
Value-directed Compression of Large-scale Assignment Problems

Tyler Lu and Craig Boutilier
Department of Computer Science

University of Toronto
{tl,cebly}@cs.toronto.edu

Abstract
Data-driven analytics—in areas ranging from consumer mar-
keting to public policy—often allow behavior prediction at
the level of individuals rather than population segments, of-
fering the opportunity to improve decisions that impact large
populations. Modeling such (generalized) assignment prob-
lems as linear programs, we propose a general value-directed
compression technique for solving such problems at scale.
We dynamically segment the population into cells using a
form of column generation, constructing groups of individ-
uals who can provably be treated identically in the optimal
solution. This compression allows problems, unsolvable us-
ing standard LP techniques, to be solved effectively. Indeed,
once a compressed LP is constructed, problems can solved in
milliseconds. We provide a theoretical analysis of the meth-
ods, outline the distributed implementation of the requisite
data processing, and show how a single compressed LP can
be used to solve multiple variants of the original LP near-
optimally in real-time (e.g., to support scenario analysis). We
also show how the method can be leveraged in integer pro-
gramming models. Experimental results on marketing con-
tact optimization and political legislature problems validate
the performance of our technique.

Introduction
A variety of business and policy decisions can be formu-
lated as generalizations of assignment problems, in which
the treatment of different individuals in some target popu-
lation is optimized subject to constraints on the resources
used to implement these decisions. In marketing and adver-
tising, a business with multiple campaigns to deploy in a
target market must decide which customers to target with
which campaigns to maximize business objectives, subject
to constraints on campaign budgets, contact limits, etc. In
planning public infrastructure (e.g., health-care facilities),
one might strive to maximize societal satisfaction by de-
termining which facilities to develop—and the individuals
who have access to specific facilities—subject to budget
and other feasibility constraints. This perspective applies to
many decisions that span large populations.

The ability to make high quality decisions in such settings
has improved considerably in recent years with the availabil-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved. Patent pending,
Granata Decision Systems, Inc.

ity of rich data sources, advances in machine learning, and
large-scale distributed computation. These have made it pos-
sible to accurately predict the impact of decisions on specific
individuals. In marketing, for instance, transaction, survey,
behavioral/usage and social media data allow marketers to
predict behavior, value, and responses (e.g., to messaging or
pricing) at the level of individual customers rather broad cus-
tomer “segments.” Online data collection may soon enable
similar user-level predictions of behavior and satisfaction in
traffic routing, education planning, political and public pol-
icy, and other areas.

While such granular predictive modeling enables better
decisions in principle, in practice it often makes the cor-
responding optimization problems more difficult, since one
can distinguish any individual from any other w.r.t some
prediction. Modeling the impact of decisions on individu-
als, rather than larger population “segments,” dramatically
increases the number of decision variables in optimization
formulations. Since such (generalized) assignment problems
are often most naturally formulated as mathematical pro-
grams (e.g., linear (LP) or mixed integer (MIP) programs),
this can induce significant computational bottlenecks, ren-
dering problems virtually unsolvable at the individual level.
At the same time, optimization over predefined, statistical
segments can waste the value of detailed predictive models.

In this work, we develop a compression technique for
LP-based assignment problems over large populations that
addresses this challenge. Dynamic cell abstraction (DCA)
is a dynamic segmentation technique that creates a small
set of user segments (or cells) based on predictive models
and optimization objectives. Our segmentations have a very
small number of cells, rendering optimization tractable—
indeed, able to support real-time optimization. At the same
time, these cells are provably optimal; i.e., all users in a cell
would be treated the same even if we had the computational
power to optimally “personalize” decisions without segmen-
tation. The method works by iteratively refining cells, solv-
ing intermediate LPs, until a (near) optimal cell set is con-
structed. DCA uses variable aggregation (Zipkin 1980) to
model cells, and a form of column generation (CG), a clas-
sic technique for tackling LPs and MIPs with large numbers
of variables (Lübbecke and Desrosiers 2005), to evaluate the
addition of new cells. Specifically, we modify CG using a
method introduced by Walsh et al. (2010) in the context



of online advertising to score the introduction of multiple
columns/variables simultaneously. Our search process can
ensure convergence to optimality for certain classes of prob-
lems, though it may reach a local optimum in general (but
our empirical results suggest that near-optimality is achiev-
able in practice).

We develop our model using a specific problem, that of
marketing optimization over a large target market, for con-
creteness. However, we emphasize that the general approach
can be applied to a wide variety of problems involving the
constrained assignment of options/treatments or allocation
of resources to individuals across a large population for
whom personalized (known or predicted) values or utilities
for specific options are available. (This includes, but is not
limited to, generalized assignment problems.) To illustrate
the broader applicability, we test our method on a legislature
selection problem using a larger voter preference data set.
We also develop our methods primarily for LP models. How-
ever, we will illustrate how it could be applied to MIP mod-
els (and include an empirical test of one such application).
We outline a distributed computational paradigm that accel-
erates cell creation, derive error bounds on solution qual-
ity, discuss how the method supports real-time optimization
for scenario analysis. Our empirical empirical results show
that massive LPs—unsolvable in uncompressed form—can
be compressed relatively quickly and in a way that can be
effectively distributed, and once compressed, can be solved
in milliseconds.

Problem Formulation
We focus on a formulation of the multi-campaign, multi-
channel marketing optimization problem (MMMOP) that in-
spired this work. However, many assignment problems can
be specified in the same fashion—we use MMMOP for con-
creteness only. The (abstract) problem we consider bears
tight connections to both generalized assignment problems
(GAPs) (Savelsbergh 1997) and multi-dimensional knapsack
problems (MDKPs) (Puchinger, Raidl, and Pferschy 2010),
but generalizes both.

Problem Components. An MMMOP is defined over a set
of customers S, a set of marketing campaigns C, a set of
channels H, a family of response sets Rj,h for each j ∈
C, h ∈ H, and data and constraints defined below. Each cam-
paign j ∈ C is typically designed to meet a specific mar-
keting objective (e.g., acquire new customers, cross-sell or
up-sell new services or features to existing customers, re-
tain customers, etc.) It is not unusual for large brands in fi-
nancial services, telecom, or retail to run 75–200 simultane-
ous campaigns, while online marketplaces run thousands of
campaigns for participating vendors.
S represents the potential customer targets of the mar-

keting campaigns C.1 A customer can be approached with
zero or more campaigns, each delivered through a specific
channel h ∈ H. (e.g., direct mail, email, inbound or out-

1We assume a fixed set of identifiable customers, but our meth-
ods apply to settings in which customers are unknown a priori, but
some joint distribution of customer attributes is available.

bound telemarketing, POS offers, etc.). We call a campaign-
channel pair (j, h) an approach. Each approach (j, h) to
customer i induces a response r ∈ Rj,h indicating some
customer behavior (e.g., if j offers an extension of the term
for a discounted credit card interest-rate via telemarketing
h, possible responses might be: no response answer; accepts
offer, and 12mo. churn probability is reduced by 25%; re-
jects offer/churn probability reduced by 15%; etc.). We use
“response” in a broad sense, indicating any immediate or
long-term (change in) behavior.

Data: Models, Objective, Constraints. Given these basic
elements, we assume the following data. The unit cost ujh
of approach 〈j, h〉 reflects the (response-independent) cost
of approaching a single customer. Fixed costs are ignored
for now (but see below). We assume a set of predictive
models used to predict customer behaviors, campaign re-
sponses, and the value of those behaviors and responses to
the marketer. A response model provides a probabilistic pre-
diction pijh(r) of customer i’s response to approach 〈j, h〉.
A value model vijh(r) predicts the value of i’s response r to
approach 〈j, h〉 (incl. any response-specific costs). The ex-
pected value of 〈j, h〉 to i is:

vijh =
∑

r∈Rj,h

vijh(r)pijh(r).

Generally, predictive models are learned from data, and
depend only on the values of a (possibly small) set of cus-
tomer attributes. Such models are sometimes further decom-
posed into more fine-grained models that predict specific
customer behaviors that must be aggregated to determine
comprehensive value and response models (e.g., i’s response
probability for 〈j, h〉may be decomposed into a reachability
and “received offer” conditional response probability). Sim-
ilarly, values may be a function of several distinct responses
and behaviors, and often require some calibration. For in-
stance, if a business cares both about the total number of
subscribers in addition to revenues, then some value must be
associated with each customer acquired or retained that can
be compared to (traded off against) revenue. We assume this
calibration has been made, but we recognize the difficulty in
doing so, and return to this point when discussing scenario
analysis below.

We assume approaches do not interfere, or influence one
another: if i receives multiple approaches, her response to
each is independent. Interference can be modeled using,
e.g., stochastic choice models (Louviere, Hensher, and Swait
2000), which require more complicated formulations due to
(a) the combinatorics of choosing sets of offers; and (b) the
nonlinear nature of these effects (e.g., fractional program-
ming models can be used, a model we defer to future inves-
tigation).

Our goal below is to maximize expected campaign value,
subject to certain natural constraints. A critical constraint is
a contact limit L: no customer can receive more than L ap-
proaches.2 In marketing, over-contacting is a key concern

2The contact limit need not be constant, but can vary with cus-
tomer attributes, channel or campaign.



since it can cause customers to ignore subsequent messag-
ing. We also assume: channel capacities (or limits) Lh on
the usage of each channel h; campaign budgets Bj limiting
the cost incurred by campaign j ∈ C; a global budget B lim-
iting total cost; and lead limits Lj restricting the number of
customers that can be contacted by j ∈ C.

An LP Model. We consider the campaign optimization
problem without fixed costs. Let binary variable xijh denote
that customer i receives approach 〈j, h〉. We can formulate
the MMMOP using the following MIP:

max
xijh

∑
i,j,h

xijh(vijh − ujh) (1)

s.t.
∑
j,h

xijh ≤ L ∀i ∈ S (2)

∑
i,h

xijhujh ≤ Bj ∀j ∈ C (3)

∑
i,j,h

xijhujh ≤ B (4)

∑
i,h

xijh ≤ Lj ∀j ∈ C (5)

∑
i,j

xijh ≤ Lh ∀h ∈ H (6)

xijh ∈ {0, 1} ∀i ∈ S, j ∈ C, h ∈ H (7)

The very large number of integer assignment variables xijh
makes this problem intractable. However, in many settings
(including MMMOPs), one can relax these variables, form-
ing an LP by allowing xijh ∈ [0, 1]. We can interpret this as
allowing stochastic assignments (xijh is the probability of i
receiving approach (j, h)), where constraints on budget, etc.
are satisfied in expectation. MMMOPs resemble MDKPs, so
even this relaxation, in practice, admits few fractional values
in the optimal solution (only at the “edges” of the solution,
where one “packs” a few lower-value customers into specific
approaches (Puchinger, Raidl, and Pferschy 2010)).

Other constraints and modeling elements can be accom-
modated easily (e.g., limiting customers to one contact per
campaign, varying contact limits by customer type or seg-
ment, allowing variable costs per customer). Our techniques
can be applied mutatis mutandis to such extensions. If we
include fixed costs fj for using a campaign j (or channel
h), then we require (non-relaxable) integer variables: a 0-1-
indicator variable Ij for each j ∈ C (has j has been delivered
to any customer). We discuss how to apply our method to the
relaxation of such MIPs below.

Dynamic Segmentation
The LP model of an MMMOP has a huge number of deci-
sion variables: the xijh grow with the product |S||C||H| of
the number of customers, campaigns and channels. As such,
even this relaxed problem cannot be solved using state-of-
the-art LP solvers for problems of realistic size (see below).
We now describe a dynamic segmentation method that seg-
ments the customer population into cells of various sizes,
and optimizes the approach for each cell rather than for in-
dividual customers. If the number of cells is kept small, scal-
ability is no longer an issue. At the same time, unless cells

are crafted carefully, significant value may be sacrificed. Our
technique, which we call dynamic cell abstraction (DCA),
provides an anytime approach that gradually refines cells
and will converge to a set of cells that admit an optimal so-
lution in certain cases. DCA creates cells that distinguish
customers based on specific attributes, and while any cus-
tomer attributes may be used, here we focus on the cells that
distinguish certain values vijh associated with specific ap-
proaches (j, h). In practice, DCA finds good or optimal solu-
tions with a small number of cells by finding just those cus-
tomer distinctions required to make optimal decisions and
nothing more.

Approximate Optimization with Customer Cells. We first
detail how the optimization model exploits customer cells.
Suppose we partition the customer population S into a set of
K covering and exclusive cells or segments S = ∪k≤KSk,
s.t. Sk∩Sk′ = ∅ for any k 6= k′. We call such a partitioning a
segmentation. Let zk = |Sk| denote the size of cell k. For the
purposes of optimization, we treat all customers in a cell as
if they have the same expected value to any approach 〈j, h〉,
namely, the average value across all customers in the cell,
i.e., as if we randomly picked a customer sk from that cell
to approach. Letting sk be a generic customer from cell Sk,
we define:

vkjh = vjh(sk) =
1

zk

∑
i∈Sk

vijh.

To target customer segments, we replace individual target-
ing variables xijh in LP (1) with variables xkjh for each cell
or segment, where xkjh ∈ [0, 1] is the fraction of customers
in cell k that receive approach 〈j, h〉. This can be viewed
as aggregating the variables corresponding to the customers
in a cell into a single aggregate variable for that cell, in a
manner we discuss below. The compressed LP is:

max
xk
jh

∑
k,j,h

xkjhzk(v
k
jh − ujh) (8)

s.t.
∑
j,h

xkjh ≤ L ∀k ≤ K (9)

∑
k,h

xkjhzkujh ≤ Bj ∀j ∈ C (10)

∑
k,j,h

xkjhzkujh ≤ B (11)

∑
k,h

xkjhzk ≤ Lj ∀j ∈ C (12)

∑
k,j

xkjhzk ≤ Lh ∀h ∈ H (13)

xkjh ∈ [0, 1]. ∀i ∈ S, j ∈ C, h ∈ H (14)

The compressed LP (8) assumes the value of an approach
assigned to cell k is the expected value of that approach over
all customers i ∈ k (e.g., as if each approach is assigned
uniformly at random to some i). This random assignment
is feasible and by linearity of expectation attains the objec-
tive value of the LP in expectation.3 If L > 1, the random

3If the fractions give non-integral approaches, small rounding



assignment must be over L-tuples of approaches with posi-
tive fractions in k to ensure the contact limit L is respected
(e.g., if L = 2 and 3 approaches a, b, c are assigned fractions
pa, pb, pc (resp.) of k, then a random assignment of pairs
(a, b), (a, c), (b, c) is needed with proportions pa, pb, pc; this
requires solving a small linear system).

The compressed LP underestimates the value of the as-
signment by assuming a random allocation. If approach
〈j, h〉 is assigned m customers from cell k where m is sig-
nificantly less than the cell size zk, the allocation could be
realized using customers i ∈ Sk that have higher value than
the mean. With multiple approaches assigned to the same
cell, the optimal assignment (i.e., the optimal packing) may
have much greater value than the mean value for each ap-
proach. Hence we can often improve the objective value by
splitting certain cells, as we now discuss.

Dynamic Cell Abstraction. To discover useful cell splits,
we adapt the method of Walsh et al. (2010), originally de-
veloped in the context of display advertising. Similar to col-
umn generation (CG), we use the reduced costs produced in
the solution of the compressed LP to estimate the value of
splitting a cell.

CG is used for LPs (and MIPs) with large numbers of vari-
ables (Lübbecke and Desrosiers 2005; Barnhart et al. 1998):
since only a small subset of the variables are active in the
optimal solution, one solves a relaxed problem using only
a few variables, and iteratively estimates which variables
will be active, gradually adding them to the LP, resolving
a slightly larger LP at each iteration. CG assesses the value
of a new variable using the reduced cost of a (missing) vari-
able x, which is rc(x) = vx − cπ, where vx is the objective
function coefficient of x in the (unrelaxed) LP, c is the col-
umn vector of constraint coefficients for x in the (unrelaxed)
LP, and π is the vector of dual variables at the optimal solu-
tion of the relaxed LP. The reduced cost rc(x) corresponds
to the marginal increase in objective value per unit increase
in (nonbasic) variable x if one were to add x to the LP. One
typically adds the variable that has maximum reduced cost
and iterates. If all columns have non-positive reduced costs,
then the solution of the relaxed LP is in fact the optimal solu-
tion to the full LP; hence this approach can be used to prove
the optimality of the relaxed solution.

In our setting, when we split a cell k into two new cells
k1 and k2, we do not add a single variable to the compressed
LP. Rather we are: (a) adding the set of variables xk1

jh and
xk2

jh for all (j, h); and (b) removing all variables xkjh. Re-
moving variables doesn’t impact the LP—every assignment
realizable with cell k can also be realized with k1 and k2.
But adding these new variables is somewhat problematic be-
cause certain constraints are not present in the compressed
LP. Specifically, the “supply constraint” Eq. (9) associated
with the new cells k1 and k2 are not present in the com-
pressed LP. Since we haven’t explicitly modeled these two
new cells, we do not have dual variables for their constraints,
which makes pricing of these columns difficult. However, it

errors may arise; but since cell sizes tend to be in the many thou-
sands, these are negligible.

is not hard to show that the solution of the compressed LP is
also an optimal solution to the LP that is obtained by adding
the supply constraints for k1 and k2 to the compressed LP
Furthermore, we can show there is an optimal solution in
which the corresponding dual variables πk1

and πk2
are zero

(see the Appendix: Pricing of Columns for details). Hence,
we can accurately score a column corresponding to a new
split cell k1 or k2 using only the dual values produced by the
original compressed LP.

More precisely, suppose cell k′ is a descendant (one side
of the split) of a cell k that is under consideration. We de-
fine the reduced cost of the variable xk

′

jh to be: rc(xk
′

jh) =

zk′(v
k′

jh − ujh) − ck
′

jhπ, where ck
′

jh is the column vector in
the constraint matrix for xk

′

jh, and π is the vector of dual
variables in the compressed LP. This gives us rc(xk

′

jh) =

zk′(v
k′
jh−ujh)−πk−zk′(ujhπBj −ujhπB−πLj −πLh). (15)

Finally, we must score the split of a cell k into k1 and k2,
given that it introduces a multiple columns (which replace
others). Suppose we ignore budget, lead and capacity con-
straints, and focus on the simple problem with only contact
limits (Eq. 9). If we split k into k1 and k2, all customers in
new cell k1 will be assigned to the approach 〈j∗, h∗〉 that has
highest expected value vk1

j∗h∗ for that new cell. Therefore the
improvement in expected value will in fact be rc(xk1

j∗h∗)zk1
.

Thus we score splits using score(k, k1, k2) =

max
j∈C,h∈H

{rc(xk1
jh)zk1}+ max

j∈C,h∈H
{rc(xk2

jh)zk2}. (16)

This score serves as a reasonable proxy for estimating the
marginal improvement of a split, even with other constraints
are present (as we see below empirically).

Searching for Splits. With the means to evaluate splits in
place, we need a method to search through the space of po-
tential splits to find one with maximal score. Of course, a cell
of size z has 2z possible (binary) splits, so we must restrict
attention to a smaller number of reasonable splits. Much like
decision tree induction, an ideal “split language” should be
compact enough to allow all splits to be effectively evalu-
ated, while also offering the expressiveness and flexibility to
find near-optimal solutions with relatively few cells. Here
we consider splitting cells using value quantiles. Specifi-
cally, we treat each approach (j, h) as a real-valued feature
over S, with value vijh for customer i, and allow a cell to be
split at a specific quantiles Q = {q1, . . . qT } of each such
feature. Focusing on binary splits, a cell k can be split into a
pair of cells k1 and k2, where k1 = {i ∈ k : vijh ≤ τ(qt)},
τ(qt) is the qtth quantile of {vijh : i ∈ k} for some qt ∈ Q
and approach (j, h), and k2 = k \ k1. In our experiments
below, we obtain excellent results using only medians, i.e.,
Q = {0.5}. If we have c cells, we need to evaluate scores
(Eq. 16) for c · T |C||H| splits.

The evaluation of candidate splits for k requires compu-
tation of several sufficient statistics: first, the relevant value
quantiles qt of k for each approach; values vk

′

jh for each re-
sulting split k′. Each of these operations requires a pass over



all “customer records” in cell k for each q ∈ Q.4 This can
be computationally intensive for large customer sets S. In-
deed, as we show below, this is the primary computational
bottleneck in DCA. Fortunately, the computation of these
sufficient statistics is effectively distributable,

To distribute the computation of quantiles and cell mean
values vkjh, we partition customer records across M com-
pute nodes, with (roughly) |S|/M records per node. The
number of compute nodes can be chosen to meet specific
performance demands (e.g., to allow all data to fit in mem-
ory). Computing the mean value vkjh of approach (j, h) for
cell k can be accomplished in O(|S|/M) time, by passing
sum and count data from each compute node to a master
node. Computing quantiles in a distributed fashion is some-
what less straightforward, but various methods for approxi-
mating quantiles in distributed settings (including sampling-
based methods) can be used (Shrivastava et al. 2004). Note
that computing exact quantiles is not essential to the perfor-
mance of DCA. We have implemented DCA as a series of
map-reduce operations using Apache Spark (Zaharia et al.
2010), a general-purpose cluster computing engine, on top
of Hadoop’s distributed filesystem, with suitable caching, to
allow effective in-memory, distributed computation.

Solution Quality. DCA may not converge to an optimal so-
lution in general, in part, because of restrictions on the splits
allowed. However, in the case of unrestricted splits, even if
only binary splits are considered, we can show that in mod-
els with only contact limits (no campaign-specific budget or
lead limits), DCA will converge to an optimal solution. (A
brief proof sketch is provided in the Appendix: Convergence
with Only Contact Limits). With budget or lead limits, DCA
can reach a local optimum.

An attractive feature of DCA is its anytime character: a
feasible solution to the uncompressed LP can be obtained at
any point, using results from the current set of cells. Adapt-
ing a result of Zipkin (1980) on the quality of LPs with ag-
gregated variables, we can show the following a posteriori
approximation bound:

Theorem 1. Let Ṽ be the optimal objective value of the
compressed LP (8) using segments S generated using DCA,
and let V ∗ be the optimal objective value of the uncom-
pressed LP (1). Let cijh be xijh’s column in LP (1). Finally,
let π be the vector of dual values obtained when solving
compressed LP (8), and π̂ be the extended dual vector with
the value πk for each k ∈ S replaced by the set of values
πi = πk/zk for all i ∈ k. Then:

V ∗ ≤ Ṽ +
∑
k∈S

∑
jh

∑
i∈k

[(vijh − ujh)− cijhπ̂]
+ · L.

Here [·]+ denotes max(·, 0). A proof is provided in the
Appendix: Proof of Error Bound. The bound uses terms
made available from the solution of the compressed LP.
Computing it does require summing over a term for each
variable in the original LP. However, this computation can

4A record for i ∈ S includes an ID, a cell indicator and the set
of values vijh for all approaches (j, h).

be distributed (as above). The bound can also be estimated
by sampling a small set of customers from each cell.

Scenario Analysis. In many decision problems, it may be
difficult to specify objectives and constraints precisely. For
instance, in MMMOPs, marketing groups are often unable to
precisely articulate tradeoffs between different performance
indicators that contribute to the objective function, or may
be unsure of suitable global or campaign-level budget con-
straints. In such cases, it makes sense to solve multiple ver-
sions of the MMMOP, with varying (say) budget limits to
allow one to explore the “sweet spot” in marketing spend.
As we show below, the vast majority of computational effort
in DCA is spent in generating cells (LP solve times are neg-
ligible). As such we present one way to amortize the costs
of cell generation over multiple optimizations.

One way to do so is to use DCA to solve multiple “repre-
sentative” LPs at each iteration. For instance, if we anticipate
the need explore a variety of budget levels, we can solve an
LP for several representative budget levels that “span” the
anticipated range. We then use the solutions of these multi-
ple LPs to assess the value of a split. Specifically, we score
each split for each of the LPs using the usual method above.
But since our goal is to find cells that support the solution of
all LPs, we sum these scores to determine the overall score
of a split (weighted sums could also be used). This creates
a set of cells whose quality can be assessed for all repre-
sentative LPs simultaneously. Furthermore, these cells can
be used for other LPs (e.g., an LP with entirely new budgets
distinct from any representative LP). Finally, the initial set of
cells may simply be used as a starting point, and then refined
using several additional iterations of DCA to attempt to fit a
new LP. We provide preliminary evaluation of the first two
approaches below.

Empirical Analysis
The experiments in this section illustrate the performance
and value of DCA. We begin with MMMOPs on customer
data sets of various sizes (250K, 500K, 750K, 1M, 2M, 4M,
6M, and 10M) using a set of 20 campaigns and 5 channels.
Data are generated randomly with a simulator developed
using real campaign predictive/value data. All DCA splits
are binary and are restricted to medians (quantile 0.5). All
LPs use Gurobi Optimizer 5.6 on a single high-performance,
large memory compute node (dual Intel 2.6GHz processors,
244 Gb RAM); sufficient statistic computation is distributed
across a variable number of compute nodes.

Fig. 1 shows solution quality as a function of the number
of DCA iterations (up to 101 iterations, or 101 cells). For
customer sizes up to 1M, solution quality is shown as a per-
centage of the optimal LP value (computed by solving the
exact LP model Eq. 1). For the 2–10M instances, solution
quality relative to the final value at iteration 101 is shown
(the optimal benchmark is unavailable). The anytime profile
on large problems is very similar to the smaller instances,
suggesting convergence to a near-optimal result. We see that
DCA is able to dynamically segment customers so that very
few cells are required to achieve near-optimal results. This
is true even with the restriction to median splits.



 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101Pe
rc

en
ta

ge
 o

f O
pt

im
al

 (o
r M

ax
im

al
) V

al
ue

DCA Iterations

250K 500K 750K 1M

2M 4M 6M 10M

250K

500K
750K

1M

10M

4M

2M

6M

Figure 1: Solution quality vs. DCA Iterations.

 

1

10

100

1000

1-5 6-10 11-20 21-50 51-90 91-101

Av
g.

 D
CA

 T
im

e 
(s

ec
, l

og
 s

ca
le

)

DCA Iterations

1M 2M 4M 10M

Figure 2: Avg. Time per DCA Iteration (binned, log scale).

Total DCA run time (in seconds) on a 10-node cluster is
shown in the first row of the following table:

Size .25M .5M .75M 1M 2M 4M 6M 10M

DCA time (s) 611 679 847 1437 3072 3636 6971 9129
DCA opt (s) 0.022 0.016 0.015 0.012 0.018 0.016 0.019 0.015

LP opt (s) 163 2458 3412 4434 – – – –

Fig. 2 shows average time per iteration of DCA on larger
instances binned by iteration number. Later iterations of
DCA require significantly less time, since cell sizes decrease
exponentially; indeed, noting the log-scale, we see that iter-
ation times exhibit an exponential decrease (the final 10 iter-
ations average 2-3s. each). This is critical for real-time cell
refinement in scenario analysis.

DCA also scales effectively with the number of compute
nodes used to assess cell statistics. Total DCA time on the
10M instance (101 iterations) reduces nearly linearly with
the number of nodes (with a small 7–8% overhead):

Because the number of cells needed for high-quality solu-
tions is so small, optimization time using DCA is negligible,
on the order of hundredths of a second (see second row of ta-
ble above). By contrast, the uncompressed LP (see third row)
is only feasible for problems of up to size 1M, beyond which
we hit memory limits—despite the high-memory platform
used. The 1M-instance took about 74 min. to solve. Indeed,
with the exception of the 250K instance, uncompressed LP
times are significantly longer than the entire DCA process.5

5We tested attribute-based segmentation of the 1M-customer
instance, using two sets of available customer attributes with 738
(resp. 26198) cells. These give solutions that are 51% (resp. 72.5%)

Nodes 10 20 40
DCA time (min) 152.2 (100%) 87.2 (57.3%) 50.2 (33.0%)

 

0

1000000

2000000

3000000

4000000

5000000

6000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

N
et

 R
et

ur
n

DCA Iteration

0.5X Baseline 2X

3X 4X 5X

0.5X

Baseline

2X

3X

4X

5X

Figure 3: Solution Quality of Multiple LPs.

Of course, once DCA is run, cells can be used for multiple
optimizations, as we now explore.

To test scenario analysis, we applied DCA to the si-
multaneous solution of 1M-customer instances using six
lead limits: a base level as above, with five additional LPs
solved with different lead limits (0.5, 2, 3, 4 and 5 times
the base level for all global and campaign-specific limits).
Note that a single collection of cells is produced to solve
all six optimization problems. Fig. 3 shows the change in
the objective value for each LP as the number of cells in-
creases. Using only 101 cells (as with the single LP), we
obtain near-optimal solutions for all six LPs: 96.0% (0.5X);
96.7% (Baseline); 98.0% (2X); 98.2% (3X); 98.5% (4X);
and 98.5% (5X). The slight bias towards splits that favor the
LPs with larger limits is due to the fact that we use an un-
weighted sum of objective values (larger limits offer greater
total return on spend). The difference in DCA time/iteration
w.r.t. solving a single LP is negligible. To test the robustness
of these cells, we used them to compute solutions for differ-
ent lead limits than those used to create the cells. With lim-
its of 2.5X and 4.5X, the solutions produced using the cells
above were 98.6% and 98.4% optimal, respectively. While
a preliminary, these results suggest that cells produced for a
well-chosen set LPs can generalize to new problems.

Finally, we tested DCA on a political preference data
set derived from a questionnaire completed by 1.2M vot-
ers prior to the 2013 national election in Australia, each of
whom responded to 59 poll questions, of which 29 were
policy questions on eight broad issues.6 We aggregate each
voter’s responses within each issue to compute her “ideal po-
sition” on that issue. Using a slate of 18 fictitious candidates
with varying platforms, we compute a voter’s satisfaction
with each candidate using (negative) L1-distance between
her ideal point and the candidate’s platform. We then used
DCA to select a legislature of 5 candidates to best represent
this population using the Monroe’s (1995) proportional rep-
resentation scheme—each voter is assigned to one of the 5
selected candidates, satisfaction is dictated by the assigned

of optimal, (soln. times 0.1s. and 4.3s.), compared to 97.6%-
optimality attained by DCA with 100 cells.

6Administered by VoteCompass (http://votecompass.com/), a
widely used interactive electoral literacy application.



candidate, and the assignment must be (roughly) balanced
over the 5 candidates). Since integer variables are needed
to ensure only 5 candidates are selected, we first solve the
relaxed problem using DCA (with 24M matching variables
and 20 selection variables) limiting ourselves to 400 cells.
These cells are then used to solve the MIP with integrality
re-imposed to ensure no fractional candidates are selected.

DCA requires 423s. for 400 iterations, with an anytime
profile like those above (e.g., by iteration 100, no improve-
ment is more than 0.1% of the first iteration). Interestingly,
the cells produced using the LP work extremely well with
the MIP—enforcing integrality causes only 0.56% loss in
total voter satisfaction (MIPs solve in well under 0.5s).7
This suggests using DCA on relaxed problems may be use-
ful for generating abstractions into which strict combinato-
rial/integrality constraints can be re-introduced.

Concluding Remarks
We have developed DCA, a dynamic segmentation method
for solving general “assignment” problems over large popu-
lations, modeled as LPs. These allow one to solve problems
much larger than those that can be tackled using standard
methods. DCA offers solution quality guarantees; fast, dis-
tributable computation that allows extreme scalability; ex-
cellent anytime performance; and strong support for real-
time scenario analysis and reoptimization.

A number of important directions remain. These include
incorporating richer response models in MMMOPs and
methods for solving the resulting more complex programs
(e.g., fractional programming can be used to model slates of
offers that influence or interfere with one another using ran-
dom utility or other models of influence, or using Markov
decision processes to model cumulative, sequential influ-
ences). Apart from the heuristic use of DCA for MIPs as de-
scribed here, we are especially interested in developing full
branch-and-price algorithm for large MIPs. Further theoret-
ical and empirical analysis of our methods is critical; we are
especially interested in potential theoretical guarantees for
our method for handling multiple LPs (e.g., different con-
straints or objectives). We are also exploring connections to
recent work on abstracting LPs using symmetries (Mlade-
nov, Ahmadi, and Kersting 2012) and (heuristic) distributed
matching methods (Manshadi et al. 2013).
Acknowledgement’s. This work was conducted in part at
Granata Decision Systems. We thank the reviewers for their
helpful comments, and Clifton van der Linden and the Vote-
Compass team for making their dataset available.

Appendix: Pricing of Columns
We noted that the compressed LP for the current set of cells
does not contain contact limit constraints on new cells that
might be generated by splitting an existing cell. If we want
to split cell k into two cells k1 and k2, we don’t have contact

7A variant of the problem without balance constraints (Cham-
berlin and Courant 1983) can be approximated with a greedy algo-
rithm (Lu and Boutilier 2011). DCA generates cells which, when
used for the MIP, produce solutions within 0.38% of the value of
the greedy solution (and 0.43% of the LP value).

limit constraints on the new cells, hence no dual values for
these constraints (which play a role in determining the prices
for any of k1 or k2’s columns). We can add the following
constraints to the compressed LP:∑

j,h

xkjh
zk1

zk
≤ Lzk1 (17)

∑
j,h

xkjh
zk2

zk
≤ Lzk2 (18)

These express that the approaches assigned to cell k should
not exceed the capacity of (new) cells k1 and k2, under the
assumption that these approaches are allocated uniformly at
random (hence, to the cells in proportion to their relative
size, i.e., zk1

zk
and zk2

zk
). These constraints are both multiples

of Constraint 9, hence do not impact the solution of the com-
pressed LP. Furthermore, their redundancy implies that some
optimal solution of the dual of this extended LP is equiva-
lent to the solution of dual of the compressed LP with dual
values zero for to these new constraints. This means that re-
duced costs for any new “split cell” column can be deter-
mined without including these constraints (i.e., using dual
values from the compressed LP itself).

Appendix: Convergence with Only Contact
Limits

In practice, DCA must work with a restricted splitting lan-
guage, which limits the cell splits that can be considered
(otherwise, the number of splits is exponential in the number
of customers). However, if one could split a cell arbitrarily
finely, even using only binary splits, DCA will converge to
an optimal solution for the uncompressed LP when we have
only contact limits on customers (and no budget or lead lim-
its on campaigns). We provide an informal argument here.

Assume an MMMOP with only contact limits of the form
Eq. 2, and let x∗ be its optimal solution with objective value
z∗. For ease of exposition, we suppose the contact limit is
L = 1. Let x be the optimal solution of a compressed LP
with cells K, with objective value z. Suppose this solution
is not optimal for the original uncompressed LP, so z < z∗.
This means there must be some customer i ∈ k, for some
cell k, such that xkjh < x∗ijh (otherwise the objective values
would be identical). For some such i, we must have vkjh ≤
vijh (again, otherwise we could not have z < z∗). If we split
cell k into cells {i} and k \ {i}, the optimal solution with
these new cells replacing k must be greater than z (e.g., the
assignment that sets x{i}jh = x∗ijh and xk\{i}jh = xkjh, and is
otherwise identical to x, must have greater objective value,
and is feasible given only contact limits). By the properties
of column generation on the extended LP consisting of these
additional cell variables, the reduced cost of x{i}jh , hence the
score of cell {i}, must be positive.

Appendix: Proof of Error Bound
We first outline a simple reformulation of our compressed
LP, then prove our main error bound. Our compressed LP (8)
above can be reformulated using variables ẋkjh denoting the



total number of customers from cell k assigned approach
(j, h) rather than the fraction. Allowing these variables to
take fractional values, the following LP is obviously equiv-
alent to LP (8), taking xkjh = ẋkjh/zk:

max
ẋk
jh

∑
k,j,h

xkjh(v
k
jh − ujh) (19)

s.t.
∑
j,h

ẋkjh/zk ≤ L ∀k ≤ K (20)

∑
k,h

ẋkjhujh ≤ Bj ∀j ∈ C (21)

∑
k,j,h

ẋkjhujh ≤ B (22)

∑
k,h

ẋkjh ≤ Lj ∀j ∈ C (23)

∑
k,j

ẋkjh ≤ Lh ∀h ∈ H (24)

xkjh ≥ 0. ∀i ∈ S, j ∈ C, h ∈ H (25)

We call LP (19) the total formulation of our compressed
LP, and refer to LP (8) as the fractional formulation. While
a trivial transformation, this will prove to be convenient
in our derivation of approximation bounds. Since the frac-
tional and the total formulations have identical optimal ob-
jective values—say zf and zt, respectively—and identical
constraint vectors b, they have the same dual solutions.

Zipkin (1980) analyzes the quality of the solution of LPs
in which groups of variables are aggregated (and each aggre-
gate variable corresponds to the sum of its constituent vari-
ables) and the solution of the aggregated LP is applied to the
original using a fixed weight disaggregation. More precisely,
suppose we have an LP with n variables x1, . . . , xn, with A
and m× n matrix:

z∗ = max cx (26)
s.t. Ax ≤ b (27)

x ≥ 0. (28)

Let σ = {S1, . . . Sk} be a partitioning of the variables x,
with |Sk| = nk. Let non-negative nk-vector gk ≥ 0 be
a disaggregation vector for partition Sk, with

∑
i g

k
i = 1.

Letting Ak (resp., ck) be the submatrix of A (resp., subvec-
tor of c) defined over variables in Sk, define A

k
= Akgk,

ck = ckgk, A = (A
1
, . . . , A

K
) and c = (c1, . . . , cK). Let

x for a vector of K variables (one per partition). The aggre-
gate LP induced by σ, g is:

z = max cx (29)

s.t. Ax ≤ b (30)
x ≥ 0. (31)

This LP reduces the problem to one involving k (aggre-
gated) variables. We use origLP and aggrLP to denote these
two LPs, respectively.

The solution of aggrLP can be transformed into one for
origLP by setting xi = gk(i)x

k for each i ≤ n, where Sk is
the partition containing xi and (i) denotes the index of xi

within Sk. If x is feasible for aggrLP, then its fixed weight
disaggregation x is feasible for origLP and cx = cx.8

Zipkin derives the following bound on the solution quality
using the dual values for aggrLP:

z∗ ≤ z +
∑
j

[cj − d ·Aj ]
+ · uj (32)

Here d is the vector of dual variables obtained in the solution
of aggrLP, Aj is the jth column of constraint matrix A, and
uj is any explicit or derivable upper bound on variable xj in
origLP. Here [·]+ denotes max(·, 0).

The total formulation of our problem, LP (19), is an ag-
gregated LP in Zipkin’s sense—with one major difference
outlined below—where for each approach (j, h) and cell k
we aggregate variables xijh, for all i ∈ k, into xkjh, and
use a fixed weight disaggregation (i.e., the uniform weight-
ing). The difference is that we do not maintain constraints
over individual customer contact limits, but aggregate those
(i.e., aggregate rows) across cells as well to ensure further
compression. We can use Zipkin’s bounds, but must adapt
the proofs to account for the fact that we aggregate rows as
well. Specifically, our compressed problem does not have
dual values for all constraints in origLP as required by Zip-
kin’s bounds. Our proof shows how to derive such dual val-
ues directly from the solution of our compressed LP.

Theorem 1. Let Ṽ be the optimal objective value of the
compressed LP (8) using segments S generated using DCA,
and let V ∗ be the optimal objective value of the uncom-
pressed LP (1). Let cijh be xijh’s column in LP (1). Finally,
let π be the vector of dual values obtained when solving
compressed LP (8), and π̂ be the extended dual vector with
the value πk for each k ∈ S replaced by the set of values
πi = πk/zk for all i ∈ k. Then:

V ∗ ≤ Ṽ +
∑
k∈S

∑
jh

∑
i∈k

[(vijh − ujh)− cijhπ̂]
+ · L.

Proof. To simplify notation, we ignore channels h and as-
sume variables xij in the original MMMOP; with channels,
we simply duplicate each j with pairs (j, h).

We consider four different LPs:

• LP, our original uncompressed LP (1);
• LPF, the fractional formulation of our compressed LP (8);
• LPT, the total formulation of our compressed LP (19);
• LPE, an extended version of LPT in which we aggregate

columns as in LPT, but do not aggregate rows, providing
a direct Zipkin-style aggregation.

Let z denote the optimal value of LP, x its optimal solution,
π the vector of dual values at the optimal solution, c its vec-
tor of objective coefficients, A and b its constraint matrix
and vector. Let zF , zT , and zE denote the same quantities
for LPF, LPT, and LPE, respectively (and similarly for the
other terms x, π, etc.). Note that cE = cT , bE = b, bT = bF ,
and as observed above zF = zT and πF = πT .

8This does not imply that aggrLP is feasible, even if origLP
is, since the aggregation restricts solutions to a low-dimensional
subspace of the original feasible set.



Part of Zipkin’s bound Eq. 32 can be derived using LPE:

z = cx (33)
≤ cx+ πE(b−Ax) (34)
= πEb+ (c− πEA)x (35)
= zE + (c− πEA)x (36)

where the last equality holds by strong duality. From this
the bound, one can derive bound Eq. 32 by some algebraic
manipulation. Our difficulty is that we have not explicitly
solved LPE so do not have dual values πE . However, it is
not hard to see that LPE is identical to LPT with the addi-
tional of redundant constraints—indeed, it consists of LPT
with, for each cell k, one copy of k’s contact limit constraint
Eq. (20) for each customer i ∈ k. This means that zE = zT .
Furthermore, the optimal solution πT of the dual of LPT can
be transformed into an optimal solution πE of the dual of
LPE by any (non-negative) division of the dual value πT (k)
(for the contact constraint on cell k) among the dual values
πE(i), i ∈ k. In particular, we can create a dual solution
πE by setting πE(i) = 1/zkπT (k) for every i ∈ k. (We
πE = πT for all other constraints.)

We plug πE into Eq. 32, and note that:

• We have an upper bound of L on the optimal values of
any xij in LP, which plays the role of uj in Eq. 32;

• V ∗ in the statement of the theorem is simply z∗ in Eq. 32
and z in the argument above;

• Ṽ in the theorem statement is zF in the argument;
• and LPT and LPF have identical dual solutions, πT and
πF (as observed earlier), so the extended dual vector πE
can be defined using πT instead of πF .

The theorem follows immediately.

References
Barnhart, C.; Johnson, E. L.; Nemhauser, G. L.; Savels-
bergh, M. W. P.; and Vance, P. H. 1998. Branch-and-price:
Column generation for solving huge integer programs. Op-
erations Research 46(3):316–329.
Chamberlin, J. R., and Courant, P. N. 1983. Representa-
tive deliberations and representative decisions: Proportional
representation and the Borda rule. The American Political
Science Review 77(3):718–733.
Louviere, J. J.; Hensher, D. A.; and Swait, J. D. 2000.
Stated Choice Methods: Analysis and Application. Cam-
bridge: Cambridge University Press.
Lu, T., and Boutilier, C. 2011. Budgeted social choice: From
consensus to personalized decision making. In Proceedings
of the Twenty-second International Joint Conference on Ar-
tificial Intelligence (IJCAI-11), 280–286.
Lübbecke, M. E., and Desrosiers, J. 2005. Selected topics in
column generation. Operations Research 53(6):1007–1023.
Manshadi, F. M.; Awerbuch, B.; Gemulla, R.; Khandekar,
R.; Mestre, J.; and Sozio, M. 2013. A distributed algo-
rithm for large-scale generalized matching. Proceedings of
the VLDB Endowment 6(9):613–624.

Mladenov, M.; Ahmadi, B.; and Kersting, K. 2012. Lifted
linear programming. In Fifteenth International Conference
on Artificial Intelligence and Statistics (AISTATS-12), 788–
797.
Monroe, B. L. 1995. Fully proportional representation. The
American Political Science Review 89(4):925–940.
Puchinger, J.; Raidl, G. R.; and Pferschy, U. 2010. The mul-
tidimensional knapsack problem: Structure and algorithms.
INFORMS Journal on Computing 22(2):250–265.
Savelsbergh, M. 1997. A branch-and-price algorithm for
the generalized assignment problem. Operations Research
45(6):831–841.
Shrivastava, N.; Buragohain, C.; Agrawal, D.; and Suri, S.
2004. Medians and beyond: New aggregation techniques
for sensor networks. In Proceedings of the 2nd Interna-
tional Conference on Embedded Networked Sensor Systems
(SenSys-04), 239–249.
Walsh, W. E.; Boutilier, C.; Sandholm, T.; Shields, R.;
Nemhauser, G.; and Parkes, D. C. 2010. Automated chan-
nel abstraction for advertising auctions. In Proceedings
of the Twenty-fourth AAAI Conference on Artificial Intelli-
gence (AAAI-10), 887–894.
Zaharia, M.; Chowdhury, M.; Franklin, M. J.; Shenker, S.;
and Stoica, I. 2010. Spark: Cluster computing with working
sets. In Proceedings of the 2nd USENIX Workshop on Hot
Topics in Cloud Computing, 1–7.
Zipkin, P. H. 1980. Bounds on the effect of aggregating vari-
ables in linear programs. Operations Research 28(2):403–
418.


