fit to counts and fit to
ODs. However, there is a non-negligible subset of starting points



Figure 1: Comparison of best ODs identified by the meta-
model with regularization (top and lower left plots) and the
adversarial method (lower right plot).

for which the identified OD is very far from the ground-truth OD.
Again, this is a consequence of the problem’s underdetermination.
Compared to the baselines, our adversarial method achieves a good
fit to counts—comparable with the metamodel—while providing
a significantly better mean fit to ODs. This demonstrates that the
model uses second order information effectively to eliminate OD
solutions that are far from the ground truth.

The top plot in Figure 1 considers the metamodel method with
regularization. The 𝑥-axis is an OD index and the 𝑦-axis is the
mean difference between the ground-truth OD and the solution OD.
Error bars have a half-width of one standard deviation. This plot
shows that average difference is not high, but there is substantial
variability, highlighting the underdetermination of the problem.
The lower left plot of Figure 1 considers the same method but only
considers the 82 OD solutions mentioned above, which have a low
nRMSE w.r.t. the OD. It shows that if we exclude the very poor
solutions, the metamodel method performs very well. However, this
performance is still reliant on the quality of the prior OD supplied
to the optimization. The lower right plot of Figure 1 considers the
sample of 250 ODs sampled from the adversarial method. It has the
same y-axis range as the lower left figure, but unlike the lower left
plot, it does not exclude any outlier ODs. The right plot shows that
the average difference to GT ODs is small for the solutions derived
by the adversarial approach. Moreover, the error bars are small,
and there are no outlier ODs. This shows the added value of our
adversarial approach in reducing underdetermination.

4 CONCLUSION
In this paper we investigated an adversarial variational inference
approach to tackle demand calibration problems for stochastic traf-
fic simulators. The results of our investigations indicate that our
formulation contributes substantially to the mitigation of underde-
termination by matching higher-order moments of the field data.
Our approach extracts more information from existing field data,

eliminating or reducing the need to deploy new sensors for accurate
calibration. Importantly, it easily generalizes to the use of arbitrary
field data statistics and types, such as individual trip times, spatio-
temporal correlations and to the calibration of arbitrary demand
parameters such as driver behavioral characteristics and prefer-
ences over routes. The proposed approach yields an OD probability
distribution, as opposed to a single point estimate. We consider this
an important step toward the routine adoption of uncertainty quan-
tification in calibration and transportation optimization problems.
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