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Matching buyers and sellers is one of the most fundamental problems in economics and market design. An
interesting variant of the matching problem arises when self-interested buyers come together in order to
induce sellers to offer quantity or volume discounts, as is common in buying consortia, and more recently in
the consumer group couponing space (e.g., Groupon). We consider a general model of this problem in which a
group or buying consortium is faced with volume discount offers from multiple vendors, but group members
have distinct preferences for different vendor offerings. Unlike some recent formulations of matching games
that involve quantity discounts, the combination of varying preferences and discounts can render the core of
the matching game empty, in both the transferable and nontransferable utility sense. Thus, instead of coali-
tional stability, we propose several forms of Nash stability under various epistemic and transfer/payment
assumptions. We investigate the computation of buyer-welfare maximizing matchings and show the exis-
tence of transfers (subsidized prices) of a particularly desirable form that support stable matchings. We also
study a nontransferable utility model, showing that stable matchings exist; and we develop a variant of the
problem in which buyers provide a simple preference ordering over “deals” rather than specific valuations—a
model that is especially attractive in the consumer space—which also admits stable matchings. Computa-
tional experiments demonstrate the efficacy and value of our approach.
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[Computer Applications]: Social and Behavioral Sciences—Economics
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1. INTRODUCTION
Matching buyers and sellers is one of the most fundamental problems in economics and
market design. A wide variety of models and mechanisms have been developed that re-
flect different assumptions about the demands, valuations/preferences, and knowledge
of the market participants and their ability to cooperate. Each leads to its own compu-
tational challenges when developing algorithms for computing stable (core) matchings,
Nash equilibria, clearing prices or other solution concepts.

In this paper, we address the problem of cooperative group buying, in which a group
of buyers coordinate their purchases to realize volume discounts, mitigate demand
risk, or reduce inventory costs. Group buying has long been used for corporate pro-
curement, via industry-specific buying consortia or broadly based group purchasing
organizations (GPOs) [Chen and Roma 2010]. The advent of the Internet, in particu-
lar, has helped businesses with no prior affiliation more easily aggregate their demand
[Anand and Aron 2003]. Consumer-oriented group purchasing has also been greatly fa-
cilitated by the web; and the recent popularity of volume-based couponing and “daily
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deal” providers like Groupon and Living Social (and services that aggregate such deals)
has propelled group discounts into the public consciousness.

Group buying and demand aggregation has been studied from several perspectives,
and many models have been proposed for their analysis. However, we consider a vital
ingredient of group buying that has received insufficient attention in the literature,
namely, the fact that buyers often have distinct preferences for the offerings of different
vendors. Most matching models with volume discounts assume that vendor offerings
are indistinguishable to buyers, which significantly limits their applicability. For in-
stance, suppose two buyers X and Y are (jointly) comparing the offers of two vendors
for some item: A offers a price of 10 for one unit, but a discounted price of 8 if both buy
from him; and B offers a single price of 9 per unit. If A and B are indistinguishable, X
and Y should cooperate and buy from A. But supposeX prefers B (with valuation 11.5)
to A (valuation 10). In this case, X would prefer to stick with B unless Y offers some
payment to switch vendors (Y would gladly share some of her generated surplus with
X for this purpose). Without the ability to express preferences over vendors, “group
buying” would not emerge even in this trivial example.

While matching becomes much more subtle in such models, assigning buyers to
vendors in a way that triggers volume discounts, while remaining sensitive to buyer
preferences, offers flexibility and efficiency gains that greatly enhance the appeal of
group buying. Consider a group of businesses or buyers working with a GPO to procure
supplies within a specific product category (e.g., manufacturing materials, packaging,
transportation, payroll services, etc.). The GPO is able to negotiate volume discounts
from a handful of suppliers or vendors, possibly with multiple discount thresholds.
Buyers generally have different valuations for the offerings of different vendors (e.g.,
buyers may have slightly different manufacturing specifications; or may prefer the
contract, payment or delivery terms of certain vendors). A suitable matching of buyers
to vendors must trade off these preferences with the triggered discount prices.

The same issues arise in consumer domains. Suppose a daily deal aggregator cre-
ates a “marketplace” for some product category, say, spas. Multiple spas offer deals
that only trigger if a certain quantity is sold. Buyers are faced with a dilemma: they
may want only one item, but are uncertain about which deal will trigger. If they only
offer to buy (i.e., conditionally purchase) their most preferred spa, they may not get
any deal if their preferred deal does not trigger. But if they offer on multiple spas to
hedge that risk, they run the opposite risk of obtaining more items than they want.
A matching model that allows consumers to specify preferences for items relative to
their discounted prices provides flexibility that benefits both consumers and retailers.

Our model. In broad strokes, our model assumes a set of vendors offering products
(e.g., within a specific product category). Interacting with some GPO or informal buy-
ing group, vendors offer (possibly multiple) volume discounts that trigger if the group
collectively buys in a certain quantity. We assume these are proposed or negotiated in
advance, and take them to be fixed, posted prices. For ease of exposition, we assume
buyers have unit demand, hence treat items as partial substitutes. Each buyer has
valuations for each item and quasilinear utility.

Since vendor prices are fixed, our aim is to find an allocation of items to buyers that
maximizes social welfare (i.e., sum of buyers’ utilities) given the discounts that trigger,
while ensuring stability, or buyer “satisfaction” with the resulting allocation at the
triggered prices. We consider two main variants of this problem. In the transferable
utility (TU) model, the gains due to demand aggregation can be transferred between
buyers to ensure cooperation. In the non-transferable utility (NTU) model, each buyer
pays the (triggered) price of her allocated item. Both models have a role to play in spe-
cific business and consumer applications. We also consider various forms of knowledge



and recourse on the part of the buyer (e.g., whether they know only which discounts
triggered, or have knowledge of the entire allocation and discount schedule).

Our results. Since vendor prices are fixed given some demanded quantity, the model
induces a coalitional game among the buyers, which we refer to as a discount match-
ing game. Vendor discounts introduce significant externalities in the corresponding
matching problem: this leads to the emptiness of core of such games in certain in-
stances, both in the TU and the NTU sense. As a consequence, we consider unilateral
deviations from the matching, and focus on the weaker notion of Nash stability under
several different epistemic assumptions.

We focus first (and primarily) on TU games. We establish that stable matchings (un-
der all epistemic assumptions) not only exist, but that they maximize social welfare.
Moreover, they can be realized using transfers only between buyers that are matched
to the same vendor. We then consider computation of social welfare maximizing match-
ings: we show that the corresponding decision problem is NP-complete, but that, given
a (fixed) set of discount prices, computing an optimal allocation can be done in poly-
nomial time. As a result, a mixed integer programming (MIP) model of the problem
can be formulated in which binary matching variables can be relaxed (as is typical in
matching/assignment problems [Roth et al. 1993]), leaving a MIP whose only integer
variables represent the triggering of specific discount thresholds (which, in practice,
are relatively few). Experiments demonstrate the efficacy of the formulation.

We then consider the NTU discount matching game, and show stable matchings
exist. Finally, we consider qualitative discount matching games, a variant in which
buyers do not specify valuations for items, but simply rank the deals offered (where a
deal is any item and one of its discounted prices). This model is especially appealing
in consumer domains, where buyers may be unable to articulate precise valuations for
items, but can easily compare any two items at specific prices. As long as the rank-
ings are rationalizable (i.e., correspond to quasi-linear preferences under some latent
valuation), again stable matchings are guaranteed to exist.

We do not address incentive issues with respect to reporting of buyer preferences.
This is an important part of the design of such markets, but one we leave to future
research. Truthful reporting of valuations is commonly assumed in work on procure-
ment and inventory management (see below), where parties interact repeatedly. Sim-
ilarly, we assume that sellers simply post (base and discounted) prices without regard
to strategic interaction with buyers. While interactions between sellers w.r.t. strategic
price-setting is also of interest, the way in which “between-seller” equilibrium prices
and discount schedules are set does not impact group buying decisions.

Related work. Assignment games and matching markets have a rich history, and
the literature is rife with connections between various forms of (individual and coali-
tional) stability, competitive equilibrium prices, etc. [Shapley and Shubik 1971; Gale
and Shapley 1962; Demange et al. 1986]. While a general discount market model
would consider strategic behavior on the part of both buyers and sellers, we take seller
prices as given and focus on the one-sided problem that results by considering only
the strategic behavior of buyers. Of special relevance is work on assignment models,
auctions, and procurement optimization that deals explicitly with quantity discounts,
buyer/bidder cooperation, and externalities in assignments.

Within the context of auctions, Kothari et al. [2005] consider multi-unit (reverse)
auctions with discount tiers, and use the VCG mechanism, but consider only a single
buyer with no preferences over sellers.1 Conversely, Matsuo et al. [2005] model the

1They also consider forward auctions with decreasing marginal utilities (see also [Lehmann et al. 2006]).



problem of a single seller offering multiple items, each with discount schedules. Buy-
ers with combinatorial preferences bid for items, and allocations/prices are set using
VCG; unlike our model, the discounts are not “posted prices” in the usual sense, but
are merely used as reserve prices. While the mechanism and assumptions are quite
different, and computation is not considered, their motivations are similar to ours.
Leyton-Brown and Shoham [2000] study bidding clubs which collude in auction mech-
anisms to lower prices, and devise payment schemes that induce participation.

For an overview of the literature on group buying, see [Anand and Aron 2003; Chen
and Roma 2010]. Discount schedules have received considerable attention in the op-
erations research literature on procurement. Some work considers procurement opti-
mization in the face of discounts, e.g., Goossens et al. [2007] deal with the problem of
optimizing the procurement of multiple goods by a single buyer faced with suppliers
offering total quantity discounts (which they show to be NP-hard and inapproximable).
Most closely related to our problem is work on cooperative procurement and inventory
pooling which models the problem of retailers coordinating their purchases from multi-
ple suppliers. While this can be used to generate volume discounts, another motivation
is to mitigate risk and lower restocking and holding costs. Of course, all buyers benefit
from this cooperation, and the gains must be shared, leading to a cooperative game.
van den Heuvel et al. [2007] develop a model of this problem, and show that the core
of the resulting game is non-empty, but do not consider discounts or buyer preferences
for different suppliers (see [Drechsel and Kimms 2010] for a procedure for computing
the core of this game). Chen [2009] considers a multistage model of inventory pooling
that incorporates volume discounts. The buying group places orders with suppliers—
prior to buyers receiving demand signals for their products, much like news-vendor
models—who immediately ship items to warehouses for holding. Once the demand is
known, buyers draw on the stock from various warehouses. While buyers have no pref-
erences over suppliers, transportation costs from each warehouse differ, so they do
have preferences over which warehouses fulfill their demands. Chen shows that the
core of the resulting game is non-empty when: supplier prices are linear (i.e., there
are no discounts); or there are discounts, but all buyers draw from a single warehouse.
Since buyer “preferences” are only for warehouses, his core existence result can be in-
terpreted in our setting (conceptually at least) as applying when quantity discounts
are offered, or when buyers have preferences over suppliers. Our results show that
when both factors are considered, the core may be empty.

Recently, the “Groupon phenomenon” has attracted academic attention, leading to
several interesting investigations of its economic value, but much of this comes from
the perspective of retailers and their strategies, potential gains, etc. (see, e.g., [Edel-
man et al. 2011]), and sets aside the possibility of deal aggregation and optimal deal
assignment to a buying group. Finally, considerable attention has been paid to match-
ing markets with externalities (see, e.g., [Sasaki and Toda 1996; Echenique and Yen-
mez 2007; Hafalir 2008; Kominers 2010; Bodine-Baron et al. 2011]). As in our case,
externalities cause difficulties for stability in many of these models.

2. BACKGROUND
We focus on the coalitional game induced among buyers, so we describe key concepts
from cooperative game theory (see, e.g., [Myerson 1991]). Let N be a finite set of n
agents. A coalitional game with transferable utility (TU-game) is specified by a charac-
teristic (or value) function υ : 2N → R, which

defines the value υ(C) of each coalition C ⊆ N . Intuitively, υ(C) is the payoff mem-
bers of C jointly receive by cooperating effectively: only the total payoff matters since
it can be transferred freely among the members of C. A payoff vector t = (t1, ..., tn)
assigns a payoff to each i ∈ N .



Definition 2.1. The core of a TU-game is the set of payoff vectors t s.t.
∑
i∈N ti =

υ(N) and
∑
i∈C ti ≥ υ(C) for all C ⊆ N .

A payoff vector in the core of a TU-game is sufficient to ensure that no coalition of
agents deviates from some prescribed course of action.

A coalitional game with non-transferable utility (NTU-game) is given by a value
function υ that assigns to each C ⊆ N a set of feasible (local) payoff vectors υ(C) ⊆ R|C|.
Intuitively, these are the possible vectors of payoffs that agents in C could (individu-
ally) receive if they act cooperatively. These payoffs cannot be transferred.

Definition 2.2. The core of an NTU-game is the set of payoff vectors t ∈ υ(N) s.t.
there is no t′ ∈ υ(C), for any C ⊆ N , where t′i > ti for some i ∈ C, and t′i ≥ ti for each
i ∈ C.

3. DISCOUNT MATCHING AND SOLUTION CONCEPTS
A discount matching market involves a collection of items with sufficient similarity
that many buyers consider them to be partial substitutes. The elements of the mar-
ket are as follows. We have a buying group of n buyers, i ∈ N , who have agreed to
coordinate their purchases in a particular item category. We have m vendors, j ∈ M ,
each offering a single, differentiated item within the category. Vendor quantities are
assumed to be sufficient to meet the needs of the buying group (i.e., unlimited for prac-
tical purposes), and each vendor j posts a discount schedule consisting of two vectors:
a vector of D positive discount thresholds [τ1j , τ

2
j , . . . , τ

D
j ], with τdj < τd+1

j for all d < D;
and a vector of D + 1 positive prices [p0j , p

1
j , . . . , p

D
j ], with pdj > pd+1

j for all d < D. The
interpretation is straightforward: if the total purchase volume committed by a buying
group to that vendor is at least τdj , but less than τd+1

j , the vendor sells the item for a
unit price of pdj . Define τ0j = 0, which gives a base (undiscounted) price of p0j .2 Each
buyer i ∈ N has her own preferences over vendors/items given by a utility function
or valuation vi : M 7→ R. Here vi(j) = vij denotes i’s valuation for vendor j’s product.
Buyers have quasi-linear payoffs: should i obtain j for price p, her net utility or payoff
is πi = vij − p. We focus on the case of unit demand: each buyer wants at most one
item.3 We assume a dummy item, with price and valuation 0 for every buyer, which
allows any buyer to remain “unmatched.”

Formally, a discount matching market takes the form DM = (N,M, (δj)j∈M , (vi)i∈N )
with: N , the set of buyers; M , the set of vendors/items; a set of discount schedules,
δj = (τj , pj) for each vendor j; and a set of valuation functions, vi for each buyer i.

Given the preferences of the buyers and the (discounted) prices posted by the ven-
dors, our aim is to find an assignment or matching of buyers to vendors that satisfies
some objective on the part of the buying group. Formally, a matching is simply a map-
ping µ : N 7→ M , with µ(i) = j indicating that buyer i has been assigned to purchase
item j. Let n(µ, j) = |µ-1(j)| denote the number of buyers matched to vendor j un-
der µ, and pj(q) the price of j that triggers if quantity q is demanded. We denote by
pj(µ) = pj(n(µ, j)) the discounted price for item j triggered by matching µ, and p(µ) the
corresponding price vector. The payoff vector for matching µ (ignoring possible trans-
fer) is π(µ), where i’s payoff under µ is π(µ)i = vi(µ(i))− pµ(i)(µ).

2The one to one correspondence between vendors and items, and fixed number of discount thresholds D
across vendors is for ease of exposition only.
3This is for ease of exposition. The extension to multi-unit demand is trivial if demands are homogeneous,
and the model requires only modest modifications if demand is heterogeneous. The extension to combinato-
rial preferences is more involved and is left as future work.



X: A:4, B:0

Y: A:4, B:0

Z: A:2, B:2

A: 0:3; 3:2; 8:1

B: 0:1

Buyers

(Valuations)

Vendors

(Discounts)
(a)

X: A:5, B:4, C:1

Y: B:5, C:4, A:1

Z: C:5, A:4, B:1

A: 0:3; 2:1

B: 0:3; 2:1

C: 0:3; 2:1

Buyers

(Valuations)

Vendors

(Discounts)
(b)

Fig. 1. Two discount matching markets. Buyers X, Y and Z are shown with their valuations for specific
vendors (S :v indicates value v for vendor S). Vendors A, B and C are shown with the discount schedules
(each q :p indicates a threshold quantity q and associated unit price p).

Given matching µ, the buying group is responsible for paying the total price in-
curred at the demanded quantities. The responsibility can be passed on directly to
the buyers—i.e., if µ(i) = j then i pays pj(µ)—or the prices of certain buyers may be
subsidized by increasing the payments of others. The latter case requires that utility
be transferred between buyers in the form of payments, while the former presumes
nontransferable utility. We elaborate on each of these models.

3.1. Transferable Utility
The transferable utility (TU) assumption allows side payments between buyers to in-
duce cooperation. Some buyers may subsidize the prices paid by others if this can
profitably trigger new discounts. For example, in Fig. 1(a), buyers X and Y are only
willing to purchase item A; and Z will only buy B (at the base price, with payoff of 1),
even if the first discount triggers for A. This means X and Y pay the base price for
A (payoff 1 each). But they would benefit if Z bought A: this would trigger a discount,
reducing their costs by 1 each. If they agreed to subsidize Z ’s purchase by each offering
a side payment of some amount 0.5 < s < 1.0, all three would benefit: Z ’s payoff is now
2s > 1, and X and Y have payoff 2− s > 1. Such side payments make sense for indus-
trial buying consortia, where the demands of the buyers are aggregated by a central
coordinator who finds deals on their behalf.4 This may also be appropriate in certain
consumer buying groups (e.g., where there is sufficient familiarity so that buyers are
willing to pay more than “posted” (discounted) prices). A key distinction between our
model of demand aggregation/group buying and those considered more traditionally is
that we explicitly allow buyers to express preferences over different product offerings.

The most natural way to match buyers and vendors under TU is to find a match-
ing that maximizes total buyer payoff, and then determine payments that render this
matching stable in the sense that that no buyer wants to deviate from the matching.
We first consider stability w.r.t. coalitional deviations, defining core matchings in the
discount matching market. We make use of the following concepts. The sub-problem
DM (S) of DM is the matching problem induced by restricting DM to the set of buy-
ers S ⊆ N (with discounts schedules and preferences of i ∈ S unchanged). The social
welfare of a matching µ in DM is the surplus realized by the buyers:

SW (µ;DM ) =
∑
i

π(µ)i =
∑
i

vi(µ(i))−
∑
j

n(µ, j)pj(µ).

MSW (DM ) is the social welfare of the matching µ∗(DM ) that maximizes total buyer
surplus. A transfer vector t ∈ RN for DM is any vector of payoffs, where ti is inter-
preted as a (possibly negative) payment to buyer i for participating in the buying
group. Transfer vector t is feasible for matching µ iff

∑
i ti ≤ SW (DM ). The net payoff

4In general, such consortia will often negotiate volume prices on behalf of the group. This introduces a
strategic element to price setting that we deliberately ignore in this paper (see earlier comments).



vector for matching µ with transfers t is ρ(µ, t), where i’s net payoff under (µ, t) is:

ρ(µ, t)i = π(µ)i + ti = vi(µ(i))− pj(µ) + ti.

Definition 3.1. Let DM = (N,M, (δj)j∈M , (vi)i∈N ) be a discount matching market
with transferable utility, µ some matching, and t ∈ RN a feasible transfer for µ. Then
(µ, t) is in the core of DM iff there is no coalition S ⊆ N such that the submarket DM (S)
admits matching µS and feasible transfer tS that makes all members of S better off. In
other words, for any S and matching µS , there is no feasible transfer tS ∈ R|S| for µS
such that ρ(µS , tS)i > ρ(µ, t)i for all i ∈ S.

This definition of a core allocation (matching-transfer pair) is strong in that it requires
that any defecting coalition be able to obtain better value without considering the ac-
tions of buyers outside that coalition. However, the following observation regarding
the potential emptiness of the core applies equally to weaker concepts (e.g., that an-
ticipate discounts triggered by buyers outside the coalition). The discount matching
game is clearly superadditive, so one can define the core using a characteristic func-
tion representation and focus purely on division of the total payoff MSW (DM ) under
the socially optimal matching. Instead, we defined it explicitly in terms of matchings
so that parallels to NTU markets and Nash stability are more evident below.

Unfortunately, the core is not a reliable solution concept under TU:

OBSERVATION 3.2. The core of a discount matching market with TU can be empty.

Fig. 1(b) shows a DM with an empty core. There are three surplus maximizing match-
ings, one corresponding to each item: the matching for an item assigns the pair of buy-
ers with valuations (5, 4) to that item (e.g., X and Y to B), and the third buyer to their
most preferred undiscounted item (e.g., Z to C). Each has SW (µ) = 9 = MSW (DM ).
However, none of these is in the core. Consider matching µ1(X) = µ1(Y ) = B,
µ1(Z) = C. Any t that renders µ1 stable must split the surplus of 7 generated by
X and Y among them so that that at least one of them attains payoff of no more than
3.5. If X ’s payoff is less than 3.5, then DM ({X,Z}) renders µ1 unstable, since X,Z can
agree to purchase A, and share the generated surplus of 7 in a way that makes both
better off (e.g., X takes 4 and Z takes 3). If Y ’s payoff is less than 3.5, then DM ({Y,Z})
renders µ1 unstable, since Y,Z would agree to purchase C. As a consequence we will
instead consider matchings that are unilaterally or Nash stable below.

3.2. Non-transferable Utility
Transfers in a discount matching market are infeasible or undesirable in some set-
tings. In consumer group buying, for example, a deal aggregator may collect a set of
deals in a specific product category (e.g., spas, restaurants, etc.) with posted discount
prices, and attract otherwise “unaffiliated” consumers considering these products. Con-
sumers may be wary of paying “variable” prices that differ from posted discounts. In
business settings, members of a GPO may be willing to aggregate their demand, but
may be unwilling to explicitly subsidize the purchases of a competitor. Transfers can
also greatly increase the opportunity for manipulation (see Sec. 8).

In a nontransferable utility (NTU) market, buyer i’s utility for a matching µ is ex-
actly her payoff π(µ)i = vi(µ(i)) − pµ(i)(µ), so no transfers need to be considered. Core
matchings in an NTU market are defined as follows:

Definition 3.3. Let DM = (N,M, (δj)j∈M , (vi)i∈N ) be a discount matching market
with nontransferable utility. Matching µ is in the core of DM iff there is no coalition
S ⊆ N such that submarket DM (S) admits a matching µS that makes all members of
S at least as well off, and at least one member strictly better off. In other words, for



any S and matching µS for DM (S), we have either: π(µS)i < π(µ)i for some i ∈ S; or
π(µS)i = π(µ)i for all i ∈ S.

As in TU games, the core is too strong a solution concept for NTU markets:

OBSERVATION 3.4. The core of a discount matching market with non-transferable
utility can be empty.

The emptiness of the core in a TU market does not imply that the core of the corre-
sponding NTU game is empty, since the inability to make transfers restricts the ability
of certain coalitions to form. However, the example in Fig. 1(b) discussed above has no
core matching even under the NTU assumption.

3.3. Nash Stability
Since core matchings may not exist in discount matching markets, we focus in the
remainder of the paper on stable matchings in the Nash sense: a matching (together
with an transfer vector if TU is assumed) is stable if no buyer can unilaterally achieve a
higher payoff by choosing to buy a different item at the posted discounted price induced
by the matching (accounting for her deviation).

If µ is a matching, let µ[i ← j] be the matching that is identical to µ with the ex-
ception that i is matched to j (if µ(i) = j, then µ[i ← j] = µ). We define three notions
of stability depending on what price a buyer can unilaterally demand. If buyers are
able to select arbitrary vendors and benefit from the discount that results (including
any additional discount they trigger), then i deviating from µ to a different vendor j
gives her payoff π(µ[i ← j])i. If i can deviate to j, but is not permitted to trigger a
new discount threshold, she must accept the current price for j as triggered under µ,
realizing payoff vij − pj(µ). Finally, if buyers deviate from their assignment, they can
be “banished” from the buying group, leaving them to pursue their best outside option,
which we take to be their preferred product at the base prices (i.e., when no discounts
are offered). Let θi = maxj vij − p0j be i’s outside option (or reservation) value.

Definition 3.5. Let DM = (N,M, (δj)j∈M , (vi)i∈N ) be a discount matching market
with non-transferable utility. Matching µ is strongly stable iff π(µ[i ← j])i ≤ π(µ)i for
any buyer-vendor pair (i, j). Matching µ is myopically stable iff vij − pj(µ) ≤ π(µ)i for
any (i, j). Matching µ is weakly stable iff θi ≤ π(µ)i for any (i, j).

Strong stability is the most robust of these solution concepts. It ensures coherence of
the buying group in situations where buyers are unknown to one another, unable to
easily negotiate with each other, or have little knowledge of each other’s preferences
(making coalitional deviation unlikely); but they do know item purchase volumes and
which discounts triggered, hence the prices they could demand in the presence of other
buyers. Myopic stability is suitable when triggered discounts are public, but buyers are
unaware of either purchase volumes or discount thresholds (common in some consumer
settings). Finally, weak stability, the solution concept with least applicability, might
reflect a buying consortium that can “dictate” buyer behavior (with opting out of the
group the only recourse available to a buyer). Clearly, strong stability implies myopic
stability, which in turn implies weak stability.

Things are more subtle in the TU model. The possibility of transfers means that a
buyer i, matched to item j, could “agree” to help subsidize the price paid by another
buyer (say k) for j, thereby triggering a discount that lowers i’s price. One possible
deviation by i involves reneging on the subsidy agreement, by dropping her matched
item j, then attempting to be rematched with j at its discounted price without paying
her (part of the) subsidy to other buyers. No consortium would permit i to benefit
this way, since without i’s subsidy, k might not agree to purchase item j. Let (µ, t) be a



matching-transfer pair and s(j;µ, t) be the set of subsidized buyers k matched to item j
that receive a positive transfer (i.e., µ(k) = j and tk > 0). We define i’s payoff in the new
matching µ[i ← j] as follows: (a) if µ(i) 6= j, then ρ(µ[i ← j], t[i ← j])i = π(µ[i ← j])i;
(b) if µ(i) = j, then ρ(µ[i ← j], t[i ← j])i = vi(µ(i)) − pj(n(µ, j) − |s(j;µ, t)|). In other
words, i’s payoff is defined by assuming that any subsidized buyer matched to the same
item j loses incentive to participate.5 We need not specify the “updated” transfer vector
t[i← j]; we require only that ti = 0 after defection.

Definition 3.6. Let DM = (N,M, (δj)j∈M , (vi)i∈N ) be a discount matching market
with TU. Matching-transfer pair (µ, t) is strongly stable iff ρ(µ[i ← j], t[i ← j])i ≤
ρ(µ, t)i for any buyer-vendor pair (i, j). The pair (µ, t) is myopically stable iff vij −
pj(µ) ≤ ρ(µ, t)i for any (i, j). Matching µ is weakly stable iff θi ≤ ρ(µ, t)i for any (i, j).

The motivation and application for these solution concepts are similar to those above.
We now turn to the existence of stable matchings in both the TU and NTU models.

4. STABILITY AND EFFICIENCY UNDER TU
We first investigate stable matchings in the TU model, showing the existence of buyer-
welfare maximizing strongly stable allocations (or matching-transfer pairs), despite
the externalities created by volume discounts. This can be viewed as determining a
form of personalized market clearing prices with the “consortium” or GPO acting as an
intermediary. We then turn to the computation of welfare maximizing matchings and
the required transfers.

4.1. Existence of Stable Matchings
Since the TU matching market is superadditive, the grand coalition maximizes social
welfare. While the core is empty, we will show that any social welfare maximizing
matching is in fact strongly stable by deriving appropriate side payments.

Given a market DM under the TU assumption, let µ be a social-welfare maximizing
(SWM) matching (i.e., µ maximizes buyer surplus). Without side payments, µ may not
be (even weakly) stable: Fig. 1(a) is an example where the SWM µ, which assigns all
buyers to item A, cannot be sustained (even weakly) without a side payment to Z.
Obviously, welfare maximization may require assigning a buyer to an item for which
she has a negative payoff to obtain a larger discount benefitting other buyers.

However, stability can be realized in any SWM µ if transfers are allowed. We refer
to any buyer i who is matched in µ to the item that maximizes her payoff at current
prices and demanded quantities as an ISM (individual surplus maximizing) buyer; i.e,
π(µ)i = maxj π(µ[i ← j])i. Conversely, a buyer matched to an item that provides a
lower payoff than some other item is a non-ISM buyer. Stability requires that some of
the surplus generated by ISM buyers be transferred to non-ISM buyers. The transfer
to any non-ISM k must be being sufficient to prevent k from preferring a product dif-
ferent from µ(k), and the transfer extracted from ISM buyer i must be small enough
to maintain µ(i) as her preferred product. This can be seen as a form of personalized
pricing, where ISM buyer i pays a price pµ(i) + ci for µ(i), where ci is her contribution
to the subsidies (i.e., a negative transfer ti); and where any non-ISM k pays a price
pµ(k) − sk for µ(k), where sk is her subsidy (or positive transfer tk).

First we show that such transfers exist, and furthermore, that the transfers can be
limited so that ISM buyers matched to a specific item j subsidize only non-ISM buyers
matched to the same item. This ensures that the allocation is budget balanced in a

5We could also consider defections of non-subsidized buyers matched to j, but these only lower i’s payoff
further. Since stability holds w.r.t. “subsidized” defections (see below), it holds under this stronger notion
too.



strong sense: the total paid by buyers matched to vendor j is exactly that required by
j under µ.6 We introduce some notation: let π∗−j(i, µ) = maxj′ 6=j π(µ[i ← j′])i denote i’s
payoff if matched to the product j′ 6= j that maximizes her payoff at current prices and
demanded quantities.

THEOREM 4.1. Given any SWM matching µ, there exists a transfer vector t such that
(µ, t) is strongly stable. Furthermore, the matching is per-vendor budget balanced: for
any vendor j,

∑
{ti : i ∈ µ-1(j)} = 0.

PROOF. We provide a proof sketch, showing that for each vendor j, balanced trans-
fers can be made among only those buyers matched to j. Some notation:

•Let N0 = µ-1(j) be the set of buyers matched to item j. Let N+
0 = {i ∈ N0 : ISM(i)}

be the buyers in N0 satisfying ISM. Let N−0 = N0 \ N+
0 be the buyers not satisfying

ISM. Let p0 = pj(µ) be the price of j in µ.
•For any k ≥ 1, let Nk = N+

k−1 and pk = pj(|Nk|). Then define N+
k = {i ∈ Nk :

ISM(i, j, pk)}. These are the buyers in N+
k whose who prefer to remain matched to j

even if its is increased to pk (the price induced if the number of matched buyers is
reduced to |Nk|).
•For any k ≥ 1, define N−k = Nk \ N+

k to be those buyers who would prefer to be
matched to a new item if the price of j is increased to pk.

Intuitively, the set N−0 are those buyers unwilling to be matched to j at its current
price given current demanded quantities of other items, and require some subsidy;
N+

0 are those who prefer j and should be willing to subsidize buyers in N−0 . Notice
since µ is SWM, N+

0 is empty only if N0 is empty (otherwise welfare would increase by
switching all buyers away from j in µ). However, not all buyers in N+

0 = N1 are willing
to provide equal subsidies. N1 can be further broken down into: those buyers N+

1 who
would prefer j even if the price were increased to p1 (which would happen if buyers in
N−0 switched to their most preferred product); and those N−1 who have a better option
than j at the increased price p1. Those in N+

1 would be willing to pay at least p1− p0 to
see the price of j remain at p0. Any i ∈ N−1 is willing to pay at most vij − p0 − π∗−j(i, µ).

This line of argument can be extended. Let K be the largest integer such that NK 6=
NK−1: such a K must exist because at least one buyer must be removed (starting from
N0) at each iteration until either some Nk is empty, or the price pk fails to increase.
We then have must have: (a) For any buyer i ∈ NK , vij − pK−1 ≥ π∗−j(i, µ) (note: NK
may be empty). Any such buyer is thus willing to pay (at least) up to pK−1 for j; i.e.,
i will continue to maximize her surplus with product j even if she pays a premium
of up to pK−1 − p0 above the nominal price p0 under µ. (b) For any buyer in i ∈ N−k
(1 ≤ k ≤ K − 1), we have vij − p0 > vij − pk−1 ≥ π∗−j(i, µ) > vij − pk. Thus any such
buyer continues to maximize her surplus with product j even if she pays a premium of
up to vij − p0 − π∗−j(i, µ) ≥ pk−1 − p0 above the nominal price p0 = pj .

The total contributions available from each such buyer, while still maintaining ISM
if they remain matched to j, are:

TC (j) =
∑
i∈NK

[pK−1 − p0] +
∑

1≤k<K

∑
i∈N−k

[vij − p0 − π∗−j(i, µ)].

6The ability to ensure that the net transfer is zero among those buyers matched to a specific vendor j may
be important in settings where a consortium coordinates purchases, but the transactions are executed di-
rectly by buyers and vendors (at computed personalized prices). Furthermore, the possibility that a vendor’s
customers are subsidizing purchases from one of its competitors may be viewed as undesirable.



The only buyers matched to j that violate ISM are those in N−0 . For each buyer
i ∈ N−0 , a subsidy of π∗−j(i, µ) − vij − p0 will suffice to restore ISM while maintaining
the match to j. Thus the total subsidy required is:

TS (j) =
∑
i∈N−0

[π∗−j(i, µ)− vij − p0].

Now suppose, by way of contradiction, that TC (j) < TS (j). We show the social wel-
fare of µ can be strictly improved as follows: assign each buyer in any set N−k for any
0 ≤ k ≤ K − 1 to its preferred outside option, i.e., the j′ maximizing π∗−j(i, µ); leave
all other buyers (including those in NK) assigned as in µ. Notice that the price of any
product j′ 6= j in the new matching is less than or equal to its price pj′ in µ (since
volume discounts can only improve for products other than j).

First, consider buyers that maintain or improve their payoff in the new matching. All
buyers in N−0 strictly improve their payoff by moving from non-ISM item j to one that
has a greater payoff. Thus the increase in payoff is at least TS (j) (it may be greater if
new discounts trigger for some products). Note that all buyers not matched to j in µ
have equal or greater payoff in the new matching (greater if new discounts trigger for
their matched products).

Now consider all buyers that could possibly lose payoff. All buyers in N−k , 1 ≤ k ≤
K − 1, may lose payoff, but this loss is at most vij − p0 − π∗−j(i, µ) (it may be less if new
volume discounts trigger). The loss in payoff to any buyer in NK is exactly pK−1 − p0
in this new matching. Thus the total loss is payoff is no more than TC (j).

By assumption, TC (j) < TS (j), implying that gain of payoff-improving buyers in
the new matching outweighs the loss of payoff-losing buyers. This contradicts the fact
that µ is SWM. Hence transfers can be determined among buyers matched to j that
induce ISM. (The construction above shows exactly what maximal contributions can
be extracted, and the minimal subsidies needed for each buyer.)

4.2. Maximizing Social Welfare
We now consider computation of social welfare maximizing matchings. This prob-
lem can be formulated as a mixed integer program (MIP) and solved using standard
solvers. The formulation is straightforward: we describe key variables and constraints.
Assignment variables (binary) µij (i ∈ N, j ∈ M): Is buyer i matched to vendor j.
Constraints: ∑

j∈M

µij ≤ 1, ∀i ∈ N. (1)

Count variables Nj (j ∈M ): Number of buyers matched to j. Constraints:

Nj =
∑
i∈N

µij , ∀j ∈M. (2)

Threshold variables (binary) Idj (d ≤ D, j ∈ M): Is j’s dth discount threshold met.
Only one threshold indicator is non-zero, ensuring the correct price is selected during
optimization. Constraints:

τdj I
d
j ≤ Nj , ∀d ≤ D, j ∈M and

∑
d≤D

Idj = 1, ∀j ∈M. (3)

The objective of the optimization can be written in quadratic form:

max
∑

i∈N,j∈M
vijµij −

∑
d≤D,j∈M

pdj I
d
jNj , (4)



where the first sum indicates total buyer valuation under µ and the second total cost.
The quadratic term IdjNj is linearized in a standard way, with auxiliary variable Zdj
introduced to represent this product:

Zdj ≤ Idj U ∀d ≤ D, j ∈M and
∑
d≤D

Zdj = Nj ∀j ∈M, (5)

where U is an upper bound on Nj (e.g., n, the number of buyers). The MIP is then:

max
∑
i,j

vijµij −
∑
d,j

pdjZ
d
j

s.t.(1), (2), (3), and (5).

The computational complexity of MIPs grows exponentially with the number of integer
variables, and the formulation above requires integer (0-1) matching variables µij for
each buyer-vendor pair. However, as is common in matching problems, one can in fact
relax the matching variables to be continuous in [0, 1]. This leaves as the only 0-1 indi-
cator variables those Idj indicating which discount thresholds trigger for each product.
Suppose we fix the values of these variables (i.e., fix the discounts that are triggered
for each product). We show that the relaxation—which, for fixed thresholds, is a linear
program—must give rise to optimal solutions in which all variables µij are integral.
The proof formulates the optimization as a min-cost max-flow problem.7

THEOREM 4.2. Let τ1, . . . , τm be threshold values for vendors in M such that τ1 +
· · · + τm ≤ n; and let p1, . . . , pm be the corresponding prices (i.e., where pj = pj(τj),
for j ∈ M ). We can find a matching that meets these thresholds, and maximizes social
welfare at the threshold prices,

∑
i∈N vi(µ(i))− pµ(i), in polynomial time.

Thm. 4.2 implies that the solution to the relaxed MIP will either assign 0-1 values
to all µij variables; or, if not, then the optimal threshold indicators Idj can be used to
construct a matching using a (polytime) min-cost max-flow algorithm.

In the relaxed MIP, the only 0-1 indicator variables are the Idj variables denoting
which discount thresholds trigger for each vendor. The number of such variables, mD,
will be quite small in most discount matching applications, making the solution of this
MIP computationally manageable. Despite this, a simple reduction from Knapsack
shows that computing a SWM matching is theoretically intractable. Let DISCOUNT-
MATCH be the following decision problem: Given x ≥ 0, is there a matching µ whose
total buyer welfare, SW (µ) =

∑
i ui(µ(i))−

∑
j n(µ, j)pj(n(µ, j)), is at least x?

THEOREM 4.3. DISCOUNT-MATCH is NP-complete.

4.3. Computing Payments
The results above show that transfers exist that support SWM matchings (i.e., render
them strongly stable). Generally, a buying group will desire transfers that satisfy cer-
tain objectives. One reasonable objective is to minimize the total transfer needed to
ensure stability. Others include minimizing the largest single contribution from any
ISM buyer, or using other forms of fair division of the surplus.

Given SWM matching µ, computing payments that simultaneously minimize both
the total subsidy and the largest individual contribution is straightforward. We know
precisely which subsidies are needed for each non-ISM buyer; let TS denote the total

7Proofs of all results not included here can be found in a longer version of the paper at
http://www.cs.toronto.edu/∼cebly/papers.html.



subsidy required. Let ei = π(µ)i − π∗−µ(i)(i, µ) be the surplus that can be extracted
from buyer i without destabilizing µ, and S = {i | ei > 0} be the set of buyers that
are strictly ISM. We first order buyers in S, b1, . . . , bk, sorted in ascending order by ei
(define e0 = 0). To compute transfers, we consider each bi in order, and test if there is a
contribution c, 0 < c ≤ ebi − ebi−1

such that extracting c units of transfer from each bi′ ,
i′ ≥ i, meets the subsidy target of TS , i.e., with a total contribution of (n− i+1)c. If so,
we stop; otherwise, we increase the contributions of each bi′ , i′ ≥ i, by ebi − ebi−1 ; and
continue to buyer bi+1. This process terminates with a set of transfers that minimize
the maximum subsidy paid by any single buyer (as well as the total subsidy).

5. NTU STABILITY
We now turn to the NTU model, demonstrating the existence of strongly stable match-
ings without transfers, and discussing the computation of such matchings.

THEOREM 5.1. Let DM = (N,M, (δj)j∈M , (ui)i∈N ) be a discount matching market
with non-transferable utility. There exists a strongly stable matching for DM .

PROOF. Let µ be a matching and i a buyer; let µ↑i ∈ argmaxj π(µ[i ← j])i be a
matching the results from i’s best response to µ. If µ(i) ∈ argmaxj π(µ[i ← j])i, we re-
quire that µ↑i = µ (i.e., if i is ISM in µ, it will not change to some other item that is
equally good). Let σ be an arbitrary ordering of buyers: a σ-best reply path is any se-
quence of matchings µ1, . . . , µK in which each buyer makes a best response, in turn, to
the prior matching, i.e., µ2 = µ1↑σ1, µ3 = µ2↑σ2, and more generally µk+1 = µk↑σk mod N .
We will show that no best response path can be cyclic (apart from trivial cycles in which
µk+1 = µk). Since the number of matchings is finite, this suffices to show the existence
of a strongly stable matching.

Suppose by way of contradiction that there is a (nontrivial) cyclic best response path
µ1, µ2, . . . , µK , with K ≥ 3 and µ1 = µK (assume all other duplicate matchings have
been deleted.) Each move from µk to µk+1 corresponds to some buyer ik switching
from vendor j−k at its existing price p−k to a different vendor j+k at (existing or newly
triggered) price p+k . Since each move is a best response, we must have

vik(j
+
k )− p

+
k > vik(j

−
k )− p

−
k

(the inequality must be strict). Summing these such moves and rearranging, we obtain:∑
k<K

vik(j
+
k )− vik(j

−
k ) >

∑
k<K

p+k − p
−
k . (6)

Since the best response path is cyclic, any buyer i active in the path first leaves its
initially matched vendor at some point k, joins/leaves other vendors, and finally rejoins
its initially matched vendor at some point k′ > k. So for any fixed buyer i and item j
any positive occurrence of vij (when i joins j) on the LHS of Eq. 6 is matched by a
negative occurrence (when i leaves j). Hence the LHS of Eq. 6 sums to zero.

Since each item j is matched to the same number of buyers in µ1 and in µK , the
sequence of prices on the RHS corresponding to any fixed product j must be balanced
by similar reasoning (each price corresponding to some joining buyer is matched by
the price corresponding to some leaving buyer). Hence the RHS of Eq. 6 also sums to
zero, contradicting the requirement that the inequality be strict.

With the existence of strongly stable matchings established, we now turn attention
to their computation. We first consider computing SWM matchings subject to strong
stability constraints. We can adapt the MIP from Sec. 4.2, but because transfers are
not permitted, we modify it by introducing the following indicator variables and strong
stability constraints.



Threshold variables (binary) Ĩdj (d ≤ D, j ∈ M ): Is j’s dth discount threshold triggered
if one additional buyer is assigned to j. Constraints:

τdj Ĩ
d
j ≤ Nj + 1, ∀j ∈M,d ≤ D, and

∑
d≤D

Ĩdj = 1, ∀j ∈M. (7)

(n+ 2)ĨDj +
∑
d<D

τd+1
j Ĩdj ≥ Nj + 2 ∀j ∈M. (8)

Stability constraints: Ensure that i’s payoff is no higher when assigned to a different
vendor: ∑

j∈M

∑
d≤D

µijd(vij − pdj ) ≥ vij′ −
∑
d≤D

Ĩdj′p
d
j′ − Lµij′ , ∀i ∈ N, j ∈M, (9)

where µijd ∈ {0, 1},
∑
d≤D µijd = µij , L is an upper bound on valuations, and the term

Lµij′ ensures the constraints are trivially satisfied if j = j′.
Note that we can no longer relax the variables µij and obtain an integral optimal so-

lution (We can relax the new indicators µijd.) This makes the problem prima facie more
difficult to solve than SWM matching with transferable utility. We are currently inves-
tigating its complexity. Another important question is whether iterative algorithms in
the style of Gale-Shapley [1962] can be developed for this problem (either for SWM
matchings or arbitrary stable matchings). Notice that the best response “algorithm”
used in the proof of Thm. 5.1 can be used directly to compute stable matchings (not
necessarily SWM), though it is unlikely to be practical.

6. QUALITATIVE PREFERENCES
The models examined so far have assumed that buyers specify valuations for items,
allowing the computation of the precise payoff to any buyer under a given matching,
as well as providing the ability to determine personalized prices/transfers when TU
is assumed. In many applications, such as corporate demand aggregation, buyers will
be relatively sophisticated, able to distinguish vendor offerings clearly, and willing to
specify valuations with some degree of precision. In other settings, this may not be the
case. For example, in consumer group buying, it is unreasonable to expect buyers to
specify precise valuations for items.

In the NTU model, there is in fact no need to have consumers specify valuations
for items. We refer to any pair (j, pj) consisting of an item and its price as a deal.
The discount schedules provided by vendors correspond to a finite set of deals, with
each item occurring in one deal for each of its possible (base or discounted) prices. To
determine a stable matching in the NTU model, it is sufficient to simply have buyers
rank the deals that have been proposed rather than specify valuations.

Definition 6.1. Let (M, (δj)j∈M ) be a set of vendors and associated discount sched-
ules. The set of deals is

L = {(j, pj) : j ∈M, (τ, pj) ∈ δj for some τ}.

A deal ranking � is any total preorder over L.

Each buyer i specifies a deal ranking �i indicating her relative preference for each
item at that each of it’s discounted prices. Let �i denote strict preference. We often
assume that buyer rankings are consistent with some underlying valuation:

Definition 6.2. A deal ranking � over L is rationalizable iff there is some valuation
function v s.t., for any pair of deals in L, (j, pj) � (k, pk) iff v(j)− pj ≥ v(k)− pk.



Allowing the specification of deal rankings can ease the burden on unsophisticated
buyers considerably. For example, suppose three vendors (say, spas), j ∈ {A,B,C},
each offer a base price bj and a single discounted price dj . A buyer need only rank the
six induced deals. Moreover, buyers need not rank unacceptable deals; e.g., a buyer
might only rank (A, dA) � (B, dB) � (B, bB), thereby deeming A at its base price, and
C at either price, to be unacceptable. (This can be treated in the model as ranking
these items below some dummy item with price and valuation zero.)8

A qualitative discount matching market is QDM = (N,M, (δj)j∈M , (�i)i∈N ) where
instead of valuations, buyers specify a ranking over deals. Stability is defined in an
analogous way to the case of NTU markets with valuations:

Definition 6.3. Let QDM = (N,M, (δj)j∈M , (�i)i∈N ) be a qualitative discount
matching market. A matching µ is strongly stable iff

(µ(i), pµ(i)(µ)) �i (µ[i← j](i), pµ[i←j](i)(µ[i← j]))

for any buyer-vendor pair (i, j).

It follows directly from Theorem 5.1 that stable matchings exist if the deal ranking of
every buyer is rationalizable.

COROLLARY 6.4. Let QDM = (N,M, (δj)j∈M , (�i)i∈N ) be a qualitative discount
matching market. If each deal ranking �i is rationalizable, then there exists a strongly
stable matching for QDM .

Computation of stable matchings for qualitative markets can be accomplished using
a MIP that is conceptually similar to the one developed for the NTU model, though
with some technical differences, since welfare maximization is not possible without
valuations. In addition, even if all deal rankings are rationalizable, the stability of a
matching in this setting does not come with any guarantees regarding maximum social
welfare w.r.t. the latent valuations. Development of a matching algorithm in the style
of Gale-Shapley would certainly be desirable in this context.

7. EXPERIMENTS
We experiment with the discount matching model to develop insights into the value of
cooperative buying (relative to a model of naive consumer deals), the relative level of
subsidy needed to support social welfare maximization in the TU model, the “price of
stability,” and the performance of our MIP formulation.

We generate random problem instances using a synthetic model intended to re-
flect utilities and discounts in a setting involving a consumer “daily deal” aggregator9

Roughly, the model assumes each vendor’s product has underlying attributes which de-
termine overall quality, while vendors themselves have a brand value. Base prices are
proportional to quality (with additive noise). The discounted price at threshold level t
is a random percentage (chosen from a plausible range) of the price at the prior level
t − 1. Thresholds are based on the “expected” number of buyers per vendor n/m, plus
some small random fraction of n/m. User valuations are linear in product attributes
and brand value, with weights generated uniformly at random. Valuations are scaled
relative to vendor prices.

We first consider the degree of subsidy needed to support SWM matchings in the
TU model. We consider problems with m = 10 vendors and vary the number of buyers

8If two deals have very similar payoff to a buyer, one might observe violations of rationalizability. Detecting
such violations is straightforward, and can be handled by using approximate rationalizability, which will
lead to approximately stable matchings.
9Details are provided in the longer version of the paper at http://www.cs.toronto.edu/∼cebly/papers.html.
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Fig. 2. Subsidies required to achieve stability (error bars of one (sample) std. dev. shown in line plots).
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Fig. 3. MIP solution times as n (left) and m (center) vary: plots show 25-75 quantile range, median, and
average. Right: Price (social welfare) of achieving NTU stability.

(up to n = 1000) and generate 10 instances of each problem size. For each instance,
we first compute the SWM matching, and measure the total subsidy required to keep
non-ISM buyers satisfied with their match as a fraction of the total ISM surplus, i.e.,
the contributions (transfers) ISM buyers would be willing to make while maintain-
ing satisfaction with their matches. Fig. 2 (top) shows these results. We see (left) that
the average contribution is around 3% of available surplus and is stable as n increases
(the histogram on the right shows the distribution of these fractions over all instances).
Similarly, the bottom plot/histogram of Fig. 2 show the ratio of the average contribu-
tion of an ISM buyer to the maximum contribution of any ISM buyer (when contri-
butions are computed to minimize the maximum transfer as in Sec. 4.3). We see that
the average contribution is usually very close to the maximum—on average within
99%—indicating a reasonable degree “fairness” in the provision of subsidies.

We next examine performance of our (relaxed) MIP formulation for computing SWM
matchings. Fig. 3 (left and middle) shows wall-clock solution time—using CPLEX 12.2,
1GHz desktop, no tuning—for 10 vendors and a variable number of buyers, and for 200
buyers and a variable number of vendors (averaged over 10 instances each). Solution
time, even for 1000 buyers and 10 vendors, is reasonable (avg. 2min). When fixing
m = 10, the increase in solution time as n grows appears to be polynomial (as suggested
by Thm. 4.2). Solution time for fixed n = 200 for m ≤ 25 is also good. Since the number
of vendors m will be relatively small in many settings, this is encouraging.

Fig. 3 (right) illustrates the ratio of the maximum social welfare achievable under
the NTU model (i.e., when imposing stability constraints with no possibility of trans-
fers) with the true maximum social welfare (which can be achieved under TU). This
can be viewed as a price of stability. We see this ratio is very close to 1 (0.98 on avg.,
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Fig. 4. Buyer satisfaction and social welfare approximation quality under the online matching (error bars
show one (sample) std. dev.).

never below 0.92). This suggests that imposing stability under NTU does not signifi-
cantly distort social welfare. Equivalently, it means that disallowing transfers in the
buying model, while still insisting on stability, actually imposes a relatively small cost
in terms of social welfare.

Finally, we evaluate the value of cooperative buying in a consumer “daily deal” sce-
nario by comparing our centralized matching model with an “online” model in which
customers arrive randomly, search for deals, and greedily accept the best deal at the
current triggered discounts (i.e., choose based on the volume and choices of prior cus-
tomers, but not anticipating future arrivals). We (a) fix the number of vendors at
m = 10 and vary the number of buyers (up to n = 1000); and (b) fix n = 500 and
vary m (up to 25). At the end of the process, we measure the quality of this self-directed
“matching” in various ways. First we measure the fraction of non-ISM buyers (i.e., who
would prefer a different product at the final discount prices than that they accepted
upon arrival). Fig. 4 (top) shows these results, indicating that a significant fraction
of the buyers—on average 14%—are unsatisfied with their “online” matched item—
this varies little as n increases, but increase marginally with m. We also measure
average normalized regret (ANR) over the non-ISM buyers: normalized regret for i is
(π∗i − πi)/π∗i , where πi is her actual payoff and π∗i is the payoff for her preferred ven-
dor. Fig. 4 (middle) shows that ANR is about 11%, suggesting non-ISM buyers lose
significant value with the inability to coordinate their activities. Finally, Fig. 4 (bot-
tom) compares the social welfare of the online matching with the optimum; here we
see reasonable performance, as it attains, on average 93% of optimal social welfare.10

These results suggest that coordinated purchasing through cooperative buying in
the presence of multiple vendor discounts can offer reasonable increases in social wel-
fare and, more importantly, increase buyer satisfaction significantly.

8. CONCLUDING REMARKS
We presented a matching model for cooperative group buying in markets where multi-
ple vendors offer discounts for their products, but buyers have distinct preferences over
the vendors. We considered both transferable and nontransferable utility settings; and
while the induced cooperative game among buyers may have an empty core, we showed
that various forms of Nash stable matchings exist in both settings. While computing
a social welfare maximizing matching was shown to be NP-hard, we developed a MIP
formulation that admits a partial relaxation that can be solved to optimality effec-
tively. Our empirical results suggest that cooperative buying can offer gains in buyer

10This is in part a function of the utility model, and that we don’t model customers abandoning a search.



welfare—and, we believe, help discount vendors attract and retain customers—even
when stability is required in the presence of distinct buyer preferences for vendors.

Our model and analysis leave a number of important questions unaddressed. From
a computational perspective, iterative algorithms in the style of Gale-Shapley for find-
ing optimal stable matchings, especially with ordinal “deal” preferences, are of great
interest, as are auction-based approaches. With respect to incentives, one of our pri-
mary goals is the design of mechanisms that account for the strategic reporting of
buyer valuations, as well as the price-setting behavior of vendors in a two-sided mar-
ket. There are many important extensions to our model that we are also investigating,
including: vendor quantity limits; buyers with heterogeneous, combinatorial, multi-
unit valuations; and new solution concepts and algorithms that reduce buyer burden
by intelligently querying for partial preferences (e.g., partial rankings or imprecise
valuations) and compute robust matchings.
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