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ABSTRACT
Product recommendation and decision support systems must generally de-
velop a model of user preferences by querying or otherwise interacting with
a user. Recent approaches to elicitation using minimax regret have proven
to be very powerful in simulation. In this work, we test both the effective-
ness of regret-based elicitation, and user comprehension and acceptance of
minimax regret in user studies. We report on a study involving 40 users in-
teracting with the UTPREF Recommendation System, which helps students
navigate and find rental accommodation. UTPREF maintains an explicit
(but incomplete) generalized additive utility (GAI) model of user prefer-
ences, and uses minimax regret for recommendation. We assess the follow-
ing general questions: How effective is regret-based elicitation in finding
optimal or near-optimal products? Do users understand and accept the min-
imax regret criterion in practice? Do decision-theoretically valid queries
for GAI models result in more accurate assessment than simpler, ad hoc
queries? On the first two issues, we find that the minimax regret decision
criterion is effective, understandable, and intuitively appealing. On the third
issue, we find that simple, semantically ambiguous query types perform as
well as more demanding, semantically valid queries for GAI models. We
also assess the relative difficulty of specific query types.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Interfaces;
I.2.6 [Artificial Intelligence]: Learning

General Terms
Experimentation, Human Factors

Keywords
recommender systems, utility elicitation, user studies

1. INTRODUCTION
Product recommendation is a fundamental task in e-commerce.

Recommender systems assist users in the navigation of large prod-
uct spaces and recommend decisions in the presence of many alter-
natives. Like any decision support system, a recommender system
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has to elicit, assess, or otherwise estimate a user’s preferences or
utility function over product alternatives in order to ensure appro-
priate recommendations are made.

Different approaches to product recommendation adopt a variety
of stances on preference assessment. For instance, critiquing sys-
tems [10, 24] facilitate navigation by allowing the user to request
changes to a candidate product description in specific dimensions
(e.g., increasing one attribute) and returning products that vary in
that dimension but are otherwise similar. Such navigational aids do
not usually develop an explicit user preference model (though there
are some exceptions [20, 24]). Collaborative filtering systems, by
contrast, attempt to make explicit recommendations by discovering
commonality among user product ratings [15, 9]. While rarely for-
mulated as developing explicit utility models, many of these mod-
els can be so interpreted (e.g., matrix factorization methods [21]
can be viewed as learning linear user utility models over latent
product attributes). Both collaborative filtering and critiquing have
found popularity in product recommendation due to the minimal
data requirements and burden imposed on users.

Decision-theoretic approaches to preference assessment construct
an explicit model of user preferences. For instance, many models
have been proposed in which users answer preference queries in-
crementally, each response posing constraints on the parameters of
a user’s utility function [26, 5, 22, 23]. Such models offer stronger
guarantees on decision quality, but often at the expense of much
more intense data requirements. Furthermore, such models are de-
veloped or deployed largely for the case of restrictive additive util-
ity models, while strategies for query choice are often ad hoc.

Recently, the minimax regret has been proposed as an intuitive
criterion for decision making in the presence of utility function un-
certainty as well as an effective driver of preference elicitation [22,
4]. It has been applied to unstructured product models [25], addi-
tive models [5] and generalized additive models [4, 8]. In simu-
lation, it has proven to work extremely well. However, no signif-
icant study has explored the effectiveness and intuitive appeal of
minimax regret-based elicitation with real users. In this paper, we
present the first full-fledged user studies with minimax regret.

We first describe the UTPREF Recommendation System, a fully
implemented system that helps students navigate and find rental ac-
commodation (or “apartments”) from a university housing database.
UTPREF assumes a multiattribute, generalized additive utility model
of a student’s preferences over housing features, and asks queries of
several distinct forms about these preferences. Responses impose
constraints on the parameters of the student’s utility model, and the
system uses the minimax regret decision criterion for several pur-
poses: to recommend a rental unit at any point in the interaction; to
assess the quality of the recommended unit, specifically bounding
how far it is from the (unknown, user-specific) optimal apartment



in the database; and to select queries that have the greatest potential
to improve the recommendation. UTPREF exploits minimax regret
to “prove” that the optimal apartment has been found with very
limited information about the user’s underlying utility function.

We then present the results of a study in which 40 participants
used the UTPREF system under a variety of conditions to find their
most preferred apartment from the database. We assess how far the
UTPREF-recommended apartment is from the true optimum (us-
ing a method discussed below). Our study addresses several impor-
tant questions. How effective is regret-based elicitation in finding
(near-) optimal products? Do users understand the minimax re-
gret criterion and its recommendations in practice? Since UTPREF
uses GAI utility models, which are more flexible, but also more
complex than commonly used additive models, we are also inter-
ested in their value: do they provide for higher quality decisions in
practice than an additive approximation. We also assess whether
decision-theoretically valid queries for GAI models allow for more
accurate estimation of preferences than simpler, ad hoc queries. Fi-
nally, we measure the relative difficulty of specific query types for
users. Overall, we find that minimax regret is both effective, un-
derstandable, and intuitively appealing. We also find some slight
evidence that GAI models can provide a more accurate picture of
user utility than additive models. However, the complex queries
required—at least theoretically—by GAI models seem to be un-
necessary in practice and can be replaced by simpler queries for
reasons we explain below.

2. MULTIATTRIBUTE PREFERENCES
We begin with a brief overview of the foundations of multiat-

tribute utility functions and utility elicitation.

2.1 Multiattribute utility functions
We consider recommending a product (or some other decision)

from a set of available alternatives X that reflects the preferences
of a specific user. For example, in the UTPREF system described
below, X is a database of vacant rental units (hereafter “apart-
ments”). In all but the simplest domains, products will be char-
acterized by a collection of features or attributes. We assume N
attributes X1, . . . , XN , each with finite domains Dom(Xi); e.g.,
Bdrm (number of bedrooms), Dist (distance from university), AT
(apartment type), etc. (We discuss price as a special attribute be-
low.) In multiattribute domains, attribute instantiations define the
set of potential outcomes X = Dom(X1)×· · ·×Dom(XN ). Gen-
erally, the outcome set will be some subset XD ⊆ X (e.g., instanti-
ations in a database or satisfying product configuration constraints).

The preferences of a user, on whose behalf decisions are made,
are captured by a utility function u : X 7→ R. While a (complete)
qualitative preference ordering would suffice to determine the best
product, there are several reasons to quantify strength of preference
using a utility function in product recommendation. First, strength
of preference is important in determining an appropriate tradeoff
vs. product price. Second, we will often want to make decisions
with incomplete preference information, and require some measure
of preference strength to quantify the degree to which a recommen-
dation is suboptimal (we elaborate on this in Sec. 3). A quantita-
tive utility function can be viewed as a representation of (qualita-
tive) preferences over lotteries (distributions over outcomes), with
one lottery preferred to another if and only if its expected utility is
greater [17]. Let 〈p,x>; 1 − p,x⊥〉 denote the lottery where the
best outcome x> is realized with probability p, and the worst out-
come x⊥ with probability 1 − p. If a user is indifferent between
some outcome x and the standard lottery 〈p,x>; 1− p,x⊥〉 , then

u(x) = p, assuming a normalized [0, 1] scale where u(x>) = 1
and u(x⊥) = 0.

2.2 Additive utilities
Since the size of outcome space is exponential in the number

of attributes, specifying the utility of each outcome is infeasible
in most settings. User preferences, however, often exhibit internal
structure that allows both concise expression and effective elicita-
tion of u. Additive independence [17] is commonly assumed in
practice, where u can be written as a sum of single-attribute subu-
tility functions:1

u(x) =

NX
i=1

ui(xi) =

NX
i=1

λivi(xi).

In our rental domain, utility of an apartment x might be:

u(x) = ub(x[Bdrm]) + ud(x[Dist]) + ua(x[AT]) + . . .

where ub is the subutility function for number of bedrooms and
x[Bdrm] denotes the value of variable Bdrm in x, etc.

The subutility functions ui(xi) = λivi(xi) can be defined as a
product of local value functions (LVFs) vi and scaling constants λi.
This simple factorization allows us to separate the representation of
preferences into two components: local and global. Significantly,
LVFs can be defined using local lotteries that involve only a single
attribute: vi(xi) = p, where p is the probability at which the user
is indifferent between xi and a local lottery 〈p, x>i ; 1− p, x⊥i 〉, ce-
teris paribus.2 Since we can define LVFs independently of other at-
tributes, we can also assess them using queries only about values of
attribute i. In our example, we can assess relative strength of pref-
erences for different values of Bdrm, calibrating these to the best
and worst settings of Bdrm without reference to other attributes.
This has great practical significance, because people have difficulty
accounting for more than five or six attributes at a time [14].

The scaling constants λi are required to properly calibrate LVFs
across attributes. We define these global parameters by first intro-
ducing the notion of a reference outcome, denoted x0 = (x0

1, . . . , x
0
N ).

The reference outcome is an arbitrary outcome, though it is com-
mon in practice to choose the worst outcome x⊥ as x0 (however,
any salient outcome, e.g., the user’s current apartment, can be used).
Let x>i be a full outcome where the ith attribute is set to its best
level and other attributes are fixed at their reference levels; x⊥i is
defined similarly. Then, λi = u(x>i)−u(x⊥i). To assess scaling
constants λi, one must ask queries about 2N global outcomes x>i

and x⊥i for each attribute i. These global outcomes are special be-
cause they involve varying only a single feature from the reference
outcome. This ease of assessment makes additive utility the model
of choice in most practical applications.

Price plays a critical role in product choice, and is typically dis-
tinguished as an attribute. We make the standard assumption of
quasilinear utility in which, overloading u, the utility u(x, p) of an
outcome x obtained at price p is u(x, p) = αu(x)− p. Here u(x)
is the (price-independent) utility of x and α is a valuation factor
that adjusts u for currency. In quasilinear settings, one can elicit
strength of preference directly in terms of “willingness to pay.”

2.3 Generalized additive independence
Additive models predominate in practical decision support sys-

tems. However, their strong independence assumptions limit their
1This decomposition is possible if and only if a user is indifferent
between lotteries with the same marginals on each attribute.
2x>i and x⊥i are the best and worst levels of attribute i. Without
loss of generality, we assume vi(x>i ) = 1, vi(x⊥i ) = 0 [17].



applicability. More flexible generalized additive independence (GAI)
models [12, 1] allow interactions among attributes while maintain-
ing an additive decomposition over (usually small) subsets of at-
tributes, or factors. GAI models are fully general and subsume
additive models. Suppose a user’s strength of preference for Dist
(distance to university) depends on distance to the nearest subway
station Sub (e.g., the closer the nearest station, the less value she
places on being within walking distance to the university) and on
Bdrm (an extra bedroom can used as an office, reducing the im-
portance of distance). An additive model cannot accurately reflect
such preferences, while a GAI model can:

u(x) = u1(x[Bdrm,Dist]) + u2(x[Dist, Sub]) + u3(x[AT]) + . . .
(1)

Note that GAI models allow overlap among the factors.
Formally, we assumeM attribute subsets, or factorsF1, · · · , FM ,

such that ∪iFi = {X1, X2, . . . , XN}. Utility function u is gen-
eralized additively independent (with respect to the given factor
decomposition) if the user is indifferent between any two lotteries
whose marginals over these factors are the same. If this GAI con-
dition holds, u can be written as a sum of subutility functions on
factor outcomes [12] (we use x[i] to abbreviate x[Fi]):

u(x) =
X
i≤M

ui(x[i]). (2)

Elicitation with GAI models is generally more complicated than
with additive models. Specifically, if factors overlap there are in-
finitely many valid decompositions of the same utility function in
which the subutility functions vary considerably (i.e., not simply
through some positive affine transformation): indeed the apparent
“local preferences” for factor instantiations can be reversed in two
different (valid) representations (we refer to [12, 13, 7] for details).
This difficulty has been traditionally dealt with by eliciting GAI
utilities using full outcomes [12, 13] with special structure.

In [7], a technique was developed that allows sound elicitation
of GAI models using local queries analogous to those used in ad-
ditive models. A key observation is that the judicious choice of a
conditioning set shields the influence of other attribute values on lo-
cal preference over factor instantiations (analogously to a Markov
blanket in a probabilistic graphical model). We do not define condi-
tioning sets formally here (see [7]), but in the example partial GAI
model in Eq. 1, the conditioning set for factor (Bdrm,Dist) would
consist of a single variable Sub. Elicitation then proceeds as fol-
lows: we assume a fixed reference outcome x0; as above, this can
be any salient outcome, such as the user’s current apartment. Local
queries that elicit (relative) strength of preference for instantiations
of a specific factor must be conditioned by setting all attributes in
that factor’s conditioning set to their reference value. In our ex-
ample, any queries assessing the (local) utility of instantiations of
(Bdrm,Dist) would require the user to assume that Sub is set to a
fixed reference value (e.g., assume a subway is 500m away). Global
calibration across utility factors is accomplished in the same way
as in additive models.

In our work, we use a semantically sound parameterization of
the GAI function [7, 8] that is well suited to incorporate both local
and global information about user preferences:

u(x) =

MX
i=1

|Dom(Fi)|X
k=1

Ckx[i] θ
k
i , (3)

where the θki are the GAI utility parameters to be assessed, and the
Ckx[i] are precomputed structure coefficients that depend solely on
the factor decomposition and choice of reference outcome.

3. RECOMMENDATION USING MINIMAX
REGRET

Much work in decision analysis on utility elicitation is focused
on eliciting a fairly complete picture of a user’s preferences. How-
ever, some work in AI [25, 5, 4], decision analysis [22] and con-
joint analysis [23] has placed recent emphasis on good decisions
with minimal preference information. In this paper, we focus on
the use of the minimax regret decision criterion for making robust
decisions in the presence of incomplete utility information, and as
a means of determining suitable user queries to refine our model of
user preferences in relevant regions of utility space [4, 8]. We first
discuss regret-based recommendation, then regret-based elicitation.

3.1 Minimax regret
Assume outcome set XD ⊆ X from which an optimal outcome

x∗ must be chosen for a user with utility function u. Suppose fur-
ther that u is unknown, but that through some process we have de-
termined that it lies in some set U (e.g., as discussed below, U may
arise through incomplete elicitation of utility parameters) and that
a decision must be made knowing only u ∈ U. Among possible
decision criteria in the presence of such utility function uncertainty,
minimax regret has an especially intuitive appeal.

Definition 1 Given feasible utility set U, define the pairwise max
regret MR(x,y,U) of x,y ∈ XD; the max regret MR(x,U) of
x ∈ XD; the minimax regret MMR(U) of U; and the minimax
optimal outcome x∗U as follows:

MR(x,y,U) = max
u∈U

u(y)− u(x), (4)

MR(x,U) = max
y∈XD

MR(x,y;U), (5)

MMR(U) = min
x∈XD

MR(x,U), (6)

x∗U = arg min
x∈XD

MR(x,U). (7)

Intuitively, MR(x,U) is the worst-case loss associated with rec-
ommending x, obtained by assuming an adversary will choose the
user’s utility function u from U to maximize the difference in util-
ity between the optimal outcome (under u) and x. The minimax
optimal configuration x∗U minimizes this potential loss. MR(x,U)
bounds the loss associated with x, and is zero iff x is optimal for all
u ∈ U. Any choice that is not minimax optimal has strictly greater
loss than x∗U for some u ∈ U.

Minimax regret is attractive for several reasons. First, it offers
robustness with respect to the worst-case loss under any realization
of a user’s utility function (and provides the tightest bound on such
loss).3 Second, it requires no probabilistic prior, unlike Bayesian
methods [11, 3]. Finally, computation of minimax regret is often
quite practical, typically much more computationally efficient than
probabilistic models. Most natural queries, including those used by
the UTPREF system, impose linear constraints on the parameters of
a user’s utility function, giving rise to a polytope U over which lin-
ear optimization techniques can be applied. In configuration prob-
lems, optimization over product space X is often formulated as a
constraint satisfaction problem (CSP) or a mixed integer program
(MIP). In such domains, minimax regret computation can be for-
mulated as an MIP, and solved practically for large problems using
techniques such as Bender’s decomposition and constraint genera-

3For a discussion of other criteria typically used in robust opti-
mization, such as maximin [2], and comparison with (and further
motivation for) minimax regret with uncertain utility, see [4].



tion [4, 5, 8]. In product databases, search techniques can be used,
as we elaborate in the next section.

3.2 Multiattribute product databases
In [4, 8] the authors address the computational issues of effi-

ciently computing minimax regret in GAI utility models when the
feasible outcome space XD is defined by a set of configuration
constraints determining feasible instantiations of domain variables
(e.g., product constraints). In this paper, our focus is on domains
where the set XD is given by a database of multiattribute items, i.e.,
where feasible configurations are enumerated (e.g., an online prod-
uct catalog or product database as in our apartment search task).
In these settings, the MIP models used for minimax optimization
in [4, 8] cannot be applied directly. We briefly describe the search
method used in the UTPREF minimax regret optimization in such
product databases.

For any two items x and y, pairwise regret MR(x,y,U) can
be computed using Eq. 4. The maximum regret MR(x,U) of x is
determined by considering the pairwise max regret of x with every
other item in the database. To determine the optimal outcome (i.e.,
that with minimax regret), we compute the max regret of each item
in the database, and choose that with the least max regret. However,
this approach requires pairwise regret optimization for each pair of
items in the database. (We discuss this optimization shortly.)

Instead, we can view minimax regret computation as a game be-
tween two players, whose moves (choices) are theD = |XD| items
in the database; the value of a choice xi by the MIN player (rec-
ommender system) and choice xj by the MAX player (adversary)
is MR(xi,xj ,U), the pairwise max regret of choosing item xi

rather than item xj . The goal of the MIN player is to choose an
item that minimizes the maximum possible value across all MAX
choices. The game can be represented either by the D × D ma-
trix whose i, jth entry is MR(xi,xj ,U), or by the 2-ply minimax
search tree with the MIN root node, D MAX nodes, and pairwise
regret values at the leaves. To compute minimax regret, we find the
values of MAX nodes (maximum value of the leaves in a tree or in
each row of the matrix), and then choose the MAX node (row) with
the smallest value. A complete minimax search takes D2 steps;
however, such complete search is generally not necessary. We can
employ known pruning techniques to reduce the number of costly
pairwise regret evaluations. In UTPREF, we use beta or alpha-beta
pruning on the search tree [18], following the heuristic of favor-
ing the expansion of nodes that correspond to the adversary’s best
moves. In practice, this allows us to achieve linear (rather than
quadratic) performance.

Apart from the size of the search tree, node/score evaluation is
critical and requires a pairwise max regret computation at each
evaluated leaf node. When user utilities are expressed by a GAI
utility function, the space of feasible utilities U is defined by a
set of linear constraints—those dictated by user responses to the
queries discussed in the next section—on the utility parameters θki
from Eq. 3. By substituting Eq. 3, pairwise regret can be written
as:

MR(x,y,U) = max
{θk

i }

MX
i=1

|Dom(Fi)|X
k=1

(Cky[i] − Ckx[i]) θ
k
i , (8)

subject to U constraints. For many realistic problems, this opti-
mization can be very quickly solved as a linear program with a
number of variables equal to the number of GAI model parameters.
In the apartment database discussed below, average LP computa-
tion time is roughly 0.5ms. and computing the minimax optimal
apartment takes roughly 0.2s., far more than fast enough to allow
real-time interaction.

Figure 1: Screenshot from a UTPREF session

3.3 Regret-based elicitation
Minimax regret is also an effective means of driving elicitation.

Given query set Q, in principle, at each step of elicitation, the sys-
tem can evaluate each query in Q using a scoring function that es-
timates its potential to reduce minimax regret. A user response im-
poses constraints on the feasible utility space U, leading to a new
decision situation with a reduced minimax regret (minimax regret
cannot increase with more information). The process continues un-
til minimax regret reaches some acceptable level, elicitation costs
(e.g., the number of queries) become too high, or some other ter-
mination criterion is met.

Since computing minimax regret for each response to each query
in Q may not be practical in general, query strategies can also
rely on heuristic criteria for choosing queries. One approach that
has proven effective in simulation is to concentrate on queries that
have the potential to constrain utility parameters that are directly
involved in the current solution of the minimax regret optimization
[4, 5, 8]. The current solution is the triple 〈x∗,xw, u̇〉 consisting
of: i) the current regret-minimizing product x∗; ii) the adversarial
choice of product, or witness xw that maximizes the regret of x∗;
and iii) the utility function u̇ chosen by the adversary. Therefore,
MR(x∗,xw, u̇) = u̇(xw)− u̇(x∗) = MMR(U).

Imposing constraints on utility parameters directly involved in
the current solution has the greatest potential change in minimax re-
gret, specifically pairwise max regret of the recommended product
and the adversarial witness, either by increasing u̇(x∗) or reduc-
ing u̇(xw). (More precisely, if a query response does not impact
our assessment of one of these parameters, the minimax regret can-
not be reduced.) This is the main intuition behind current solution
based strategies. We refer to [8] for a more detailed explanation
on how queries are rated by a heuristic scoring function that indi-
rectly measures each query’s potential to reduce minimax regret by
considering the impact on the current solution.

4. UTPREF RECOMMENDATION SYSTEM
The UTPREF recommendation system is a software tool that ex-

plicitly models user preferences with a GAI utility function, in-
crementally acquires preference information through a sequence of
queries and responses, and recommends a minimax regret-optimal
option to the user.



(a) Local sorting (b) LBQ (c) ABQ (d) GCPQ

Figure 2: Four different query types

4.1 Implementation
UTPREF consists of a back-end recommendation engine, and a

graphical user interface. The recommendation engine is written in
Python and uses ILOG CPLEX for the solution of linear programs
needed to compute pairwise regret. The graphical user interface
is written in Adobe Flex and runs inside the Adobe Flash Player
either as a stand-alone cross-platform application or a web browser
plugin (see Fig. 1 for a sample screenshot of the UTPREF session).

A recommendation session proceeds in two stages. In the pre-
liminary stage A, the system assesses basic user preference infor-
mation. First, the user is asked to configure a reference outcome
using drop-down lists of values for each attribute. For example,
in the apartment domain, it could be the apartment in which the
user currently resides or aspires to: any salient choice will suffice.
Then, for each GAI factor, the user is shown a list of the factor’s
(local) outcomes, together with the conditioning set (if nonempty)
with its attributes set to reference values, and is asked to sort that
list in terms of decreasing preference via a drag-and-drop interface
(see Fig. 2(a)). This sorted list provides both the best and the worst
factor outcomes (which are used later in local bound queries), as
well as a complete ordering of the (local) factor outcomes.

The preliminary preference information acquired in stage A is
rarely enough to recommend a good decision. In stage B, the sys-
tem asks the user a series of queries, until minimax regret drops
to an acceptable level. UTPREF employs five different types of
queries, described below, and can be configured to implement a va-
riety of elicitation strategies that differ in which query types are
used, and what criteria are used to choose a query. At each step,
the user can opt to see the recommended option and its max regret
level, and then decide whether to continue with further elicitation,
or accept the system’s recommendation.

4.2 Query types
UTPREF employs several types of GAI queries that can be clas-

sified as either comparison or bound queries; queries are further
distinguished by the type of outcomes involved (local or global).
All query types described below have a precise decision-theoretic
semantics dictated by the theory of generalized additive indepen-
dence, and responses to any query impose linear constraints on
the GAI model parameters. An equally important characteristic of
these query types is their user-friendliness and usefulness in practi-

cal applications, as corroborated by the user study results reported
in Section 6.

4.2.1 Local queries
Local queries involve only a small subset of all attributes, namely

attributes in some GAI factor and the attributes in the factor’s con-
ditioning set; the values of remaining attributes do not matter. We
use two types of local queries: comparison and sorting queries and
bound queries.

A comparison query asks the user to compare two outcomes and
select the more preferred one. In a local comparison query (LCQ),
both outcomes are local outcomes and belong to the same factor.
In addition, the user is asked to assume that the attributes in the
factor’s conditioning set are fixed at reference levels. A response to
an LCQ induces in a simple inequality constraint between two GAI
utility function parameters.

Sorting a list of factor outcomes determines all pairwise relation-
ships between factor outcomes (i.e., it is similar to asking a large
set of pairwise LCQs). Fig. 2(a) shows an example of the sorting
interface for a factor over AT and Bdrm attributes; notice that the
Area attribute, which is the local conditioning set, is fixed at the
same reference value for all outcomes (users are alerted to this fact
elsewhere on the screen).

A bound query asks the user to consider a single outcome, and
decide whether its value is greater or less than some specified bound
b. In a local bound query (LBQ), the outcome is a local factor out-
come x[i] whose value v is between 0 (the value of the worst factor
outcome x[i]⊥) and 1 (the value of the best x[i]>). According to
the decision-theoretic semantics, v is a probability at which the user
would be indifferent between obtaining outcome x[i] for sure and
a lottery that results in x[i]> with probability v, and x[i]⊥ with
probability 1 − v. In UTPREF, we approximate the probabilistic
semantics by asking the user to simply consider outcome x[i] on a
scale from 0 to 100, and specify if its value v is greater or less than
the bound b. As in other local queries, the attributes in the condi-
tioning set are fixed at reference values. In the screenshot shown
in Fig. 2(b), the user has indicated that the value of the Toronto
East, House outcome is somewhere between 0 and 50 by dragging
the outcome in question to the lower bin. The user can also adjust
the query “boundary” (in this case 50) by adjusting the slider to
provide tighter or looser constraints if they feel comfortable doing



so. A response to an LBQ imposes linear bound constraints that tie
together three different GAI utility parameters.

4.2.2 Global queries
Global queries ask a user to consider preferences over full out-

comes. UTPREF uses three types of global queries: anchor bound,
anchor comparison and global comparison queries.

Anchor bound queries (ABQs) involve factor anchors, i.e., the
best and worst factor outcomes with all attributes outside the factor
(not just the conditioning set) fixed at their reference levels. The
user only has to specify whether the anchor utility is greater than
the specified bound. In UTPREF, we use a monetary scale to cal-
ibrate global outcome utilities. A response to an ABQ leads to a
very straightforward bound constraint on the utility parameter θ>i
(θ⊥i ) (see Eq. 3), where θ>i (θ⊥i ) is the utility of the top (bottom)
anchor in factor Fi. In the screenshot in Fig. 2(c), the user is sim-
ply asked “Would you be willing to pay (at least) $1150 for the
specified apartment?”

We also use two variations of global comparison queries (GCQs).
GCQ and GCQ queries with price (GCPQs) ask a user to consider
two arbitrary global outcomes, ignoring price in the former case,
and accounting for price in the latter. An example GCPQ is shown
in Fig. 2(d). The user is simply asked to select the better option.
A particular form of GCQ is the anchor comparison query (ACQ),
in which both outcomes to be compared are either top or bottom
anchors for some factor. ACQs are likely easier to understand be-
cause, unlike general GCQs, most attributes are fixed at reference
levels, which are stable and salient. They also lead to linear con-
straints that involve only two utility parameters whereas responses
to general GCQs or GCPQs tie together multiple utility parameters.

4.3 Elicitation strategies
UTPREF system can support a variety of query strategies by re-

stricting the types of queries allowed, and employing different scor-
ing methods. In the user study described below, we test two strate-
gies that are very different from each other both in terms of query
types and query scoring methods.

One strategy we investigate is the all query strategy. It mixes
almost all types of queries (LBQ, ACQ, ABQ and GCQ), and at
each step selects a query based on the heuristic scoring function
described in [8]. GCQ queries are limited to comparing current
solution outcomes (without price). On the other end of the spec-
trum lies the GCPQ only strategy. It relies exclusively on GCPQ
queries that ask only about the current solution outcomes (the first
one being the minimax optimal outcome, and the second being the
adversarial witness). For this strategy, no query scoring function is
needed.

5. USER STUDY DESIGN
We conducted a user study with the UTPREF system with three

main objectives: 1) to assess overall user comprehension and ac-
ceptance of minimax regret-based elicitation; 2) to measure the
costs, in terms of time and perceived difficulty, of different query
types; and 3) to evaluate the effectiveness of the GAI utility repre-
sentation as a model of user preferences, investigate the importance
of context in local queries in GAI models, and compare different
query strategies.

We recruited 40 participants from the University of Toronto who
had either searched for rental housing in Toronto in the previous
year, or were considering a new rental in the near future. The pri-
mary task of participants involved searching for apartments, us-
ing the UTPREF system, from a database of Toronto apartments.
Each unit was described by nine attributes in addition to its price

(monthly rent): area, building type, number of rooms, furnished or
not, availability of laundry, parking, dishwasher, storage room, and
central air conditioning. Rents ranged from $500 to $1800; area
had four values (geographic regions); building type (house, apart-
ment, basement) and number of rooms had three values; and the re-
maining attributes were binary. The database comprised 100 apart-
ments sampled from a real Toronto housing database. The number
of apartments was chosen to be large enough to justify the use of
an intelligent search aid, but small enough for a user to evaluate
each option in the second phase of the study, as discussed below.
(Similar studies [24, 19] used databases of similar size.)

Each user session was divided in two parts. In Part 1, users an-
swered preference queries posed by UTPREF which then recom-
mended an apartment based on user responses. In Part 2, users
explicitly rated all apartments in the database and ranked the top
few options, allowing us to assess the quality of the recommended
apartment relative to the user’s explicitly stated preferences.

After a brief introduction and a five-minute demonstration, each
user session was controlled by the UTPREF system itself, with min-
imal researcher oversight. Participants were guided by UTPREF
via prompts, task descriptions, and queries. In the first stage of
elicitation (Part 1A), participants were asked to configure a refer-
ence outcome, and provide an ordering of the local outcomes in
each factor using the simple sorting interface (thus also specifying
best and worst factor outcomes). In Part 1B, participants responded
to a series of local and global queries about their preferences. After
ten queries, the system displayed the minimax-optimal apartment
and its max regret. The user could then stop the process, or con-
tinue answering further queries until minimax regret was reduced
to a satisfactory level.

After a short break, participants completed Part 2 of the session,
which involved answering a questionnaire about the experience,
rating all the apartments in the database, and sorting a small list
of apartments in terms of preference. The most demanding task in
Part 2 involved rating all 100 apartments in the database (10 screens
with 10 apartments in each) on a 0-2 scale, with score semantics:
0, I do not like this apartment; 1, Not sure; and 2, I would rent
this apartment. After this rating process, users were presented with
a final list of 7–12 apartments and asked to sort them in order of
preference. The final list was formed by taking the union of, and
randomly shuffling, the ten highest user-rated apartments from Part
2, and five apartments with least max regret as determined in Part
1 (because some apartments were in both sets, the final list had
fewer than 15 elements). The final list always included the recom-
mended outcome, but it was not distinguished in any way.4 Finally,
users specified an approximate value difference (in dollars/monthly
rent) between the best and worst options in the final list: users were
shown their best and worst options and asked how much the rent
of the best option would have to increase to make the user roughly
indifferent between the two options.

One main feature of UTPREF is the use of more flexible, but
more complex, GAI utility functions to represent user preferences.
We believe UTPREF is the first preference elicitation system to em-
ploy GAI models (rather than additive or unstructured models). To
evaluate the benefits and limitations of using this more complex,
but semantically sound, model, we tested UTPREF under three
main modeling assumptions.

The first condition, GAI, uses a full GAI utility model, reflecting
preferential dependence among attributes using GAI factors. Elici-
tation techniques and local queries are those mandated by the the-
ory of GAI modeling [8]. Utility structure (i.e., GAI factors) was
4Because of the break induced by the questionnaire, participants
were less likely to precisely recall the recommended apartment.



fixed for all participants in the study. The utility function had two
intersecting factors: area, building type and building type, number
of bedrooms; the remaining factors had single attributes.5 The sec-
ond condition, GAI with no local context (GAI-nc), was designed
to test the sensitivity of GAI elicitation to the use of sound con-
ditioning sets. GAI-nc is identical to GAI, using the same GAI
model, except that UTPREF does not display the conditioning con-
text when asking local factor queries (e.g., in the local sorting task
or when asking local bound queries). Our aim is to test whether
good recommendations can be generated without the use of condi-
tioning context (which, theoretically, is required). The third con-
dition, ADD uses a simple additive utility model to represent user
preferences. No modification of UTPREF is needed, since addi-
tive models are a simple, special case of GAI models which have
single-attribute factors and empty conditioning sets.

We used a between-group experimental design, with three ran-
domly selected groups of subjects from the 40 participants were
assigned to the conditions GAI, GAI-nc and ADD. In addition, half
of the users were asked only GCPQ current solution queries, while
the other half interacted with the elicitation strategy that employed
all other types of queries (ABQ, ACQ, GCQ and LBQ). This gave
six subgroups:

GAI GAI no context Additive
All queries A B C
GCPQ only D E F

All subgroups had 6 participants except subgroups B (7 partici-
pants) and C (9 participants).

6. USER STUDY RESULTS
We present the results of the user study in three parts: first we de-

scribe overall system performance with respect to recommendation
effectiveness, ease of use and user satisfaction; second we discuss
query costs (both time and perceived difficulty); and finally we con-
sider performance differences under the different test conditions.

6.1 Overall evaluation

User impressions. Participants were asked to evaluate a vari-
ety of aspects of the UTPREF system after the elicitation process,
but before manually rating all apartments. The following questions
were rated on a 7-point Likert scale, with scores from 1 (“strongly
disagree”) to 7 (“strongly agree”); we show average and median
responses (with std. dev. in parentheses):

Some questions were too hard 1.65 2 (0.65)
My answers reflected my true preferences 6.05 6.5 (1.26)
Some questions were confusing 1.98 2 (1.06)
I fully understood the meaning of each question 6.30 6 (0.71)
I answered some questions carelessly 1.98 2 (1.21)
I understood the task I was asked to do 6.75 7 (0.49)
I found this application easy to use 6.35 7 (0.79)
The task took too much time 2.23 2 (1.01)
I am satisfied with the recommended apartment 5.35 5 (1.19)

The average responses to the last four questions confirm that
users understood the minimax-regret criterion and were quite satis-
fied with system performance. The majority of participants under-
stood the task well, found UTPREF easy to use, and were satisfied
5Utility structure obviously depends on the specific user; however,
eliciting factor structure was beyond the scope of the current study.
The factors were chosen to reflect a reasonable consensus of pos-
sible attribute dependencies based on the domain and an informal
survey of potential users.

with its recommendation. Note that satisfaction with the recom-
mended apartment is not solely a function of recommendation qual-
ity, but is strongly influenced by the available units in the database.
We examine recommendation quality next.

Recommendation quality. Part 2 of the user session was de-
signed to provide a quantitative measure of UTPREF’s ability to
recommend the “right” product. The major task in Part 2 involved
rating all apartments in the database and sorting those rated highest
(and those with low minimax regret according to UTPREF), thus
providing valuable information about the accuracy of the recom-
mended outcome. In the initial rating phase, of 40 participants, 34
assigned the highest rating (2) to the recommended apartment, five
rated it 1, and one participant rated it lowest (0). This suggests
that the recommended apartment is almost always a very desirable
option.

When asked next to sort the final list of 7–12 “very promis-
ing” apartments (as described above), users ranked the UTPREF-
recommended apartment very highly. The average position (rank)
of the recommended apartment was 4.00 (std. dev. 3.32), and the
histogram of rankings in Fig. 3(a) shows that 14 users placed the
recommended outcome at the top of the sorted list, and majority
ranked it among the top three (median 3.0). This too confirms the
recommendation accuracy of UTPREF, and is arguably more infor-
mative than the coarse 3-point rating of the recommended item.

The position of the recommended apartment in the sorted list
does not reveal how from optimal it is in terms of value. Asking
participants to specify the value difference (in dollars) between the
best and worst options in the sorted list lets us roughly quantify
the difference between the best apartment in the database and UT-
PREF’s recommendation using a qrank score, a quantitative analog
of rank (the lower the qrank value, the better). The qrank of an out-
come is computed by assuming that apartments in the sorted list are
evenly distributed in terms of utility (willingness to pay). For ex-
ample, if the difference between the best and the worst apartments
in a sorted list of 11 apartments is $1000, then the qrank of the top
outcome is $0, the worst outcome $1000, and the fifth apartment
$400. Fig. 3(b) shows the histogram of the qrank of the recom-
mended apartment across all participants. Only six users have a
qrank greater (worse) than $200; equivalently, for 34 of 40 partic-
ipants, the recommended apartment is within $200 (w.r.t. monthly
rent) of the optimal apartment, under qrank assumptions. The aver-
age qrank is $100.74 (with std. dev. $151.48); and importantly, the
median qrank is $44.95. Thus when the recommended apartment
is not optimal it is generally quite close to optimal (within $45 for
the majority of users).

Time. An important measure of user experience is the duration of
the interaction (and the number of queries) required by the recom-
mendation system to find a good product. Fig. 4(a-c) shows how
long participants took to complete the UTPREF elicitation session
(Parts 1A and 1B), and to rate all items in the database (Part 2).
Of special significance is the fact that participants spent more time,
on average, searching through all apartments in the database (708
seconds) than completing Parts 1A and 1B combined (145 seconds
plus 336 seconds) of the elicitation process. This difference is sta-
tistically significant (p = 0.00009). This holds despite the fact
that by the time participants rated the apartments, they had become
quite familiar with domain attributes and range of prices, and had
time to explore and verify their own preferences by completing the
UTPREF elicitation session (Part 1). In addition, increasing the
size of the database directly and proportionately impacts the time
required to examine all apartments; in fact, we limited our database
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Figure 3: Rank and qrank distribution across study participants
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(d) Number of queries in Part 1B

Figure 4: Completion times for tasks and number of queries. Part 1A, choosing a reference outcome, and sorting all local outcomes
for each factor, is the same for all participants; the duration of Part 1B (answering elicitation queries) depends on the number of
queries needed to reduce regret to zero. Part 2, rating all 100 apartments in the database, is the same for all participants.

to 100 apartments because it would be too time-consuming and
tedious for users to rate a larger number of options. However,
simulation results [8] show that UTPREF can handle much larger
databases without a significant increase in the number of queries.

Fig. 4(d) shows the histogram of the number of elicitation queries
in Part 1B (which excludes choosing the reference outcome, and
sorting local outcomes for each factor). Even though the partici-
pants had the option to cut the process short after 10 queries, all
but two continued until the regret of the recommended apartment
dropped to zero. The average number of queries until termination
was 21.70 (std. dev. 8.84), and the median was 19.5, illustrating
that the majority of users find a near-optimal apartment in under
20 queries. It is also important to note that most of these queries
are not full apartment comparisons, but involve small subsets of
attributes.

6.2 Query costs
One of the goals of the user study was to estimate the cognitive

costs of different query types. We measured the durations and user
ratings for five types of queries described previously: ACQ, GCQ,
GCPQ, ABQ, and LBQ (in addition, local comparison queries were
implicitly used in the local outcome sorting task, but were not rated
by users). At the end of the elicitation session, participants were
asked to rate the query types they encountered—“In terms of dif-
ficulty, how would you rate the type of question shown?”—on a
7-point Likert scale—ranging from 1 (“extremely difficult”) to 7
(“extremely easy”). In addition, the amount of time participants
spent responding to each query was recorded. The following table
shows average rating and response duration for every query type:

Query type Avg. rating Avg. duration (sec)
ACQ 5.28 13.95
GCQ 5.88 15.58
GCPQ 5.18 14.65
ABQ 5.41 14.86
LBQ 4.23 21.27

A one-way ANOVA indicates that the query durations and rat-
ings are significantly different (p=0.00047 and p=0.007, respec-
tively). However there are no significant differences (ratings or
duration) among global queries; only LBQs exhibit significant dif-
ferences from every other query (durations differ in a multiple com-
parison procedure at the 0.05 level, and ratings differ from each
other query in a pairwise comparison).

Both the rating and response time can be used as a proxy for the
query’s cognitive difficulty. We can see that all global queries have
very similar average ratings (between “easy” and “very easy”) and
response times. Somewhat surprising is the lack of significant dif-
ferentiation between global bound and comparison queries. In gen-
eral, users found local bound queries to be the most difficult. From
our observations and user comments it is clear that one reason was
their novelty and occasional confusion about their meaning; better
visual design and explanations might make the LBQs easier to an-
swer. On the other hand, the average LBQ rating of 4.23 still does
not suggest serious difficulty (4 corresponds to a query being “not
difficult”). As far as we are aware, this is the first evaluation and
comparison of query costs in the context of preference elicitation
systems. This takes a step toward allowing query costs to be traded
off against potential query value in future elicitation strategies.

6.3 Comparison of study subgroups
The participants were randomly assigned to one of six subgroups

A-F (described above), divided along two axes: Query types—
all queries vs. global comparison queries (GCPQ) only; and Util-
ity function structure—GAI vs. GAI with no conditioning context
(GAI-nc) vs. additive (ADD). Table 1 shows the average of the var-
ious measures discussed above across the six subgroups.

GAI with and without local context. To properly elicit GAI
utilities with intersecting factors, local queries have to include cer-
tain context attributes. For example (see Fig. 2(b)), a local query



ALL A: all,
GAI

B: all,
GAI-nc

C: all,
ADD

D: GCPQ,
GAI

E: GCPQ,
GAI-nc

F: GCPQ,
ADD

Rank of recommended outcome 4.00 3.33 3.29 4.56 4.17 4.33 4.17
Qrank $101 $106 $27 $82 $73 $81 $262
Number of queries 21.70 29.50 27.00 24.56 13.83 18.00 15.00
Part 1A duration (sec) 145 168 174 94 164 181 110
Part 1B duration (sec) 336 401 500 365 191 256 259
Database item rating duration (sec) 708 673 564 828 626 734 787

Table 1: Subgroup comparison

about a house in Toronto East (both building type and area are in
Factor 1) also has to specify the reference value of the context at-
tribute 2 bedrooms (which is in Factor 2), because Factors 1 and 2
intersect. If the context attribute’s reference value were different,
say 1 bedroom, user preference for a house in Toronto East could be
very different. To test the importance of local context, local queries
for users in subgroups B and E did not include local context (every-
thing else was the same as in subgroups A and D; for subgroups C
and F, this distinction is irrelevant, since additive utility functions
do not have intersecting factors). The following table compares key
performance metrics:

All queries GCPQ only
A: GAI B: GAI-nc D: GAI E: GAI-nc

Rank 3.33 3.29 4.17 4.33
Qrank $106 $27 $73 $81
Satisfaction 5.00 5.86 5.50 5.67

There are no obvious, statistically significant patterns that emerge
from the comparison of the GAI and GAI-nc groups. Local queries
without context attributes seem to perform no worse than proper,
semantically sound queries with local context. There are two plau-
sible explanations for this. First, we believe it is likely that users
maintain a consistent context themselves (for instance, some salient
outcome like their current or desired apartment) without an explicit
specification of it, and automatically assume this context when an-
swering local queries. Confirmation of this hypothesis requires
further research. Second, the GAI model used in this study is
quite simple, with only two overlapping factors. The importance of
proper preferential conditioning generally increases with the com-
plexity of the utility model; thus, differences might emerge in more
complex, cognitively demanding choice scenarios.

GAI vs. additive utility models. To compare the effective-
ness of more flexible GAI models with additive models, we group
the GAI and GAI-nc subgroups and compare performance with that
of the additive group. The table below compares average Rank,
Qrank, and user satisfaction with the recommended apartment for
both groups; we show results broken out by query type, and with
both query groups combined (as well as p-values in a pairwise com-
parison):

Combined All queries GCPQ only
GAI ADD p- GAI ADD p- GAI ADD p-

Subgrp ABDE CF val AB C val DE F val
Rank 3.76 4.40 .57 3.31 4.56 .38 4.25 4.17 .97
Qrank $70 $164 .10 $63 $82 .71 $77 $262 .07
Satisf. 5.52 5.07 .26 5.46 4.89 .21 5.58 5.33 .68

Although we cannot draw strong, statistically significant conclu-
sions from these results due to the small sample size and high vari-
ability, it appears that a more complex GAI utility model leads to
better performance w.r.t. recommendation quality than a simple ad-
ditive utility model. The only statistically significant advantage is
in Qrank (at the 0.1 level). The slight advantage of GAI models

is maintained across both types of strategies as well as when both
strategy results are combined together. We should bear in mind that
the GAI utility factorization used in this study is quite simple, and
not tailored to the preference structure of individual participants.
In more complex domains, the advantage of a more flexible GAI
model could be much more pronounced; but the differences in this
study are suggestive enough to warrant further exploration.

All queries vs. GCPQ only queries. To explore variation
along the query axis, we form the all queries group by merging
subgroups A,B,C and the GCPQ only group by merging subgroups
D,E,F. Key performance metrics are shown in the following table
(the p-value column shows results from the pairwise comparisons
of the first two columns):

All queries GCPQ only p-value
Rank of recommended outcome 3.82 4.22 .71
Quantitative rank (qrank) $70 $132 .25
Number of queries 26.68 15.61 .000018
Part 1B duration (sec) 418 235 .0024

Since global comparison queries concentrate on current solution
outcomes, minimax regret tends to decrease very quickly, and on
average, the process converges after only 15.61 queries. The all
queries strategy uses more queries on average, in large part because
it explores a broader utility region by combining both local and
global, comparison and bound queries. On the other hand, we sus-
pect that the all queries strategy has some advantage with respect
to the final recommendation, whose quality is somewhat better in
average rank and qrank (though the difference is not statistically
significant): the flexibility of its query space allows it to home in
on true utility more precisely.

7. CONCLUSIONS
Explicit user utility modeling with GAI utility functions, seman-

tically sound and user-friendly queries, and minimax regret-based
preference elicitation and recommendation are the main features
distinguishing UTPREF from other recommendation systems. While
very effective in simulated experiments, minimax regret-based elic-
itation has not been tested before in realistic domains with real
users. Our results from the user study with 40 participants are very
encouraging. We have demonstrated that minimax regret is an in-
tuitive, comprehensible decision criterion that can be used to drive
very effective querying strategies. It results in high-quality recom-
mendations with minimal user preference revelation, and we have
seen that GAI utility models perform better than simple additive
models with respect to several recommendation quality measures.
We have gauged the cognitive costs of different query types, and
have shown that simple local queries that omit the local context
information perform as well as semantically correct local queries.

There are many possible extensions to our current work. Cur-
rently we assume a fixed GAI utility structure for all users. Utility
structure personalization is a natural, although non-trivial, next step



in the development of UTPREF (see [6] for some recent steps in this
direction). A related issue is product feature elicitation since deci-
sion alternatives are not always described in terms of features the
user is most comfortable reasoning about. The aim here is to de-
termine the most natural features to describe a product or outcome
to allow users to most comfortably assess their preferences. In-
corporating cognitive query costs into elicitation strategies would
allow us to investigate the tradeoffs between reducing elicitation
effort on the part of the user and improving recommendation qual-
ity. Finally, incentive issues arising in regret-based elicitation when
the elicitor has its own interests in which product is recommended
(e.g., a seller eliciting a buyer’s preferences in order to recommend
a product), or when the elicitor is attempting to facilitate a transac-
tion between multiple parties [16] are of great interest.
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